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1 Introduction

Transport and logistics companies invested substantially to increase the efficiency
of their individual operations. Research has also been fruitful in finding ways to
optimize problems of planning routes, scheduling deliveries, designing networks,
and deploying resources. It is generally well-understood that economy of scale in
transportation and logistics plays a crucial role in increasing efficiency. Yet, efforts
towards internal optimization cannot always increase the economies of scale for or-
ganizations beyond their operational scope. This is problematic as the logistics and
transportation sector is fragmented and many operators of different sizes are present.
It is no wonder then that the logistics sector suffers from low overall efficiency—for
example, more than 20% for all truck movements in Europe is completely empty
and the remainder is hardly ever full.

The success of new network design approaches, building on concepts, models
and methodologies such as the Physical Internet, City Logistics, synchromodal net-
works, etc., is also to a large part depending upon the ability to successfully col-
laborate and agree on these cost-and-benefit sharing mechanisms. Collaboration is
a way to open possibilities for achieving these important economies of scale needed
for a successful implementation any Physical Internet or City Logistics solution. In
fact, collaboration may positively affect many aspects. For example, by consolidat-
ing their loads, carriers can increase their service level and reduce their total costs.
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Carriers could increase the utilization rate of their assets when combining their de-
livery demands. Finally, as a result of consolidated cargo and combined trips, the
socio-environmental problems of transport and logistics can also be mitigated.

Despite the clear advantages of collaborative logistics, in practice, cooperation
and collaboration among organizations are exceptions. Collaboration among carri-
ers is often hampered by their competitive positions and by the risks of divulging
information and losing customers. Shippers, on the other hand, may hesitate to col-
laborate as they might not have a clear understanding of collaborative mechanisms
employed and whether or not they receive a fair share out of collaborative opera-
tions. Finally, designing a fair cost sharing scheme is a major impediment for col-
laboration.

This type of collaboration problems falls in the area of cooperative game theory,
where coalitions and their respective cost sharing issues are researched. The inten-
tion of this chapter is not to give an exhaustive review of cost sharing problems, but
to provide an overview of relevant approaches in dealing with cost sharing problems
for collaboration in the setting of logistics network design problems.

By abstracting a cooperative situation into a cooperative game, consisting of a
player set and a function that determines the cost of different groups of players, co-
operative game theory studies solutions that satisfy collections of logically desirable
properties expressed in relation to such an abstraction. The players in these situa-
tions require or provide transportation-based logistics services. The cost of groups
of players is obtained via a network design optimization problem. The specific fea-
tures of cooperative situations under study provide grounds for refining well-known
solutions in cooperative game theory or develop new ones that are appropriate for
special situations.

Important to note is that cooperative games are build on stylized situations. A
situation is a description of the real-life problem to handle (e.g., network optimiza-
tion or service network design). However, for these situations, we need to obtain the
exact value of possible coalitions (e.g., players working together). From an Oper-
ations Research perspective, many of these underlying situations are combinatorial
problems, leading to significant calculation times to obtain the relevant (optimal)
values. That is why a large body of cooperative game theory literature is build
around stylized models. Clearly, solutions in cooperative game context can prove
to be unsatisfactory in more complex situations.

This chapter is build around three parts. In the first part, we discuss the most
important components around cooperation within a transport and logistics network
setting. In the second part, we discuss cost-sharing problems in some basic and
stylized network design models. The simplicity of underlying situations in this cat-
egory allows for adoption of well-known game theoretic solutions such as the core
(Shapley, 1955) and the Shapley value (Shapley, 1953). The search for the core of
cooperative games in network situations has motivated a large body of literature, and
implementation of the Shapley value is suggested by a host of research in collab-
orative logistics. In the third part, we look at more operational problems in collab-
orative logistics and overview the cooperative truckload delivery situations where
logistics providers jointly devise plans for their daily pick-up/transport/deliver op-
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erations. We discuss desirable properties for allocations rules in these situations and
introduce an appropriate one for these situations.

This chapter is organized as follows. Section 2 discusses the key concepts re-
volving around collaboration in transport and logistics networks. Section 3 provides
some background and preliminaries on cooperative game theory and the relevant
main concepts. In Section 4, we discuss the cost sharing problem in stylized coop-
erative network design problems, in particular, minimum cost spanning tree, facility
location, and hub location. In Section 5, we turn our attention to designing logistics
service networks and focus on cooperative truckload delivery situations. Section 6
concludes the chapter.

2 Key collaboration concepts in Transport and Logistics
networks

Transport and Logistics networks collaboration involves different aspects: Commu-
nication, Coordination, and Consolidation. Many different actors are involved in
Transport and Logistics activities. One way of reducing costs is to consolidate ac-
tivities, e.g. freight consolidation or capacity consolidation, as such reducing empty
mileage or under-filled resources. But, these stakeholders hardly communicate with
each other, let alone that there is a form of coordination.

Over the past years, more and more different types of collaboration emerged.
Vertical collaboration, getting popular in the 90s, involves collaboration within
the supply chain, i.e. connecting the upstream and downstream partners. This lead
to concepts like Vendor Managed Inventory (VMI), factory gate pricing, Collab-
orative Planning Forecasting and Replenishment (CPFR), and Efficient Consumer
Response (ECR). At this moment, these concepts were mainly focused on costs effi-
ciency in the different key supply chain decision areas like inventory, transportation,
forecasting, etc. Early 200, next to costs efficiency, companies also started to con-
sider other drivers like sustainability and greenhouse gas emissions. Also in trans-
port and logistics, continued observations on low vehicle utilisations, and a large
number of empty running vehicles, lead to strong understanding that collaboration
could be a solution towards costs reductions but also to significant reductions in the
environmental pressure.

Next to vertical collaboration, horizontal collaboration started to gain momen-
tum over the past 10 years. Here, collaboration in distribution and coordination
among similar stakeholders, e.g. logistics service providers or shippers, is the focus.
The rationale is that bundling of physical good flows into (urban) areas, results in
fewer negative impacts (decongestion, less negative externalities in cities). Clearly,
Transport and Logistics networks are large constructs of multiple many-to-many
interconnected stakeholders, active in both horizontal and vertical relations.

Cruijssen et al. (2007) investigated the opportunities and obstacles carriers face
in horizontal collaborations. They organized a spectrum of collaboration types from
basically no collaboration (i.e. ”arms length”) to a full integration, which is simi-
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lar to a merger of companies. In between these two extremes, three different levels
(denoted as Type I, II and III) are distinguished. Type I consists of partners who
know and trust each other. They coordinate their activities and planning on a limited
basis. The collaboration partnership may be short-term and a single division of each
company may focus on one single activity. Type II collaboration maintains a longer
collaborative relationship. The scope of collaboration for the participants is not only
to coordinate, but also to integrate part of their business planning. The horizon is of
a long though finite length and multiple divisions or functions of the companies are
involved. Type III collaboration refers to those organizations which have a signifi-
cant level of integration, and each company treat others as an extension of its own
business unit. There is no end date for this kind of collaboration.

Other collaboration (Communication, Coordination, and Consolidation) con-
cepts also arise in other Transport and Logistics networks fields. Again aiming to
reduce vehicle movements and/or increase utilization, crowd logistics is a sharing
economy concept. Unorganized individuals (the crowd) offer their services (e.g.
movement or capacity) to the platform. In this setup, transportation is outsourced
to the crowd or crowdsourced. Efficient use of different transportation modes, en-
abled by the use of standardized containers, presents a challenge. Synchro-modality
as structured, efficient and synchronic combination of two or more transportation
modes also brings interesting collaboration issues, as it also involves multiple stake-
holders (i.e. modalities). In these concepts, issues around pricing, revenue and cost
sharing are abundantly around.

These logistics processes can also be transformed to the Physical Internet (PI)
paradigm. This PI acts as an autonomously managed network with nodes (loca-
tions where freight is collected, transferred or delivered) and flows (transport move-
ments). For each request, a specific path from the origin to the destination through
the network is determined, using standardized transport unit (e.g. containers). A
number of prerequisites for successful Physical Internet implementations are real-
time monitoring within dispatching systems, integrated in an information-sharing
platform, high-level advanced predictions of the future supply of transport move-
ments and advanced collaborative decision support systems, including pain-and-
gain sharing mechanisms.

3 Cost sharing: Preliminaries

Consider a situation wherein a set of players (partners) collaborate among them-
selves to improve upon their joint costs. The cost sharing problem in a situation
entails finding ways to allocate the joint costs among the players. A solution to a
cost sharing problem indicates appropriate ways to do the latter.

We distinguish between two alternative approaches to solve cost sharing prob-
lems. The first approach (α) defines a cooperative game associated with the situation
and uses cooperative game theory to come up with allocations and/or cost-shares.
A cooperative game among a set of players is defined by the joint costs of collabo-
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ration among the grand coalition as well as all sub-coalitions. The second approach
(β ) deals directly with the situation at hand and obtains cost-shares using the infor-
mation contained in the situation. In this approach, the solution often relies on the
underlying optimization problems.

