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Abstract:  

In this study, a generalized fuzzy two-stage stochastic programming (GFTSP) method is 

developed for planning water resources management systems under uncertainty. The developed 

GFTSP method can deal with uncertainties expressed as probability distributions, fuzzy sets, as 

well as fuzzy random variables. With the aid of a robust stepwise interactive algorithm, solutions 

for GFTSP can be generated by solving a set of deterministic submodels. Furthermore, the 

possibility information (expressed as fuzzy membership functions) can be reflected in the 

solutions for the objective function value and decision variables. The developed GFTSP is also 

applied to a water resources management and planning problem to demonstrate its applicability. 

Solutions of decision variables and objective function value are expressed as fuzzy membership 

functions, reflecting the fluctuating ranges of decision alternatives under different plausibilities. 

Moreover, comparison between solutions obtained through the membership functions derived 

from GFTSP and interval two-stage stochastic programming (ITSP) method suggests that the 

possibility information for the objective function value and decision variables is reasonable and 

robust. And thus the water alternatives can be directly derived from the obtained fuzzy 

membership functions when the preferred α value is predefined by decision makers. 

Index Terms: Decision making, Fuzzy programming, dual-uncertainty, Planning, Water 

resources 
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1. Introduction  

 

The availability of fresh water is a fundamental requirement for supporting socio-economic 

development, poverty reduction, and eco-environmental protection. Globally, demands on water 

are constantly increasing in terms of both sufficient quantity and satisfied quality, due to growing 

population, shrinking water availability, varying natural conditions, and deteriorating water 

quality. Conflicting issues of water resources allocation among competing municipal, industrial 

and agricultural interests are of increasing concern, forcing planners to contemplate 

comprehensive, complex and ambitious plans for water resources management systems [4], [35]. 

However, extensive uncertainties may exist in many system components and impact factors. For 

example, stream flow in a river is usually related to many meteorological and hydrological 

factors, and exhibits various uncertain features. Such uncertainties and their interactions can lead 

to additional complexities in planning efforts and affect consequent decision-making processes. 

Besides, these uncertainties may be further amplified by the multi-period, multi-layer, and multi-

objective features of water systems. Therefore, it is desired that such uncertainties be reflected in 

efforts for identifying effective water resources management alternatives. 

 

In response to the above concerns, innovative optimization techniques were developed for 

allocating and managing water in more efficient and environmental benign ways under 

uncertainty [12 - 19], [24], [39], [50]. Among the methods, two-stage stochastic programming 

(TSP), as a stochastic optimization method, was widely used for dealing with randomness in 

water management systems [20 - 22], [30 - 38], [54]. In TSP, a decision is firstly undertaken 

before values of random variables are known and, then, after the random events have taken place 

and their values are known, a second decision can be made in order to minimize “penalties” that 

may appear due to any infeasibility [33]. However, a potential limitation of the TSP is that it is 

extremely hard to solve a large-scale TSP model with all uncertain parameters being expressed 

as probability density functions (PDF), while non-PDF information cannot be incorporated 

within the TSP framework [37].  

 

Fuzzy mathematical programming (FMP), as a branch of fuzzy set theory, was applied to tackle 

non-probabilistic uncertainties in water resources management [2-6] [23-24], [27-29], [40-45]. 

For example, Slowinski [49] proposed an interactive fuzzy multiobjective linear programming 

method and applied it to water supply planning. Chang et al. [3] proposed grey fuzzy multi-

objective programming for optimal planning of a reservoir watershed. Bender and Simonovic [2] 

proposed a fuzzy compromise approach to water resources planning under imprecision 

uncertainty. Besides, generalized fuzzy linear programming (GFLP) [or fully fuzzy linear 

programming (FFLP)], as an extension of traditional FMP, exhibited great efficiency in dealing 

with various uncertainties through permitting uncertain information in the optimization process 

and resulting solutions [14-15].  Summarily, FMP or GFLP is effective in dealing with decision 

problems under fuzzy goal and constraints and handling ambiguous coefficients in the objective 

function and constraints; however, it has difficulties in tackling uncertainties expressed as 

probabilistic distributions in a non-fuzzy decision space [34]. 

 

Although amount of inexact programming methods (e.g. TSP, FMP) has been widely used to 

address various uncertainties in water resources management, further research is still required on 

tackling dual or multiple uncertainties stemming from interactions among uncertainties of many 
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system components. In practical water resources management systems, extensive uncertainties 

exist in many impact factors and system components related to water availability, water 

demands, and economic coefficients. Some uncertainties can be quantified as probabilities while 

others may be characterized as fuzzy membership functions. For water management problems 

with fuzzy or probabilistic uncertainties, FMP, TSP and inexact two-stage fuzzy-stochastic 

programming methods can be used to tackle these uncertainties [35], [37], [48] [52-56]. 

However, due to various complexities in hydrological systems, some hydrological variables can 

hardly be quantified though a simple characterizing approach, such as probabilistic or fuzzy set 

theory. In other words, such variables may exhibit dual or multiple uncertainties. For example, 

the future stream flow is subject to numerous uncertainties in hydrological, hydrometeorological, 

and socio-economic factors, and may present dual or multiple uncertainties. For water systems 

with dual or multiple uncertainties, the FMP and TSP methods can hardly be applicable. 

Therefore, more effective approaches are desired to tackle such uncertainties.  

 

Therefore, the objective of this study aims to develop a generalized fuzzy two-stage stochastic 

(GFTSP) programming method in response to the above challenges. In the GFTSP, techniques of 

generalized fuzzy linear programming (GFLP) and two-stage stochastic programming (TSP) will 

be integrated to deal with uncertainties expressed as fuzzy sets and fuzzy random variables (e.g., 

experiments whose outcomes are considered as fuzzy sets rather than deterministic values). A 

robust stepwise interactive algorithm (RSIA) will be proposed to solve the GFTSP problem and 

generate fuzzy solution. Comparison will be conducted between solutions obtained through 

RSIA and Monte Carlo method through a numerical example. A case study will then be provided 

for demonstrating how the developed method will support planning for water resources 

management. The results can help water managers identify desired alternatives for water 

management with maximized economic objectives. 

 

This paper is organized as follows. In the next section, a generalized fuzzy two-stage stochastic 

programming (GFTSP) method and the related computational procedures will be introduced and 

investigated. A hypothetical case study in water resources management will be given in Section 

3. Discussions will then be presented in reference to the results presented as membership 

functions from GFTSP and interval two-stage stochastic programming (ITSP) methods. 

Conclusions will then be offered in Section 5. 

 

 

2. Methodology 

2.1. Generalized fuzzy linear programming (GFLP) Method 

 

The generalized fuzzy linear programming (GFLP) method was developed to deal with 

ambiguous coefficients expressed as fuzzy sets in the objective and constraints, and then 

generate fuzzy solutions. A GFLP model can be formulated as follows: 

Max 
~ ~ ~

f c X=   (1a) 

Subject to  
~ ~ ~

A X b   (1b) 
~

0X    (1c) 
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where
~ ~

1{ } nc R  , 
~ ~

1{ }nX R  , 
~ ~

1{ }mb R  , 
~ ~

{ }m nA R  ,
~

R denote a set of fuzzy sets, and  
~ ~ ~ ~

1 2( , ,..., )nc c c c= ,
~ ~ ~ ~

1 2( , ,..., )T
nX x x x=  ,

~ ~ ~ ~

1 2( , ,..., )T
nb b b b=  ,

~ ~

( ) , ,ij m nA a i m j n=    .  

 

The fuzzy parameters can show partial distributional information characterized as membership 

functions. For example, fuzzy parameter 
~

( , , )l m u
ij ij ij ija a a a=  can be presented as a triangular fuzzy 

set with 
l

ija , 
m

ija , and 
u

ija  being its lower bound, mid value, and upper bound, respectively. A 

fuzzy set (Ã) in X can be defined as a set of ordered pairs of Ã={x, μÃ(x)| x X }, where μÃ(x) is 

membership grade [34], [57]. The μÃ(x) value varies between 0 to 1, indicating the possibility that 

an element x belongs to Ã. The μÃ(x) = 1 means that x definitely belongs to set A, while μÃ(x) = 0 

denotes that x does not belong to A. The closer μÃ(x) is to 1, the more likely x belongs to Ã; 

conversely, the closer μÃ(x) is to 0, the less likely x belongs to Ã [30], [34], [57].  

 

To solve model (1), Fan et al. [14] proposed a stepwise interactive algorithm (SIA) based on the 

interactive algorithm for solving interval-parameter linear programming (ILP) problems as 

developed by Huang et al. [21]. However, the interactive algorithm would lead to violation of the 

best-case constraints when the decision point varies within the generated decision space [11]. 

