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The human and mouse genomes contain instructions that specify RNAs and proteins 
and govern the timing, magnitude, and cellular context of their production. To better 
delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) 
Project has expanded analysis of the cell and tissue repertoires of RNA transcription, 
chromatin structure and modification, DNA methylation, chromatin looping, and 
occupancy by transcription factors and RNA-binding proteins. Here we summarize 
these efforts, which have produced 5,992 new experimental datasets, including 
systematic determinations across mouse fetal development. All data are available 
through the ENCODE data portal (https://www.encodeproject.org), including phase II 
ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 
human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4%  
of their respective genomes, by integrating selected datatypes associated with  
gene regulation, and constructed a web-based server (SCREEN; http://screen.
encodeproject.org) to provide flexible, user-defined access to this resource. 
Collectively, the ENCODE data and registry provide an expansive resource for the 
scientific community to build a better understanding of the organization and function 
of the human and mouse genomes.

The human genome comprises a vast repository of DNA-encoded 
instructions that are read, interpreted, and executed by the cellular 
protein and RNA machinery to enable the diverse functions of living 
cells and tissues. The ENCODE Project aims to delineate precisely and 
comprehensively the segments of the human and mouse genomes 
that encode functional elements1,3–6. Operationally, functional ele-
ments are defined as discrete, linearly ordered sequence features that 
specify molecular products (for example, protein-coding genes or 
noncoding RNAs) or biochemical activities with mechanistic roles in 
gene or genome regulation (for example, transcriptional promoters 
or enhancers)5. Commencing with the ENCODE Pilot Project in 2003 
(which focused on a defined 1% of the human genome sequence4) and 
scaling to the entire genome in a production phase II that began in 

20071, ENCODE has applied a succession of state-of-the-art assays to 
identify likely functional elements with increasing precision across an 
expanding range of cellular and biological contexts. To capitalize on 
the value of the laboratory mouse, Mus musculus, for both compara-
tive functional genomic analysis and modelling of human biology, a 
Mouse ENCODE Project of more limited scope was initiated in 20096. 
An accompanying Perspective7 provides further context for the evolu-
tion of the ENCODE Project and describes how ENCODE data are being 
used to illuminate both basic biological and biomedical questions that 
intersect genome structure and function.

Beginning in 2012, both the human and mouse ENCODE Projects 
initiated programs to broaden and deepen their respective efforts to 
discover and annotate functional elements, and to systematize the 
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production, curation, and dissemination of ENCODE data with the aim 
of broadly empowering the scientific community. ENCODE data have 
served as an enabling interface between the human genome sequence 
and its application to biomedical research because of both the range of 
biological and biochemical features encompassed by ENCODE assays 
and the breadth and depth with which these assays have been applied 
across cell and tissue contexts. ENCODE has now expanded on both of 
these axes by (i) incorporating new assays such as RNA-binding-protein 
localization and chromatin looping; (ii) increasing the depths at which 
current assays such as transcription factor chromatin immunoprecipi-
tation and sequencing (ChIP–seq) interrogate reference cell lines; and 
(iii) collecting data over a greatly expanded biological range, with an 
emphasis on primary cells and tissues. In addition, ENCODE has now 
incorporated and uniformly processed the substantial data from the 
Roadmap Epigenomics Project2 that conform to ENCODE standards 
(see Methods).

Here, we describe the generation of nearly 6,000 new experiments 
(4,834 using human tissues or cells and 1,158 using mouse tissues or 
cells) in phase III that have extended previous phases of ENCODE in 
order to define and annotate diverse classes of functional elements in 

the human and mouse genomes (Table 1). Whereas many experiments 
during earlier phases of ENCODE used model cell lines, a major goal of 
phase III was to broaden coverage of primary cells and tissues. Together, 
the ENCODE–Roadmap Encyclopedia now encompasses 503 biological 
cell or tissue types from more than 1,369 biological sample sources 
(biosamples) (Extended Data Table 1). As a new feature of ENCODE, we 
have systematically integrated DNA accessibility and chromatin modifi-
cation data to create a categorized registry of candidate cis-regulatory 
elements (cCREs) in both the human and mouse genomes. We have also 
developed a new web-based interface called SCREEN to facilitate access 
to the human and mouse registries and to facilitate their application 
to diverse biological problems.

Across multiple data types, the increase in the scale of experimental 
data has provided new insights into genome organization and function, 
and catalysed new capabilities for deriving biological understand-
ings and principles, as illustrated below and detailed in accompanying 
papers7–16. In summary, we:
•	Define core gene sets that correspond to major cell types using exten-

sive new maps of RNA transcripts in a broad range of primary cell 
types8.

Table 1 | Summary of ENCODE3 production

Assay Description and details No. of experiments No. of targets No. of biosamples

DNA binding and chromatin modification

ChIP–seq Chromatin immunoprecipitation sequencing

Chromatin-associated proteins 1,343 653 151

Histone marks 1,082 13 158

Transcription

RNA-seq RNA sequencing

Total RNA 224 – 209

polyA RNA 116 – 106

microRNA 112 – 108

small RNA 86 – 85

Knockdown/knockout RNA sequencing

CRISPR 50 28 2

CRISPR interference 77 74 1

Short hairpin RNA 523 253 2

Small inhibitory RNA 54 35 3

scRNA-seq Single-cell RNA sequencing 13 — 12

RAMPAGE RNA annotation and mapping of promoters for the analysis of gene expression 155 — 154

Chromatin accessibility

DNase-seq DNase I cleavage site sequencing 246 — 246

DNase-seq of genetically modified cells 46 28 1

ATAC-seq Assay for transposase accessible chromatin using sequencing 129 — 129

DNA methylation

WGBS Whole-genome bisulfite sequencing 132 — 129

DNAme array DNA methylation profiling by array 154 — 151

RNA binding

eCLIP Enhanced UV crosslinking and immunoprecipitation of RNA binding proteins (RBPs) 
followed by sequencing to identify bound RNAs in cells

170 117 3

RNA Bind-n-seq In vitro method for quantifying RBP–RNA interactions and identifying binding motifs 78 78 —

3D chromatin structure

ChIA-PET Chromatin interaction analysis by paired-end tag sequencing 49 6 29

Hi-C Genome-wide chromosome conformation capture (all-versus-all interactions) 33 — 33

Replication timing

Repli-chip Measures DNA replication timing using microarrays 36 — 30

Repli-seq Measures DNA replication timing using sequencing 14 — 14

Control experiments were excluded from this table but can be found in Extended Data Table 1. Counts were obtained on 1 December 2019.
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•	Describe an expansive new genomic compartment of DNA elements 
that encode recognition sites for RNA-binding proteins, providing 
new insights into post-transcriptional regulation9.

•	Deeply map the co-occupancy patterns of human transcription fac-
tors in reference cell types and connect these with key biological 
features of promoters and distal enhancers10.

•	Greatly increase the cell and tissue range, genomic resolution, and 
biological annotation of human DNase I-hypersensitive sites11 and 
transcription factor footprints12.

•	Characterize the landscape of 3D chromatin interactions across 24 
different cell types13.

•	Expand annotation of mouse chromatin modification, DNA acces-
sibility, DNA methylation, and RNA transcription landscapes in early 
developmental stages not readily accessible in human14–17.
To enhance the utility and accessibility of ENCODE data for studies 

of gene regulation, in this report, we have now:
•	Systematically integrated DNA accessibility and chromatin modifica-

tion data to create a categorized and expandable registry of cCREs in 
the human and mouse genomes.

•	Developed a new web-based interface (SCREEN) to facilitate access 
to the human and mouse registries and to empower their application 
to diverse biological problems.

Expanding human and mouse ENCODE
We sought to develop the human Encyclopedia of DNA Elements along 
three axes by: (i) expanding established chromatin structure and his-
tone modification assays to new and diverse cellular contexts, chiefly 
primary cells and tissues; (ii) adopting and scaling up additional bio-
chemical assays to address gaps in the annotation of DNA-encoded 
elements, particularly transcribed elements; and (iii) increasing the 
molecular depth of assays for transcription factors (TFs), co-factors, 
and other chromatin-associated proteins to deeply annotate prior-
itized reference cell types (Fig. 1a–c, Table 1). In parallel with the human 
ENCODE effort, we aimed to expand the range and utility of mouse 
ENCODE by applying a set of assays for RNA transcription, DNA methyla-
tion, chromatin modification, and DNA accessibility to embryonic, fetal 
and neonatal tissues with an emphasis on the brain, and to an expanded 
range of juvenile and adult tissues (Fig. 1d–f, Table 1).

Overall, compared with our previous reports1,5,6, the third phase of 
ENCODE expanded by more than fourfold the number of cell types 
and tissues assayed and more than twofold the number of experi-
mental datasets produced (Extended Data Table 1). Below we briefly 
summarize the key ENCODE data types and the collection of these 
data into a primary ENCODE Encyclopedia (Fig. 2), from which the 
registry of candidate cis-regulatory elements described in the next 
section is derived. Uniform processing methods and data standards 
were developed for each data type and applied consistently to all 
biological samples interrogated by a particular assay to produce both 
signal data that vary in a continuous fashion along the genome, and 
discrete elements detected as intervals of significant enrichment in 
the primary signal. All data and protocols are openly available at the 
ENCODE Portal (https://www.encodeproject.org/). Furthermore, 
all ENCODE data are now also available as resident data sets within 
a major public computing cloud (https://registry.opendata.aws/
encode-project/). We have continued to expand the repertoire of 
tools for data analysis, adopting widely used external tools when-
ever possible and developing new tools as needed (https://www.
encodeproject.org/software/).

Transcribed elements
The universe of transcribed elements—the transcriptome—has become 
a common tool for the molecular phenotyping of cells and tissues and 
serves as a framework for diverse computational analyses of cellular 
states18. The transcriptome is deeply complex, and both new isoforms 
of known genes and short RNA species such as enhancer RNAs continue 
to be discovered18.

During this phase of ENCODE, we developed an approach called RNA 
Annotation and Mapping of Promoters for the Analysis of Gene Expres-
sion (RAMPAGE)19 that can (i) position transcriptional start sites (TSSs) 
with single-nucleotide resolution; (ii) generate accurate quantitative 
and reproducible measurements of promoter-specific RNA expression; 
and (iii) precisely connect 5′-transcription initiation sites with splicing 
isoforms, thus providing a previously unavailable connection between 
promoter regulation and spliced products over long genomic intervals. 
RAMPAGE also enables the annotation of previously intractable classes 
of RNA transcript that emanate from repetitive elements20. We deep-
ened human transcriptome annotations by combining RAMPAGE with 
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Fig. 1 | ENCODE phase III data production. 
Human (a–c) and mouse (d–f) experiments 
performed during ENCODE phase III with data 
released on the ENCODE Portal, sorted by type 
of assay (a, d) or type of biosample (b, e). c, An 
illustrative human locus shows signals from 
several data types. f, The mouse fetal 
developmental matrix shows the tissues and 
stages at which epigenetic features and 
transcriptomes were assayed.
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short (below 200 nucleotides (nt)) and long (more than 200 nt) RNA 
sequencing (RNA-seq) performed on approximately 200 biosamples 
(Supplementary Table 1a). We also systematically expanded the mouse 
transcriptome by performing bulk RNA-seq and microRNA-seq on 17 
developing tissues, some on multiple embryonic days, augmented by 
single-cell RNA-seq on the developing limb16,21 (Supplementary Table 1b, 
c). These new data enhance and expand our knowledge of transcribed 
elements, including precise mapping of promoters and splicing iso-
forms to improve gene and transcript annotation, as well as deepening 
our knowledge of diverse noncoding transcripts. Furthermore, they 
reveal sets of genes that define a distinctive molecular phenotype for 
the major classes of cell types8.