Situations can be either more succinct or more expressive than their associated
games. Cooperative games explicitly describe the costs of every sub-coalition, while
these costs do not appear explicitly in the underlying situation. In this regard, a
situation may present relevant justifications for a certain solution that cannot be
devised just by focusing on costs of sub-coalitions. However, as the game theoretical
solutions abstract away the details of underlying situations, they provide a generic
framework to tackle cost sharing problems. In the remainder of this section, we
introduce some 5 notions from cooperative game theory. Figure 1 illustrates the two
approaches possible to cost sharing problems.

3.1 Cooperative Cost Games

A cooperative game is a pair (N,c) consisting of a player set N = {1, ...,n} and
a characteristic cost function c which assigns to every group of players S ⊆ N,
hereafter a coalition, the cost c(S) ∈ R. For the empty set we fix c( /0) = 0.

The cooperative game (N,c) is subadditive if for every two disjoint coalitions S
and T , i.e., S,T ⊆ N with S∩T = /0, we have

c(S∪T )≤ c(S)+ c(T ).

If a game is subadditive, then the cost of a combination of disjoint coalitions are
always at most as much as the sum of their stand-alone costs so cooperation among
players could be beneficial. We focus our attention in this chapter on subadditive
games.

The cooperative game (N,c) is concave if for every S and T with S⊂ T ⊂ N and
every i ∈ N \T we have

c(S∪{i})− c(S)≥ c(T ∪{i})− c(T ).

Concavity of a game implies that the marginal cost of adding a new player to a larger
coalition is non-increasing.

Example 1. Consider a cooperative game among three players, N = {1,2,3}. The
costs for various coalitions are as follows. For S⊆ N we have: c(S) = 10 if |S|= 1,
c(S) = 19 if |S| = 2, and c(S) = 24 if |S| = 3. Compared to the sum of their stand-
alone costs, two-player coalitions save one and the grand coalition saves a total of
6. The game is sub-additive. It is also concave—for instance, the marginal cost of
adding player 1 to player 2 is 9 units and the marginal cost of adding player 1 to the
coalition of players 2 and 3 is 5 units.
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Fig. 1: A situation Γ , its associated game (N,cΓ ), and two approaches to cost shar-
ing

The example above motivates an alternative approach in defining cooperative
games. For every cooperative cost game (N,c) there exists a dual cost-savings game
(N,v) where for every S⊆ N: v(S) = ∑i∈S c({i})−c(S). The characteristic function
in a savings game gives the amount of savings that can be made in coalitions com-
pared to the stand-alone costs of the players involved.

Let ai ∈R be the cost-share of player i∈N. An allocation a = (ai)i∈N is a vector
of cost-shares for all players. A basic set of properties can be defined to reflect
appropriate conditions that allocations should satisfy. Let (N,c) be an arbitrary but
fixed game for the rest of this section.

An allocation a satisfies the Efficiency property if ∑i∈N ai = c(N). With an ef-
ficient allocation, the entire cost of the grand coalition is shared among the players
so that no excess or shortage occurs.

An allocation a satisfies the Individual Rationality property if for every i ∈
N we have ai ≤ c({i}). If an allocation fails to satisfy the individual rationality
property, then some players would be better off not collaborating.

Two players i, j ∈ N are substitutable if c(S ∪ {i}) = c(S ∪ { j}) for all S ⊆
N \ {i, j}. An allocation a satisfies the Symmetry property if for every pair of
substitutable players i, j ∈ N it holds that ai = a j. This property reflects a basic fair-
ness feature, that is, for two players that are identical in contributions to costs, their
cost-shares must be equal as well.

Example 2. In Example 1, both allocations a = (8,8,8) and (6,9,10) satisfy effi-
ciency, and individually rationality. Only the former allocation satisfies the symme-
try property.

3.2 Solutions for Cooperative Cost Games

Let G be the set of all cooperative cost games. Let G ′⊆G be a subset of all coopera-
tive cost games. A (game) solution on G ′ is a set-valued function β that determines
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a set of allocations for every cooperative cost game in G ′. A solution β on G ′ is
called single-valued if |β (N,c)| = 1 for every (N,c) ∈ G ′. For any single-valued
solution β on G ′ we refer to the function that assigns to any game (N,c) ∈ G ′ the
unique element in β (N,c) as an allocation rule.

We introduce some of the well-known solutions for cooperative games.

3.2.1 Core

The individual rationality property can be extended over all coalitions of players
by requiring that the sum of cost-shares of players in every coalition be at most
as much as the characteristic cost of that coalition. An allocation a is stable for
the game (N,c) ∈ G if for every S ⊆ N we have ∑i∈S ai ≤ c(S). The core of game
(N,c) ∈ G is the set of all efficient and stable allocations. That is,

C (N,c) =

{
a ∈ Rn

∣∣∣∑
i∈N

ai = c(N) and ∑
i∈S

ai ≤ c(S),∀S⊆ N

}
.

Given a game (N,c), consider the following linear program:

max ∑
i∈N

ai

s.t. ∑
i∈S

ai ≤ c(S) ∀S⊆ N

The core of (N,c) is non-empty if and only if at optimality the objective function
of the above program is c(N), that is, an optimal solution to the above program
a∗ satisfies ∑i∈N a∗i = c(N). If the latter holds, then every optimal solution to the
program above is an allocation in the core and vice versa. Consider the dual to the
program above:

min ∑
S⊆N

δSc(S)

s.t. ∑
S⊆N,S3i

δS = 1 ∀i ∈ N

By the strong duality theorem, the core of the game (N,c) is non-empty if and only
if the optimal value of the objective function in the dual formulation is also c(N).
Bondareva (1963) and Shapley (1967) provide a related condition for non-emptiness
of the core of a game. A map κ : 2N \{ /0}→ [0,1] is a balanced map if for all i ∈ N
we have

∑
S⊆N,S3i

κ(S) = 1.

The game (N,c) is a balanced game if for every balanced map κ it holds that
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∑
S∈2N\{ /0}

κ(S)c(S)≥ c(N).

Bondareva (1963) and Shapley (1967) show independently that the core of a
game is non-empty if and only if it is a balanced game.

Example 3. Let N = {1,2,3} and consider the game (N,c). An example of a bal-
anced map in this case is κ(S) = 0.5 if S ⊂ N and |S| = 2 and κ(S) = 0 for all
other S ⊆ N. A necessary, but not sufficient, condition for the game to have a
non-empty core is to have 0.5c({1,2})+ 0.5c({1,3})+ 0.5c({2,3}) ≥ c(N), i.e.,
c({1,2})+ c({1,3})+ c({2,3}) ≥ 2c(N). Hence whenever the latter condition is
violated the core of (N,c) would be empty.

The following example shows that the core of a game can be empty.

Example 4. Consider the game (N,c) with N = {1,2,3}. The costs for various coali-
tions of players are as follows. For S ⊆ N we have: c(S) = 11 if |S| = 1, c(S) = 17
if |S| = 2, c(S) = 28 if |S| = 3. Note that c({1,2}) + c({1,3}) + c({2,3}) =
17+ 17+ 17 = 51 < 56 = 2c(N). By the condition established in Example 3 we
conclude that C (N,c) = /0.

3.2.2 Shapley Value

The Shapley value is a single-valued solution, i.e. for every game it results in a
set with a single element (a singleton). To describe the allocation rule leading to this
element, to which we refer as the Shapley value as well, let σ : N→N be a bijection
of players in N. σ can represent the order in which players join in. Denote the set
of all such permutations with Π(N). For a given permutation σ , let σ(i) be the
position of player i in the order and Pσ

i = { j ∈ N|σ( j)≤ σ(i)} be the set of players
that come before i, including i itself, in σ . We define the marginal contribution of a
player in an order as the cost that the player adds to the coalition of players joining
before him. Given the game (N,c) ∈ G , the marginal contribution of player i in σ is

mσ
i (N,c) = c(Pσ

i )− c(Pσ
i \{i})

Let mσ (N,c) = (mσ
i (N,c))i∈N be the vector of marginal contributions of all players

in σ . The Shapley value of a game (N,c) is defined as

Φ(N,c) =
1
n! ∑

σ∈Π(N)

mσ (N,c).

The Shapley value divides the total cost of the grand coalition according to the
average marginal contributions of players in all different orders that they can join
the cooperative game. Note that there are exactly n! of such orders. An alternative
formulation of the Shapley value is
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Φ(N,c) =

(
∑

S⊆N,i∈S

(|S|−1)!(|N|− |S|)!
|N|!

[c(S)− c(S\{i})]

)
i∈N

.

Example 5. In Examples 1 and 3 the corresponding Shapley values are (8,8,8) and
(9,9,9) respectively.

Shapley (1971) shows that if (N,c) is a concave game then we have Φ(N,c) ∈
C (N,c), i.e., the Shapley value is in the core. For ease of comparison we refer to
the set containing Φ(N,c) as SH(N,c), that is, SH(N,c) = {Φ(N,c)} for every
(N,c) ∈ G .

