
 
 

1 

   Abstract-- Moisture is one of the critical factors to 
determine the service life of transformers. The moisture 
inside the transformer oil-immersed insulation could be 
quantified with feature parameters. This paper proposes 
and develops a Genetic Algorithm Support Vector Machine 
(GA-SVM) model to carry out the moisture diagnosis. 
Present findings reveal that these feature parameters can 
be obtained by using frequency domain spectroscopy. 
Therefore, a novel model for predicting frequency domain 
spectroscopy curves is firstly reported based on a small 
number of samples, which could be utilized to obtain the 
feature parameters database to develop GA-SVM. Then, the 
moisture diagnosis in lab and field conditions is presented 
to verify its feasibility and accuracy. The novelty of this 
work is in an exploration of the reported model, as an 
intelligent based moisture diagnosis tool for power 
transformers. 

Index Terms— Power transformer, genetic algorithm 
support vector machine (GA-SVM), oil-immersed insulation, 
frequency domain spectroscopy (FDS), moisture diagnosis. 

I.  INTRODUCTION 
he satisfactory operating condition and performance of 
transformers are essential for a reliable power grid 

operation. The condition diagnosis and monitoring of oil/paper 
systems in the transformer are thus of great interest to engineers 
and researchers. The Dissolved Gas Analysis (DGA) [1] is 
generally considered to be the most convenient and common 
approach for reconditioning the energized transformers. Since 
the diagnostic accuracy of the traditional DGA can no longer 
meet the requirements of modern power grids, the artificial 
intelligence diagnostic algorithm based on DGA has become a 
prevailing method for fault diagnosis of oil/paper system in 
power transformers [2-3]. 

The Support Vector Machine (SVM) [4] contains excellent 
learning and application capacity for solving the linear or 
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nonlinear classification. Reviewing the existing researches, 
SVM can be used to carry out transformer fault diagnosis 
research based on different databases, such as Partial Discharge 
(PD) data and DGA data [5-7]. Besides, literature [8] used 
Genetic Algorithm (GA) for optimizing the DGA ratios and 
SVM parameters. The fault diagnosis results obtained by the 
modified (optimized) SVM will keep higher accuracy than 
three traditional approaches, including back-propagation neural 
network SVM with DGA data, International Electrotechnical 
Commission (IEC) criteria, and back-propagation neural 
network SVM with IEC three-key gas ratios. Thus, the SVM 
modified by optimization algorithm (such as GA) and Cross-
validation (CV) may be used as an alternative tool for accurate 
diagnosis on the transformer. 

In contrast with the transformer (transient) fault, the 
insulation performance of the transformer oil/paper system has 
also attracted great interest since it could determine the service 
life of the transformer [9-10]. The insulation performance of the 
oil-paper system is mainly determined by its aging degree [11] 
and damp state (moisture level) [9]. Moisture is the main by-
product generated by cellulose aging, which is the key factor 
that aggravates aging activity and shortens the service life of 
transformer oil-immersed insulation. Specifically, I. The 
cellulose insulation life will be reduced by half for every 0.5% 
increase of moisture [12]; II. The dissolved moisture will be 
evaporated and floats in the form of bubbles [13], which 
reduces the breakdown voltage and further leads to the 
breakdown faults. Reviewing the works from [14-17], the 
prevailing methods for moisture diagnosis can be divided into 
online (cellulose-water adsorption isotherms, moisture 
equilibrium charts, water activity probes) and offline (Karl 
Fischer titration, dielectric response) approach. Furthermore, 
the dielectric response is preferable because the uncertainties 
due to non-equilibrium conditions and oil conditions are 
reduced [15]. References [9, 16] reveal that the Frequency 
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Domain Spectroscopy (FDS) is non-destructive and sensitive 
enough to the moisture inside the paper/pressboard insulation. 
Thus, the feature parameters extracted from FDS can be used as 
an effective indicator for the preliminary diagnosis of its damp 
states. However, the existing methods mainly rely on fitting 
functions [9, 16] and grey relational analysis [17], which faced 
to the limitations of simple classification, no generalization 
ability, and difficulty in extrapolation. Feature parameters can 
be used to reflect the inside moisture of transformer oil-
immersed insulation. Such parameters could be extracted with 
FDS or Artificial Intelligence (AI) such as SVM. The trained 
SVM can be applied to efficiently and accurately carry out the 
moisture diagnosis. Unfortunately, as for the difficulties of the 
sample preparation [9], it is a rather difficult task to obtain a 
large number of samples to form a training set that aims to 
develop the SVM. 