RNA-binding proteins
Genes that encode RNA-binding proteins (RBPs) are one of the largest 
gene families in the human genome, comprising approximately 10% of 
all protein-coding genes22. The RNA sequences and structures recog-
nized by RBPs are encoded by the underlying genomic sequence, and 
thus represent a class of functional sequence elements not previously 
explored by ENCODE (Table 1). Using an enhanced crosslinking and 
immunoprecipitation assay (eCLIP)23, we identified the binding sites 
for 150 RBPs in two extensively assayed ENCODE cell lines, K562 and 
HepG2, and further validated the RNA targets recognized by each RBP 
by knocking down the RBP and performing RNA-seq9 (Supplementary 
Table 2). We also developed an in vitro binding assay and applied it to 
78 RBPs, demonstrating that the binding sites of most RBPs in K562 or 
HepG2 cells are consistent with their in vitro RNA sequence specific-
ity24. Subcellular localization patterns of 274 RBPs revealed extensive 
compartmentalization, indicative of widespread organelle-specific 
RNA activities (http://rnabiology.ircm.qc.ca/RBPImage/). These data 
open a window into the post-transcriptional roles and mechanisms of 
RBPs in determining the levels of specific transcripts.

Chromatin-associated proteins
Despite intensive efforts, the in vivo occupancy sites for most of the 
more than 1,600 sequence-specific transcription factors and other 
chromatin-associated proteins encoded by the human genome remain 

to be defined. Recognition motifs for a growing assemblage of TFs have 
been compiled on the basis of ChIP–seq and in vitro assays25; however, 
these collections are far from complete, particularly for factors with 
extended recognition sequences. Notably, sequence motifs alone do 
not capture which motif instances are occupied in vivo, nor do they iden-
tify indirect localization events wherein one or more TFs are associated 
with an ‘anchor’ factor that is directly bound to the genome26. To enable 
detailed analysis of both in vivo recognition motifs and combinatorial 
occupancy patterns for human transcriptional regulators, we applied 
ChIP–seq to densely map the locations of 662 chromatin-associated 
proteins, including classical RNA Pol II-associated factors such as TFIID, 
in reference cell types (Supplementary Table 3). These new data not only 
expand our knowledge of the binding patterns of TFs, but also reveal 
patterns of extensive co-occupancy among human TFs. Furthermore, 
the integration of ENCODE TF binding elements with chromatin and 
RNA transcription data provides connections with key biological fea-
tures of promoters and distal enhancers and insights into the organiza-
tion of chromatin loops and gene domains10.

DNase I hypersensitive sites and footprints
We have expanded the biological range and molecular resolution of 
ENCODE DNase I hypersensitive sites (DHSs) and DNase I footprint 
annotations. DHSs are the hallmark of active or poised cis-regulatory 
elements, including enhancers, silencers, insulators, and the core com-
ponents of composite elements such as locus control regions. Using 
an improved DNase treatment followed by sequencing (DNase-seq) 
assay that requires only small numbers of input cells, we expanded 
ENCODE human DHS maps by more than 200 different cell types and 
states, chiefly primary cells and tissues11 (Supplementary Table 4a). By 
incorporating both a multi-tissue developmental series and a larger 
range of adult tissues (Supplementary Table 4b), we also greatly 
expanded mouse DHS maps17. We have consolidated the full range of 
DNase-seq data from ENCODE and the Roadmap Epigenomics Project 
across hundreds of biosamples, and thereby catalogued reference 
indices of about 3.6 million consensus DHSs within the human genome11 
and about 1.8 million consensus DHSs within the mouse genome. The 
diversity of cell types and states enabled systematic categorization 

ENCODE Encyclopedia 

Registry of candidate cis-regulatory elements

Promoter-like
signatures

DNase-seq
(DHSs)

In
te

gr
at

iv
e 

le
ve

l
A

nn
ot

at
io

ns
 fr

om
 m

ul
tip

le
d

at
a 

ty
p

es

G
ro

un
d

 le
ve

l
A

nn
ot

at
io

ns
 fr

om
 in

d
iv

id
ua

l 
d

at
a 

ty
p

es

ChIA-PET
(interactions)

Gene
expression 

(levels)
RAMPAGE

(TSS activity)

TF ChIP–seq
(peaks, motifs)

DNA
methylation 

(levels)

Histone mark
ChIP–seq

(peaks)

RNA binding
proteins

(peaks, motifs)

Chromatin
states

(ChromHMM, 
Segway)

Linked genes 

Available Future plan

Hi-C
(TADs,

compartments)

Variant 
annotation

(HaploReg, FunSeq 
RegulomeDB)

Allele-speci�c
events

...

R
aw

 d
at

a
an

d
 m

et
ad

at
a

...

E
N

C
O

D
E

 p
or

ta
l

Reads
(FASTQs)

Mapped reads
(BAMs)

Signal
(bigWigs)

Uniform processing pipelines

UCSC 
genome
browser

SCREEN
Enhancer-like

signatures CTCF-only

ATAC–seq
(peaks)

Fig. 2 | Overview of the ENCODE Encyclopedia with a registry of candidate 
cis-regulatory elements. The ENCODE Encyclopedia consists of ground-level 
and integrative-level annotations that use data processed by the uniform 

processing pipelines. SCREEN integrates all levels of annotations and raw data 
and allows users to visualize them in the UCSC genome browser.

http://rnabiology.ircm.qc.ca/RBPImage/


Nature  |  Vol 583  |  30 July 2020  |  703

of coordinated tissue-selective DHS activation patterns, which were 
then used to annotate DHSs, genes, and genetic variation11. The num-
ber of human ENCODE biosamples with deep DNase-seq data (more 
than 200 million uniquely mapped reads) was tripled to more than 
300, enabling delineation of 4.4 million consensus human DNase I 
footprints within DHSs, enhanced annotation of tissue selectivity, 
and identification of functional variants that directly affect regula-
tory factor occupancy11,12. These extensive indexes of DHSs and foot-
prints, systematically annotated by their tissue-selective patterns of 
activation, provide unprecedented resources for detailed studies of 
gene regulation and investigation of genetic variants associated with 
diseases and complex traits.

Transposase accessible regions
During the course of the project, a new technique, assay for 
transposase-accessible chromatin using sequencing (ATAC–seq)27, 
was adopted to profile chromatin accessibility genome-wide in 66 
mouse tissues and cell types that spanned 8 developmental stages 
(Fig. 1f, Supplementary Table 4d). More than 500,000 regions in 
the mouse genome that were marked as accessible chromatin were 
temporally mapped across fetal development. Human orthologues 
of accessible regions in fetal mouse tissues are enriched for human 
disease-associated variation in a tissue-restricted manner14. We also 
applied ATAC–seq to 15 additional mouse tissues and cell types28 and 
48 primary tissues from human adults (Supplementary Table 4c, d). 
Not only do these data expand the range of biosamples for which there 
are maps of accessible chromatin, but when integrated with histone 
modifications and other epigenetic signals, they reveal the activation 
of cCREs across cell types28.

Histone marks and chromatin-modifying proteins
The previous phase of ENCODE focused on the connection of the types 
and number of histone modifications with identified elements of 
genome function found in various cell types29,30. In this phase, we stand-
ardized ChIP–seq assays for 11 histone modifications and 2 common 
histone variants (Supplementary Table 5a) and profiled these across 
79 human cell and tissue types. We also profiled histone modifications 
across 12 mouse tissues over 8 developmental stages from embryonic 
day 10.5 until birth14 (Supplementary Table 5b). To deepen insights into 
the genesis of histone modification patterns in human cells, we also 
profiled a panel of 22 proteins involved in the deposition or recogni-
tion of histone modifications (Supplementary Table 5c). These new 
data not only expand the numbers of cell types and types of histone 
modifications interrogated, but also provide insights into the actions 
of so-called chromatin ‘readers’ and ‘writers’, many of which have been 
implicated in developmental disorders and cancer progression.

DNA methylation
The annotation of human DNA methylation was deepened by applying 
whole-genome bisulfite sequencing (WGBS31, Table 1) to 48 cell and 
tissue types, and broadened by profiling approximately 154 additional 
biological contexts using methylation-aware DNA microarrays (Sup-
plementary Table 6a). To expand mouse DNA methylation annotations, 
we used WGBS to map methylation patterns in 12 mouse tissues at 9 
developmental stages, collecting a total of 84 whole-genome methyla-
tion maps15 (Fig. 1f, Supplementary Table 6b). The WGBS data provide 
an unbiased view of DNA methylation patterns and their dynamics 
across mouse development15.

Chromatin looping
Maps of chromatin interaction frequencies and genome connectivity 
provide information on physical links among regulatory elements 
and target genes at different levels of cellular organization. We gen-
erated Hi-C chromatin conformation maps for 33 human tissue and 
cell types32, providing insights into the positions of chromosome 
compartments33 and topologically associating domains34,35 (Supple-
mentary Table 7a). Furthermore, we investigated in detail the roles of 
the genome organizing factor CTCF and the cohesin subunit RAD21, 
which frequently co-localize to influence chromatin interactions. We 
systematically localized RAD21 in 24 diverse cell lines (Supplemen-
tary Table 7b) using chromatin interaction analysis via paired-end tag 
sequencing (ChIA-PET36) (Table 1), which measures the proximity and 
frequency of contacts between RAD21-bound regions. These data were 
also integrated with the profiles of acetylated lysine 27 on histone H3 
(H3K27ac) as well as RNA-seq data from the same cell types. Analysis of 
these data revealed that many 3D chromatin interactions vary across 
cell types and that these ‘variable’ interactions were correlated with 
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Box 1  

Candidate cis-regulatory element classifications

Groups based on function-associated signatures
A cCRE requires support from two distinct experimental assays: 
accessible DNA as measured by a high DNase signal and at least one 
high ChIP–seq signal (H3K4me3, H3K27ac, or CTCF) in the pertinent 
ChIP–seq dataset. The pertinent ChIP–seq dataset allows the cCREs 
to be classified into general groups. Specifically, we defined three 
major annotation groups using the following categorization schema 
for both human and mouse (Box 1 Fig. 1):
1) � Active and poised enhancer-like elements: cCREs annotated 

with enhancer-like signatures (cCRE-ELS) have high DNase and 
H3K27ac signals and, if they fall within 2,000 bp of an annotated 
TSS, they must also have low relative H3K4me3 signal. We further 
partitioned ELSs into two subclasses on the basis of broader 
proximity to the TSS:
1a) � Proximal enhancer-like elements: cCREs with proximal 

enhancer-like signatures (pELS) fall within 2 kb of a TSS.
1b) � Distal enhancer-like elements: cCREs with distal enhancer-like 

signatures (dELS) fall more than 2 kb from the nearest TSS.
2) � Active and poised promoter-like elements: cCREs annotated 

with promoter-like signatures (cCRE-PLS) possess high DNase 
signals and high H3K4me3 signals. They are partitioned into two 
subclasses on the basis of their proximity to a TSS.