3.2.3 Least-core

The intuitive appeal of the stability concept and the possibility of having empty
cores motivates alternative solutions that address the stability-related issues. An al-
location a for the game (N,c)∈ G is ε-stable if ∑i∈S ai−ε ≤ c(S) for all S⊆N. The
set of all ε-stable allocations of the game associated with a situation comprises the
ε-core (Shapley and Shubik, 1966).

The least-core of a game (Maschler et al., 1979) is the intersection of all non-
empty ε-cores of it. Accordingly, the least-core of a game (N,c) ∈ G is defined
as:

L C (N,c) =

{
a ∈ RN

∣∣∣∣∣∑i∈N
ai = c(N) and ∑

i∈S
ai− ε

min ≤ c(S),∀S⊂ N

}
.

where

ε
min(N,c) = min

{
ε ∈ R

∣∣∣∣∣∑i∈N
ai = c(N) and ∑

i∈S
ai− ε ≤ c(S),∀S⊂ N

}
.

Considering the definition of ε-core, it can be observed that when the core is
not empty, then the least-core is a subset of the core. Also, for every game one can
always find values of ε such that the corresponding ε-core is non-empty.

3.2.4 Nucleolus

The nucleolus (Schmeidler, 1969) is another well-studied solution for cooperative
games. Let (N,c) ∈ G be a given cooperative cost game. Define the imputation set
of (N,c) as

I(N,c) =

{
a ∈ RN

∣∣∣∣∣∑i∈N
ai = c(N) and ai ≤ c({i}),∀i ∈ N

}
.
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Observe that if (N,c) is a subadditive game, then the imputation set of the game is
non-empty. Consider an allocation a ∈ RN . Define the coalitional unhappiness of
every coalition S⊆ N as

θS(a) = ∑
i∈S

ai− c(S).

Let θ(a) = (θS(a))S⊆N be the unhappiness vector. For two vectors θ ,θ ′ ∈ Rm, the
lexicographical order θ ≤L θ ′ implies that either θ = θ ′, or there is 1 ≤ t ≤ m
such that θi = θ ′i for 1 ≤ j < t and θt < θ ′t . The nucleolus of the game (N,c),
i.e. η(N,c), is the set of imputations whose associated vectors of unhappiness are
lexicographically minimal:

η(N,c) =
{

a ∈ I(N,c)
∣∣θ(a)≤L θ(a′),∀a′ ∈ I(N,c)

}
.

The nucleolus of a game has the least maximum unhappiness over all coalitions in
a lexicographical manner. For every subadditive cooperative game, the nucleolus is
always non-empty, unique, and is contained in the least-core (Schmeidler, 1969).
We remark that the allocation rule leading to the unique element of the nucleolus is
often times referred to as the nucleolus as well.

3.2.5 Comparing Solutions

We present some desirable properties for solutions and compare the aforementioned
ones across these properties.

A solution β on G ′ satisfies the non-emptiness property if for every (N,c) ∈ G ′

it holds that β (N,c) 6= /0. The non-emptiness of a solution assures that it can suggest
ways for cost sharing in all games.

As we saw in Examples 1 and 2, the core can include many allocations or no
allocation at all. The least-unstability property is the next best thing to maintain if
stability is not achievable. A solution β on G ′ satisfies the least-unstability prop-
erty if for every (N,c) ∈ G ′ and every a ∈ β (N,c) we have ∑i∈S ai− ε∗ ≤ c(S) for
every S⊂ N where

ε
∗(N,c) = min

{
ε ∈ R+

∣∣∣∣∣∑i∈N
ai = c(N) and ∑

i∈S
ai− ε ≤ c(S),∀S⊂ N

}
.

If the latter holds while ε∗ = 0, we say that the solution is stable.
Table 1 compares core, Shapley value, least-core and nucleolus on the class of

subadditive games along these properties. As can be seen from this table, there is
no perfect solution that can satisfy all these properties. The core is the only solution
that guarantees stability. However, the core can be empty. The Shapley value is a
single-valued solution but it may fail to be stable—or least-unstable when the core
is empty. The least-core and nucleolus are both least-unstable (they are stable if the
core is not empty). Furthermore, the nucleolus is a single-valued solution, that is, it
always obtains a unique allocation.
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Allocation Rule NE SV LU S
Core C × × X X
Shapley value SH X X × ×
Least-core L C X × X ×
Nucleolus η X X X ×

Table 1: Comparing solutions on subadditive games; NE: non-emptiness, SV: single-
value, LU: least-unstability, S: stability.

3.3 Solutions for Situations

As mentioned earlier, a collaborative situation is a succinct description of relevant
information necessary to analyze the context. Formally, we denote a collaborative
situation with Γ . The set of all situations with player set N is also denoted with T .
The joint cost of collaboration among all players in N in situation Γ ∈T is cΓ (N).

Let T ′ be a subset of all situations. A (situation) solution on T ′ is a set-valued
function α that determines a set of allocations for every situation Γ ∈ T ′. In line
with solutions for cooperative cost games we can consider single-valued solutions
and allocation rules for situations as well.

If a situation allows for explicit calculation of joint costs for all sub-coalitions,
then one can construct a cooperative cost game associated with the situation. Given
such a situation Γ the associated game is denoted with (N,cΓ ). In this case, a situa-
tion solution α on T ′ can be defined by drawing upon a game solution β on G ′, that
is, α(Γ ) = β (N,cΓ ), if for every Γ ∈ T ′ we have (N,cΓ ) ∈ G ′. Accordingly, one
can redefine the properties defined for game solutions in the previous sub-section
to situation solutions by requiring the properties to hold in the associated games.
The advantage of using situation solutions over game solutions is their ability to in-
corporate more details from situations that allows for formalizing properties which
cannot otherwise be defined over associated games. We elaborate further on this
issue in next sections.

4 Cost Sharing in Logistics Network Situations

In this section, we discuss cost sharing in some of the stylized logistics network
design situations. We particularly focus on possibilities for having a non-empty core
in the games associated with these situations.
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4.1 Minimum Cost Spanning Tree (mcst) Games

The minimum cost spanning tree (mcst) problem is a well-studied problem in op-
erations research. An mcst problem consists of a set of nodes including a special
node called “source”. The costs of establishing links among all nodes are known.
Subsequently, a minimum cost spanning tree is a set of links between the nodes that
connects all nodes to the source and has the lowest total cost of establishing links
among all possibilities to do so.

The cooperative version of an mcst problem represents the situation where each
node, except the source, corresponds to a player and the players collaborate to es-
tablish a network of paths to reach the source at the lowest total cost. In the context
of logistics, players on nodes can represent a set of suppliers who want to estab-
lish transportation channels to a customer. The issue of sharing the cost of an mcst
among the players is critical in such contexts.

Formally, let N = {1, ...,n} be a set of players each corresponding to a node
and denote the source node with 0. The set of all nodes is denoted with N+ =
{0,1, ...,n}. The set of links that can be established in the network is denoted with
L+ = {{i, j}|i, j ∈ N+, i 6= j}. The connection cost function w : L+→ R+ gives the
cost that needs to be incurred in order to establish a link between any pair of nodes
in the network. For convenience we refer to w({i, j}) as wi j for every {i, j} ∈ L+. A
minimum cost spanning tree (mcst) situation can be represented with the tuple:

Γ = (N+,w).

For every coalition S ⊆ N, let ES be a set of links constituting a minimum cost
spanning tree for players in S using the nodes in S+ only. The cooperative mcst
game associated with situation Γ is the pair (N,cΓ ) where for every S⊆ N we have
cΓ (S) = ∑i j∈ES

wi j.
The fundamental result regarding cores of mcst games is as follows.

Theorem 1. The core of an mcst game is non-empty.

The first proof for non-emptiness of the core of an mcst game is given by Bird
(1976). Tamir (1991) shows that the characteristic function of an mcst game can
be represented with a mixed-integer linear program and that allocations in the core
can be obtained via solutions to the dual of the integer relaxation of such program.
Nevertheless, an interesting feature of mcst games is that one can obtain allocations
in the core without solving a linear program and directly from the situation. This was
shown by Bird (1976) using the Prim (1957) algorithm for solving an mcst problem.

The Prim’s algorithm for finding an mcst over a given network starts by es-
tablishing a link between the source and the node such that the cost of this link is
the lowest among all. It continues by establishing another link between a connected
node and an unconnected node with the lowest connection cost. By repeating the last
step the algorithm connects all nodes to the source. The solution for mcst situations
that obtains by requiring newly connected players to pay their connection costs is
called Bird’s solution. The literature often referred to this solution as Bird’s rule.
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Fig. 2: The mcst situation in Example 6

Bird’s Solution: Given situation Γ = (N+,w), let EP
N be an mcst obtained from

Prim’s algorithm. For every player i∈N, find j∈N+ such that i is directly connected
to j in EP

N on the path toward the source. Let aB
i (Γ ) = wi j. Bird’s solution αB(Γ ) is

the set of all allocations that are obtained in this manner.