Such a weakness would lead to potentially unacceptable solutions. Consequently, in this study, a 

robust stepwise interactive algorithm (RSIA) will be developed firstly to improve the previous 

SIA method.  The RSIA will improve upon the SIA through incorporation of additional 

constraints into the solution procedures under each α-cut level. In the RSIA, the principles of 

fuzzy interval [1], [7-10], [26] will be employed to convert the GFLP problem to a set of ILP 

subproblems, and then the robust two-step method (RTSM) [11] will be used to solve these ILP 

subproblems. Compared with SIA, the RSIA can provide more robust solutions. Besides, the 

RSIA allows uncertain parameters to be transmitted into the optimization process, leading to 

simple intermediate models. Moreover, through discretization for the range of membership grade 

into a series of α-cut levels, the RSIA can help generate fuzzy interval solutions under each α-cut 

level; consequently, the membership function for each fuzzy variable can be approximated 

through statistical regression methods.  

  

Since parameters in model (1) are available as fuzzy sets, they should be defuzzified before the 

model can be solved.  A set of α-cut or α -level is one of the most important concepts introduced 

by Zadeh to establish a bridge between fuzzy set theory and traditional set theory. Each fuzzy set 

can be uniquely represented by a family of its α-cuts. As stated by Kreinovich [30], fuzzy data 

processing is computable for α-cuts but, in general, not computable for membership functions. 

Consequently, the fuzzy parameters and decision variables in model (1) should be defuzzified 

through the α-cut method instead of directly using their membership functions. Through the α-

cut method, fuzzy parameters and decision variables in model (1) , as characterized by convex 

membership functions in a real number field (R), will be converted into related fuzzy intervals. 

For the range of membership grade (i.e. [0, 1]) for parameters
~

jc ,
~

jx ,
~

ija and
~

ib in model (1), we 

would discretize it into a finite number of α-cut levels. Thus, for any α∈[0, 1], the parameters of
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~

jc ,
~

jx ,
~

ija , and
~

ib can be denoted as
~

( ) [( ) , ( ) ]j j jc c c
  

− += ,
~

[( ) , ( ) ]j j jx x x 

− += , 
~

[( ) , ( ) ]ij ij ija a a 

− += , 

and 
~

[( ) , ( ) ]i i ib b b 
− += . 

 

With the property of α-cuts (i.e. if α1 ≥ α2 then
1 2

a a 

− − ,
1 2

a a 

+ +  ), the examined α-cut levels 

will be applied to model (1) in sequence, in order to transfer the obtained fuzzy interval solutions 

(from the previous ILP submodel) to constraints in the forthcoming submodel. Therefore, before 

α-cut levels are used to defuzzify uncertain parameters, they would firstly be reordered in a 

sequence of α(1), α(2),…, α(q), where α(1) ≥ α(2) ≥ … ≥ α(q). We would appoint the maximum α-cut 

level (α(1)) as the first one to be examined. Then the related ILP submodel can be expressed as 

follows: 

Max 
(1) (1) (1)

1

( ) ( ) ( )
n

j j

j

f c x  

  

=

=    (2a) 

Subject to 

(1) (1) (1)

1

( ) ( ) ( )
n

ij j i

j

a x b  

  

=

  , for i = 1, 2,…, m  (2b) 

(1)
( ) 0jx 

   for j = 1, 2,…, m  (2c)  

  

where
(1)

( )jc 


,

(1)
( )jx 


,

(1)
( )ija 


, and

(1)
( )ib 


are fuzzy intervals under (1) ;

(1) (1) (1)
( ) =[( ) , ( ) ]j j jc c c  

 − +
; 

(1) (1) (1)
( ) =[( ) , ( ) ]j j jx x x  

 − +
; 

(1) (1) (1)
( ) =[( ) , ( ) ]ij ij ija a a  

 − +
; 

(1) (1) (1)
( ) [( ) , ( ) ]i i ib b b  

 − += .  Fuzzy intervals 

under other α-cut levels also have similar expressions. Furthermore, an interval number ( a
) can 

be defined as: [ , ] { | }a a a t a a t a − + − += =    . 

 

Model (2) shows the formulation of interval-parameter linear programming (ILP) method with 

all parameters expressed as interval numbers. The ILP problem was developed through 

introducing the concept of interval analysis into a linear programming framework. If we suppose 

(1)
( ) 0jc 

  (for j = 1, 2, …, k) and 
(1)

( ) 0jc 

   (for j = k + 1, …, n), then according to the robust 

two-step method (RTSM) proposed by [11], model (1) can be transformed into two linear 

programming submodels. These two submodels with deterministic parameters would be solved 

to obtain interval solutions of model (2). In detail, the first submodel corresponding to
(1)

( )f 

−
can 

be formulated as: 

Max 
(1) (1) (1) (1) (1)

1 1

( ) ( ) ( ) ( ) ( )
k n

j j j j

j j k

f c x c x    

− − − − +

= = +

= +    (3a) 

Subject to 

(1) (1) (1) (1) (1) (1) (1)

1 1

(( ) ) ( ) ( ) (( ) ) ( ) ( ) ( ) ,  
k n

ij ij j ij ij j i

j j k

Sign a a x Sign a a x b i      

+ −
 −  + −

= = +

+     (3b) 

(1)
( ) 0,jx j

    (3c) 
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Hence, solutions of 
(1)

( )joptx 

−
 (j = 1, 2, …, k) and 

(1)
( )joptx 

+
 (j = k+1, …, n) can be solved from 

submodel (3). Then the second submodel corresponding to can be formulated based on the 

solutions from the first submodel, which can be expressed as follows:  

Max
(1) (1) (1) (1) (1)

1 1

( ) ( ) ( ) ( ) ( )
k n

j j j j

j j k

f c x c x    

+ + + + −

= = +

= +    (4a) 

Subject to 

(1) (1) (1) (1) (1) (1) (1)

1 1

(( ) ) ( ) ( ) (( ) ) ( ) ( ) ( ) ,  
k n

ij ij j ij ij j i

j j k

Sign a a x Sign a a x b i      

− +
 +  − +

= = +

+     (4b) 

(1) (1) (1) (1) (1) (1) (1) (1) (1)

1 2

1 2

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
i i

l lk ni i

ij j ij jopt ij j ij jopt i

j j l j k j l

a x a x a x a x b        

− + − − − − − + +

= = + = + = +

+ + +      

 (4c) 

(1) (1)
( ) ( )j joptx x 

+ − , j = 1, 2,…, k  (4d) 

(1) (1)
( ) ( )j joptx x 

− + , j = k+1, k+2,…n  (4e) 

(1)
( ) 0,jx j

    (4f) 

where
(1)

( ) 0ija 

  ( j = 1, 2, …, li1; j = li2 + 1, …, n) and 
(1)

( ) 0ija 

  ( j = li1 + 1, …, k, k + 1, …, 

li2); 
(1)

( )joptx 

−
(j = 1, 2, …, k) and 

(1)
( )joptx 

+
(j = k + 1, k + 2, …, n) are optimal solutions for model 

(3). 

 

Models (3) and (4) are conventional linear programming model which can be solved through 

commercial software (e.g. Lingo and Matlab). In this study, we employed Lingo to solve them. 

Through solving model (4), solutions of 
(1)

( )joptx 

+
(j = 1, 2,…, k) and 

(1)
( )joptx 

−
(j = k + 1, k + 2, …, 

n) can be obtained. Therefore, the final solutions for the model (2) can be obtained as follows:  

 (5a) 

 (5b) 

 

After the ILP subproblem under α(1) has been solved, the subproblem under α(2) can be solved 

through incorporating the solutions under α(1) as the constraints. These constraints are applied to 

ensure the final GFLP problem can generate feasible fuzzy membership functions for decision 

variables. Consequently, the ILP subproblems under other α-cut levels can be solved similarly. 

Therefore, considering α(2) to α(q) in sequence, a total of (q – 1) ILP submodels can be formulated 

as follows: 

 

Max  (6a) 

Subject to 

, for i= 1, 2,…, m (6b) 

(1)
( )f 

+

(1) (1) (1)
( ) [( ) , ( ) ]jopt jopt joptx x x  

 − +=

(1) (1) (1)
( ) [( ) , ( ) ]opt opt optf f f  

 − +=

( ) ( ) ( )

1

( ) ( ) ( )
l l l

n

j j

j

f c x  

  

=

= 

( ) ( ) ( )

1

( ) ( ) ( )
l l l

n

ij j i

j

a x b  

  

=

 
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 for j = 1, 2,…, m (6c) 

 (6d) 

where α(l) ∈{α(2)…, α(q)} and are the optimal solution obtained from the (l-1)th ILP 

model.  