Given this issue, according to the power function theory [18] 
and dielectric physics theory [19, 20], the novel model for 
predicting FDS curves is firstly reported based on small amount 
samples. Present findings reveal that the reported model can 
predict the FDS curves of oil-immersed insulation with diverse 
moisture, and also obtain the database of feature parameters to 
develop GA-SVM. The moisture diagnosis in lab and field 
conditions is presented to verify its feasibility and accuracy. In 
that respect, a novel method is reported for combining AI and 
the FDS technique for power transformer moisture diagnosis. 

II.  EXPERIMENTAL SCHEME AND FDS TEST 

A.  Preparation of Oil-immersed Cellulose Insulation 
The oil-immersed cellulosic pressboards are obtained by a 

series of experiments in the controlled laboratory conditions. In 
this section, pressboard discs (thickness: 1mm, diameter: 160 
mm) and transformer oil are utilized. The oil-paper mass ratio 
is set to 20:1. The transformer oil is the Karamay No.25 
naphthenic mineral oil and satisfies the standard of ASTM 
D3487-2000(II). Where, the oil-immersed insulation samples 
are prepared by the experiments of vacuum drying (at 105℃ 
and 50 Pa) and vacuum immersion (at 60℃ and 50 Pa) with the 
oil paper ratio of 20:1. Then, the pressboards with various 
expected moisture content (mc%) are obtained by placing it on 
a precision electronic balance to absorb moisture. Then, the 
initial moisture is measured by the moister tester (Karl Fischer 
titration [21] according to IEC 60814), as shown in Fig. 1. 
Combined with the classification standards (CIGRE TB 349, 
IEEE 62-1995, and IEC 60422) of mc% and the requirements 
of this work (construction of multiple classifiers), the 
classification table of the damp state is thus defined according 
to the expected moisture, as is shown in Table I. 

TABLE I 
DEFINITION OF MOISTURE LEVEL OF PREPARED SAMPLES. 

Number Moisture level Defined states State label 
1 0.5%≤mc%<1.0% Well dry M1 
2 1.0%≤mc%<1.5% Dry M2 
3 1.5%≤mc%<2.0% Slightly damped M3 
4 2.0%≤mc%<2.5% Damped M4 
5 2.5%≤mc%<3.0% Moderately damped M5 
6 3.0%≤mc%<3.5% Severely damped M6 
7 3.5%≤mc%<4.0% Extremely damped M7 

 
Fig. 1.  The experimental scheme for obtaining the oil-immersed 
cellulose insulation with various moisture in lab condition. 

B.  Experimental Platform for FDS Test 
The oil-immersed insulation with various moisture levels is 

considered for performing the FDS test. The test was performed 
with the device as shown in Fig. 2 which includes the 
DIRANA/OMICRON and a three-electrode test cell. The test 
voltage is at 200 VAC and the test temperature preset 45℃.  

The three-electrode test cell is filled with dried and degassed 
insulating oil. The cellulose paperboard is immersed in the 
insulating oil under the vacuum. Subsequently, the moisture 
equilibrium is performed at 45℃ and lasted for 48 hours before 
the FDS test. Finally, the measured complex capacitance C*(ω) 
of these oil-immersed pressboards (shown in Fig. 2) with 
different moisture are readily obtained. Then, the real part ε′(ω) 
and the imaginary part ε′′(ω) of the complex permittivity can be 
computed. 

 
Fig. 2.  The schematic of the FDS test. 