Let σ∗ be an ordering of nodes as they are connected to the source using Prim’s
algorithm. The ordering is such that if σ∗(i) < σ∗( j) for any i, j ∈ N, then i is on
the path from j to the source. Then the allocation to player i ∈ N obtained by Bird’s
solution with respect to σ∗ is exactly his marginal contribution, that is

aB
i (Γ ) = c(Pσ∗

i )− c(Pσ∗
i \{i}).

Bird’s solution always obtains allocations in the core, as implied by the theorem
below.

Theorem 2. For every mcst situation Γ we have αB(Γ )⊆ C (N,cΓ ).

It should be noted that Prim’s algorithm does not necessarily produce unique mcsts
thus the allocations obtained from Bird’s solution need not be unique. We remark
that convex combinations of allocations obtained via Bird’s solution also generate
allocations in the core (Curiel, 1997).

Bird’s solution provides a straightforward approach to obtain allocations in the
core of these games. This solution directly builds upon the situation and thus one
does not need to obtain the costs of all sub-coalitions or solve a linear program
for finding core allocations. But is this solution always satisfactory? Consider the
following example.

Example 6. Consider an mcst situation Γ with two players (see Figure 2). Let M be
a large number and ε a small number. Bird’s solution obtains the unique allocation
aB(Γ ) = (M,2ε) which is in the core. In this example, both players are at a long
distance from the source although player 2 is slightly further away, i.e. cΓ ({2}) =
cΓ ({1}) + ε . Still, Bird’s solution requires player 1 to pay the entire cost of its
connection while player 2 pays almost nothing. One would argue that this is not
fair—especially when there are other allocations in the core. The core of the game
is C (N,cΓ ) = {(x,M + 2ε − x)|ε ≤ x ≤ M}. Notice that in the allocation (M,2ε)
players 1 and 2 are paying respectively the maximum and minimum amounts that
they could pay in any core allocation.

The issue observed in Example 6 concerning Bird’s solution is not coincidental.
In fact, Bird’s solution always gives extreme points in the cores of mcst games (Gra-
not and Huberman, 1981). Subsequently, Bird’s solution always makes every group
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of players who are directly connected to the source collectively pay their stand-alone
costs. The players that join such coalitions only pay their marginal cost of connec-
tion and thus enjoy the benefits of collaboration the most. A closer look at Bird’s
solution reveals some other shortcomings. We present an example.

Example 7. Consider again the situation Γ in Figure ??. The highlighted mcst is
indeed the one obtained by Prim’s algorithm. We have aB(Γ ) = (6,8,13) which is
in the core of the game. It can be verified that in coalition {2,3} player 3 is allocated
with 8 according to Bird’s solution which is less than what that player pays in the
grand coalition, i.e. 13.

As seen in Example 7, Bird’s solution may result in some players being allocated
with higher costs in larger coalitions. If this is the case, then such players might
object to the inclusion of more players to the game despite the fact that the grand
coalition can benefit from having more players (due to subaditivity). Accordingly,
Bird’s solution does not satisfy the population monotonicity property (Sprumont,
1990).

An alternative approach for obtaining the allocations in the core of mcst games
without recourse to the characteristic function is proposed by Norde et al. (2004)
which is closely related to the Kruskal (1956) algorithm for obtaining mcsts. This
solution is slightly less straightforward to obtain than Bird’s solution. However, it
has the additional advantage of producing allocations that ensure players in smaller
coalitions would never be worse off by the addition of new players to the coalition
(and thus satisfies the population monotonicity property).

There are several extensions of mcst games in the literature. We discuss two of
such extensions briefly in this section.

Extension 1: Recall that in the original mcst game the cost of sub-coalitions are de-
fined with regard to the mcsts that connect their members to the source drawing upon
the nodes in their corresponding network only. That is, members of S ⊂ N cannot
use nodes involving players not in S for connecting to the source. The first extension
of mcst games relaxes this assumption, that is, coalitions of players can construct
their connection to the source using the nodes corresponding to other players. For
instance, suppose the players in a coalition correspond to factories in different cities
who would like to construct a network of pipelines to a supplier of water. Then the
factories can indeed construct the network through the cities where other factories
are located at. Given the mcst situation Γ , in the associated monotone mcst game
(Granot and Huberman, 1981), (N, c̄Γ ), for every S⊆ N we have

c̄Γ (S) = min
S⊆T⊆N

cΓ (T ).

Theorem 3. The core of a monotone mcst game is non-empty. Bird’s solution gives
extreme points of the cores of monotone mcst games.

Extension 2: In the previous extension, we allowed sub-coalitions to use outsiders’
nodes to construct their path to the source. Still, the grand coalition of players con-
stituted all available nodes except the source node. Another extension of mcst games
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Fig. 3: An extended mcst example (Sharkey, 1995)

allows for additional nodes in the network, i.e. nodes that correspond to no players
in N. Let

Γ = (V,N,w)

be a situation with a set of nodes V that includes the source node, the set of players
N ⊂ V , and the connection cost function w defined over pairs of nodes in V . In the
Steiner Tree game (Megiddo, 1978; Sharkey, 1995) associated with Γ , (N, ¯̄cΓ ), the
cost of each coalition S ⊆ N is the cost of mcst that connects players in S to the
source while using any nodes in V . The following example shows that the core of
these games can be empty.

Example 8. An extended mcst situation is depicted in Figure 3. The node set in-
cludes six locations in addition to the source. There are three players in the grand
coalition. The cost of connection on all links are 1. Observe that ¯̄cΓ (S) = 2 when-
ever |S| = 1, ¯̄cΓ (S) = 3 whenever |S| = 2, and ¯̄cΓ (N) = 5. Note that ¯̄cΓ ({1,2})+
¯̄cΓ ({1,3})+ ¯̄cΓ ({2,3}) = 9 < 2 ¯̄cΓ (N) = 10. By the condition established in Exam-
ple 3 we conclude that the core of the game is empty.

4.2 Facility Location Games

In facility location games, players collaborate to jointly open facilities as well as
to establish connections to their locations. The basic facility location situation can
be formulated as follows. Let V be a set of nodes. The player set is a subset of
the nodes, that is N ⊆ V . A flow function f : N → R+ gives the requirement of
demand for each player. Let E ⊆{{i, j}|i, j∈V} be the link set representing feasible
connections between the nodes. A connection cost function w : E → R+ gives the
cost of providing one unit of service across each link. We let wii = 0 for all i ∈ N.
The function t : V → R+ gives the total investment needed to establish facilities at
different nodes (fixed costs). A facility location situation is thus
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Γ = (V,N, f ,E,w, t).

Given the facility location situation Γ , the associated cooperative cost games is the
pair (N,cΓ ) where for every S⊆ N we have:

cΓ (S) = min ∑
i∈S,k∈V :{i,k}∈E

fiwikxik + ∑
k∈V

tkyk (1)

s.t. ∑
k∈V :{i,k}∈E

xik = 1 ∀i ∈ S (2)

yk− xik ≥ 0 ∀i ∈ S,∀k ∈V : {i,k} ∈ E (3)
xik,yk ∈ {0,1} ∀i ∈ S,∀k ∈V : {i,k} ∈ E (4)

The program above minimizes the total cost of flow as well as opening facilities.
The optimal solution satisfies the following constraints. First, all players in a coali-
tion must be connected to a facility. Second, a facility should be established if there
is a link to a player. Finally, integrality constraints ensure the feasibility of solution.
The dual program associated with the relaxation of program (1)–(4) for N is

c̄Γ (N) = max ∑
i∈N

ai (5)

s.t. ai−µik ≤ fiwik ∀k ∈V,∀i ∈ N : {i,k} ∈ E (6)

∑
i∈N:{i,k}∈E

µik ≤ tk ∀k ∈V (7)

µik ≥ 0 ∀i ∈ N,∀k ∈V : {i,k} ∈ E (8)

The solutions of the primal and the dual programs can be used to provide insights
regarding non-emptiness of the core. Kolen (1983), Chardaire (1998), and Goemans
and Skutella (2004) show that the dual program above is exactly the same as the
program for obtaining the core of the game. Therefore, non-emptiness of the core
can be guaranteed when the optimal objective function of the dual equals that of the
original (un-relaxed) program. In other words, the core is non-empty if the duality
gap is zero.

Theorem 4. Let Γ = (V,N, f ,E,w, t) be a facility location situation. The core of the
associated game (N,cΓ ) is non-empty if and only if c(N) = c̄(N), that is, there is
no integrality gap between the primal and dual (of the relaxation) programs for the
grand coalition.

As implied by the result above, an integrality gap renders the core of a facility
location game empty. The example below shows that facility location games can
have empty cores.