 

Solve model (6) in the sequence of l = 2 to q. Then, two submodels can be obtained based on 

RTSM to solve model (6) under each α(l):  

 

Submodel 1 

Max 
( ) ( ) ( ) ( ) ( )

1 1

( ) ( ) ( ) ( ) ( )
l l l l l

k n

j j j j

j j k

f c x c x    

− − − − +

= = +

= +    (7a) 

Subject to 

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

(( ) ) ( ) ( ) (( ) ) ( ) ( ) ( ) ,  
l l l l l l l

k n

ij ij j ij ij j i

j j k

Sign a a x Sign a a x b i      

+ −
 −  + −

= = +

+     (7b) 

( ) ( 1)
( ) ( )

l lj joptx x  −

− − , j = 1, 2, …, k (7c) 

( ) ( 1)
( ) ( )

l lj joptx x  −

+ + , j = k + 1, k + 2, …, n (7d) 

(1)
( ) 0,jx j

     (7e) 

 

Submodel 2 

Max
( ) ( ) ( ) ( ) ( )

1 1

( ) ( ) ( ) ( ) ( )
l l l l l

k n

j j j j

j j k

f c x c x    

+ + + + −

= = +

= +   (8a) 

Subject to 

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

(( ) ) ( ) ( ) (( ) ) ( ) ( ) ( ) ,  
l l l l l l l

k n

ij ij j ij ij j i

j j k

Sign a a x Sign a a x b i      

− +
 +  − +

= = +

+     (8b) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2

1 2

1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
l l l l l l l l l

i i

l lk ni i

ij j ij jopt ij j ij jopt i

j j l j k j l

a x a x a x a x b        

− + − − − − − + +

= = + = + = +

+ + +      

 (8c) 

( ) ( )
( ) ( )

l lj joptx x 

+ − , j = 1, 2,…, k  (8d) 

( ) ( )
( ) ( )

l lj joptx x 

− + , j = k+1, k+2,…n (8e) 

( ) ( 1)
( ) ( )

l lj joptx x  −

+ + , j = 1, 2, …, k (8f) 

( ) ( 1)
( ) ( )

l lj joptx x  −

− − , j = k + 1, k + 2, …, n (8g) 

(1)
( ) 0,jx j

    (8h) 

 

From submodels (7) and (8), we can obtain the final solutions for model (6):  

  (9a) 

  (9b) 

( )
( ) 0

ljx 

 

( ) ( 1)
( ) ( )

l lj joptx x  −

 

( 1)
( )

ljoptx  −



( ) ( ) ( )
( ) [( ) , ( ) ]

l l ljopt jopt joptx x x  

 − +=

( ) ( ) ( )
( ) [( ) , ( ) ]

l l lopt opt optf f f  

 − +=



9 

 

 

Based on formulas (2) to (9), we can obtain a series of fuzzy interval solutions for model (1) 

under different α-cut levels. Then we can approximately generate the membership function for 

every decision variable through statistical regression, based on the obtained fuzzy intervals. In 

this step, each GFLP model is considered as one experiment. The selected α-cut levels are its 

inputs (i.e., independent variables) and the lower and upper bounds of the decision variables and 

objective function are its outputs (i.e., dependent variables); q α-cut levels mean that the 

experiment will be conducted for q times, and q groups of solutions will be obtained. Finally, we 

can approximate membership functions for the decision variables through a regression method. 

 

2.2. Generalized fuzzy two-stage stochastic programming (GFTSP) method   

  

The developed generalized fuzzy linear programming method [i.e. model (1)] is effective in 

dealing with uncertainties (presented as fuzzy sets) that exist in coefficients of the objective 

function and constraints, and can generate solutions expressed as fuzzy sets. However, it can 

hardly tackle uncertainties expressed as random variables in a non-fuzzy decision space [23]; 

moreover, it is lack of linkage to economic consequences of violated policies as pre-regulated by 

authorities through taking recourse actions in order to correct any infeasibilities [35]. Two-stage 

stochastic programming (TSP) method is an effective method to deal with recourse problems 

where analysis of policy scenarios is desired and the related data are mostly random. In TSP, the 

initial action is called the first-stage decision, and the corrective one is named the second-stage 

decision. The first-stage decisions must be made before random events are known; subsequently, 

after random events have happened and their values are known, the second-stage decisions 

should be made so as to optimize the objective [39]. Generally, a two-stage stochastic linear 

programming model can be formulated as follows [31, 46-47]: 
[ ( , )]Max f CX E Q X = +   (10a) 

Subject to 

AX ≤ B  (10b) 

X ≥ 0  (10c) 

where X is the first-stage decision vector made before the random variable are observed, and 

Q(X, ω) is the optimal value of the second-stage problem [47]: 

Min q(Y, ω)  (11a) 

Subject to 

W(ω)y + T(ω)x ≤ h(ω)  (11b) 

y ≥ 0  (11c) 

where y is the second-stage decision vector; q(y, ω) denotes the cost function in the second-stage 

problem; { W(ω), T(ω), h(ω)| } contains the data of the second-stage problem, and are the 

function of the random vector ω.  

 

For given values of the first-stage variables (X), the second-stage problem can be decomposed 

into independent linear subproblems, with one subproblem for each realization of the uncertain 

parameters [31]. Assume that random vector ω has a finite number of possible realizations, Ω = 

{ω1, ω1, …, ωv}, with respective probabilities p1, p2, …, pv, the expectation of the second-stage 

optimization problem can be written as: 
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1

[ ( , )] ( , )
v

h h

h

E Q X p Q X 
=

=   (12) 

Furthermore, the two-stage stochastic problem (10) can be formulated as one large linear 

programming problem: 

1 2

1

v

T h T

h

Max f C X p D Y
=

= +  (13a) 

Subject to  

r rA X B , r = 1, 2, …, m1 (13b) 

'

t t thA X AY +  , t = 1, 2, …, m2; h = 1, 2, …, v (13c) 

0,j jx x X  , j = 1, 2, …, n1  (13d) 

0,jh jhy y Y  , j = 1, 2, …, n2; h = 1, 2, …, v (13e) 

where ph is the probability of occurrence for scenario h, with ph > 0 and 
1

1
v

h

h

p
=

= ; 
1TC are 

coefficients of first-stage variables (X) in the objective function; 
2TD are coefficients of recourse 

variables (Y) in the objective function; rA and tA are coefficients of X in constraints r and t; 
'

tA  

are coefficients of Y in constraints t; th  is random variables of constraints t, which is associate 

with probability level ph.  

  

Obviously, model (13) can tackle uncertainties in the right-hand sides with probabilistic 

specifications for random variables. However, in many real-world problems, the quality of 

information on uncertainty is often not precise enough to be presented as PDFs; moreover, a 

large TSP model with all uncertain parameters being expressed as PDFs is extremely hard to be 

solved, even if their functions are available [22]. In fact, many parameters are estimated 

subjectively by experts due to data unavailability and, thus, are frequently expressed as fuzzy 

sets. Besides, some parameters may be highly uncertain and can hardly be presented by merely 

one type of presentation. For example, in water resources management problems, uncertainties 

may exist extensively, including left- and right-hand sides of the constraints and coefficients in 

the objective function. Some uncertainties may be characterized as random variables; at the same 

time, some random events cannot be estimated as deterministic values (and can only be 

quantified as fuzzy sets), leading to dual uncertainties presented in different formats in the 

uncertain system's components. Therefore, when multiple forms of uncertainties (e.g. fuzzy and 

stochastic parameters) exist in a model, one potential approach for handling them is to 

incorporate techniques of GFLP and TSP into one framework. This leads to a generalized fuzzy 

two-stage stochastic linear programming (GFTSP) method as follows: 

 

21

~ ~ ~ ~ ~

1

v

TT h

h

Max f C X p D Y
=

= +  (14a) 

Subject to 
~ ~ ~

r rA X B , r = 1, 2, …, m1 (14b) 
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'~ ~ ~ ~ ~

t t thA X A Y w+  , t = 1, 2, …, m2; h = 1, 2, …, v (14c) 
~ ~ ~

0,j jx x X  , j = 1, 2, …, n1  (14d) 

~ ~ ~

0,jh jhy y Y  , j = 1, 2, …, n2; h = 1, 2, …, v (14e) 

 

where 
~

thw forms a set of discrete random variables, and the detailed values for these random 

events are quantified as fuzzy sets. 

 

GFTSP can reflect uncertainties expressed as fuzzy sets, probability distributions and their 

combinations (fuzzy random variables); its left-hand sides (of constraints) contain fuzzy 

coefficients, and the right-hand ones present as fuzzy sets or fuzzy random variables. Moreover, 

GFTSP can also generate solutions presented as fuzzy sets, which can provide both fluctuating 

ranges and possibilistic distributions; these fuzzy solutions will be more effective in helping 

decision-makers analyze trade-offs between system benefit and process reliability through 

comparisons with solutions of ILP model.  