III.  ESTABLISHMENT OF DATABASE FOR PREDICTING THE 
FDS CURVES UNDER VARIOUS MOISTURE LEVELS 

The frequency dielectric modulus-M*(ω) is introduced here 
for performing the decoupling analysis of FDS of oil-immersed 
insulation, which can be utilized to establish an available 
database for computing the corresponding M*(ω) curves under 
different moisture levels. 

A.  Calculation of Frequency Dielectric Modulus 
The electrode polarization and conductance can “obscure” 

the relaxation information. Hence, the frequency dielectric 
modulus-M*(ω) is therefore applied to enable the investigation 
of the relaxation behavior, as well as highlight the details of the 
relaxation information in low-frequency regions [19, 22]. 

According to the existing work [22], the M*(ω) is defined as 
the inversion of ε*(ω) which is shown in Eq. (1). 
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(1) 

The percentage of the real part M'(ω) and imaginary part 
M''(ω) of M*(ω) can be therefore calculated by Eq. (2). 

 
(2) 

According to Eq. (2), either the M'(ω) or M''(ω) are both 
calculated by the combination of ε′(ω) and ε′′(ω). 

Such property allows the obtained M*(ω) can be regarded as 
a dimensionless value (a kind of ratio value), which is similar 
to the dispersion loss (tanδ). Besides, M*(ω) can be readily 
calculated with ε*(ω) by using Eq. (2). M*(ω), i.e. M′(ω) and 
M′′(ω), is presented in Fig. 3 as a log-log model. 

 
Fig. 3.  Real/imaginary part of the dielectric modulus of prepared oil-
immersed pressboards. 

B.  Decoupling Analysis of Frequency Dielectric Modulus 
The widely accepted view suggests that the real part ε′(ω) 

and imaginary part ε′′(ω) of the complex permittivity could be 
utilized to represent the feature of stored energy and dielectric 
loss, respectively, as shown in Eq. (3) [19]. 

 (3) 

Where, ε0 is the vacuum permittivity, and ε0≈8.854×10-12 

F/m. ε∞ is the permittivity when angular velocity ω→∞, and εs 
is the static permittivity, the relaxation time constant is τ, 

denotes the time required by dipoles to rearrange themselves 
after the exciting electric field is removed. Then, Eq. (4) can be 
obtained by eliminating (ωτ) presented in Eq. (3) [23]. 

 (4) 

If the relaxation time distribution parameter β (β<1) is 
considered, then the formula of the Cole-Cole model is obtained 
by the complex transformation ε*(ω)=ε׳(ω)-iε״(ω) as shown in 
Eq. (5). 

 (5) 

Where, εre=εs-ε∞. According to Eq. (1), the formula of M*(ω) 
involves the Cole-Cole model. Eq. (1) is transformed to Eq. (6) 
[22]. 

 (6) 

Where, M∞=1/ε∞，Ms=1/εs, and τM=τ·(ε∞/εs)1/β. Considering 
the second relaxation process and DC conductance effect, Eq. 
(6) can be rewritten as Eq. (7). 

 (7) 

Where, Mrei represents the intensity of relaxation 
polarization and is Ms minus M∞. σdc is the DC conductivity. 
Complex transformation is applied to obtain the equations for 
describing the M'(ω) and M''(ω). 

 
(8) 

Where, Ai and θi (i=1, 2) can be expressed by Eq. (9). 

 (9
) 

From Eq. (8), the value of M*(ω) [M'(ω) or M''(ω)] is 
restricted by an obvious multivariate nonlinear function, which 
depends on the parameter set {M∞, Mre1, β1, τM1, Mre2, β2, τM2, 
σdc}. Thus, if a certain function (Ψ) is found to be able to 
simulate the M*(ω) curves, the decoupling analysis can be 
therefore achieved by using the defined parameters. Such a 
functional relationship can be represented by Eq. (10). 

 (10
) 

The frequency dielectric response behavior could be 
summarized by the superposition of several sub-relaxation 
processes with diverse relaxation time constants.  
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Therefore, on the continuous curves, the value of M*(ω) in 
each frequency point can be regarded as the superposition of 
different functional items according to the power function 
theory [18]. 