Example 9. The network of a facility location situation is depicted in Figure 4. All
nodes are situated on a circle and require a unit flow. The distance between every
pair of adjacent nodes, which constitute the link set, is one and the cost of flow
equals the distance. There are three players, N = {1,2,3}, located at nodes i, iii, and
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Fig. 4: A facility location situation on a circle (Goemans and Skutella, 2004)
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Fig. 5: A facility location situation on a line

v respectively. The cost of opening a facility on nodes ii, iv, and vi is two and for the
other nodes the cost is a large number. In the associated cooperative game individual
players each need one facility adjacent to them thus cΓ (S) = 2+1 = 3 for |S|= 1. In
two-player coalitions one facility can serve both players so cΓ (S) = 2+1+1= 4 for
|S| = 2. Finally, in the grand coalition the best option is to open two facilities thus
cΓ (N) = 2+ 2+ 1+ 1+ 1 = 7. Note that cΓ ({1,2})+ cΓ ({1,3})+ cΓ ({2,3}) =
12 < 14 = 2cΓ (N). By the condition established in Example 3 we conclude that the
core of the game is empty.

There are several special situations where the zero duality gap between the primal
and dual programs, and subsequently non-emptiness of the core, can be proven to
always hold. For instance, suppose that the underlying graph of the situation (V,E)
is a tree—i.e. there is exactly one path between any two nodes—and that the costs
of connection between any pair of nodes correspond to the metric distance between
those nodes on the corresponding planar graph. In this case, the original program can
be re-written in the following way. For each player i∈N, let 0= ri1≤ ri2≤ ...≤ ri|V |
be the ordered sequence of distances between player i’s node and all other nodes.
Also let riV+1 = M where M is a sufficiently large number. Define the variables zi j
such that zi j = 1 if player i is not connected to an open facility which is situated at
the distance less than or equal to ri j, and zi j = 0 otherwise. Also, define u j

ik such that
u j

ik = 1 if cik ≤ ri j and uk
i j = 0 otherwise. Then we have (see Kolen (1983)):

cΓ (S) = min ∑
i∈S, j∈V

fi(ri j+1− ri j)zi j + ∑
k∈V

tkyk (9)

s.t. ∑
k∈V :{i,k}∈E

u j
ikyk + zi j ≥ 1 ∀i ∈ S,∀ j ∈V (10)

zi j,yk ∈ {0,1} ∀i ∈ S,∀k ∈V (11)
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Constraint (10) ensures that whenever there is no open facility within the range ri j
from i, then zi j = 1. Kolen (1983) show that the constraint coefficient matrix in the
program above has a special feature which guarantees a zero duality gap. Thus, in
this class of situations the core is always non-empty.

Example 10. A facility location situation Γ
′

is depicted in Figure 5. The only dif-
ference between this situation and the one in Example 9 is that the nodes are now
situated on a line. In the cooperative game associated with this situation individual
players each need one facility adjacent to them thus cΓ

′
(S) = 2+1 = 3 for |S|= 1.

In two-player coalitions {1,2} and {2,3} one facility can serve both players so

cΓ
′
(S) = 2+ 1+ 1 = 4 for S = {{1,2},{1,3}}. However, for coalition {1,3} we

have cΓ
′
({1,3}) = 2+ 2+ 1+ 1 = 6. Finally, in the grand coalition the best op-

tion is again to open two facilities thus cΓ
′
(N) = 2+2+1+1+1 = 7. Notice that

allocation a = (2,2,3) is in the core.

4.3 Hub Location Games

Another class of collaborative situations related to logistical problems pertains to
finding the locations of logistical hubs, i.e., points of consolidation in a network,
which allows for more efficient dispatching of vehicles. The basic hub location situ-
ation encompass hub-spoke structures where the transport costs in between hubs are
cheaper due to the use of more efficient means of movement. Accordingly, in these
collaborative situations players jointly establish hubs and connections to reduce the
cost of their aggregated network.

Let V be a set of nodes in a network and let the player set N be situated amongst
the nodes, i.e., N ⊆ V . Each player is positioned on a node and has transportation
requirements from his node to other nodes. Let the requirement function f : N ×
V → R+ represent the latter. Define the link cost function w : V ×V → R+ and
hub cost function t : V → R+. The cost of direct movements between nodes are
sufficiently high so that it is beneficial that flows of goods between two nodes always
pass through hubs. The link costs satisfy the triangular inequalities which ensure
that transports between any two nodes does not need more than two hubs involved.
Finally, let the coefficient λ ∈ [0,1] be the discount factor for movements between
hubs. This means, if there are two hubs established at nodes i and j, then the unit
cost of transportation from i to j drops from wi j to λwi j. A hub location situation is
a tuple

Γ = (V,N, f ,w, t,λ ).

The players collectively decide to open hubs at some nodes in order to satisfy the
flow requirements with the minimum cost. Skorin-Kapov (1998) gives a formulation
of the optimal cost for the grand coalition as
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c(N) = min ∑
i∈N; j,k,m∈V

fi j(wik +λwkm +wm j)xi jkm + ∑
k∈V

tkykk (12)

s.t. ∑
k∈V

yik = 1 ∀i ∈ N

(13)

ykk− yik ≥ 0 ∀i,k ∈V
(14)

∑
m∈V

xi jkm = yik ∀i ∈ N,∀ j,k ∈V

(15)

∑
k∈V

xi jkm = y jm ∀i ∈ N,∀ j,m ∈V

(16)

xi jkm ≥ 0 ∀i ∈ N,∀k, j,m ∈V
(17)

yik ∈ {0,1} ∀i,k ∈V
(18)

The program above minimizes the total cost of movements between nodes and
through hubs, plus the cost of establishing the hubs. Each player must be connected
to a hub. The variable xi jkm represents the fraction of flow from i’s node to j that
passes through hubs k and m. The zero-one variable y = (yi j)i, j∈V also indicates the
connections between nodes and hubs with yii indicating the establishment of a hub
at node i. The constraint (15) (respectively constraint (16)) indicates that the entire
flow from a player i’s node to destination j will be routed via link ik (link m j) if
and only if i is allocated to hub k ( j is allocated to hub m) independently of the
destination (source). Let (x∗,y∗) be an optimal solution to the above problem.

There are different possibilities for defining cooperative games associated with
hub locations situations based on how the cost of sub-coalitions are defined. In the
basic hub location game (Skorin-Kapov, 1998) the cost of sub-coalitions are calcu-
lated on the network which is optimal for the grand coalition. Let y∗Sk = 1 whenever
there is i ∈ S such that x∗i jkm > 0 or x∗i jmk > 0, that is, y∗Sk = 1 if a member of S uses
the hub k. Then, the basic hub-location game associated with situation Γ is (N,cΓ )
where c(N) is defined above and for S⊂ N we have

c(S) = ∑
i∈S

j,k,m∈V

fi j(wik +λwkm +wm j)x∗i jkm + ∑
k∈V

tky∗Skk (19)

Therefore, the cost of a sub-coalition S is the total transportation cost of movements
on the optimal network plus the cost of establishing the hubs that S uses on the
optimal network.

Theorem 5. Let Γ = (V,N, f ,w, t,λ ) be a hub location situation. The core of the
basic hub location game associated with Γ is non-empty.
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4.4 Delivery Consolidation Games

With the increasing attention to reducing the negative side effects of transportation
such as congestion and pollution, Urban Consolidation Centers (UCC) became an
important new logistical initiative. Through a UCC, logistics providers can combine
their LTL cargo and collaboratively dispatch FTL trucks to urban areas. However,
the cost of joint dispatches must be shared among the users. In this section we
overview a cost sharing game associated with UCCs introduced in Hezarkhani et al.
(2019). The carriers (players) have deliveries that are destined for the same area.
Instead of individually driving to their destinations, the players can arrive at the
consolidation center and bundle their cargo into full-truck loads. The deliveries are
time-sensitive and the amounts of savings that the carriers obtain are dependent on
their dispatch times.

The network V consists of only two nodes: a consolidation center and a common
destination and the players in N can drive the distance between the two nodes either
individually or jointly. We call ri the arrival time of delivery i to UCC and assume
that deliveries have non-identical arrival times and that N is arranged by increasing
order of arrival times, i.e., r1 < r2 < ... < rn. Let pi ≥ 0 be the waiting penalty rate
for player i, that is the cost that he incurs when his cargo sits in the consolidation
center for a unit of time. Thus, the cost to player i if dispatched from the consol-
idation center at time di ≥ ri is pi(di− ri). The cost of dispatching a truck from
the consolidation center to the common destination is W ≥ 0. We assume players
have small yet time sensitive cargo and the capacity of a truck is not a restriction.
Accordingly, a Dispatch Consolidation (DC) situation can be defined by the tuple
Γ = (V,N,rrr, ppp,W ).