2a) � Canonical promoter-like elements (cCRE-PLS): these fall 
within 200 bp (centre-to-centre) of an annotated GENCODE 
TSS that has high DNase and H3K4me3 signals.

2b) � Other high-H3K4me3 elements: cCREs with this annotation 
have high DNase with high H3K4me3 but low H3K27ac signals 
and do not fall within 200 bp of an annotated TSS. These 
elements may denote either poised canonical promoters, 
non-canonical promoter-like elements, or elements with 
other functions that lie within the high-H3K4me3 signal 
region around a canonical promoter.

3) � CTCF-only elements: CTCF-only cCREs have high DNase and 
CTCF signals but low signals for H3K4me3 and H3K27ac. These 
isolated CTCF elements are candidates for insulators and looping 
functions in which CTCF participates. Other regulatory elements 

(ELS and PLS) can also be bound by CTCF, where this protein may 
also participate in those roles.

Tiers of data support
Placing cCREs into predicted functional groups on the basis of 
their epigenetic features ideally would be done with full knowledge 
of each feature in each biosample. However, as the breadth of 
biological systems expands, with a concomitant increase in the 
number of biosamples examined, it becomes very difficult to 
maintain full ascertainment of all features in all biosamples  
(Box 1 Fig. 2). The resulting gaps in knowledge complicate our 
assessment of function-associated signatures. To provide a guide 
for the completeness of the underlying data, we established the 
following tiers of cCRE function-related annotations. Specifically, 
cCREs are divided into tiers 1a, 1b, and 2 on the basis of their data 
support.

Tier 1a cCREs are fully defined, being supported by high DNase 
signal plus high H3K4me3, H3K27ac or CTCF signal within the same 
biosample and with all measurements complete in that biosample. 
These cCRE annotations are derived from the 25 human (and 15 
mouse) biosamples with all four features determined (Box 1 Fig. 2).

Tier 1b cCREs are also supported by high DNase signal plus high 
H3K4me3, H3K27ac or CTCF, within the same biosample, although 
unlike tier 1a, they may lack some or all other data in that biosample.

Tier 2 cCREs are provisionally defined cCREs, given that the 
supporting data are available only in different biosamples. Tier 
2 cCREs are supported by high DNase signal in one or more 
biosamples that lack data for the pertinent H3K4me3, H3K27ac, or 
CTCF features that were ultimately used to make the cCRE call. They 
are regarded as provisional because the pertinent histone mark or 
CTCF data came from a different biosample that lacked DNase data. 
Tier 2 cCREs can be promoted to tier 1 as additional pertinent data 
are determined within a single biosample, and this reclassification 
will be performed for each new build of the registry.

A detailed description of cCRE classifications into groups and tiers 
is in Supplementary Note 1.

gene expression and enriched in variants identified in genome-wide 
association studies13.

DNA replication timing
DNA replication timing provides insights into both gene regulation 
and spatiotemporal genome compartmentalization. We measured 
replication timing during fate commitment of human embryonic stem 
cells, yielding 50 data sets for 26 cell types representing the embry-
onic layers endoderm, mesoderm, ectoderm, and neural crest37 (Sup-
plementary Table 8). The analysis of these data sets revealed that the 
developmental lineage of each cell type could be recapitulated on the 
basis of its replication timing. ENCODE replication timing data have 
also been used to build background mutation models to study the 
somatic mutation process38 and to construct novel, cell type-specific 
regulatory networks39.

A registry of DNA elements
The comprehensive discovery and annotation of cis-regulatory ele-
ments encoded within the human and mouse genomes are major goals 

of ENCODE1,4–6. The cardinal biochemical features of active or poised 
enhancer, promoter, or insulator elements are focal chromatin bio-
chemical marks and heightened DNA accessibility, which result from 
the binding of sequence-specific regulatory factors in place of a canon-
ical nucleosome. This increased accessibility can be detected as hyper-
sensitivity to nucleases as mapped by DNase-seq40 or susceptibility to 
transposase insertions as mapped by ATAC–seq27. In addition to nucle-
ase hypersensitivity, active or poised enhancers and promoters typi-
cally exhibit characteristic histone modification signatures on flanking 
nucleosomes4,41, whereas mammalian insulator elements are occupied 
by CTCF42. Thus, the DNase-seq signal can be integrated with ChIP–seq 
of trimethylated lysine 4 on histone H3 (H3K4me3)—a core histone 
modification that is characteristic of transcribing promoters41—to  
annotate active and poised promoters43. Similarly, H3K27ac, com-
bined with relative paucity of H3K4me3 surrounding a DHS, has been 
strongly associated with active enhancer function at the underlying 
DNA element44.

We have applied these simple core biochemical signatures, inte-
grated with the GENCODE annotation of TSSs, to create an initial reg-
istry of human and mouse cCREs that show signatures of activity, or of 
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Box 1 Fig. 2 | Profiles of feature ascertainment 
across biosamples and confidence tiers for 
cCREs. Top, upset plot showing the numbers  
of biosamples with the set of feature 
determinations indicated below the plot. Group 
and tier assignments are shown by matrices of 
feature determination and an indication of 
whether a high signal was observed, using 
conventions defined in Box 1 Fig. 1. The matrix for 
tier 1a is within the upset plot, and those for tiers 
1b and 2 are below the plot. Assessment of tier 2 
requires examination of data for two biosamples, 
indicated to the right of the matrices. The 
heatmap in the lower left shows the numbers of 
cCREs in each group and tier.
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being poised for activity, in one or more ENCODE biosamples. Using 
the classification system (Fig. 3) detailed in Supplementary Notes 1 
and 2 (Supplementary Figs. 1–5, Supplementary Tables 9–15), we anno-
tated a total of 926,535 cCREs in the human genome (Supplementary 
Table 10) and 339,815 cCREs in the mouse genome (Supplementary 
Table 11), encoded by 7.9% and 3.4% of these genomes, respectively, 
with the smaller number of mouse cCREs resulting from the sparser 
biosample coverage of our mouse data sets. Partly because of a shift 
in data production in ENCODE phase III to focus on primary cells and 
tissues, the ENCODE III data increased the number of annotated human 
cCREs by 22% compared with ENCODE II and Roadmap data combined, 
with the increase being most evident for TSS-distal cCREs (Supple-
mentary Note 3, Supplementary Fig. 6). The human registry of cCREs 
covers more than 80% of elements marked by H3K4me3 or H3K27ac or 
bound by CTCF (false discovery rate (FDR) <0.01) in any biosample and 
50–70% of TSSs in the GENCODE and FANTOM collections (Supplemen-
tary Note 4, Supplementary Fig. 7). Whereas earlier studies identified 
putative enhancers on the basis of histone modification signatures, 
the ENCODE Registry is substantially larger both in the number of ele-
ments and in the range of biosamples surveyed (Supplementary Note 5, 
Supplementary Figs. 8, 9, Supplementary Table 16). Furthermore, the 
registry goes beyond cataloguing a list of elements by tracing the active 
or poised signature of each registry element across a large biosample 
space (Supplementary Note 1, Supplementary Figs. 1–5, Supplementary 
Tables 9–15). Analogously, whereas knowledge of well-annotated TSSs 

is sufficient to identify a substantial fraction of protein-coding and 
noncoding RNA promoter regions, we have enriched this information 
by annotating biosamples in which these promoters show evidence 
of activity or of being poised for activity. We note that our categories 
do not include elements with primary silencing activity, and we do 
not claim that the current cCRE classification scheme reflects the full 
biological spectrum of regulatory activities encoded in the genome.

Classifying cCREs
We first partitioned cCREs into enhancer-like, promoter-like, and 
CTCF-only categories, noting that CTCF-occupied elements can specify 
several apparently different activities, including candidate insulators, 
enhancer blockers, and chromatin loop anchor elements45,46. Whereas 
a majority of enhancer-like elements map to promoter-distal regions 
(that is, more than a few kilobases from a TSS), many known enhanc-
ers lie in close proximity to a TSS47. Previously, ENCODE had analysed 
promoter-containing regions by using a generous fixed-interval defi-
nition (for example, ±2.5 kb around the TSS)1. That arbitrary cutoff 
had the effect of commingling the TSS and minimal-promoter func-
tion with promoter-proximal enhancer function. To better identify 
promoter-proximal enhancer-like cCREs and to help to distinguish them 
from active promoter signatures, we adopted a GENCODE TSS-aware 
approach that focuses on the dominant histone ChIP–seq signal, with 
additional parameters imposed around known TSSs (see Methods, 
Supplementary Note 1, Supplementary Figs. 1–5, Supplementary 
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partitioned by cCRE group.
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Box 2  

Interactive use of cCREs via SCREEN

A particularly powerful approach to using ENCODE data is to 
leverage the cCREs, gene expression and epigenetic data identified 
in both human tissues and cell lines and in multiple tissues during 
mouse fetal development. To facilitate analysis and visualization 
of cCREs and ENCODE data by the community, we have built a 
web-based resource called SCREEN (http://screen.encodeproject.
org). SCREEN connects every cCRE with all available ENCODE 
epigenomic and transcriptomic data as well as external data from 
FANTOM and Cistrome (http://cistrome.org). A series of videos 
introducing and illustrating many of the capacities of SCREEN is 
available (links in the Supplementary Information).

SCREEN catalogues the 0.9 million human cCREs and 0.3 million 
mouse cCREs in the registry. Users can find cCREs of interest by 
searching for genes, genomic intervals, or GWAS phenotypes  
(Box 2 Fig. 1). Furthermore, SCREEN integrates cCREs with a wide 
range of annotations available at the ENCODE Portal, including gene 
and transcript expression profiles, chromatin accessible regions 
from DNase-seq, transcription factor and histone modification ChIP–
seq peaks, and 3D chromatin interactions. Links and functionality 
are provided so that users can visualize data in the UCSC Genome 
Browser (https://genome.ucsc.edu/). Homologous cCREs between 
human and mouse are linked through SCREEN, facilitating 
evolutionary comparisons. To facilitate more extensive downstream 
analysis, all underlying data in SCREEN can be downloaded or 

accessed programmatically via an associated GraphQL application 
program interface (API).