In this work, the power series (Ω) is utilized to achieve this 
goal, since it is capable of exploring the functional relationship 
of M'(ω) or M''(ω) versus defined parameters. Besides, the 
order of the power series equals to the number of variables 
contained in the functional equation (Ψ). The function Ψ can be 
revised as shown by Eq. (11). 

 (11
) 

Where, j is a series of function terms, Θ0 is the intercept of 
power functions, the Θj (j=1-7) is defined as the amplitude of 
each sub-function. According to Eq. (11), the value of M*(ω) is 
defined by eight parameters {M∞, Mre1, β1, τM1, Mre2, β2, τM2, 
σdc}, therefore, preset the value of 0 to 7 as the region of j to 
define the initial condition, then, parameters Θj can be used to 
carry out the fitting analysis.  

Theoretically, a larger j value provides a better goodness-of-
fit measure. However, results indicated that it is not a good 
choice to have j greater than 7, due to the increasing uncertainty 
of the fitting analysis. Especially, if the initial sampling 
frequency is low enough and close to 0, then ω0 equals to 0 as 
shown in Eq. (12). 

 (12
) 

M*(ω) conveys the frequency-dependence and is also 
affected to the moisture level. Consequently, Eq. (12) can be 
revised as Eq. (13).  

 (13
) 

Providing that the FDS data is drawn in the log-log model, 
as shown in Fig. 3, Eq. (13) can be modified as Eq. (14). 

 
(14) 

C.  The Database for Predicting the Frequency Dielectric 
Modulus Curves under Diverse Moisture 

Fig. 3 shows the moisture information contained in both the 
real/imaginary part of the dielectric modulus. M'(ω) 
characterizes the polarization information inside the dielectric, 
and its microcosmic response mechanism is relatively simple. 
M''(ω) characterizes the dielectric loss information, including 
the polarization loss and the conductivity loss. Therefore, its 
microcosmic response mechanism is more complicated than 
M'(ω). The increasing moisture causes the M'(ω) curve in the 

low-frequency regions to rise while the high-frequency regions 
remain essentially unchanged. In this case, the moisture level 
slightly changes the original shape of the M'(ω) curve, which 
makes it simplifies the decoupling analysis, as well as more 
efficient to explore the functional relationship between Θj and 
the moisture. 

Eq. (14) and Fig. 3 will enable the fitting analysis of the 
measured discrete points of M'(ω). As discussed, the fitting 
accuracy is satisfactory when j reaches 6, while, the goodness-
of-fit measure reaches the best when j=7. Therefore, j=7 is 
selected to fitting M'(ω) curves and extract the relevant 
parameters. The fitting curves corresponding to these discrete 
points can be later obtained, as well as the series of parameters 
contained in the equation. Fig. 4 presents the comparison of the 
measured M'(ω) and its fitting curves when j equals to 3, 7, and 
8, respectively. Table II depicts the parameters (Θ0-Θ7) 
contained in Eq. (14). 

Besides, the average value of goodness-of-fit measure (R2) 
between the measured value and fitting curves is 0.9589, 
0.9997, and 0.9997, respectively, when j equals to 3, 7, and 8. 
As the R2 value is high, the confidence band will coincide with 
the fitting curves and cannot be distinguished, the 95% 
confidence level is thus omitted and only R2 is presented. 

From Table II, the contained parameters (Θ0-Θ7) alter 
regularly with the changing internal moisture, and the values of 
these parameters are considered to determine the original shape 
of fitting curves. 
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(c) 

Fig. 4.  The comparison of the measured M'(ω) and its fitting curves. 
(a) j=3, (b) j=7, (c) j=8. 

TABLE II 
THE VALUE OF PARAMETERS CONTAINED IN FITTING CURVES. 