 

A numerical example will be proposed to illustrate the solution process of the developed GFTSP 

model. Consider a farmer who has a total of 300 acres of land available for growing corn. The 

planting costs per acre are $(200, 230, 260) (denoted as 
~

C ). Here the value of (200, 230, 260) is 

a triangular fuzzy number with the 200, 230 and 260 being the lower bound, mean value and 

upper bound, respectively. The farmer needs about (450 500, 550) (denoted as 
~

B ) tonne of corn 

for cattle feed which can be grown on the farm or bought from a wholesaler. The price of the 

corn (in tons) purchased from a wholesaler is $(250, 275, 300) (expressed as 
~

D ) per tonne. The 

yield of the farmland is sensitive to, e.g. weather conditions. Consequently, three scenarios of 

weather conditions are considered (i.e. bad, average, good), with the probability of 0.2, 0.6, 0.2, 

(expressed as pj, j = 1, 2, 3) respectively. The farmer knows that the yield on his land is about 

(2.0, 2.4, 2.8), (3.0, 3.4, 3.8) (4.0, 4.5, 5.0) (expressed as 
~

ja , j = 1, 2, 3) tonne per acre for corn 

under bad, average, good scenario, respectively. Assume 
~

X  to be the amount of areas planting 

corn and 
~

jY  to be the amount of the corn bought from a wholesaler under different scenarios, 

then a GFTSP model can be formulated as: 

Min 
3~ ~ ~ ~ ~

1

jj

j

f C X p DY
=

= +   (15a) 

Subject to 
~

300X    (15b) 
~ ~ ~ ~

1, 2, 3jja X Y B j+  =   (15c) 
~ ~

, 0jX Y    (15d) 
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The developed robust interactive algorithm (RSIA) will be applied to solve model (15). Based on 

RSIA, six α-cut (i.e. α = 0, 0.3, 0.5, 0.7, 0.9, 1) values are firstly selected to cut the GFTSP 

model, formulating six corresponding ITSP submodels; the robust two-step method will be 

employed to solve the ITSP submodel and generate fuzzy interval solution under each α-cut 

level; the membership functions of fuzzy variables and the objective function values will finally 

approximated through statistical regression methods. Table 1 presents the fuzzy interval 

solutions under different α-cut levels. Take the value of α = 0.5 as an example, the corresponding 

ITSP submodel under α = 0.5 would be expressed as: 

Min 
0.5

3

0.5 0.5 0.5 0.5

1

( ) ( ) ( ) ( ) ( )j j

j

f C X p D Y    

=

= +   (16a) 

Subject to 

0.5( ) 300X    (16b) 

0.5 0.5 0.5 0.5( ) ( ) ( ) ( ) 1, 2, 3j ja X Y B j   +  =  (16c) 

0.5 0.7 0.5 0.7( ) ( ) ( ) ( )opt j joptX X Y Y    ，  (16d) 

where 0.5( )C  , 0.5( )jD  , 0.5( )ja   0.5( )B   are the fuzzy interval under α = 0.5 and 0.5( )C  = [200+(230-

200)*0.5, 260-(260-230)*0.5] = [215, 245], 0.5( )D  = [262.5, 287.5], 1 0.5( )a  =[2.2, 2.6], 2 0.5( )a  = 

[3.2, 3.6], 3 0.5( )a  = [4.25, 4.75], 0.5( )B  =[475, 525]; 0.7( )optX   and 0.7( )joptY   are the optimal solution 

under α = 0.5; 0.5( )X   and 0.5( )jY   are the optimal solutions to be solved. The robust two-step 

method proposed by Fan and Huang [11] will be applied to solve model (16), which will covert 

model (16) into two submodel as follows: 

submodel 1 

Min 
0.5 0.5 1 0.5 2 0.5 3 0.5( ) 245( ) 0.2*287.5( ) 0.6*287.5( ) 0.2*287.5( )f X Y Y Y+ + + + += + + +  (17a) 

Subject to 

0.5( ) 300X +   (17b) 

0.5 1 0.52.2( ) ( ) 525X Y+ ++   (17c) 

0.5 2 0.53.2( ) ( ) 525X Y+ ++   (17d) 

0.5 3 0.54.25( ) ( ) 525X Y+ ++   (17e) 

0.5 0.7 0.5 0.7( ) ( ) ( ) ( )opt j joptX X Y Y    ，  (17f) 

Submodel 2 

0.5 0.5 1 0.5 2 0.5 3 0.5( ) 215( ) 0.2*262.5( ) 0.6*262.5( ) 0.2*262.5( )Min f X Y Y Y− − − − −= + + +  (18a) 

Subject to 

0.5( ) 300X −   (18b) 

0.5 1 0.52.6( ) ( ) 475X Y− −+   (18c) 

0.5 1 0.5 0.5 1 0.5{( ) ,( ) | 2.2( ) ( ) } 475Max X Y X Y+   (18d) 

0.5 2 0.53.6( ) ( ) 475X Y− −+   (18e) 

0.5 1 0.5 0.5 2 0.5{( ) ,( ) | 3.2( ) ( ) } 475Max X Y X Y+   (18f) 

0.5 3 0.54.75( ) ( ) 475X Y− −+   (18g) 
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0.5 1 0.5 0.5 3 0.5{( ) ,( ) | 4.25( ) ( ) } 475Max X Y X Y+   (18h) 

0.5 0.7 0.5 0.7( ) ( ) ( ) ( )opt j joptX X Y Y    ，  (18i) 

where equations (18d), 18(f), (18h) are the equivalent expressions of equations (4c) [11]. From 

models (17) and (18), the fuzzy interval solutions of model (15) under α = 0.5 can be obtained.  

 

Table 1. The solutions of the numerical example under different α-cut levels  

α solutions 

1 1( )X 
=166.7, 1 1( )Y 

=100, 2 1 3 1( ) ( )Y Y = = 0 1( )f 
 = 4.38 × 104 

0.9 0.9( )X 
= [163.9, 169.5], 1 0.9( )Y 

= [95.1, 105.1], 2 0.9 3 0.9( ) ( )Y Y = = 0, 0.9( )f 
 = [4.24, 4.53] × 104 

0.7 0.7( )X 
= [158.5, 175.2], 1 0.7( )Y 

= [85.6, 115.6], 2 0.7 3 0.7( ) ( )Y Y = = 0, 0.7( )f 
 = [3.96, 4.84] × 104 

0.5 0.5( )X 
= [153.2, 181.0], 1 0.5( )Y 

= [76.6, 126.7], 2 0.5 3 0.5( ) ( )Y Y = = 0, 0.5( )f 
 = [3.70, 5.16] × 104 

0.3 0.3( )X 
= [148.1, 187.1], 1 0.3( )Y 

= [68.1, 138.4], 2 0.3 3 0.3( ) ( )Y Y = = 0, 0.3( )f 
 = [3.45, 5.51] × 104 

0 0( )X 
= [140.6, 196.4], 1 0( )Y 

= [56.3, 157.1], 2 0 3 0( ) ( )Y Y = = 0, 0( )f 
 = [3.09, 6.05] × 104 

 

Based on the fuzzy interval solutions under selected α-cut levels (as shown in Table 1), the 

membership functions of fuzzy variables can be generated through statistical regression methods. 

Fig. 1(a) shows the membership functions of 
~

X , 
~

1Y  and 
~

f . It is indicated that the membership 

functions of decision variables can be well fitted based on the fuzzy intervals solutions under a 

series of α-cut levels. To further demonstrate the robustness and efficiency of the proposed 

method, we compare the solutions obtained through the fuzzy membership function with those 

obtained based on Monte Carlo method. In this comparison, 100 random α-cut levels are 

generated within a uniform distributed [0, 1] interval. Under each α-cut level, an ITSP submodel 

will be formulated and then generate associated interval solutions. Fig.1(b) shows the 

comparison between the values of 
~

X , 
~

1Y  and 
~

f  obtained through the membership functions and 

those generated by Monte Carlo method. It suggests that, instead of solving the model again, the 

membership functions obtained through RSIA can be applied directly to generate related 

solutions of model (15) under any α-cut level. 
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Figure 1. The membership functions and their comparison with Monte Carlo method 

 

A case study of water resources management will be further proposed to illustrate the solution 

process of the GFTSP method and its applicability to practice problems. A general water 

resources management system involves several processes with various socio-economic and 

environmental implications. Extensive uncertainties exist in these processes. They can be sorted 

into two basic forms: uncertainties caused by inherent hydrologic variability and those due to 

fundamental lack of knowledge [48]. Fuzzy set theory was developed to capture judgmental 

belief, or uncertainty that is caused by the lack of knowledge or ambiguity [51]. In terms of the 

uncertainty derived from inherent variability, one example is hydrological prediction which is 

subject to numerous uncertainties, such as those generated in developing conceptual, 

mathematical and numerical models; specifically, some hydrological parameters are 

characterized by imprecise, vague, inconsistent, incomplete, or subjective information, which is 

insufficient for constructing reliable probability distributions and thus limits the application of 

conventional stochastic methods [16]. Therefore, complexities in hydrological systems can lead 

to difficulties in representing uncertainties associated with hydrological variability through a 

single characterizing approach based on either probability or fuzzy set theory. In other words, 

two types of uncertainty, which are fundamentally different from each other, may simultaneously 

exist in hydrological systems, leading to dual-uncertainties. Fuzzy random variable (FRV), 

which describes an experiment whose outcomes are considered as fuzzy sets rather than 

deterministic real values, is a potential alternative to deal with such dual-uncertainties [16-17].  