SCREEN is organized into three ‘apps’—the cCRE app, the 
gene expression app, and the GWAS app—that provide different 
perspectives on the registry (Box 2 Fig. 1). Guided by biological 
questions, users can use the cCRE app to retrieve subsets of cCREs 
that meet search criteria and then select specific features or loci to 
visualize the underlying data. SCREEN’s Signal Profile tool displays 
DNase or histone modification signals at cCREs as ‘mini-peaks’ 
across biosamples. The gene app displays the expression levels 
for a specified gene and its individual transcripts as determined by 
RNA-seq and RAMPAGE in numerous cell and tissue types. Users 
can visualize differentially expressed genes alongside associated 
differential cCRE activity across mouse tissues and developmental 
time points. The GWAS (genome-wide association study) app 
annotates single-nucleotide polymorphisms (SNPs) from 3,751 
published GWASs with cCREs (Supplementary Table 23), taking 
into account linkage disequilibrium (LD) between neighbouring 
genomic loci. Biosamples that are enriched for active cCREs that 
overlap GWAS SNPs have been identified for GWASs with sufficient 
SNPs to provide statistical power (that is, 25 or more SNPs), and 
these biosamples are preloaded into SCREEN. Supplementary Note 
13 provides six detailed examples of how to use the registry and 
SCREEN to explore the annotations associated with GWAS SNPs.
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Tables 9–15). In this manner, we leveraged the high positional speci-
ficity of ENCODE DNase-seq data to more effectively use the histone 
modification patterns that have inherently lower resolution due to 
regional spreading around a TSS peak. This allowed us to define three 
major annotation groups: (i) active and poised enhancer-like elements 
(proximal and distal, 15.3% and 72.1% of human cCREs); (ii) active 
promoter-like elements (3.7% of human cCREs); and (iii) CTCF-only 
elements (6.1% of human cCREs), as explained in Box 1 and detailed 
in Supplementary Note 1. Elements in the three groups are referred 
to as having enhancer-like signatures (ELS), promoter-like signatures 
(PLS), or being CTCF-only, respectively. A fourth group contains likely 
poised elements marked by DNase and H3K4me3 (DNase–H3K4me3; 
2.8% of human cCREs).

This classification scheme, which we also applied to the mouse portion 
of the registry (Fig. 3), is intended to provide a useful high-level frame-
work. However, the current cCRE classification scheme does not attempt 
to explicitly dissect complex multi-element modules. A notable subset 
(17%) of cCREs display complex or composite behaviours when examined 
across distinct biosamples, showing, for example, enhancer-like signa-
tures in one cell type and a CTCF-only signature in another (Extended 
Data Fig. 1). These relationships can be readily extracted from the entire 
list of cCREs provided in Supplementary Tables 10, 11.

General properties of cCREs
The distribution of cCREs along human chromosomes and the evolu-
tionary conservation profiles of cCREs are similar to those of DHSs as 
a whole48 (Supplementary Note 6, Supplementary Fig. 10, Supplemen-
tary Table 17). Because cCREs are anchored on DHSs, they have rela-
tively high resolution and range in size from 150 to 350 base pairs (bp; 
Extended Data Fig. 2a). Estimated levels of conservation were higher in 
all groups of cCREs than in randomly selected genomic regions, with the 
level of conservation decreasing from PLS to ELS to CTCF-only elements 
(Extended Data Fig. 2b; Supplementary Fig. 10a, b). A majority of the 
human (56%) and mouse (72%) cCREs had orthologous sequences in the 
other species, which was substantially higher than the background rates 
of 24% for human and 31% for mouse computed using randomly selected 
genomic regions with matched sizes. Furthermore, for a majority (65%) 
of mouse cCREs with human orthologues, the orthologue was also a 
cCRE (Extended Data Fig. 2c). cCRE categorizations were highly con-
gruent with other ENCODE data types. For example, active cCRE-PLSs 
showed RNA polymerase II and RAMPAGE signals consistent with tran-
script initiation (Extended Data Figs. 2d, 3a). The cCRE-ELS elements 
showed occupancy by enhancer-associated co-activators such as EP300 
(Extended Data Fig. 2d), and they overlapped significantly with experi-
mentally determined enhancer elements in both human and mouse (see 
below). Consistent with an earlier study48, cCREs comprehensively over-
lapped the expanded range of ENCODE transcription factor ChIP–seq 
data; indeed, the median ENCODE transcription factor ChIP–seq data-
set had 90% of peaks overlapping a cCRE (Extended Data Fig. 3b, Sup-
plementary Note 7, Supplementary Fig. 11a–d, Supplementary Table 18).  
Furthermore, as expected for many active enhancers, most cCRE-ELSs 
showed nascent bidirectional transcription assayed by global run-on 
sequencing (GRO-seq) or precision nuclear run-on sequencing 
(PRO-seq) (Extended Data Fig. 3c, d, Supplementary Note 8, Supplemen-
tary Fig. 12), and cCRE-PLSs and cCRE-ELSs had high overlaps with spe-
cific classes of FANTOM-annotated TSSs and ChromHMM-annotated 
chromatin states (Extended Data Fig. 3e, Supplementary Notes 4, 5, 
Supplementary Figs. 8, 9, Supplementary Table 16). Overall, the activity 
landscape for cCRE-ELSs reflects tissue type, developmental origin, 
and developmental stage (Extended Data Fig. 4, Supplementary Table 
19), and parallels the global organization of the expressed poly-A RNA 
transcriptome (Supplementary Note 9, Supplementary Fig. 11e–g, 
Supplementary Table 20). The mouse developmental series enables 
integration of differential gene expression with the differential epige-
netic signals of nearby cCREs across multiple tissue types and aids the 

identification of cCREs that regulate gene expression programs (Sup-
plementary Note 10, Supplementary Fig. 13, Supplementary Table 21).

Experimental testing of cCRE function
To investigate the spatiotemporal activities of cCREs that were pre-
dicted to be enhancers in mid-gestation mouse embryos, we tested 151 
cCRE-containing genomic segments using transgenic mouse enhancer–
reporter assays (Supplementary Note 11, Supplementary Figs. 14, 15a–e, 
Supplementary Table 22). These segments were selected for testing on the 
basis of predicted cCRE activity in each of three mouse tissues (midbrain, 
hindbrain, limb) at a single developmental time point (post-conception 
embryonic day 11.5; E11.5). In brief, cCRE-containing segments were cen-
tred on DHSs present in the respective tissue followed by ranking accord-
ing to the overlapping DNase and H3K27ac signal strengths in that tissue 
(see Methods). This resulted in three independently ranked lists of 104, 
92, and 119 thousand DHSs with predicted enhancer function in mouse 
e11.5 midbrain, hindbrain, and limb, respectively. An initial transgenic 
reporter survey by ENCODE found that active constructs were concen-
trated in the top quartile of the H3K27ac signal (Supplementary Note 11). 
To explore this relationship further, we selected from three biochemical 
rank tiers: rank 1, those with the highest combined DNase and H3K27ac 
signal (~top 0.1%); rank 2, a group centred around rank 1,500; and rank 
3, another group centred around rank 3,000. From each tissue-ranked 
group, we selected fragments with high signals for testing (51 fragments 
for midbrain, 50 for hindbrain, 50 for limb) (Supplementary Table 22).

Each of the 151 cCRE-containing segments was tested individually 
via a mouse transgenic enhancer–reporter assay that provided a sensi-
tive spatial readout of reporter gene expression in whole embryos49. 
We performed multiple replicate assays (at least three independent 
transgenic embryos) for each segment. The cCRE-containing seg-
ments were judged to encode regulatory activity if lacZ expression 
was consistently and specifically observed in the target tissue at E11.5 
(see Methods). Overall, 67 of the 151 tested cCREs showed detectable 
in vivo reporter activity that was consistent with its tissue prediction 
(Fig. 4a, b, Supplementary Note 11, Supplementary Fig. 15a–e). Moreo-
ver, the frequency of tissue-predicted in vivo activity in the transgenic 
assay declined as the composite H3K27ac-DNase score decreased, 
ranging from 60–75% for the highest-ranked cCRE-ELSs to 20–27% for 
those in the lowest ranks tested. As our cCRE-ELS lists were not filtered 
to exclude predicted activities in multiple tissues or to eliminate seg-
ments with more than one cCRE, nearly half of the constructs tested 
were active in other tissues in addition to the tissues used for selection 
and prioritization (Fig. 4b, Supplementary Figs. 14, 15a–e). In most 
cases, these cCRE-ELSs with activity across multiple tissues also had 
high composite H3K27ac–DNase scores in the corresponding active 
tissues; however, we also observed cCRE-ELSs with high scores across 
several tissues that tested positive in only a small subset of tissues (Sup-
plementary Note 11). Highly similar overall results were obtained in a 
second transgenic study performed at E12.5 and reported in an ENCODE 
companion study14 (Supplementary Note 11, Supplementary Table 22).

We next compared cCREs with published results from two massively 
parallel reporter assays (MPRAs) conducted using the ENCODE refer-
ence human cell lines GM1287850 and K56251 (Supplementary Note 12, 
Supplementary Fig. 15f–h). Nearly half of ENCODE cCREs showed posi-
tive results in independent large-scale assays of enhancer and promoter 
activities. For cCREs defined in GM12878 that also overlapped with a set 
of independently selected MPRA elements50, 44% were active overall, 
whereas the background activity rate was 12%. Specifically, the propor-
tions were 28.8%, 39.8% and 58% for proximal ELSs, distal ELSs, and 
PLSs, respectively (Fig. 4c, Supplementary Note 12, Supplementary 
Fig. 15f, g). Furthermore, when evaluated at the level of nucleotides, 
approximately 69%, 46%, and 73% of proximal ELSs, distal ELSs, and PLSs, 
respectively, defined in K562 showed positive results from the Survey of 
Regulatory Elements (SuRE) assay51 that had been designed to expose 
latent promoter functionality in the genome (Fig. 4d, Supplementary 
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Note 12, Supplementary Fig. 15h). By contrast, the genome-wide back-
ground positive rate was only 4%. Thus, human cCREs were considerably 
enriched for enhancer-like activity despite the fact that the transient 
enhancer–reporter assays tested DNA fragments that were shorter than 
the average cCRE and frequently only partially overlapped the cCRE.

Overall, these initial functional assessments indicate that at least 
one-third of the cCRE-ELS compartment encodes transcriptional control 
elements that produce positive results in contemporary cell transfec-
tion assays, while a smaller number marked by stronger biochemical 
signatures are active in the more stringent transgenic mouse embryo 
system. However, it is important to acknowledge that each assay system 
has inherent limitations. None of the aforementioned methods inter-
rogates cCREs in their native chromosomal context, nor do they test for 
combinatoric interactions among cCREs in cis. The assays also do not 
account for poised elements that exhibit DNase I hypersensitivity but 
are gated functionally by additional trans-acting signals or cell contexts. 
Furthermore, we acknowledge the possibility that not all open chromatin 
regions marked by high levels of H3K27ac function as enhancers; there-
fore, these regions will not test positive in the functional characterization 
experiments conducted here. These caveats are likely to be addressed in 
part by genome and epigenome editing approaches that enable in situ 
manipulation of regulatory DNA and associated chromatin.

Accessing the registry
To facilitate access to the rich resource of DNA elements with likely posi-
tive transcriptional regulatory or insulator function encompassed within 
the Registry of cCREs, we created a web-based tool termed SCREEN 
(search candidate cis-regulatory elements by ENCODE; http://screen.
encodeproject.org) (Box 2). SCREEN has three components (‘apps’): 
(i) a cCRE-focused application that enables the filtering, selection, and 
visualization of cCREs by biochemical signal or element category, and 
integration of cCREs with genes and ENCODE annotations such as tran-
scription factor occupancy; (ii) a gene-expression-focused application 
that facilitates the retrieval of RNA transcription information for any 
biosamples with corresponding cCREs; and (iii) an application to facili-
tate the retrieval and integration of cCREs with human genetic variants 
from genome-wide association studies, as detailed in Supplementary 
Note 13 (Supplementary Figs. 16–20, Supplementary Table 23).