Parameters 
Moisture content (%) 

0.73% 1.31% 1.80% 2.87% 3.84% 
Θ0 1.6895 1.6847 1.6730 1.6593 1.6425 
Θ1 0.0015 0.0048 0.0108 0.0240 0.0380 
Θ2 -5.07E-4 -0.0059 -0.0112 -0.0191 -0.0236 
Θ3 -1.82E-4 0.0017 0.0036 0.0039 0.0016 
Θ4 5.18E-5 5.32E-4 0.0012 0.0026 0.0041 
Θ5 8.75E-5 -1.55E-4 -4.92E-4 -7.70E-4 -6.37E-4 
Θ6 -2.98E-5 -4.73E-5 -8.37E-5 -1.49E-4 -3.21E-4 
Θ7 2.13E-6 1.16E-5 2.87E-5 4.56E-5 6.78E-5 

To verify this viewpoint and investigate the potential 
variation law of Θj (j=0-7) versus moisture, the fitting analysis 
is conducted. The obtained equation for quantitatively 
describing the relationship between Θj and moisture is written 
as Eq. (15). Besides, the comparison of Θj and the fitting curves 
is provided in Fig. 5. The filled color area near the fitting curve 
is the confidence band of the parameter at 95% confidence level. 

 
Fig. 5.  The comparison of the calculated Θj and the fitting curves. 

 

(15) 

With Fig. 5 and Eq. (15), the defined Θj can be calculated 
when substituting the given moisture. Thus, the predicted M'(ω) 
curves under diverse moisture mci% can be represented by a 
matrix formed with parameters Θij, as shown in Eq. (16). 

 (16
) 

Considering that there are seven parameters in the above 
matrix of parameters, each set of M'(ω) curves with different 
moisture can be predicted by this database. 

The value of M'(ω) at each sampling point can be predicted 
point-by-point until a continuous curve is formed by using Eq. 
(15) and Eq. (16). 

Fig. 6 shows the relationship between the moisture level, 
frequency, and M'(ω) in the x-axis, y-axis, and z-axis, 
respectively. The figure shows a smooth surface can be 
constructed with more M'(ω) curves. Such a database can be 
utilized for obtaining a large number of defined parameters Θij 
and M'(ω) curves under various moisture levels. 

 
Fig. 6.  The fitting database for extracting the feature parameters. 
 

IV.  APPLICATION OF INTELLIGENCE ALGORITHM FOR 
MOISTURE DIAGNOSIS 

A.  Application of GA-SVM 
GA-SVM is introduced to perform parameter optimization 

by using GA. Its classification principle can be expressed by Eq. 
(17) [4]. 
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 (17) 

Where, ξi is the slack variable and c is the penalty factor. 
When Φ(ω, ξi) reaches the minimum value, the margin between 
positive and negative examples reaches the maximum, and the 
determined decision surface is exactly the Optimal Separating 
Hyperplane (OSH). The optimization condition of Eq. (17) can 
be confirmed by Eq. (18). 

 
(18) 

Parameters αi and βi are introduced by Lagrange number 
multiplication. 

Eq. (17) can be revised as Eq. (20) when Eq. (18) satisfies 
the optimization conditions as shown in Eq. (19). 

 (19
) 

 (20
) 

Where, ϕ(x) belongs to a mapping operation and K(xi, xj) is 
called the kernel function. K(xi, xj) allows the inner product that 
should be performed in the high-dimensional space to be 
completed in the input space. 

The radial basis kernel function shown in Eq. (21) is selected 
since it is capable of optimizing the generalization performance 
of GA-SVM. 

 (21) 

Where, γ is the key parameter of the radial basis kernel 
function. Solving the parameter αi from Eq. (20) and include it 
into Eq. (22), the decision function for classifying is obtained. 

 (22) 

By relying on the following steps, the performance of 
condition classification could be improved by GA [6-7]. 

i. Binary coding the core parameters (c and γ) and then 
constructing the initial population; 

ii. Calculating the fitness of each individual in the 
population by Eq. (23), then taking the classification accuracy 
of cross-validation of GA-SVM as the fitness value. Where, n1 
(n0) is the number of samples with correct (incorrect) 
classifications; 

 (23) 

iii. Once meeting the termination condition, decompile and 
output the best parameters c and γ. If not, proceed to the next 
step; 

iv. Optimizing the parents with genetic operators (selection, 
crossover, mutation). Generate offspring and return to step ii. 