The consolidation center decides a collection of dispatches, representing consol-
idated subsets of players, and their associated dispatch times. The objective of the
UCC is to minimize the sum of waiting and dispatching costs for all players. One
can verify that the optimal time for the dispatch of a fixed group of players in T ⊆N,
is the arrival time of the last player in T . Denote the first and last arriving delivery
in T with b(T ) and e(T ), respectively. Since the players are ordered by their arrival
times, b(T ) and e(T ) also represent respectively the smallest and largest elements
in T . The cost function f for a group of players T ⊆ N is

fT = ∑
i∈T

[
pi
(
re(T )− ri

)]
+W.

We can construct the optimization problem as a set packing formulation and define
the associated dispatch consolidation (DC) game by letting c(S) to be

cΓ (S) = min ∑
T⊆S

xT fT

s.t. ∑
T⊆S:S3i

xT ≥ 1 ∀i ∈ S

xT ∈ {0,1} ∀T ⊆ S
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DC games are special instances of the class of set packing games (Deng et al., 1999).
The general characterization of the conditions for non-emptiness of the cores of set
packing games gives us the following result; The core of a DC game is non-empty
if and only if the integer relaxation of the program above for N does not affect
optimality.

Using the results of Barany et al. (1986) regarding zero duality gap of set packing
problems on trees via their sub-trees, Hezarkhani et al. (2019) show that integer
relaxation of the program above in DC games does not affect optimality. Therefore,
the core of any DC games is non-empty.

The extension of DC games to incorporate restrictive capacities of the trucks is
also considered by Hezarkhani et al. (2019). With restrictive capacities, DC games
might have an empty core. In this case, Hezarkhani et al. (2019) introduce the no-
tion of component-wise core as an alternative notion of stability and prove that DC
games with restrictive capacities have non-empty component-wise cores.

5 Cost Sharing in Cooperative Truck-Load Delivery situations

The logistical situations studied in the previous section were all concerned with
establishing the physical network which is comprised of links, facilities, and hubs.
The corresponding decisions are at the strategic level and as such necessitate a long
term cooperation time line. However, there are other opportunities for cooperative
logistics which deal with day-to-day activities of participating players and target
operational decisions. In these service logistics situations, the nature of cost sharing
problems can be different. In this section, we discuss the Cooperative Truck-Load
Delivery (CTLD) situations, introduced by Hezarkhani et al. (2016), that arise in
service network design and explain how an appropriate allocation rule for these
situations can be devised.

CTLD situations are comprised of a number of logistics providers and their indi-
vidual resources—e.g. depots, trucks, drivers, equipment, etc. Players have delivery
requirements. A delivery requirement is simplified as an order for picking up cargo
at some location and transporting it to another location. In practice, delivery re-
quirements can be more complex and involve time windows, special equipment and
personnel, and other constraints. The delivery requirements must be fulfilled by ve-
hicles in feasible trips. In this context, the players seek to collaboratively design
their service network at the tactical as well as operational levels.

Formally, let V be a set of nodes corresponding to spatial locations, and w :
V ×V → R+ be a distance function which satisfies the triangular inequalities. We
assume hereafter that cost and distance are equivalent. A set of delivery require-
ments {d1, ...,dm} is given. A delivery requirement dk corresponds to an arc (ik, jk),
consisting of the corresponding pickup location ik ∈V and delivery location jk ∈V ,
ik 6= jk. The fulfillment of the delivery requirement dk corresponds to a single tra-
verse of the arc (ik, jk) for requirement k. A non-empty set of depots {o1, ...,oh}⊆V
is available. The depots station vehicles that fulfill the delivery requirements. De-
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livery requirements must be fulfilled in trips. A trip is a sequence of deliveries that
start and ends at a particular depot. Thus a trip l can be defined as a tuple (ol ,Dl ,σ l)
where ol is the origin/destination, Dl is a subset of deliveries that are fulfilled in l,
and σ l is an ordering of deliveries in Dl which represents the sequence of fulfill-
ments in trip l. Let L be the set of all such trips. Let L⊆L be the feasible trip set.
The feasibility of a trip can depend on the number and type of deliveries it fulfills,
specific depots and equipment that must be employed, and other details.

The cost of a feasible trip l, wl , is the sum of costs of the arcs traversed in trip l.
The full kilometers cost of a trip is independent of both the choice of the trip’s depot
and the sequence of fulfillments:

wl
F = ∑

k:dk∈Dl

w
(

ik, jk
)
.

The second part of a trip’s cost, i.e. empty kilometers cost, is the cost associated with
the distance travelled from/to the depot and among different fulfillments:

wl
E = w

(
ol , iσ

l
1

)
+
|Dl |−1

∑
k=1

w
(

jσ l
k , iσ

l
k+1

)
+w

(
j
σ l
|Dl | ,ol

)
.

where the shorthand notation σ l
k represents the index of the delivery requirement that

is fulfilled after all the k− 1 deliveries preceding it in σ l are fulfilled. By |Dl | we
denote the number of deliveries in Dl . The cost of trip l is defined by wl = wl

F +wl
E .

A fulfillment plan P from O to D is a collection of feasible trips in L(O,D) that
fulfills all deliveries in D exactly once. The deliveries fulfilled in the trips of the
plan P partition the corresponding set of delivery requirements, i.e.

⋃
l∈P Dl = D

and Dl ∩Dk = /0 for all k, l ∈ P with l 6= k. The cost of the fulfillment plan P is the
total cost of its trips, i.e. w(P) = ∑l∈P wl . Accordingly, w(P) is decomposable into
full and empty movements:

w(P) = wF(P)+wE(P),

where wF(P) = ∑l∈P wl
F and wE(P) = ∑l∈P wl

E are the total costs of full and empty
kilometers of P respectively. Let P(O,D) be the set of feasible plans from O to D.
The cost of optimal plan from O to D is

w∗(O,D) = min
P∈P(O,D)

w(P).

Consider a non-empty set N = {1, ...,n} of players. Each player i ∈ N possesses
a set of delivery requirements Di = {d1

i , ...,d
mi
i } and a non-empty set of depots

Oi = {o1
i , ...,o

hi
i } such that ∪i∈NDi = {d1, ...,dm} and ∪i∈NOi = {o1, ...,oh}. Let

OS = ∪i∈SOi and DS = ∪i∈SDi denote the combined set of depots and delivery re-
quirements of players in coalition S⊆N. The set L(OS,DS) contains all feasible trips
that coalition S ⊆ N can use to fulfill its combined delivery requirements. Combin-
ing all this, a CTLD situation is a tuple:
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Fig. 6: A CTLD situation where players have different competitive positions

Γ = (N,V,w,(Di)i∈N ,(Oi)i∈N ,L).

Let T ′ be the set of all CTLD situations. By joint planning of fulfillments, a
coalition in a CTLD situation could reduce the cost of its empty kilometers. The
cost saving generated by a coalition can be due to utilization of a larger pool of
depots for constructing trips or combining fulfillments together more efficiently in
trips, or both. It can be verified that shrinking the set of delivery requirements cannot
increase the minimum cost of delivery, and augmenting the set of depots cannot
increase the minimum cost of delivery. Also, there is a subadditive effect with regard
to the minimum costs of fulfillment that results from aggregated planning of delivery
requirements (see Hezarkhani et al. (2016)).

We refer to the cost games associated with CTLD situations as the CTLD games.
The characteristic function in CTLD game (N,cΓ ) associated with situation Γ as-
signs to coalition S⊆ N the cost

cΓ (S) = w∗(OS,DS).

Although there are special CTLD situations where the core is always non-empty
(see Özener and Ergun (2008) and Hezarkhani et al. (2014)), in general, CTLD
games can have empty cores, as shown in the example below.

Example 11. Consider the CTLD situation Γ depicted in Figure 6. There are three
players N = {1,2,3} each having a depot and a delivery requirement. The distance
between the pickup and delivery locations for all delivery requirements is two and
the distance from the depots to any pickup/delivery point is one. The set of feasible
trips includes all trips which fulfill no more than two delivery requirements, i.e.
L =

{
l ∈ L

∣∣|Dl | ≤ 2
}

(only two deliveries can be fulfilled sequentially during a
day). For S⊆ N we have cΓ (S) = 4 if |S|= 1, cΓ (S) = 6 if |S|= 2, and cΓ (N) = 10.
Applying the condition in Example 3, we obtain that the core of this game is empty.
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5.1 Desirable Properties for CTLD Solutions

In order to find solutions for CTLD situations, i.e., solutions defined over the set of
all CTLD situations T ′, we define a set of properties that could be considered as
desirable in these situations.

The notion of stability is a critical concept in many cooperative situations, in-
cluding CTLD situations. Given the possibility of having empty cores, we seek for
the best possible outcomes in terms of instability of allocations. Thus the first de-
sirable property for CTLD solutions is that of least-unstability. A solution α on T ′

satisfies the least-unstability property if for every Γ ∈ T ′ and every a ∈ α(Γ ) we
have ∑i∈S ai− ε∗ ≤ cΓ (S) for every S ⊂ N where ε∗ is defined in the same way as
in Section 3.2.5 for the associated game (N,cΓ ).