Other approaches using machine learning
In addition to the Registry of cCREs described in this report, one of 
the ENCODE companion papers developed a machine learning model 
that draws on the depth of ENCODE data in selected reference cell 
types to predict enhancers from self-transcribing active regulatory 
region sequencing (STARR-seq) data52. Another ENCODE companion 
paper expanded this model to connect cCREs with genes and thereby 
to construct large-scale regulatory networks that serve as a valuable 
resource for disease studies38. A two-dimensional, epigenetic state 
segmentation model, IDEAS53, served as the basis for regulatory region 
annotation and target gene assessments in mouse haematopoiesis28. 
In the developing mouse limb, IDEAS elements from bulk epigenomic 
data were deconvolved into specific cell type assignments by using 
single-cell RNA-seq16.

Outlook
ENCODE element annotations aim to delineate specific segments of the 
human and mouse genomes that encode a potential biological func-
tion. We aim to predict the activities of ENCODE sequence elements 
within a given biological context or of the different combinations of 
elements that become active in different biological contexts. It has 
become apparent that, by virtually any metric, elements that govern 
transcription, chromatin organization, splicing, and other key aspects 
of genome control and function are densely encoded in many parts of 
the human genome sequence. However, most of these elements are 

actualized sparingly in a cell type- or state-selective manner, compli-
cating assessment of the completeness of the ENCODE Encyclopedia, 
or what remains to be discovered. Functional elements that are active 
only in rare cell types are likely to be underrepresented in the current 
ENCODE Encyclopedia because many assays used heterogeneous whole 
tissue samples. Advances in single-cell genomics technologies may 
help to bridge these gaps by deconvolving in silico the epigenome or 
transcriptome profiles from a tissue sample into its constituent cell 
types54,55. However, the sensitivity of these approaches for detecting can-
didate functional elements compared with the assays we describe here 
performed on deeply sequenced bulk samples has yet to be determined.

Despite the very large number of biochemically defined elements 
within the ENCODE Encyclopedia, their functional annotation is cur-
rently limited to a few broad categories (enhancer, promoter, and insu-
lator). Conventional assays of regulatory function, from transgenic 
mice to high-throughput reporter systems, have substantial technical 
and conceptual limitations, including their failure to capture combi-
natoric interactions of multiple cis-acting elements. Furthermore, the 
target genes for candidate distal enhancers in the registry have yet to 
be defined, which is currently among the on-going goals of ENCODE. It 
is anticipated that emerging functional genomic strategies involving 
genome or epigenome editing will provide considerable insights into 
the functional roles of biochemically marked elements.

Ultimately, we anticipate that the ENCODE Encyclopedia will 
help researchers to decode the molecular mechanisms that under-
pin the genetic bases of human traits and diseases56. The value of 
ENCODE-defined elements for interpreting genome-wide association 
studies was already apparent in earlier phases of the project and has 
improved in parallel with the expanding space of biological contexts 
sampled by ENCODE assays, strengthening the hypothesis that many 
noncoding risk variants function via transcriptional regulatory mecha-
nisms1,2. We expect that a comprehensive catalogue of functional ele-
ments, with more precise and accurate functional annotations, such as 
cell type-specific usage, transcription factor binding, and regulatory 
target genes, will provide an even more powerful tool for realizing the 
translational potential of the human genome for the diagnosis and 
treatment of diverse diseases.
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Methods

Ethical compliance
We have complied with all relevant ethical regulations regarding animal 
research and research involving humans. Each individual project that 
contributed data to ENCODE had their own institutional board that 
approved the study protocol.

Biosample collection
All human biosamples were collected with open access consent that 
met relevant IRB standards. All mouse biosamples were approved by 
the respective institutional animal care and use committees. Details 
(for example, cell line sources, growth protocols, tissue harvesting, sex, 
age and so on) for individual biosamples are publicly available on the 
ENCODE portal. A representative example can be found here: https://
www.encodeproject.org/biosamples/ENCBS689AWK/. Cell lines were 
not tested for mycoplasma contamination.

RNA sequencing
Overview. In earlier phases of ENCODE, we surveyed transcriptome 
data mainly for immortalized cell lines using two approaches developed 
in Consortium laboratories—RNA-seq57 and CAGE58 (cap analysis of 
gene expression, providing a foundation for the GENCODE reference 
annotation of human genes and transcripts59). To survey transcrip-
tomes across human and mouse biosamples, we performed a variety of 
RNA-seq experiments in ENCODE phase III (Table 1), which can be divid-
ed into three classes: (i) bulk RNA-seq surveys RNAs greater than 200 nt 
and comprises total RNA-seq, poly(A)+ RNA-seq, poly(A)− RNA-seq, 
CRISPR RNA-seq, CRISPRi RNA-seq, shRNA-knockdown RNA-seq and 
siRNA-knockdown RNA-seq; (ii) small RNA-seq surveys RNAs less than 
200 nt; and (iii) microRNA-seq surveys microRNA levels by selecting 
for species less than 30 nt. Additional assay details, along with detailed 
experimental protocols, are available at the ENCODE Portal60 (https://
www.encodeproject.org/data-standards/rna-seq/long-rnas/, https://
www.encodeproject.org/data-standards/rna-seq/small-rnas/ and  
https://www.encodeproject.org/microrna/microrna-seq/).

Uniform processing pipelines. There are two distinct ENCODE uni-
form RNA-seq pipelines, one for RNAs longer than 200 nt and the other 
for RNAs shorter than 200 nt. The long RNA pipeline is appropriate for 
processing libraries generated from mRNA, rRNA-depleted total RNA, 
or poly(A)− RNA. The pipeline consumes RNA-seq reads in FASTQ for-
mat; alignment is performed with STAR, and gene and transcript quan-
tifications are performed by RSEM against a gene annotation file, which 
contains by default GENCODE annotations. STAR also outputs normal-
ized RNA-seq signals for both the + and − strands. Further details are 
available at https://github.com/ENCODE-DCC/long-rna-seq-pipeline.

Quality control. For all RNA-seq experiments, data quality is evaluated 
by calculating the number of aligned reads and replicate concordance.

RAMPAGE
Overview. RAMPAGE captures 5′-complete cDNA to allow the identi-
fication and quantification of TSSs and transcript characterization. 
Production documents were generated for each experiment, and a rep-
resentative experimental protocol is available at https://www.encode-
project.org/documents/0651efa6-7fd7-4b33-ab11-b05348c9f1c0/@@
download/attachment/295491.pdf. Additional assay details are avail-
able at https://www.encodeproject.org/data-standards/rampage/.

Uniform processing pipeline. The ENCODE RAMPAGE pipeline is ap-
propriate for libraries generated with RNAs longer than 200 nt, and it 
consumes reads in FASTQ format and produces alignments and normal-
ized signals for both the + and − strands with STAR. Peaks, representing 
TSSs, are called from the alignments using GRIT, and output in BED, 

bigBED, and GFF formats. Quality control (QC) is performed for the 
peaks, and the irreproducible discovery rate (IDR) is used to identify 
reproducible peaks between replicates.

Quality control. Data quality is evaluated by calculating read depth 
and replicate concordance.

eCLIP
Overview. Enhanced crosslinking and immunoprecipitation (eCLIP) 
identifies transcriptome wide RBP occupancy sites23. By modifying 
steps in CLIP-seq and iCLIP protocols, eCLIP requires fewer ampli-
fication cycles and results in fewer redundant reads. Additionally, 
with the eCLIP protocol, size-matched inputs are generated to serve 
as controls for peak calling and other downstream analyses. The ex-
perimental protocol is available at https://www.encodeproject.org/
documents/842f7424-5396-424a-a1a3-3f18707c3222/@@download/
attachment/eCLIP_SOP_v1.P_110915.pdf.

Additional assay details are available at https://www.encodeproject.
org/eclip/.

Antibody characterization. We require all eCLIP antibodies to un-
dergo primary and secondary characterizations. Detailed RBP antibody 
standards are available at https://www.encodeproject.org/documents/
fb70e2e7-8a2d-425b-b2a0-9c39fa296816/@@download/attachment/
ENCODE_Approved_Nov_2016_RBP_Antibody_Characterization_Guide-
lines.pdf.

Processing pipeline. Data were processed by the Yeo laboratory using 
their eCLIP pipeline. In brief, adaptor trimmed reads were mapped to 
the human genome using STAR, and redundant reads were removed. 
Peaks were called using CLIPper. The pipeline is available at https://
github.com/gpratt/gatk/releases/tag/2.3.2.

The pipeline description is available at https://www.encodeproject.
org/documents/3b1b2762-269a-4978-902e-0e1f91615782/@@down-
load/attachment/eCLIP_analysisSOP_v2.0.pdf.

Quality control. Data quality is evaluated by calculating the number 
of unique fragments, IDR, and the fraction of reads in peaks (FRiP).

RNA Bind-n-Seq
Overview. RNA Bind-n-Seq characterizes RBPs and their motifs in vit-
ro61. Recombinant RBPs are purified and incubated with randomized 
RNAs. The RBPs are then captured, and bound RNAs are sequenced. The 
experimental protocol is available at https://www.encodeproject.org/
documents/aa71cabf-aaee-4358-a834-c6ee002938b8/@@download/
attachment/RBNSExperimentalProtocol_Feb2016_96well.pdf.

Additional assay details are available at https://www.encodeproject.
org/rbns/.

Processing pipeline. Bind-n-Seq data were processed by the Burge 
laboratory. In brief, reads were separated into ‘input’ and ‘pull-down’ 
groups. Kmer enrichment was calculated by comparing the frequency 
of kmers in the pull-down groups to those in the input groups. The esti-
mated binding fraction was calculated using streaming kmer analysis. 
Motif logos were created by aligning enriched kmers that met specific 
threshold criteria. The pipeline is available at https://bitbucket.org/
pfreese/rbns_pipeline/src/master/.

The pipeline description is available at https://www.encodeproject.
org/documents/c8b3442a-7e63-4847-af11-c72597bf65b3/@@down-
load/attachment/RBNS_Computational_Pipeline_Aug_2016_update_
Dec2018.pdf.

Quality control. Data quality is evaluated by calculating the number 
of recovered reads per concentration, kmer enrichments, and the 
Coomassie gel size and purity test of the recombinant protein.
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Histone ChIP–seq
Overview. Histone ChIP–seq surveys the interaction between  
DNA and histone proteins, selecting for a specific protein variant  
or post-translational modification through immunoprecipitation 
followed by sequencing. We also profiled a panel of 22 proteins in-
volved in the deposition or recognition of histone modifications62, 
many of which have been implicated in developmental disorders  
and cancer progression63. The experimental protocols are available 
at https://www.encodeproject.org/documents/be2a0f12-af38-430c-
8f2d-57953baab5f5/@@download/attachment/Epigenomics_Alter-
native_Mag_Bead_ChIP_Protocol_v1.1_exp.pdf (Bernstein laboratory, 
human) and https://www.encodeproject.org/documents/18580e80-
0907-4258-a412-46bcc37bd040/@@download/attachment/Ren%20
Lab%20ENCODE%20Chromatin%20Immunoprecipitation%20Protocol 
%20MicroChIP.pdf (Ren laboratory, mouse). Additional assay  
details are available at https://www.encodeproject.org/chip-seq/ 
histone/.