B.  Multi-classifier for Moisture Diagnosis using GA-SVM 
From Table II, the parameters Θj are highly correlated with 

the moisture. Thus, the combination of Θij could form a 
database and further utilized for training the multi-classifier of 
moisture diagnosis with GA-SVM. Fig. 7 summarizes the 
corresponding steps for establishing the multi-classifier. 

 
Fig. 7.  Multi-classifier based on the GA-SVM. 

i. Discovery of parameters used for classification 
As to Eq. (16), the contained parameters Θij convey the 

strong correlation with the inside moisture. Thus, samples with 
the given moisture level mci% could determine a parameter set 
Ωi, the inside parameters Θij can be used to classify the diverse 
damp states. 
ii. Construction of GA-SVM training set 

If the classification result of GA-SVM is required to be 
accurate enough, the required samples must be provided as a 
training set in advance. However, in practical experiments, it is 
a rather difficult task to prepare a large number of oil-immersed 
samples with different moisture due to factors such as accuracy, 
duration, and consumables of samples preparation. Therefore, a 
database (shown in Fig. 6) is proposed to overcome the above 
issues.  

Specifically, the preset type of damp states is 7, as is shown 
in Table I. The range of moisture level starts at 0.5% and ends 
at 4% with 0.01% increment. Therefore, 351 parameter sets (Ωi) 
can be calculated by Eq. (15), and further applied for classifying 
the 7 kinds of damp states (M1-M7). Consequently, the 2808 
parameters (Θij) from 351 parameter sets (Ωi) can be utilized to 
build the training set of 7 kinds of damp states (M1-M7) for 
training GA-SVM. 
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iii. Parameter optimization and multi-classifier construction 
To improve the accuracy of classification results, Genetic 

Algorithm is used to optimize the model parameters c and γ. 
From Fig. 7, the Genetic Algorithm continuously adjusts the 
constituent of the parameter population according to its fitness, 
and then removes the individuals with lower fitness. Thus, the 
number of high-quality individuals in the population will 
increase as the calculation cycle increases. 

Fig. 8 shows that the average fitness fluctuates slightly while 
the best fitness remains unchanged until iterates to 100 
generations. Moreover, the cross-validation accuracy of GA-
SVM in the training set reaches 99.15%. The obtained 
parameters (c=1.1745 and g=98.7512) is a near global optimal 
solution, which can be used to optimize the accuracy of multi-
classification. Therefore, the database (developed by Eq. (16)) 
provides the parameters to construct the training set, and the 
GA-SVM multi-classifier is built for moisture diagnosis. 

 
Fig. 8.  Fitness curves obtained by GA-SVM. 
 

C.  The Comparison of Classification Accuracy 
Two algorithms are utilized to discuss the comparisons with 

GA-SVM, including a. SVM without optimization [4]; b. SVM 
optimized by Particle Swarm Optimization (PSO-SVM) [3]. 
The training conditions and training sets are consistent with 
GA-SVM for a fair comparison. Fig. 9 shows the classification 
results of SVM and PSO-SVM. The average classification 
accuracy of the SVM and PSO-SVM are 97.43% and 99.15% 
respectively. Thus, the AI algorithm could improve the 
classification accuracy of the SVM. The optimization of the 
reported model is not only limited to the use of the GA but also 
other similar AI algorithms. 

 
(a) 

 
(b) 

Fig. 9.  The classification accuracy. (a) SVM, (b) PSO-SVM. 

V.  APPLICATION OF THE PROPOSED MODEL FOR MOISTURE 
DIAGNOSIS IN LAB AND FIELD CONDITIONS 

A.  Application in Lab Conditions 
In order to perform the moisture diagnosis, the FDS data of 

test samples should be obtained in advance. Subsequently, the 
established multi-classifier based on SVM and GA-SVM 
(shown in Section IV) can be later utilized to perform the 
moisture diagnosis. 