The highly competitive nature of logistics markets as well as the limited number
of potential participants necessitate solutions that are capable of incorporating the
notion of competitiveness among the logistics providers. The two properties dis-
cussed in the remainder of this section are specific to CTLD situations and address
issues concerning the competitive positions of the players and the scope beyond
which the network of deliveries of a player should be ignored by the solution. We
start by introducing two special classes of delivery requirements in CTLD situa-
tions. Let Γ ∈ T ′ be a CTLD situation with player set N. D ⊆ Di is a separable
delivery set (SDS) of player i if

w∗(Oi,D)+w∗(ON ,DN \D) = w∗(ON ,DN). (20)

Let SDSi(Γ ) be the set of separable delivery sets of i. The stand-alone cost of ful-
filling a separable delivery set of a player is additive to the cost of fulfilling the
remaining deliveries in the grand coalition. Therefore, a player can individually ful-
fill a separable delivery set of itself without disrupting the optimality of delivery
plans in the grand coalition. Let Γ ∈ T ′ be a CTLD situation with player set N.
D ⊆ Di is an irrelevant delivery set (IDS) of i if for all D′ ⊆ D, all S ⊆ N with
i ∈ S, and all D′′ ⊆ DS \D it holds that

w∗(Oi,D′)+w∗(OS,D′′) = w∗(OS,D′∪D′′). (21)

Let IDSi(Γ ) be the set of irrelevant delivery sets of i. The cost of fulfilling any
subsets of irrelevant deliveries of a player is additive to any subset of the set of re-
maining deliveries in any coalition that includes that player, so the player can fulfill
such deliveries separately in any possible combination with other deliveries. The
following example elaborates on the notion of separable and irrelevant deliveries.

Example 12. Figure 7 depicts a CTLD situation Γ with two players N = {1,2}.
It is easy to see that player 1 can individually fulfill the delivery requirement
{d1

1}. Also, player 1 can take out either {d2
1 ,d

3
1} or {d4

1} (but not both sets!)
from the grand coalition’s delivery requirements and fulfill them separately such
that the total cost of fulfillment does not increase. Thus, we have SDS1(Γ ) ={
{d1

1},{d2
1 ,d

3
1},{d4

1},{d1
1 ,d

2
1 ,d

3
1},{d1

1 ,d
4
1}
}

and IDS1 =
{
{d1

1}
}

.
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Fig. 7: Separable and irrelevant deliveries

Given D′i ⊆ Di, let Γ \D′i be a CTLD situation that coincides with Γ except
for the delivery set of i which is replaced by Di \D′i. Define the independence of
irrelevant deliveries property as the insensitivity of a solution to the exclusion of
irrelevant deliveries of the players. A solution for CTLD situations α satisfies the
independence of irrelevant deliveries property if for every Γ ∈ T ′, every a ∈
α(Γ ), and every a′ ∈ α(Γ \D) it holds for every i ∈ N and every D ∈ IDSi(Γ ) that
ai = a′i +w∗(Oi,D) and a j = a′j for every j ∈ N \{i}.

The last property addresses the competitive aspect of solutions in CTLD situa-
tions.

We define the average cost of fulfillment from O to D 6= /0 as

z(O,D) =
w∗(O,D)

wF(D)
(22)

where wF(D) is the cost of full kilometers needed to be traversed to fulfill D. The
average cost of fulfillment z(O,D) represents the average distance (cost) that need to
be traveled (incurred) in D in order to fulfill a unit distance of delivery requirement.

The average cost of fulfillment provides a basis for calculating unit delivery
prices in logistics markets. However, it can also be utilized as a measure of com-
parison among the players. This idea is motivated by the observation that a lower
average cost of fulfillment of a logistics player compared to that of another lo-
gistics player allows the former to charge a lower unit price for its delivery ser-
vices while remaining profitable. Therefore, if for two players i and j it holds that
z(Oi,Di)< z(O j,D j), it can be stated that prior to cooperation, i is in a better com-
petitive position than j. The definition of average cost of fulfillment can be naturally
extended to incorporate the savings allocated to the players after the cooperation.
Given an allocation a and player i∈N, Di 6= /0, define the average cost of fulfillment
of a player i under a as

za
i (Oi,Di) =

ai

wF(Di)
(23)

We are now ready to present a competitiveness property defined over a restricted
set of CTLD situations. Let T̂ ′ be the set of all CTLD situations Γ ∈T ′ with player
set N such that SDSi(Γ )= { /0} for all i∈N. A CTLD solution satisfies the restricted
competitiveness property if for every situation Γ with player set N = {1,2} and



26 Behzad Hezarkhani and Marco Slikker and Tom Van Woensel

Fig. 8: A CTLD situation where players have different competitive positions

any a ∈ α(Γ ) it holds that

za
1(O1,D1)z(O2,D2) = za

2(O2,D2)z(O1,D1). (24)

Example 13. Figure 8 represents a CTLD situation with two players N = {1,2}.
Assuming that the distance between any two locations is 1, we get z(O1,D1) = 1.5
and z(O2,D2) = 2. The cooperation in this case results in cΓ (N) = 3, i.e., 2 units of
saving compared to individual fulfillments cΓ ({1}) = 3 and cΓ ({2}) = 2. Observe
that the allocation a= (1.8,1.2) preserves the competitive positions of players 1 and
2 before and after the cooperation, resulting in za

1(O1,D1) = 0.9 and za
2(O2,D2) =

1.2.

5.2 A Solution for CTLD Situations

The proposed CTLD solution is constructed in two steps. In the first step, we in-
troduce a proportional allocation, aP, which incorporates the notions of competi-
tiveness and scope defined in the previous section. In the second step, we use the
latter proportional allocation to construct a least-unstable solution, αP, for CTLD
situations.

Let Γ ∈T ′ be a CTLD situation with player set N. D⊆Di is a minimal essential
delivery set (MEDS) of player i if

w∗(Oi,Di \D)+w∗(ON ,DN\i∪D) = w∗(ON ,DN). (25)

and for every D′ ⊂ D, D 6= /0:

w∗(Oi,Di \D′)+w∗(ON ,DN\i∪D′)> w∗(ON ,DN) (26)

and w∗(Oi,D)≤ w∗(Oi,D′) for any D
′

that satisfy the above two conditions.
Fix Γ , let Dm

i ∈MEDSi(Γ ), and define

ap
i (Γ ) = w∗(Oi,Di)−

w∗(Oi,Dm
i )

∑ j∈N w∗(O j,Dm
j )

(
∑
j∈N

w∗(O j,D j)−w∗(ON ,DN)

)
(27)
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The allocation aP obtains a unique efficient allocation that divides the savings ob-
tained in the grand coalition of CTLD situation Γ among players with non-empty
essential delivery sets proportional to the stand-alone cost of their minimal essen-
tial deliveries. The above formulation assumes that the essential delivery set of all
players are non-empty. See Hezarkhani et al. (2016) for the treatment of the other
case. The allocation aP completely preserves the competitive positions of the play-
ers with regard to their minimal essential delivery sets. This means that for every
pair of players i, j ∈ N with non-empty essential delivery sets we have

zaP(Γ )
i (Oi,Dm

i )

zi(Oi,Dm
i )

=
zaP(Γ )

j (O j,Dm
j )

z j(O j,Dm
j )

.

The allocation aP, however, does not necessarily obtain a least-unstable alloca-
tion. In order to achieve this, we present our CTLD solution αP:

α
P(Γ ) = argmin

a∈RN
∑
i∈N

(aP
i (Γ )−ai)

2 (28)

s.t. ∑
i∈S

ai− ε
∗ ≤ w∗(OS,DS) ∀S⊂ N (29)

∑
i∈N

ai = w∗(ON ,DN) (30)

where ε∗ is defined in Section 3.2.3. Given the situation Γ , αP(Γ ) gives the set of all
ε∗-stable allocations that have the shortest distance from the proportional allocation
aP(Γ ). The following result is proven by Hezarkhani et al. (2016).

Theorem 6. αP satisfies the nonemptiness, uniqueness, least-unstability, indepen-
dence of irrelevant deliveries, and restricted competitiveness properties for all
CTLD situations.

6 Bibliographical Notes

We split this section in two parts: literature on collaborations and literature on the
relevant game theorical background.

6.1 Collaborations

Quak and Tavasszy (2011) report that among more than 100 initiatives in urban lo-
gistics collaborations, more than half of them fail during implementation. There are
several underlying reasons for this (Vanovermeire et al., 2014), e.g. collaboration
among carriers is often hampered by their competitive positions and by the risks
of divulging information and losing customers. Shippers, on the other hand, may
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hesitate to collaborate as they might not have a clear understanding of collaborative
mechanisms employed and whether or not they receive a fair share out of collabo-
rative operations. In a survey based on a large number of logistics service providers
(LSPs) in Belgium, Cruijssen et al. (2007) observe that despite the obvious benefits
of cooperation, designing a fair cost sharing scheme is a major impediment for col-
laboration among LSPs. For more information on the fill rates of vehicles refer to
(Eurostat, 2018).