Antibody characterization. We required all commercial histone an-
tibodies to be validated by at least two independent methods, and 
antibody lots to be analysed independently. Detailed histone mark 
antibody standards are available at https://www.encodeproject.org/
documents/4bb40778-387a-47c4-ab24-cebe64ead5ae/@@download/
attachment/ENCODE_Approved_Oct_2016_Histone_and_Chromatin_ 
associated_Proteins_Antibody_Characterization_Guidelines.pdf.

Uniform processing pipeline. The ENCODE consortium histone 
ChIP–seq data pipeline takes into account the different binding dis-
tributions of the respective immunoprecipitation targets across the 
genome. The ChIP–seq pipelines consume raw reads in FASTQ format; 
alignment of the reads is performed with BWA to generate alignment 
BAMs. Signal tracks are produced from the alignments using MACS2; 
these are output in two separate bigWigs, which represent fold-change 
over control and signal P value. Peaks are also called from the align-
ments, using MACS2. Additionally, the pipeline calls peaks from the 
pooled alignments of each experiment’s isogenic replicates. Sets 
of replicated histone mark peaks are generated by comparing the 
pooled and individual peaks using overlap_peaks. Further detail and 
basic workflows are available at https://github.com/ENCODE-DCC/
chip-seq-pipeline.

Quality control. Data quality is evaluated by calculating read depth, 
non-redundant fraction (NRF) (that is, the number of distinctly uniquely 
mapping reads over the total number of reads), and PCR bottlenecking 
coefficients (PBC1 and PBC2).

ChIP–seq of chromatin-associated proteins
Overview. ChIP–seq surveys the interaction between DNA and DNA 
regulatory proteins such as transcription factors and chromatin re-
modellers through immunoprecipitation followed by sequencing. 
The experimental protocol is available at https://www.encodepro-
ject.org/documents/20ebf60b-4009-4a57-a540-8fd93407eccc/@ 
@download/attachment/Epigenomics_CR_ChIP_Protocol_v1.0.pdf 
(Bernstein laboratory), https://www.encodeproject.org/documents/ 
6ecd8240-a351-479b-9de6-f09ca3702ac3/@@download/attachment/ 
ChIP-seq_Protocol_v011014.pdf and https://www.encodeproject.org/
documents/a59e54bc-ec64-4401-8cf6-b60161e1eae9/@@download/at-
tachment/EN-TEx%20ChIP-seq%20Protocol%20-%20Myers%20Lab.pdf  
(Myers laboratory), and https://www.encodeproject.org/documents/
f2aa60f2-90a6-4e4b-863a-c6831be371a2/@@download/attachment/
ChIP-Seq%20Biorupter%20Pico%20TruSeq%20protocol%20for%20
Syapse-c5bdc444fe0511e69d6a06346f39f379.pdf (Snyder labora-
tory). Additional assay details are available at https://www.encode-
project.org/chip-seq/transcription_factor/.

Antibody characterization. We required antibodies to undergo pri-
mary and secondary characterizations for each lot. For epitope-tagged 
proteins, we developed a protocol that includes genomic DNA charac-
terization followed by immuno-characterization. Additional details are 
available at https://www.encodeproject.org/documents/c7cb0632-
7e5f-455e-9119-46a54f160711/@@download/attachment/ENCODE_Ap-
proved_May_2016_TF_Antibody%20Characterization_Guidelines.pdf  
(TF antibodies) and https://www.encodeproject.org/documents/ 
35a9f776-dd6a-44e3-8795-50ead83f34f7/@@download/attachment/ 
Guidelines_for_Use_of_Epitope_Tags_in_ChIP-seq_Jan_2017.pdf (epitope- 
tagged proteins).

Uniform processing pipeline. The ENCODE consortium has developed 
a TF ChIP–seq data pipeline that takes into account the different bind-
ing distributions of the respective immunoprecipitation targets across 
the genome. The ChIP–seq pipelines consume raw reads in FASTQ for-
mat; alignment of the reads is performed with BWA to generate align-
ment BAMs. Signal tracks are produced from the alignments using 
MACS2; these are output in two separate bigWigs, which represent 
fold-change over control and signal P value. Peaks are also called from 
the alignments using SPP. Additionally, the pipelines call peaks from 
the pooled alignments of each experiment’s isogenic replicates. For 
TF experiments, the pooled peaks are compared with the peaks called 
for each replicate individually using IDR and thresholded to generate 
a conservative set of peaks and an optimal set of peaks. Further detail 
and basic workflows are available at https://github.com/ENCODE-DCC/
chip-seq-pipeline.

Quality control. Data quality is evaluated by calculating read depth, 
NRF, PCR bottlenecking coefficients (PBC1 and PBC2), replicate con-
cordance using IDR, and FRiP.

ATAC–seq
Overview. ATAC–seq surveys open chromatin regions through the 
insertion of primers into the genome via transposase followed by se-
quencing27. Experimental protocols are available at https://www.enco-
deproject.org/documents/404ab3a6-4766-45ca-af80-878a344f07b6/ 
@@download/attachment/ATAC-Seq%20protocol.pdf (Sny-
der laboratory, human) and https://www.encodeproject.org/
documents/4a2fc974-f021-4f85-ba7a-bd401fe682d1/@@download/
attachment/RenLab_ATACseq_protocol_20170130.pdf (Ren laboratory, 
mouse). Additional details can be found at https://www.encodeproject.
org/atac-seq/.

Processing pipeline. Experiments were processed using the Kundaje 
laboratory’s ATAC–seq pipeline (https://github.com/ENCODE-DCC/
atac-seq-pipeline). In brief, trimmed reads were aligned to the genome 
using Bowtie2. Signal files and peak calls were generated using MACS. 
The pipeline also calls peaks from the pooled alignments of each ex-
periment’s replicates. The pooled peaks were compared with the peaks 
called for each replicate individually using IDR and thresholded to 
generate a conservative set of peaks and an optimal set of peaks. In the 
near future, this pipeline will be incorporated as one of the ENCODE 
uniform processing pipelines.

Quality control. Data quality is evaluated by calculating the number of 
non-duplicate, non-mitochondrial aligned reads, alignment rate, IDR, 
NRF, PCR bottlenecking coefficients (PBC1 and PBC2), number of re-
sulting peaks, fragment length distribution, FRiP, and TSS enrichment.

DNase-seq
Overview. DNase-seq surveys open chromatin regions through 
genomic cleavage by endonuclease DNase I followed by sequencing. 
For ENCODE phase III, the DNase-seq protocol was updated, allowing for 
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smaller quantities of input material. Experimental protocols are avail-
able at https://www.encodeproject.org/documents/926174f5-d14c-
4e77-bc52-5517b56daac0/@@download/attachment/Culturedcells_
SOP_nuclei_DNase_crosslink_RNA_V1.pdf (cultured cells) and https://
www.encodeproject.org/documents/c6ceebb6-9a7a-4277-b7be-4a3c-
1ce1cfc6/@@download/attachment/08112010_nuclei_isolation_hu-
man__tissue_V6_3.pdf (tissues). Additional details are available at 
https://www.encodeproject.org/data-standards/dnase-seq/.

Uniform processing pipeline. The ENCODE DNase-seq processing 
pipeline consumes raw sequencing reads from technical replicates of 
experiments in the form of FASTQ files. Indexing and alignment of the 
FASTQ reads is performed with the Burrows–Wheeler Aligner (BWA64), 
which outputs alignments in BAM format. Alignments from sets of 
technical replicates are merged and filtered before peak calling with 
HOTSPOT2, which generates peaks in BED format. Input FASTQs must 
meet minimum criteria to be processed, and various quality control 
metrics are also generated at each step. Further detail and basic work-
flows are available at https://github.com/ENCODE-DCC/dnase_pipeline.

Quality control. Data quality is evaluated by calculating the number 
of uniquely mapping reads, the fraction of mitochondrial reads, and 
the signal portion of tags (SPOT) score.

WGBS
Overview. To map DNA methylation, WGBS uses bisulfite treatment 
to convert unmethylated cytosines into uracils, leaving methylated 
cytosines unchanged. Through sequencing and alignment to a trans-
formed genome, CpG, CHG, and CHH methylation levels can be extract-
ed. The experimental protocol is available at https://www.encodepro-
ject.org/documents/9d9cbba0-5ebe-482b-9fa3-d93a968a7045/@@
download/attachment/WGBS_V4_protocol.pdf (human) and https:// 
www.encodeproject.org/documents/8f3cbe33-cf8f-4f26-b76b-d14a3 
b9721bd/@@download/attachment/Ecker_Methyl_Protocol_022315.
pdf (mouse). Additional details are available at https://www.encode-
project.org/data-standards/wgbs/.

Uniform processing pipeline. ENCODE WGBS pipelines are available 
for paired-end and single-end data. In summary, the pipeline maps 
trimmed reads to a Bismark-transformed genome using Bowtie2. Meth-
ylation states at CpGs, CHHs, and CHGs are quantified using Bismark 
and custom python scripts. Pearson correlation of CpG methylation is 
then calculated between replicates. Further detail and basic workflows 
are available at https://github.com/ENCODE-DCC/dna-me-pipeline.

Quality control. Data quality is evaluated by genomic coverage, C-to-T 
conversion rate, and correlation of CpG methylation levels between 
replicates.

DNAme array
Summary. DNAme arrays measure methylation at CpGs. Like WGBS, 
DNA is treated with bisulfite to convert unmethylated cytosines to 
uracils. After amplification, DNA is hybridized to an array (Illumina 
Infinium Methylation EPIC BeadChip) with probes for both methylated 
and unmethylated states. Methylation is then quantified by comparing 
the signal between the two probes. All ENCODE uniform processing 
pipelines can be found at https://github.com/ENCODE-DCC.

DNA replication timing
Overview. DNA replication timing provides insights into both gene 
regulation and spatiotemporal genome compartmentalization65. 
Production documents were generated for each experiment, and a 
representative experimental protocol for Repli-seq is available at: 
https://www.encodeproject.org/documents/59c9ceae-9f55-41c1-b5ce-
78dc7bd59a1e/@@download/attachment/Repliseq_Protocol.pdf.

A representative experimental protocol for Repli-chip is avail-
able at: https://www.encodeproject.org/documents/97c4a9b3-
8037-4fa4-a348-f396fcc3ecd1/@@download/attachment/wgEncode 
FsuRepliChip.release2.html.pdf.

Processing pipeline. Repli-chip data were processed using LIMMA66. 
Repli-seq data were mapped to the hg19 genome using Bowtie267. 
Details are available at: https://www.encodeproject.org/pipelines/
ENCPL734EDH/.