Meanwhile, a series of new samples with various moisture 
levels are prepared and used to verify the feasibility and 
accuracy of the reported model. The detailed scheme for 
feasibility verification is as follows: 

i. First, the complex capacitance of test samples was 
measured. Then, the complex relative permittivity is calculated; 

ii. Second, the corresponding M'(ω) is calculated by Eq. (2), 
and the feature parameters (Θij) is extracted by using Eq. (14), 
and i∈(1, 5). The extracted values are shown in Eq. (24); 

 
(24) 

iii. Finally, the diagnosis results are obtained by substituting 
the parameters (Θij) into SVM and GA-SVM. 

Fig. 10 presents the comparison of measured M'(ω) and 
fitting curves. According to Table I, the Measured States (MS, 
by Karl Fischer titration [21]) and Diagnosis States (DS, by 
using SVM and GA-SVM) are tabulated in Table III. 

TABLE III 
DIAGNOSIS RESULTS OF TESTED SAMPLES. 

Samples 1 2 3 4 5 WR 

MS (by KFT) M1 M3 M4 M6 M7 / 

DS (by SVM) M1 M3 M4 M7 M7 1 

DS (GA-SVM) M1 M3 M4 M6 M7 0 
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Fig. 10.  The comparison of measured values and fitting curves.  

The wrong result (WR) obtained by SVM and GA-SVM is 1 
and 0, respectively. Thus, the accuracy of the classifier 
optimized by the AI algorithm is higher. 

B.  Application in Field Conditions 
The 3-winding transformers under maintenance are selected, 

its detailed parameters are shown in Table IV. The main 
insulation system between the high and medium voltage 
winding is measured with the help of DIRANA during the FDS 
test, the scheme of field application is presented in Fig. 11 and 
described as follows: 

 
Fig. 11.  The scheme for moisture diagnosis in field testing. 

TABLE IV 
THE EXTRACTED PARAMETERS OF TESTED SAMPLES. 

Parameters Trans.1 Trans.2 Trans.3 

Voltage classes 110 kV 110 kV 220 kV 

Loading history 1 year 8 years 8 years 

Oil temperature 303.15 K 302.15 K 300.15 K 
Oil 

conductivity 12 fS/m 63 fS/m 280 fS/m 

XY value X=0.27, Y=0.20 X=0.29, 
Y=0.24 

X=0.19, 
Y=0.14 

Shift factor αT=6.49 αT=7.40 αT=9.65 

Tested moisture 0.7% 1.2% 1.3% 

i. The complex capacitance Ctot*(ω) of the selected field 
transformer is measured. Fig. 12 presents the connection of the 
FDS test in field transformers. The unit of analysis is the main 
insulation system between high voltage winding and medium 
voltage winding; 

ii. εtot*(ω) can be computed by employing the formula of 
εtot*(ω)=Ctot*(ω)/C0. C0 is a constant of geometric capacitance; 

 
Fig. 12.  The connection diagram of the FDS test in field transformers. 

iii. To eliminate the influence of the insulation geometry on 
the measured FDS data, the XY model [24] is utilized to extract 
the dielectric response data, corresponding to the paper 
insulation εPB*(ω) from the total FDS data of the main 
insulation system εtot*(ω). The XY model is shown in Eq. (25). 
The X and Y values can be found in Table IV, and σ(T) is the 
conductivity of insulating oil at temperature T; 

 
(25) 

iv. The transformer’s main insulation system is difficult to 
be in a settled temperature field and the temperature can greatly 
affect its FDS data [10]. If the test temperatures in the field 
conditions are different from the lab temperatures, then the 
temperature effect on the extracted FDS data requires 
correction before performing the moisture diagnosis. 