Good examples of such cost sharing reviews already exist in the literature (see
e.g. Deng and Fang (2008); Marinakis et al. (2008)). Although the literature of-
ten associates the definition of the core to Gillies (1959), it was Shapley who first
defined the core in its current form (Zhao, 2018).

In their review paper, Gansterer and Hartl (2018) distinguish between central-
ized versus decentralized planning in cooperation. Having perfect information with
regards to all requests (central planning) leads to profit sharing approaches, usually
based on game-theoretical principles. In decentralized planning, imperfect informa-
tion to no request information is assumed. Most research is circulating around hori-
zontal collaboration and cost sharing concepts. Early research on horizontal collab-
oration considering independent freight carriers is discussed in Kopfer and Pankratz
(1998), researching a groupage system, and coining the term Collaborative Trans-
port Planning (CTP). One fair allocation of the savings can be done via the Shapley
value introduced by Shapley (1953) that uniquely distributes the savings among the
participants.

Cruijssen, and Salomon (2004) showed that order sharing potentially leads to
remarkable savings up to 15%. In a follow up paper, Cruijssen et al. (2007) in-
vestigated the opportunities and obstacles carriers face in horizontal collaborations.
Topics such as a fair allocation of the savings, carrier differentiation, trust and the
extent of cooperation are important drivers for success or failure (see also Pomponi
et al. (2015)).

Krajewska and Kopfer (2006) introduced an exchange mechanism build around
three phases: preprocessing, exchange mechanism, and profit sharing. These co-
operation mechanisms are applied to the pickup and delivery problem with time
windows (PDPTW) in Krajewska and Kopfer (2006) and Krajewska et al. (2007).
This problem is extended with transshipment points for the collaborating carriers
by Vornhusen et al. (2014). Wang et al. (2017) investigated the capacitated VRP.
Cuervo et al. (2016) did simulations on the effects of partner characteristics. Larger
order portfolios lead to larger gains through collaborative coalitions.

Berger and Bierwirth (2010) focused on the exchange mechanism in coopera-
tion for the traveling salesman problem with pickup and delivery. The auctioning
of request bundles is an NP–hard combinatorial auctioning problem (CAP). Wang
and Kopfer (2014) showed potential cost savings of on average 18.2% up to 64.8%.
Wang et al. (2017) applied a route-based bidding mechanism to the PDPTW. Li et
al. (2015) formulated a single request exchange approach. Jacob and Buer (2018)
investigated the effects of non-truthful bidding and showed that is individually ra-
tional but not collectively rational, resulting into a variant of the famous prisoner’s
dilemma.
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Gansterer and Hartl (2016) investigated several request evaluation strategies
building on Berger and Bierwirth (2010). Using heuristics, they solve larger in-
stances for the TSP with precedence constraints. Gansterer and Hartl (2018) showed
that attractive subsets of predefined bundles can be effectively identified, reducing
the computation complexity. More recently, Gansterer et al. (2019) showed the ad-
vantage to bundle requests rather than individual requests. Karels et al. (2020) inves-
tigate an auction mechanism to facilitate collaboration amongst carriers while main-
taining autonomy for the individual carriers, based on a traditional vehicle routing
problem.

6.2 Game theoretical concepts

Lloyd Shapley introduced two of the most well-known game theoretic solutions,
i.e., the core (Shapley, 1955), and the Shapley value (Shapley, 1953). Although the
literature often associates the definition of the core to Gillies (1959), it was Shapley
who first defined the core in its current form (Zhao, 2018). The search for the core
of cooperative games in network situations has motivated a large body of literature
(e.g. Borm et al. (2001); Curiel (2008)), and implementation of the Shapley value
has been suggested by a host of research in collaborative logistics (e.g. Krajewska
et al. (2007)).

The Nucleolus was first developed by (Schmeidler, 1969). The unhappiness func-
tion used in the definition of the nucleolus can be defined in other ways as well.
See Tijs and Driessen (1986) for a review of alternative definitions. Alternative ap-
proaches for proving non-emptiness of the cores of mcst games have been proposed
in the literature, e.g., Bird (1976), Granot (1986), Granot and Huberman (1981), and
Tamir (1991)). Although the basic mcst situation presented here deals with undi-
rected graphs, similar results also hold for the more general situations with directed
graphs. The proof in Tamir (1991) is for directed situations. The proof of Theorem
2 is given in Granot and Huberman (1981). Other solutions for mcst situations have
been discussed, among others, by Aarts and Driessen (1993) and Bogomolnaia and
Moulin (2010) via the concept of the irreducible core, which gives subsets of core
allocations. It is worth mentioning that the Shapley value in mcst games is also stud-
ied in Kar (2002) who provides an axiomatization of this allocation rule for the class
of mcst games. Interested readers can refer to Granot and Huberman (1981) for the
proof of Theorem 3.

Further extensions of the facility location game are studied in the literature, see
for instance Mallozzi (2011) and Xu and Du (2006).

The proof of Theorem 5 is given by Skorin-Kapov (1998) where he also considers
other variations of hub location games. Further extensions of hub locations games
are discussed in Matsubayashi et al. (2005) and Skorin-Kapov (2001).
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6.3 Other classes of stylized situations related to cooperative
network design problems

There are several other classes of stylized situations related to cooperative network
design problems for which the cost sharing problems have been studied in the liter-
ature. In traveling salesman situations, the goal is to construct cycles with minimum
total cost from a source through a set of given nodes representing the players. Ac-
cordingly, in traveling salesman games players in a coalition cooperate to establish
such cycles among themselves and the source. The main difference between the
traveling salesman and mcst situations is that of cycles versus trees in construct-
ing solutions respectively. It has been proven that all traveling salesman games with
five or less players have non-empty cores (Potters et al., 1992; Tamir, 1989; Kuipers,
1993). However, for games with six players and above the core can be empty (Tamir,
1989; Faigle et al., 1998). In vehicle routing situations, the players would have de-
mands with specific sizes that must be satisfied with vehicles with limited capacity
via tours from an origin node. As the class of vehicle routing situations contains the
traveling salesman situations as a special instance, the negative results regarding the
emptiness of the cores of associated games holds as well. However, Göthe-Lundgren
et al. (1996) casts the vehicle routing situations as set partitioning problems and
show that non-emptiness of the core can be guaranteed whenever the duality gap
for the corresponding linear relaxation is zero. Interested readers are also referred
to Chinese-Postman Games (Hamers et al., 1999; Platz and Hamers, 2013), De-
livery Scheduling Games (Hezarkhani, 2016), and Delivery Consolidation Games
(Hezarkhani et al., 2019).

7 Conclusions and Perspectives

In this chapter, we looked into the role of cooperation within Transport and Lo-
gistics networks. The success concepts like the Physical Internet, urban hubs, or
crowd-sourcing, depends heavily on managing the pain-and-gain sharing mech-
anisms. Clearly, having multiple stakeholders involved in the transportation pro-
cesses, leads to important cooperation issues. The drivers for cooperation are mainly
related to resource utilization optimizations, leading to e.g. less empty mileage or
increase truckloads. Game theory helps us to model, understand and optimize these
collaborations from a cost sharing perspective. Cooperative game theory provides a
set of tools and techniques to address such problems.

Most discussed Transport and Logistics applications (including the network de-
sign models) involve very complex situations, as their underlying models are not
easy to solve to optimality in a tractable way. This poses a serious problem in adop-
tion of available solutions originating from cooperative game theory. Hence, finding
appropriate cost shares is challenging for the Operations Research-based network
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design models, and we have to revert to the more basic and stylized network design
models.

In these highly stylized situations, it might be possible to directly use well-known
solutions. Accordingly, one might be able to devise solutions that obtain appropriate
cost shares, e.g. allocations in the core, directly from the underlying optimization
problems. Specifically, in a collaborative network design situation, there might be a
straightforward connection between the optimization program and the appropriate
cost shares.

However, classical approaches in cooperative game theory alone are not able to
satisfactorily solve cost-sharing problems in the more complex network design situ-
ations. On the one hand, the core of games associated with these simulations might
be empty—even in relatively simple situations. On the other hand, inherent difficul-
ties in solving the underlying optimization problem can render these solutions too
complex (or time consuming).

Despite the theoretical appeal of basic problems discussed in the previous sec-
tions, collaborative situations in practice are often complicated by many factors and
constraints. Solutions might need to satisfy properties that are specific to a collabo-
rative situations and cannot be captured by standard game-theoretic solutions.

All this motivates research on situation-specific solutions for more advanced net-
work design models. In developing reasonable solutions for these situations, one
can formulate practical requirements in terms of desirable properties. We argue that
on exactly on this interface of cooperative game theory and network design models,
investigating the desirable properties of these solutions and their formal definition
ex-ante is needed to obtain more meaningful results, rather than using standard game
theoretical solutions.
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