Metadata
The ENCODE Data Coordination Center (DCC), in collaboration with 
the laboratories performing the assays and the Data Analysis Center 
(DAC), has defined a set of metadata to describe the experimental con-
ditions that were used to generate the data, processing steps that were 
performed to analyse and interpret the data, and metrics to evaluate 
the quality and reproducibility of the data (https://www.encodepro-
ject.org/help/data-organization/). Metadata describe experimental 
assays, biosamples, antibodies, computational analysis. Metadata 
are organized as JSON objects and can be queried programmatically 
using a REST API. In order to ensure metadata accuracy, each schema 
has a set of dependencies to enforce proper modelling when related 
metadata are submitted. After submission, a system of audits is used 
to identify inconsistencies in the data. These audits are also used to 
communicate details of ENCODE data, such as data quality relative to 
standards, to the public68. Each audit is designated a colour depend-
ing on its severity and is displayed on the search page and individual 
object pages. The metadata contain the protocol, date created, lab, and 
sequencing platform, which can be used for removing batch effects 
during integrative analysis.

The Registry of cCREs in human and mouse
The scripts for generating the Registries of cCREs and subsequent analy-
ses are available in a GitHub repository (https://github.com/weng-lab/
ENCODE-cCREs/), with details provided in Supplementary Methods.

Identifying rDHSs
We used all DNase-seq data sets with SPOT scores of more than 0.3 on 
the ENCODE portal as of 1 September 2018 (Supplementary Table 9c, 
h). We called DNase peaks using iterative FDR thresholds to account 
for different sequencing depths among DNase-seq data sets (see Sup-
plementary Methods). Peaks were then filtered on the basis of signal 
(over tenth percentile defined using all DNase-seq data sets), width 
(within 150–350 bp), and FDR (under 1 × 10−3). DNase peaks were clus-
tered across all DNase-seq experiments, and we selected the peak with 
the highest signal (normalized by sequencing depth) in each cluster as 
the representative DNase hypersensitive sites (rDHS) for the cluster. 
All the DNase peaks that overlapped this rDHS by at least one base pair 
were considered represented by the rDHS and removed for subsequent 
iterations. We updated the clusters, identified the next rDHS with the 
highest signal, and removed all the DHSs that it represented. This pro-
cess was repeated until it finally resulted in a list of non-overlapping 
rDHSs that represented all DNase peaks. To reduce the number of false 
positives, we discarded the rDHSs that did not overlap a collection of 
consensus DHSs (cDHSs), independently derived by taking a consensus 
across the DHSs across multiple samples11; this cDHS filtering process 
eliminated 3% of the rDHSs (see Supplementary Methods).

Normalizing epigenomic signals at rDHSs
For each rDHS, we computed the Z-scores of the log10 of DNase, 
H3K4me3, H3K27ac, and CTCF signals in each biosample with such 
data. Z-score computation is necessary for the signals to be compa-
rable across biosamples because the uniform processing pipelines 
for DNase-seq and ChIP–seq data produce different types of signals. 
The DNase-seq signal is in sequencing-depth-normalized read counts, 
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whereas the ChIP–seq signal is the fold change of ChIP over input. Even 
for the ChIP–seq signal, which is normalized using a control experi-
ment, substantial variation remains in the range of signals among biosa-
mples. To illustrate this phenomenon, we examined the distributions 
of H3K27ac signals for 100,000 randomly selected rDHSs across five 
different biosamples—even though these data sets were processed 
uniformly by the same pipeline, the ranges and distributions of sig-
nals differ among the data sets (Supplementary Fig. 21a). The log10 
of the signal in each biosample roughly follows a normal distribution 
(Supplementary Fig. 21b). The Z-scores of log10(signal) have the same 
distributions across biosamples (Supplementary Fig. 21c).

To implement this Z-score normalization, we used the UCSC tool 
bigWigAverageOverBed to compute the signal for each rDHS for a 
DNase, H3K4me3, H3K27ac, or CTCF experiment. For DNase and CTCF, 
the signal was averaged across the genomic positions in the rDHS. The 
signals of H3K4me3 and H3K27ac were averaged across an extended 
region—the rDHS plus a 500-bp flanking region on each side—to account 
for these histone marks at the flanking nucleosomes. Using a custom 
Python script, we took the log10 of these signals and computed a Z-score 
for each rDHS compared with all other rDHSs within a biosample. rDHSs 
with a raw signal of 0 were assigned a Z-score of −10.

Identifying and classifying cCREs
Using the scheme outlined above, we calculated the Z-scores of the 
log10(signal) for the 2.2 million human and 1.2 million mouse rDHSs in 
each species for each experiment of the four core assays—DNase-seq 
and H3K4me3, H3K27ac, and CTCF ChIP–seq. For each rDHS, we then 
determined the maximum Z-score (max-Z) for each of the four core 
assays across all biosamples. The rDHSs with a high DNase max-Z and 
another high max-Z for at least one of the other three ChIP–seq marks 
were defined as cCREs. A Z-score cutoff of 1.64 corresponds to the 
95th percentile for a one-sided Gaussian distribution. A high Z-score 
or a max-Z value is defined as >1.64 throughout, and low otherwise.

Considering the max-Z values across all biosamples but not the 
Z-scores in a specific biosample, cCREs were classified into seven 
states and five groups. A state stands for a specific high–low combi-
nation of a cCRE’s H3K4me3, H3K27ac, or CTCF max-Z values; seven 
states are possible because at least one mark needs to have a high 
signal. For the group classification, we further took into account the 
genomic distance from the centre of the cCRE to the nearest TSS (≤200 
bp for TSS-overlapping, 200–2,000 bp for TSS-proximal, and >2,000 
bp for TSS-distal). We defined TSSs as the 5′ ends of all basic tran-
scripts annotated by GENCODE (V24 for human and M18 for mouse). 
A cCRE was assigned to one of five mutually exclusive groups on the 
basis of its state and TSS proximity (Box 1): TSS-overlapping with 
promoter-like signatures (PLS), TSS-proximal with enhancer-like 
signatures (pELS), TSS-distal with enhancer-like signatures (dELS), 
not TSS-overlapping and with high DNase and H3K4me3 signals 
only (DNase–H3K4me3), not TSS-overlapping and with high DNase 
and CTCF signals only (CTCF-only). Note that this set of seven states 
and five groups is defined across all biosamples, and therefore is 
cell-type agnostic. We next define cell type-specific state and group  
classifications.

To classify cCREs in a particular biosample covered by all four core 
assays, we used DNase, H3K4me3, H3K27ac, or CTCF Z-scores in that 
particular biosample. We had all four types of data for 25 human and 
15 mouse biosamples. The cCREs in each of these biosamples were 
assigned to one of nine states—one low-DNase state regardless of 
H3K4me3, H3K27ac, and CTCF Z-scores, and eight high-DNase states 
with the high–low combinations of their H3K4me3, H3K27ac, and CTCF 
Z-scores. These eight high-DNase states were again combined with the 
distance from the nearest TSS to yield six mutually exclusive groups—
PLS, pELS, dELS, DNase–H3K4me3, CTCF-only, and DNase-only, accord-
ing to the classification diagram (Supplementary Fig. 2). The low-DNase 
state is included as the seventh group. Thus, in a particular biosample 

fully covered by all four core assays, cCREs were classified into nine 
states and seven groups.

Biosamples that are not fully covered by all four assays can also be 
used to define cCREs. To distinguish a low signal for a mark from miss-
ing data for that mark (that is, the assay was not performed for that 
mark in the biosample), we assign a confidence tier to each cCRE based 
on its supporting data (Box 1). Tier 1 cCREs are supported by a high 
DNase signal plus minimally one more high-signal mark in the same 
biosample; that is, these two high signals are concordantly observed 
in the same sample. Tier 1 cCREs were further separated into sub-tiers 
1a and 1b, depending on whether the biosample that had high signals 
for this cCRE was fully covered by the four core assays (Box 1). Thus, all 
tier 1a cCREs are from the 25 human and 15 mouse biosamples that are 
fully covered by the four core assays, whereas tier 1b cCREs are from 
biosamples not fully covered by the four core assays. Tier 2 cCREs are 
supported by a high DNase signal in one biosample and a high signal 
for one more mark in a different biosample, but the concordance test 
could not be performed for the tier 2 cCREs owing to missing pertinent 
data for the cell type-agnostic classification of the cCRE. For exam-
ple, for a tier 2 cCRE with a cell type-agnostic group classification of 
PLS, none of the biosamples with a high DNase signal at this cCRE had 
available H3K4me3 ChIP–seq data, and none of the biosamples with a 
high H3K4me3 signal at this cCRE had available DNase-seq data. There 
are also tier 3 and tier 4 cCREs, which were excluded from the current 
versions of the registries (see Supplementary Methods for details).

We also attempted to make group assignments for cCREs in a par-
ticular biosample that was not fully covered by the four core assays, 
making some approximations. The specific schemes are illustrated 
in Supplementary Fig. 3 and summarized as follows. For samples with 
DNase data, we classified elements using the available marks. For exam-
ple, if a sample lacked H3K27ac (Supplementary Fig. 3e) its cCREs was 
assigned to the PLS and DNase–H3K4me3 groups but not the pELS or 
dELS groups. For biosamples lacking DNase data, we do not have the 
resolution to identify specific elements (Supplementary Fig. 3f). There-
fore, for these biosamples, we simply labelled the cCRE as having a high 
or low signal for every available assay. In these biosamples, cCREs with 
low H3K4me3, H3K27ac, or CTCF signals were labelled ‘unclassified’ 
because we were unable to classify them as low-DNase without DNase 
data. In both SCREEN and in downloadable files, biosamples lacking 
data are clearly labelled as such.

For average conservation score analysis on each set of cCREs 
(Extended Data Fig.  2b), we calculated the average phyloP69  
score (calculated from the alignment of 100 vertebrate genomes  
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/hg 
38.phyloP100way.bw) per base, ±250 bp from the centre of each cCRE. 
Homologous human and mouse cCREs were identified by liftOver70 
with a minimum match score of 0.5 (Extended Data Fig. 2c).

Test cCREs with transgenic mouse assays
We selected regions containing cCRE-dELSs in three E11.5 mouse tis-
sues (midbrain, hindbrain, and limb) for testing using E11.5 transgenic 
mouse assays. We excluded dELS-containing regions that overlapped 
any previously tested regions that were already in the VISTA database 
(http://enhancer.lbl.gov/). We ranked dELS-containing regions from the 
most to the least significant by the average rank of DNase and H3K27ac 
signals in the corresponding tissue and then selected regions from three 
segments of each tissue’s ranked list (the top, around 1,500, and around 
3,000 by rank). We used H3K27ac peaks (called using the ENCODE uni-
form processing pipeline) that overlapped the cCRE-dELSs to choose 
the boundaries of the tested regions. In total, we tested 151 regions 
across the three tissues (Supplementary Table 22).