 

Consider a water resources problem as follows: an authority is charged with delivering water to 

different sectors to meet demands for regional socio-economic development. The authority 

promises a range of allocation targets for each user in advance, which can help the users tailor 

their activities and investment plans. If the promised water is delivered, the net benefit to the 

local economy will be generated for each unit of water allocated. However, if the promised water 
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is not delivered, then either the water must be obtained from higher priced alternatives or the 

demand must be curtailed by reduced production, resulting in a reduced net system benefit [4]. 

Furthermore, when the parameters related to water allocation targets such as economic data, are 

expressed as fuzzy sets; the hydrological data, such as flow distribution, are represented as fuzzy 

random variables, then the developed GFTSP method would be effective for dealing with various 

uncertainties to achieve a maximum benefit. The GFTSP model for water resources management 

can be formulated as follows: 

 

Max 
1 1 1 1 1

m T m n T

ik ijki ij

i k i j k

f NB T p C D
= = = = =

= − 
～ ～ ～ ～ ～

 (19a) 

Subject to 
~

1

( ) ,
m

ik ijkjk

i

q T D j k
=

 − 
～ ～

 (19b) 

max 0 , ,ik ik ijkT T D i j k   
～ ～ ～

 (19c) 

where  

Objective function: 

f
～

 = net system benefit ($/day); 

Parameters:  

iNB
～

 = net benefit to user i per unit of water allocated ($/unit);  

ikT
～

= fixed allocation target for water that is promised to user i (unit/day) in period k (the first-

stage decision variable);
  

maxikT
～

= maximum allowable allocation amount for user i (unit/day) in period k; 

iC
～

 = penalty rate for user i per unit of water not delivered ( iC
～

> iNB
～

) ($/unit);  
~

jkq  = the amount of water availability under flow level j (m3) in period k;  

pj = the probability of occurrence of flow level j;  

i = the index of water user;  

j = the index of flow level;  

m = number of water users;  

k = the total number of periods;  

n = total number of flow levels. 

Decision variables: 

ijkD
～

= the amount of shortage corresponding to water-allocation target ikT
～

 when the seasonal 

flow is 
~

jkq  (m3) with probability pj (the second-stage decision variable). 

 

In model (19), the objective (i.e., formula (19a)) is to maximize the net benefit of water supply to 

multiple users, which will cover both benefit of allocated water and penalty of water shortage. 

Constraint (19b) specifies that the total amount of water allocated to multiple users must not 



16 

 

exceed the water availability. Formula (19c) defines technical constraints of non-negative 

variables and maximized allocation targets.  

 

 
Figure 2. The schematic of the GFTSP model 

 

According to the RSIA method, under each α-cut level, model (19) can be converted into an 
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inexact two-stage stochastic programming (ITSP) problem as follows: 

Max
1 1 1 1 1

( ) ( ) (( () ) )
m T m n T

i ik j i ijk

i k i j k

NB T p Df C    

   

= = =



= =

−=   (20a) 

Subject to 

1

(( ) ( ) ) ( ) ,
m

ik ijk jk

i

T D q j k  

  

=

−    (20b) 

max( ) ( ) ( ) 0 , ,ik ik ijkT T D i j k  

       (20b) 

 

In model (20), it is difficult to determine whether ( )ikT 

+
or ( )ikT 

−
 will correspond to the upper-

bound of the system net benefit (i.e. ( )f 

+
), because ( )ikT 

+
 corresponds to a higher benefit for 

water allocation but a higher risk of penalties if the promised water is not delivered, while ( )ikT 

−

is associated with a lower benefit but a lower risk of penalties. Furthermore, if ( )ikT 



 
are 

considered as uncertain inputs, the existing methods for solving inexact linear programming 

problems cannot be used directly [33]. Consequently, an optimized set of target values will be 

identified by having (yik)α in model (20) as decision variables. This optimized set will correspond 

to a maximized system benefit under uncertain water-allocation targets [22]. Accordingly, let us 

consider ( ) ( ) ( ) ( )ik ik ik ikT T T y   

 −= + , where ( ) ( ) ( )ik ik ikT T T  

+ − = − and 0 ≤ (yik)α ≤ 1; (yik)α 

are decision variables that are used for identifying an optimized set of allocation target values 

( ikT 
) in order to support the related policy. Consequently, model (20) can be reformulated as 

follows: 

Max 
1 1 1 1 1

( ) [(( ) ( ) ( ) ] () ) ( )
m T m n T

i ik ik ik j i ijk

i k i j k

NB T T y p C Df      

 −  

= = = = =

  −= +   (21a)  

Subject to 

1

[( ) ( ) ( ) ( ) ] ( ) ,
m

ik ik ik ijk jk

i

T T y D q j k    

−  

=

+ −    (21b) 

max( ) ( ) ( ) ( ) ( ) 0 , ,ik ik ik ik ijkT T T y D i j k    

 −  +     (21c) 

0 ( ) 1 ,iky i k    (21d) 

 

Generally, the detailed solution process of RSIA for solving model (19) can be summarized as 

follows: 

Step 1: Formulate model (19). 

Step 2: Select a set of α-cut levels, α1, α2,…, αq. 

Step 3: Reorder these α values into a descending series (denoted as α(1), α(2), …, α(q), where α(1) ≥ 

α(2) ≥ … ≥ α(q)). 

Step 4: Select α(1) as the first α-cut level to cut model (19). 

Step 5: Transform model (19) into an ITSP model presented as model (20) under α(1). 

Step 6: Convert model (20) into model (21) by introducing ( ) ( ) ( ) ( )ik ik ik ikT T T y   

 −= + , where 
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( ) ( ) ( )ik ik ikT T T  

+ − = − and 0 ≤ (yik)α ≤ 1. 

Step 7: Solve model (21) through RTSM proposed by [11], in which model (21) will be 

transformed into two submodels corresponding to the lower and upper bounds of the objective 

function of model (21). 

Step 8: Obtain the optimal solutions of the ITSP model under α(1): 

(1) (1) (1)
( ) [( ) , ( ) ]opt opt optf f f  

 − += , 
(1) (1) (1)

( ) [( ) , ( ) ]ijk opt ijk opt ijk optD D D  

 − += . 

Step 9: Obtain the optimal water-allocation scheme under α(1): 

(1) (1) (1)
( ) ( ) ( )ijk opt ik opt ijk optA T D  

  = − . 

Step 10: Repeat Steps 4 to 9 in an order of α(2), α(3), …, α(q), and obtain the resulting interval 

solutions as follows:  

( ) ( ) ( )
( ) [( ) , ( ) ]

l l lopt opt optf f f  

 − +=  

( ) ( ) ( )
( ) [( ) , ( ) ]

l l lijk opt ijk opt ijk optD D D  

 − +=  

( ) ( ) ( )
( ) ( ) ( )

l l lijk opt ik opt ijk optA T D  

  = −  

where l = 2, 3, …, q. 

Step 11: Establish the membership functions for ijk optD
～

, optf
～

, as well as the relationship between 

Tik and α [presented as Tik(α)] based on the solutions obtained in Steps 8 to 10. 

Step 12: Stop. 

 

Fig. 2 shows the schematic of the GFTSP model for water resources management. Obviously, 

the GFTSP model is an integration of generalized fuzzy linear programming (GFLP) and two-

stage stochastic programming (TSP). Each method has a unique contribution in enhancing the 

capability of GFTSP in dealing with various uncertainties in water resources management. A 

stepwise interactive algorithm (RSIA) is proposed for solving the proposed GFTSP model, 

which can permit uncertainties to be directly communicated into the optimization process. 

Through RSIA, the developed GFTSP model will firstly be converted into several ITSP 

submodels, and then be further transformed into linear programming (LP) submodels. 

Consequently, the computational complexity of the GFTSP would be reasonable. For example, if 

n α-cut levels are identified in solving the GFTSP model, n ITSP submodels will be firstly 

generated. According to RTSM, each ITSP submodel can be further converted into two LP 

submodels; thus, the GFTSP model will finally result in 2n LP submodels with deterministic 

parameters.  

 

3. Case Study 

3.1. Overview of the study system 

 

The following water resources management problem will be applied to demonstrate applicability 

of the developed GFTSP approach. An authority is charged with delivering water to different 

sectors to meet demands for regional socio-economic development. Three users would be 

involved in this studied case, including a municipality, an industry and an agricultural sector. 