From the previous sections, the reported model is examined 
at 45℃ and is different from the oil-temperature of the field 
test. Eq. (26) is thus applied for eliminating the temperature 
impact on εPB*(ω) according to the shift factor αT [10]. Ea is the 
activation energy, Ea≈100 kJ/mol. R is a gas constant and 
R=8.314 J/(mol·K). Tref is the reference temperature (i.e. 
318.15K) and T is the oil temperature; 

 (26) 

v. M'(ω) of paper insulation under reference temperature can 
be computed by using the εPB*(ω) (obtained in Step iii) 
corrected by Eq. (26). The reference temperature (at 45℃) is 
the approximate average temperature between the oil 
temperature during the transformer normal operation and the 
ambient temperature during the off-line measurement. The 
reference temperature enhances the accuracy of the generalized 
FDS data and helps shorten the time required for moisture 
equilibrium. It is possible to choose a different reference 
temperature to build the proposed model; 

vi. Eq. (14) is utilized to extract the relevant parameters Θij, 
as shown in Eq. (27). The comparison of the measured M'(ω) 
and the fitting curve is plotted in Fig. 13; 

 
(27) 
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Fig. 13.  The comparison of measured values and fitting curves. 

vii. The extracted parameters (Θij) shown in Eq. (27) are the 
diagnostic basis for moisture classification when employing the 
proposed moisture classifier. DS obtained by the trained multi-
classifier (SVM and GA-SVM) is tabulated in Table V, as well 
as its measured states (MS, by DIRANA). 

TABLE V 
THE DIAGNOSIS RESULTS OF TESTED TRANSFORMERS. 

Transformers Trans. 1 Trans. 2 Trans. 3 
MS (by DIRANA) M1 M2 M2 

DS (by SVM) M1 M3 M7 
DS (by GA-SVM) M1 M2 M2 

According to Table I, the difference of moisture content 
between two adjacent states (Mi) is 0.5%. In Tables III and V, 
the classification error of Sample 4 (in Table III) and Trans. 2 
(in Table V) reveals that the SVM may not accurately classify 
the samples with similar moisture as the optimized SVM (GA-
SVM). Also, the classification accuracy of the optimized SVM 
(GA-SVM) is higher than the SVM. 

In summary, the moisture diagnosis results shown in Tables 
III and V could be utilized to verify the accuracy and feasibility 
of the proposed method. The experimental results obtained in 
the lab condition initially show the potential of this method for 
diagnosis in extreme moisture conditions. The main insulation 
system and test environment during the field test are more 
complex than lab conditions. Hence, the accuracy of the 
obtained results is thus likely to be lower than the lab conditions. 
However, the contribution of moisture to the FDS data will be 
amplified with increasing moisture [25]. Meanwhile, moisture 
will gradually become the dominant factor of dielectric 
response, which not only increase the proportion of moisture 
information in FDS, but also promotes the moisture analysis 
activities. Such assumption deserves further attention. 

VI.   CONCLUSION 
Therefore, this work proposes to perform the moisture 

diagnosis for power transformers with GA-SVM and FDS 
technique. The model is trained with feature parameters (i.e., 
moisture) computed from FDS. The key challenge is on the 
preparation of a large number of oil-immersed samples and 
obtaining the required training set that aims to develop GA-
SVM. Therefore, a novel model for predicting FDS curves is 
reported. The analysis has led to the following conclusions: 

1. The dielectric modulus derived from the complex 
permittivity can be utilized to perform the decoupling 
analysis of FDS of transformer, as well as to obtain the 
feature parameters (Θij) that aim to represent the moisture 
content inside the transformer; 

2. A novel model is proposed to predict M'(ω) curves under 
diverse moisture. The model is based on regression analysis 
and power series theory, and can be trained with small 
amount of samples. The model can be also utilized to obtain 
the feature parameters database to develop GA-SVM; 

3. The cross-validation accuracy of GA-SVM trained by the 
obtained feature parameters database reaches 99.15%, which 
is an effective moisture diagnosis result. In particular, the 
proposed model outperforms SVM without optimization and 
similar to other AI models; 

4. The presented moisture diagnosis in lab and field conditions 
verified the feasibility and accuracy of the proposed method. 
In that respect, the novelty of this work is in an exploration 
of the reported method by combining AI (GA-SVM) and 
FDS as a potential and accessible industrial tool for moisture 
diagnosis of transformer insulation. 
At present, the application of this model to site trial is under 

consideration by power utilities. It is hoped to have some results 
for reporting in due course. Also, further research could focus 
on the generalization and the application of the reported method 
under various test conditions, especially at the extreme damp 
conditions. 
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