Transgenic mouse assays were performed in FVB/NCrl strain  
M. musculus animals (Charles River) as described previously49. In brief, 
predicted enhancers were PCR amplified and cloned into a plasmid 
upstream of a minimal Hsp68 promoter and a lacZ reporter gene.  

http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/hg38.phyloP100way.bw
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/hg38.phyloP100way.bw
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phyloP100way/hg38.phyloP100way.bw
http://enhancer.lbl.gov/


The plasmids were pronuclear injected into fertilized mouse eggs, 
and the transgenic embryos were implanted into surrogate mothers, 
collected at E11.5, and stained for β-galactosidase activity. A predicted 
element was scored positive as an enhancer if at least three embryos 
had identical β-galactosidase staining in the same tissue. Conversely, 
a prediction was deemed inactive if no reproducible staining was 
observed and at least five embryos harbouring a transgene insertion 
were obtained.

Evaluating cCREs using public MPRA data
We downloaded the SNPs tested by MPRA50 in human lymphoblastoid 
cells from Supplementary Table 1 of that study and reconstructed tested 
regions by generating a ±75-bp window around each SNP. We then inter-
sected cCREs with these regions using bedtools intersect, requiring 
at least 25% of each cCRE to overlap. Of the cCREs that overlapped a 
tested region, we calculated the percentage that overlapped an MPRA+ 
region. We analysed all cCREs and GM12878-specific cCREs stratified 
by the cCRE group.

Evaluating cCREs with public SuRE data
We downloaded SuRE peaks in human K562 cells from the Supple-
mentary Data Set of an earlier study51. Using bedtools intersect, we 
compared the SuRE peaks with the hg38 cCREs lifted down to the hg19 
genome version, counting the number of base pairs overlapping each 
cCRE or region of interest. We then calculated the total percentage of 
base pairs for each cCRE group that overlapped a SuRE peak.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All data are available on the ENCODE data portal: www.encodeproject.
org.

Code availability
All code is available on GitHub from the links provided in the methods 
section. Code related to the Registry of cCREs can be found at https://
github.com/weng-lab/ENCODE-cCREs. Code related to SCREEN can 
be found at https://github.com/weng-lab/SCREEN.
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Extended Data Fig. 1 | Classification of human cCREs is largely consistent 
across biosamples. a, b, For the 25 human (a) and 15 mouse (b) biosamples that 
were covered by all four core assays, we analysed how cCRE classification could 
differ between biosamples. For each cell-type-agnostic group of cCREs, the 
bars indicate their group classification in specific biosamples, coloured by 
group as indicated. Black indicates a switch in the grouping, for example,  
from cell type-agnostic PLS to cell type-specific pELS or CTCF-only.  
c, d, Two example switches of cCRE grouping between different biosamples.  
c, EH38E2652345 is a cCRE-dELS that has high DNase, H3K4me3, and H3K27ac 
signals in bipolar spindle neurons. By contrast, in cell types at earlier stages of 

neuronal differentiation, such as embryonic stem cells, iPSCs, and neural 
progenitor cells, this cCRE only has high DNase and H3K4me3 signals, 
suggesting that in these cell types the cCRE may be a poised enhancer.  
d, EH38E2459760 is a cCRE-dELS that has high DNase, H3K27ac, and CTCF 
signals in H1-hESCs and iPSCs. However, in further differentiated cell types 
such as neural progenitors and bipolar spindle neurons, the H3K27ac signal 
decreases while the CTCF signal remains, and accordingly, EH38E2459760 is 
classified as a CTCF-only cCRE. In c and d, cCRE colours correspond to group 
classification defined in a and b. Grey cCREs have low DNase signals.



Extended Data Fig. 2 | General properties of cCREs. a, Distributions of 
GRCh38 cCRE width in base pairs stratified by group classification. b, Average 
phyloP score in the ± 250 bp from the centre of each cCRE stratified by cell 
type-agnostic cCRE group: PLS (red), pELS (orange), dELS (yellow), 
DNase-H3K4me3 (pink), and CTCF-only (blue). In grey are 500,000 300-bp 
control regions randomly selected from mappable regions of the human 
genome. c, Fractions of human and mouse cCREs with homology in the other 
species. In black (no homology) are cCREs that do not map to the other 
genome. In dark blue (homology only) are cCREs that map to the other genome 
but do not overlap a cCRE in that genome. In light blue (homology & cCRE) are 

cCREs that map to cCREs in the other genome, which then reciprocally map 
back to the original genome. d, Transcription factor ChIP–seq signals support 
the group classification of cCREs. Violin plots show the average Pol II, EP300, 
and RAD21 ChIP–seq signals for cCREs belonging to each cCRE group, along 
with values indicating median signal levels. All ChIP–seq data and cCREs are in 
GM12878 cells. Colours of violins indicate cCRE groups (PLS, red, N = 17,119; 
pELS, orange, N = 29,435; dELS, yellow, N = 28,594; DNase-H3K4me3, pink, 
N = 7,298; CTCF-only, blue, N = 11,355; DNase-only, green, N = 9,394; low-DNase, 
grey, N = 823,340). Boxplots inside violins display median and first and third 
quartiles.
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Extended Data Fig. 3 | Summary of transcription and transcription factor 
binding at cCREs. a, Scatterplot depicting percent overlap of various groups 
of cCREs with RAMPAGE peaks in eight biosamples with matching data vs. the 
median expression level (in RPM) of the overlapping RAMPAGE peaks. b, The 
vast majority of high-quality ChIP–seq peaks of chromatin-associated proteins 
(mostly transcription factors) overlap cell type-agnostic cCREs. The median 
overlap is 90% across all ChIP–seq experiments. c, d, GRO-seq signal in 
GM12878 averaged over all cCRE-PLSs (c, in red) and cCRE-dELSs (d, in yellow) 
in a ± 2 kb window around cCRE centres. The GRO-seq signals around 
cCRE-PLSs were grouped by the orientation of their associated genes.  
The GRO-seq signals around cCRE-dELSs were grouped by genomic strands. 

Genomic background signal, computed as described in Supplementary 
Methods, is shown by the grey dashed lines and was approximately 0.02 for 
both strands in GM12878. e, Percentages of the transcription start sites of 
FANTOM CAGE-associated transcripts in the eleven FANTOM-defined 
categories that overlap cCRE-PLSs (red), cCRE-pELSs (orange), or cCRE-dELSs 
(yellow). The TSSs of the majority of coding-associated transcripts 
(protein-coding mRNA and divergent lncRNAs) overlapped a cCRE-PLS, while 
the TSSs of the majority of eRNA-like noncoding RNAs (short ncRNAs, 
antisense lncRNAs, intergenic lncRNAs, sense intronic lncRNAs, and sense 
overlap RNAs) overlapped a cCRE-dELS.



Extended Data Fig. 4 | t-SNE analysis of human and mouse biosamples 
based on the H3K27ac signals at their cCREs. To investigate the relationship 
among biosamples and their tissues or cell types of origin, we performed t-SNE 
based on the H3K27ac signal at the cCRE-dELSs (human: 667,599 and mouse: 
209,041) across all biosamples (human: 228 and mouse: 66). a, Human 
biosamples formed seven main clusters as determined by K-means clustering. 
Cluster 1 comprises adult brain tissues and embryonic neurospheres. Cluster 2 
comprises tissues from the adrenal gland, heart, leg muscle, and muscular 
samples of the gastrointestinal (GI) system. Cluster 3 comprises 
haematopoietic cells and immune tissues including the spleen and thymus. 
Cluster 4 comprises tissue but those without strong muscle components such 

as kidney, liver, and mucosa of the gastrointestinal system. Cluster 5 comprises 
embryonic stem cells, induced pluripotent stem cells and in vitro 
differentiated cells from these pluripotent cell types. This cluster also includes 
two outliers, A673 and SK-N-MC cell lines. Cluster 6 comprises a mixture of cell 
lines and primary cells. Cluster 7 comprises tissues from embryonic structures 
such as the placenta and chorion. b, The mouse developmental tissue samples 
formed three large clusters: brain, liver (hepatic plus fetal haematopoietic 
systems), and other tissues, with related tissues cluster together, and several 
tissues (for example, the four brain regions, face, and limb) display a 
time-course dependent arrangement of the samples.
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Extended Data Table 1 | Summary of data produced during ENCODE phase III (as of 1 December 2019)
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experiment per biosample to account for assay redundancy based on QC metrics.

Replication The majority of all ENCODE assays require two successful replicates. In cases of biosample scarcity one replicate was performed and these 
rare cases are clearly labeled at the ENCODE portal. For the mouse transgenic enhancer-reporter assays, a predicted element was scored 
positive as an enhancer if at least three embryos had identical β-galactosidase staining in the same tissue. Specific testing results for the 151 
tested regions can be found in Supplemental Table 13 and at https://enhancer.lbl.gov/.

Randomization No randomization was performed. This was not a clinical trial and therefore randomization is not relevant.

Blinding No blinding was performed. This was not a clinical trial and therefore blinding is not relevant.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used The > 3,000 antibodies that were used are listed on the ENCODE portal at https://www.encodeproject.org/search/?

type=AntibodyLot&status=released. Each antibody page contains information about the supplier name, catalog number, clone 
name, lot number and dilution. Each experiment is linked with its corresponding antibody.

Validation The > 3,000 antibodies that were used are listed on the ENCODE portal at https://www.encodeproject.org/search/?
type=AntibodyLot&status=released. Each antibody page contains information about the antibody validation. Antibody 
characterization guidelines can be found here: https://www.encodeproject.org/documents/4bb40778-387a-47c4-ab24-
cebe64ead5ae/@@download/attachment/
ENCODE_Approved_Oct_2016_Histone_and_Chromatin_associated_Proteins_Antibody_Characterization_Guidelines.pdf

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) We performed assays on 168 cell lines in this study. On the ENCODE data portal each experiment is linked to a specific 
biosample page with details about the sample source.

Authentication We performed assays on 168 cell lines in this study. On the ENCODE data portal each experiment is linked to a specific 
biosample page with details about the sample being authenticated.
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Mycoplasma contamination Cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals We performed assays on 119 mouse biosamples in this study. On the ENCODE data portal each experiment is linked to a specific 
biosample page with details about the sample source including species, strain, sex, and age.

Wild animals None

Field-collected samples None

Ethics oversight Not required.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

The ENCODE Portal.

Files in database submission The ENCODE Portal

Genome browser session 
(e.g. UCSC)

Track hubs for our data are provided in the supplementary methods.

Methodology

Replicates See https://www.encodeproject.org/chip-seq/transcription_factor/ and https://www.encodeproject.org/chip-seq/histone/

Sequencing depth See https://www.encodeproject.org/chip-seq/transcription_factor/ and https://www.encodeproject.org/chip-seq/histone/

Antibodies See https://www.encodeproject.org/chip-seq/transcription_factor/ and https://www.encodeproject.org/chip-seq/histone/

Peak calling parameters See https://www.encodeproject.org/chip-seq/transcription_factor/ and https://www.encodeproject.org/chip-seq/histone/

Data quality See https://www.encodeproject.org/chip-seq/transcription_factor/ and https://www.encodeproject.org/chip-seq/histone/

Software See https://www.encodeproject.org/chip-seq/transcription_factor/ and https://www.encodeproject.org/chip-seq/histone/
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