The water users need to know the promised water supply firstly to planning their activities and 

investments. A net benefit will be generated for every unit water delivered; otherwise, penalties 

would be appear since  water should be obtained from higher-priced alternatives or the demand 
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must be curtailed by reducing production. Consequently, the problem under consideration is how 

to effectively allocate the limited water supply to multiple users in order to maximize the net 

benefit and minimize the associated penalties or negative consequences.  

 

Table 2 shows the economic coefficients, including the net benefit to user i per m3 of water 

allocated, as well as the loss to user i per m3 of water not delivered. The data in Table 1 are 

assumed to be presented as triangular fuzzy numbers. Table 3 presents maximum allowable 

water allocation and the water allocation targets to different users. Table 4 shows the seasonal 

inflows under different probabilities, which are expressed as triangular fuzzy random variables. 

In this study, the triangular fuzzy numbers/fuzzy random variables are considered because (i) the 

triangular form is the simplest type of fuzzy numbers/fuzzy random variables; (ii) other types of 

fuzzy numbers can be expressed and estimated with this simple form of fuzzy number; (iii) a 

triangular fuzzy number can provide the most important information about a fuzzy number: 

lower and upper bounds of the number and its most possible value [43]. Obviously, there are two 

kinds of uncertainties in the proposed case: (i) fuzzy parameters in economic coefficients and 

water allocation targets, and (ii) fuzzy random variables in seasonal inflows. Both GFLP and 

TSP methods are not directly applicable for tackling such a problem due to the existence of dual-

uncertainties. Consequently, the developed GFTSP method, which combines both capabilities of 

GFLP and TSP, is a potential approach for studying this case. 

 

Table 2 Economic coefficients ($/m3) 

  Users   

  Municipal (i = 1) Industrial (i = 2) Agricultural (i = 3) 

Net benefit when water demand is 

satisfied ( iNB
～

) 
(100, 20, 20) (50, 10, 10) (30, 5, 5) 

Reduction of net benefit when 

demand is not delivered ( iC
～

) 
(250, 30, 30) (100, 20, 20) (60, 10, 10) 

 

Table 3 water allocation targets (× 104 m3) 

Season (k) 
User   

Municipal (i = 1) Industrial (i = 2) Agricultural (i = 3) 

Winter (k = 1) (350, 30, 20) (410, 60, 60) (680, 50, 50) 

Spring (k = 2) (390, 40, 40) (430, 50, 60) (730, 60, 50) 

Summer (k = 3) (420, 50, 50) (460, 70, 80) (760, 60, 60) 

Fall (k = 4) (410, 40, 50) (450, 70, 70) (700, 50, 60) 

Maximum allocation 

target ( maxikT
～

) 
900 900 900 

 

Table 4 Seasonal water availability (× 104 m3) and associated probabilities 

Season (k) 
Flow level   

Low(j = 1) Medium (j = 2) High (j = 3) 

Probability (pj) 0.2 0.6 0.2 

Water availability ( jkq
～

) 
   

Winter (k = 1) (470, 50, 50) (900, 100, 100) (1200, 100, 100) 

Spring (k = 2) (490, 50, 50) (1000, 100, 100) (1300, 100, 100) 
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Summer (k = 3) (530, 50, 50) (1100, 100, 100) (1400, 100, 100) 

Fall (k = 4) (480, 50, 50) (950, 100, 100) (1250, 100, 100) 

 

3.2. Result Analysis 

 

In this study, a GFTSP method is developed for supporting decision making in water resources 

management. A stepwise interactive algorithm (SIA) is proposed to solve the GFTSP model. 

Based on SIA, six α-cut levels (i.e. 0, 0.3, 0.5, 0.7, 0.85 and 1) are identified to defuzzify the 

fuzzy parameters. Under each α-cut level, the fuzzy parameters presented in Tables 2 and 3 

would be converted into fuzzy intervals, and the seasonal water availability as shown in Table 4 

would be converted into fuzzy random intervals. Consequently, the developed GFTSP model 

would be transformed into an inexact two-stage stochastic programming (ITSP) problem. The 

robust two-step method (RTSM) proposed by Fan and Huang [11] will then be employed to 

solve the ITSP submodels as derived from the GFTSP model. The feasibility and robustness of 

RTSM in solving the ITSP and ILP problems have been demonstrated by several cases in 

air/water quality management and energy system planning [8], [46], [48].  

 

Table 5 shows the solutions of model (21) under different α-cut levels. They contain the water 

deficits of different users under different inflow levels [denoted as 
( )

( )
lijk optD 


], as well as the 

values of additional variables [expressed as (yik)α] for identifying desired water targets. The 

results indicate that the water allocation patterns would vary with temporal and spatial variations 

in water availability and economic conditions. Deficits would occur if the available flows do not 

meet user demands over the planning horizon. In case of insufficient water supply, the allotment 

to the agricultural sector would be first reduced, followed by the industrial sector’s allocation. 

The municipal allocation should be of the highest priority since it brings the highest benefit when 

its water demand is satisfied; meanwhile, it is subject to the highest penalty if the promised water 

is not delivered. For example, under low inflow levels, the water demands of the municipal 

sector would almost be satisfied except for a small quantity of water shortage (i.e. [0, 20] × 104 

m3) in Summer; in comparison, the shortage of water in the agricultural sector would be as high 

as 680 × 104 m3 over the planning horizon; the water deficit in the industrial sector would vary 

over the planning horizon due to variations in low water inflow over different periods. As the 

amount of inflow increases, the water shortage in the municipal sector would decrease first, 

followed by reduced water deficits in the industrial and agricultural sectors. As shown in Table 

5, the promised water allocated to the municipal and industrial sectors would be satisfied as their 

respective inflow level is medium and high. In the case of the agriculture sector’s water use, a 

water deficit would always exist even when the water inflow level is high, but the amount of 

deficit would decrease as water availability increases. 

Table 5. Optimal solutions of ( )ijkD 
  and ( )iky  obtained through model (21) under different α-

cut levels 
α-cut  1 0.85 0.7 0.5 0.3 0 

(i,j,k) Dijk Dijk yik Dijk yik Dijk yik Dijk yik Dijk yik 

(1, 1, 1) 0 0 1 0 1 0 1 0 1 0 0.94 

(2, 1, 1) 290 [276.5, 291.5] 0 [263, 293] 0 [245, 295] 0 [227, 297] 0 [197, 297] 0 

(3, 1, 1) 680 680 0.5 680 0.5 680 0.5 680 0.5 680 0.5 

(1, 1, 2) 0 0 1 0 1 0 1 0 1 0 1 
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(2, 1, 2) 380 [362, 380] 0 [344, 380] 0 [320, 380] 0 [296, 380] 0 [270, 380] 0 

(3, 1, 2) 680 680 0 680 0 680 0 680 0 680 0.091 

(1, 1, 3) 20 [0.5, 20] 1 [0, 20] 1 [0, 20] 1 [0, 20] 1 [0, 20] 1 

(2, 1, 3) 410 410 0 [391, 410] 0 [365, 410] 0 [339, 410] 0 [320, 410] 0.13 

(3, 1, 3) 680 680 0 680 0 680 0 680 0 680 0 

(1, 1, 4) 0 0 1 0 1 0 1 0 1 0 0.67 

(2, 1, 4) 400 [382, 400] 0 [364, 400] 0 [345, 400] 0 [331, 400] 0 [301, 400] 0.15 

(3, 1, 4) 680 680 0 680 0 680 0.091 680 0.195 680 0.273 

(1, 2, 1) 0 0 1 0 1 0 1 0 1 0 0.94 

(2, 2, 1) 0 0 0 0 0 0 0 0 0 0 0 

(3, 2, 1) 540 [519, 549] 0.5 [498, 558] 0.5 [470, 570] 0.5 [442, 582] 0.5 [397, 597] 0.5 

(1, 2, 2) 0 0 1 0 1 0 1 0 1 0 1 

(2, 2, 2) 0 0 0 0 0 0 0 0 0 0 0 

(3, 2, 2) 550 [524.5, 554.5] 0 [499, 559] 0 [465, 565] 0 [431, 571] 0 [390, 590] 0.091 

(1, 2, 3) 0 0 1 0 1 0 1 0 1 0 1 

(2, 2, 3) 0 0 0 0 0 0 0 0 0 0 0.13 

(3, 2, 3) 540 [513, 543] 0 [486, 546] 0 [450, 550] 0 [414, 554] 0 [380, 580] 0 

(1, 2, 4) 0 0 1 0 1 0 1 0 1 0 0.67 

(2, 2, 4) 0 0 0 0 0 0 0 0 0 0 0.15 

(3, 2, 4) 610 [584.5, 614.5] 0 [559, 619] 0 [530, 630] 0.091 [506, 646] 0.195 [461, 661] 0.273 

(1, 3, 1) 0 0 1 0 1 0 1 0 1 0 0.94 

(2, 3, 1) 0 0 0 0 0 0 0 0 0 0 0 

(3, 3, 1) 240 [219, 249] 0.5 [198, 258] 0.5 [170, 270] 0.5 [142, 282] 0.5 [97, 297] 0.5 

(1, 3, 2) 0 0 1 0 1 0 1 0 1 0 1 

(2, 3, 2) 0 0 0 0 0 0 0 0 0 0 0 

(3, 3, 2) 250 [224.5, 254.5] 0 [199, 259] 0 [165, 265] 0 [131, 271] 0 [90, 290] 0.091 

(1, 3, 3) 0 0 1 0 1 0 1 0 1 0 1 

(2, 3, 3) 0 0 0 0 0 0 0 0 0 0 0.13 

(3, 3, 3) 240 [213, 243] 0 [186, 246] 0 [150, 250] 0 [114, 254] 0 [80, 280] 0 

(1, 3, 4) 0 0 1 0 1 0 1 0 1 0 0.67 

(2, 3, 4) 0 0 0 0 0 0 0 0 0 0 0.15 

(3, 3, 4) 310 [284.5, 314.5] 0 [259, 319] 0 [230, 330] 0.091 [206, 346] 0.195 [161, 361] 0.273 

( )f 

  1.74 [1.59, 1.94] [1.45, 2.13] [1.24, 2.38] [1.04, 2.62] [0.72, 2.94] 

Notes: i = 1, 2, 3 indicates municipal, industrial and agricultural users, respectively; j = 1, 2, 3 means the low, medium, and high 

inflow levels, respectively; k = 1, 2, 3, 4 represents Winter, Spring, Summer, and Fall, respectively. ( )ijkD 
 indicates the water 

shortage under different α-cut levels (×104 m3); ( )f 
 means the objective function value  under different α-cut levels (×109) 

 

The optimized water-allocation targets for the users could be obtained based on 

( ) ( ) ( ) ( )ik ik ik ikT T T y   

 −= + . The decision variable (yik)α, where 0 ≤ (yik)α ≤ 1, is applied to 

identify the optimized water-allocation targets from the promised values. As shown in Table 5,  

(y1k)α ≥ 0.6 for any k = 1, 2, 3, 4 and α = 0, 0.3, 0.5, 0.7, 0.85, 1, the municipal sector would 

usually obtain high allocation targets. This is because the water use in the municipal sector could 

lead to both high benefit (when their demands are satisfied) and high penalty (when the demands 

are not delivered); thus, the manager would acquire high system benefit through promising high 

water-allocation targets and reducing water deficits in the municipal sector. Conversely, the 

values of (y2k)α and  (y3k)α are less than or equal to 0.5 for any k = 1, 2, 3, 4 and α = 0, 0.3, 0.5, 

0.7, 0.85, 1, suggesting relatively low allocation targets to the industrial and agricultural sectors. 

This is due to the relatively low benefits generated by the two sectors. Generally, the 

identification of optimized water-allocation targets represents a compromise between the benefit 

of water delivered and the penalty of water not delivered. A higher target level would lead to a 

higher benefit but, at the same time, a higher risk of water shortage (and thus a higher penalty) 
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when the water flow is low; however, a lower target level would result in a lower benefit as well 

as a lower risk of water shortage. 

 

After the optimized allocation targets to different users are identified, the actual water allocation 

to different users can be obtained through ( ) ( ) ( )ijk opt ik opt ijk optA T D  

  = − . Table 6 presents the 

optimal water allocation target and actual allocation schemes under selected α-cut levels. It 

indicates that the water demand of the municipal sector would be satisfied first. For instance, the 

actual water-allocation amount of the municipal use is almost equal to its optimized water-

allocation amount [i.e. 1( )jk optA 


= 1( )k optT  ], except some shortages as occurred in summer under 

low river inflow. In comparison, as shown in Table 6, the actual water allocation to the 

agricultural sector is always less than the optimized water-allocation targets over the planning 

horizon, regardless of the river inflow levels, indicating the existence of water shortage. As the 

water availability increases, the gap between the optimized allocation target and the actual 

allocation amount would decreases, showing a reduction of water shortage. In fact, the results in 

Table 6 are identical to those in Table 5. The values of ( )ijk optA 


and ( )ik optT  indicate the actual 

allocation schemes given the decision variables ( )ijk optD 


 and (yik)α in model (14). 

 

Table 6. optimal water allocation targets ( )ijk optA 
  and actual water allocation schemes ( )ik optT 

 

under different α-cut levels 
α-cut        1 0.85 0.7 0.5 0.3 0 

(i, j, k) Aijk Tik Aijk Tik Aijk Tik Aijk Tik Aijk Tik Aijk Tik 

(1, 1, 1) 350 350 353 353 356 356 360 360 364 364 367 367 

(2, 1, 1) 120 410 [109.5, 124.5] 401 [99, 129] 392 [85, 135] 380 [71, 141] 368 [53, 153] 350 

(3, 1, 1) 0 680 0 680 0 680 0 680 0 680 0 680 

(1, 1, 2) 390 390 396 396 402 402 410 410 418 418 430 430 

(2, 1, 2) 50 430 [42.5, 60.5] 422.5 [35, 71] 415 [25, 85] 405 [15, 99] 395 [0, 110] 380 

(3, 1, 2) 50 730 41 721 32 712 20 700 8 688 0 680 

(1, 1, 3) 400 420 [407.5, 427] 427.5 [415, 435] 435 [425, 445] 445 [435, 455] 455 [450, 470] 470 

(2, 1, 3) 50 460 39.5 449.5 [29, 48] 439 [15, 60] 425 [1, 72] 411 [0, 90] 410 

(3, 1, 3) 80 760 71 751 62 742 50 730 38 718 20 700 

(1, 1, 4) 410 410 417.5 417.5 425 425 435 435 445 445 430 430 

(2, 1, 4) 50 450 [39.5, 57.5] 439.5 [29, 65] 429 [15, 70] 415 [0, 70] 401 [0, 100] 401 

(3, 1, 4) 20 700 12.5 692.5 5 685 0 680 0 680 0 680 

(1, 2, 1) 350 350 353 353 356 356 360 360 364 364 367 367 

(2, 2, 1) 410 410 401 401 392 392 380 380 368 368 350 350 

(3, 2, 1) 140 680 [131, 161] 680 [122, 182] 680 [110, 210] 680 [98, 238] 680 [83, 283] 680 

(1, 2, 2) 390 390 396 396 402 402 410 410 418 418 430 430 

(2, 2, 2) 430 430 422.5 422.5 415 415 405 405 395 395 380 380 

(3, 2, 2) 180 730 [166.5, 196.5] 721 [153, 213] 712 [135, 235] 700 [117, 257] 688 [90, 290] 680 

(1, 2, 3) 420 420 427.5 427.5 435 435 445 445 455 455 470 470 

(2, 2, 3) 460 460 449.5 449.5 439 439 425 425 411 411 410 410 

(3, 2, 3) 220 760 [208, 238] 751 [196, 256] 742 [180, 280] 730 [164, 304] 718 [120, 320] 700 

(1, 2, 4) 410 410 417.5 417.5 425 425 435 435 445 445 430 430 

(2, 2, 4) 450 450 439.5 439.5 429 429 415 415 401 401 401 401 

(3, 2, 4) 90 700 [78, 108] 692.5 [66, 126] 685 [50, 150] 680 [34, 174] 680 [19, 219] 680 

(1, 3, 1) 350 350 353 353 356 356 360 360 364 364 367 367 

(2, 3, 1) 410 410 401 401 392 392 380 380 368 368 350 350 

(3, 3, 1) 440 680 [431, 461] 680 [422, 482] 680 [410, 510] 680 [398, 538] 680 [383, 583] 680 
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(1, 3, 2) 390 390 396 396 402 402 410 410 418 418 430 430 

(2, 3, 2) 430 430 422.5 422.5 415 415 405 405 395 395 380 380 

(3, 3, 2) 480 730 [466.5, 496.5] 721 [453, 513] 712 [435, 535] 700 [417, 557] 688 [390, 590] 680 

(1, 3, 3) 420 420 427.5 427.5 435 435 445 445 455 455 470 470 

(2, 3, 3) 460 460 449.5 449.5 439 439 425 425 411 411 410 410 

(3, 3, 3) 520 760 [508, 538] 751 [496, 556] 742 [480, 580] 730 [464, 604] 718 [420, 620] 700 

(1, 3, 4) 410 410 417.5 417.5 425 425 435 435 445 445 430 430 

(2, 3, 4) 450 450 439.5 439.5 429 429 415 415 401 401 401 401 

(3, 3, 4) 390 700 [378, 408] 692.5 [366, 426] 685 [350, 450] 680 [334, 474] 680 [319, 519] 680 

Notes: i = 1, 2, 3 indicates municipal, industrial and agricultural users, respectively; j = 1, 2, 3 means the low, medium, and high 

inflow levels, respectively; k = 1, 2, 3, 4 represents Winter, Spring, Summer, and Fall, respectively. ( )ik optT 
indicates the water 

allocation target under different α-cut levels (×104 m3). ( )ijk optA 
  means the actual water allocation scheme under different α-cut 

levels (×104 m3). 
 

Since parameters in model (19) are expressed as fuzzy sets, the fluctuating ranges of these inputs 

would vary under different plausibilities (α-cut levels), and thus result in variations in the 

generated solutions. For example, as shown in Table 5, under α = 0 (the lowest plausibility 

degree), the value of 211 0( )D 
 (i.e. amount of water shortage in the industrial sector in Winter 

under the scenario of low river inflow level) would be [197, 297] × 104 m3; in comparison, under 

α = 1 (highest plausibility degree), the value of 211 1( )D 
 would be 290 × 104 m3. As the value of 

α-cut level increases from 0 to 1, the lower bound of 211( )D 


 would increase (i.e. 227, 245, 263, 

276.5 × 104 m3 under α = 0.3, 0.5, 0.7, 0.85, respectively), while the upper bound of 211( )D 


 

would decrease (i.e. 297, 295, 293, 291.5 × 104 m3 under α = 0.3, 0.5, 0.7, 0.85, respectively). 

Fig. 3 shows the lower and upper bounds of water shortages under different α-cut levels. In this 

figure, each bar indicates the water shortage of a water user in different periods and inflow levels 

under different α-cut levels. For example, symbol D123 means water shortage for municipal 

sector (i.e. i = 1) in Summer (i.e. k = 3) under medium inflow level (j = 2); the axis with α values 

presents the α-cut levels that are selected to "cut" the model. They indicate that solutions of 

water allocation schemes for the three users would vary with the α-cut level. The lower bound 

would increase and the upper bound would decrease when the α-cut level is increased from 0 to 

1. Such variations in water allocation would stem from the input fuzziness of model (11).  
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Figure 3. The lower and upper bounds of water shortages under different α-cut levels 

 

4. Discussion  

 

As shown in Table 5, a series of fuzzy interval solutions can be obtained through model (21) 

under different α-cut levels. Afterwards, the membership functions of the fuzzy decision 

variables in model (19) can be approximated through regression analysis based on the fuzzy 

interval solutions. Fig. 4 shows the obtained membership functions of the fuzzy variables (i.e. 

ijkD
～

). It indicates that the membership functions of ijkD
～

 can be well fitted through linear or 

polynomial regression methods based on the results of Table 5. Besides, Table 5 also provides 

the total system benefit [i.e., objective function of model (21)] under six α-cut levels. The results 

suggest that different plausibility degrees of uncertain inputs would lead to varied system 

benefits. The upper-bound of the objective function value corresponds to advantageous 

conditions, while the lower-bound one is associated with demanding conditions. Meanwhile, the 

membership function of the objective-function value can also be approximated based on the 
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fuzzy interval solutions for the objective-function value in Table 5. Fig. 5 presents the obtained 

membership function, which can be well fitted through linear regression. From the membership 

functions of the decision variables (i.e. ijkD
～

) and objective-function value (i.e., f
～

), the water 

shortage and the corresponding system benefit can be generated under any plausibility (α-cut 

level). For example, if the decision maker prefers to identify the water deficits in different 

sectors under an α-cut level of 0.6, the amount of water shortage in the industrial sector in period 

2 under low inflow level would be [333.5, 380.0] × 104 m3 [
-

212 0.6( )D = (2.1414 + 0.6)/0.0108 

=333.5; 
+

212 0.6( )D =380], and the corresponding system benefit would be $[1.34, 2.24] × 109. The 

water shortages in other sectors under different inflow levels would be obtained in the same way. 

 

 
Figure 4. The membership functions of water shortages 

 
Figure 5. The membership function of the objective function 
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The solutions of decision variables (yik)α would vary under different α-cut levels, as presented in 

Table 5. The variation in the values of (yik)α would lead to fluctuation in the optimized water 

allocation targets (i.e. ( )ik optT  ), as shown in Table 6. Consequently, regression functions can be 

established for the optimized water allocation targets and the α-cut levels. Fig. 6 shows the 

functions between the ( )ik optT  and the α-cut level as obtained through linear or polynomial 

regression method. Through these regression functions, the optimized allocation targets to the 

three users in different periods can be directly generated, if the α-cut level is predefined by the 

decision maker. Afterwards, the actual water allocation schemes (i.e. ( )ijk optA 


) can be obtained 

based on ( ) ( ) ( )ijk opt ik opt ijk optA T D  

  = − .  

 

 
Figure 6. The curves fitted for water allocation target 

 

To demonstrate the robustness of the developed GFTSP method, a comparison will be conducted 

between solutions obtained through the ITSP and the functions generated through the GFTSP, as 

presented in Figures 3 to 5. In this comparison, two values (i.e. 0.4, 0.8) are considered as the 

two α-cut levels for the membership functions of ijkD
～

 and f
～

(presented in Figs. 4 and 5, 

respectively), and the independent variable values for Tik(α) (shown in Fig. 5). These lead to the 

associated solutions of ( )ijk optD 


, ( )f 


 and ( )ijk optA 


; correspondingly, these two α-cut levels 

are also applied to cut model (12), resulting in two ITSP models, which would be solved by the 

the robust two-step method (RTSM). Solutions obtained through the above two ways are 

presented in Table 7. They indicate, under these two α-cut levels, the allocation schemes 

obtained through the functions generated by the GFTSP are similar to those from the ITSP 
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model. For example, the values of 211 0.4( )D 
 and 211 0.4( )optA 

obtained through the ITSP would be 

[236, 296] and [78, 138] × 104 m3, while those from ijkD
～

 and Tik(α) would be [236, 296] and [78, 

139] × 104 m3. Furthermore, the system benefits acquired by these two ways are also close to 

each other. As shown in Table 7, under the scenario of α = 0.4, the system benefit obtained 

through the ITSP and the f
～

 in Fig. 5 would be $[1.18, 2.51] × 109, and $[1.14, 2.48] × 109, 

respectively. The relative error (RE) of the lower and upper bounds of these two intervals would 

be -3.4% and -1.2%, respectively. Such REs under α = 0.8 would be -1.3% and -0.5%, 

respectively. Therefore, the solutions obtained through the developed GFTSP are reasonable. 

The membership functions of ijkD
～

 and f
～

, as well as the function of Tik(α), can then be 

employed to generate desired water allocation schemes (instead of solving the optimization 

model again), as long as the preferred α value can be preregulated by decision makers.  

 

5. Conclusions 

 

In this study, a generalized fuzzy two-stage stochastic programming (GFTSP) method was 

developed through integrating methods of generalized fuzzy linear programming and two-stage 

stochastic programming into a general framework. The developed GFTSP method could deal 

with uncertainties expressed as fuzzy sets and fuzzy random variables. A robust stepwise 

interactive algorithm (RSIA) was proposed to solve the GFTSP model and generate solutions 

expressed as fuzzy sets. The proposed RSIA firstly defuzzified the inputs through the α-cut 

method, and then converted the GFTSP model into an inexact two-stage stochastic programming 

(ITSP) problem under each given α-cut level, which was then solved through the robust two-step 

method (RTSM) as developed by Fan and Huang [11]; finally, membership functions of the 

decision variables and the objective-function value were approximated through statistical 

regression. 

 

The developed method was applied to a case of water resources management to illustrate its 

applicability. In this case, an authority is charged with delivering water to municipal, industrial 

and agricultural uses; the economical coefficients were assumed to be triangular fuzzy sets, while 

the seasonal inflow was estimated as triangular fuzzy random variables. The solutions of the 

decision variables, which were expressed as fuzzy sets with known membership functions, could 

provide the water shortages of different users in different periods under different water inflow 

levels, when the preferred plausibility (i.e. α-cut level) was predefined by decision makers. 

Correspondingly, the associated fluctuating interval of the objective-function value could be 

obtained through the membership functions of the objective-function values. These solutions 

were helpful for generating decision alternatives for water resources management under 

uncertainty.  

 

To demonstrate the solution robustness of the developed GFTSP, a comparison was conducted 

between solutions obtained through the ITSP and the functions generated through the GFTSP. 

The results suggested that the allocation schemes based on the functions generated by the GFTSP 

were significantly similar to those acquired from the ITSP. The membership functions of ijkD
～

 

and f
～

, as well as those of Tik(α), could be used for generating water allocation schemes (instead 
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of solving the optimization model again), as long as the preferred α value can be predefined by 

decision makers.  

 

The developed GFTSP could deal with various fuzzy sets and fuzzy random variables. However, 

it mainly focused on such uncertainties within a linear programming framework. It had 

difficulties in treating nonlinear constraints or objective function. Therefore, further 

improvements in the GFTSP are desired to enhance its capability in dealing with nonlinearity 

within the optimization framework. 
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