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Abstract: This paper investigates the ultimately bounded filtering problem for a kind of time-delay
nonlinear stochastic systems with random access protocol (RAP) and uniform quantization effects
(UQEs). In order to reduce the occurrence of data conflicts, the RAP is employed to regulate the
information transmissions over the shared communication channel. The scheduling behavior of the
RAP is characterized by a Markov chain with known transition probabilities. On the other hand,
the measurement outputs are quantized by the uniform quantizer before being transmitted via the
communication channel. The objective of this paper is to devise a nonlinear filter such that, in the
simultaneous presence of RAP and UQEs, the filtering error dynamics is exponentially ultimately
bounded in mean square (EUBMS). By resorting to the stochastic analysis technique and the Lyapunov
stability theory, sufficient conditions are obtained under which the desired nonlinear filter exists, and
then the filter design algorithm is presented. At last, two simulation examples are given to validate
the proposed filtering strategy.

Keywords: uniform quantization; random access protocol; ultimately bounded filtering; discrete-time
systems; time-delays

1. Introduction

Owing to their great significance in signal processing and control applications, filtering problems
have gradually become a mainstream topic of research in recent years. The primary idea of the filtering
problem is to reconstruct the immeasurable state variables of an underlying plant based on the noisy
measurements. The past several decades have witnessed a surge of research enthusiasm towards
developing various filtering algorithms, and a great many representative works have been included
in the literature, see, e.g., [1–10]. Generally speaking, the filtering strategies existing in the literature
mainly include the H∞ filtering [8,11], ultimately bounded filtering [12–15], optimal filtering [16–20],
and variance-constrained filtering [21]. Among others, the ultimately bounded filtering strategy has
been found particularly suitable to handle the filtering issue of time-invariant systems with guaranteed
steady-state filtering performance.

It has been well recognized that the phenomenon of time-delays is frequently found in various
industrial plants such as networked systems, chemical systems, and biological systems. Such a
phenomenon, if not addressed properly, is likely to incur performance deteriorations or even system
instability. Hence, much research effort has been directed towards the analysis/design problems
concerning filtering issues with time delays in the past few decades. Up to now, there have been
roughly four kinds of time delays available in the existing literature, i.e., time-varying delays, discrete
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delays, distributed delays, and mixed delays, see, e.g., [6,18,22]. Recently, the filter design problem
for time-delay nonlinear stochastic systems has stirred considerable research interest because of
its great significance in both theoretical and practical aspects, see, e.g., [6,23,24]. In particular,
the filtering issue has been dealt with in [24] for time-delayed stochastic systems with nonlinearities,
where a variance-constrained approach has been applied to design the relevant parameters.

Along with the rapid development and wide application of the network-based communication
technique, the networked systems have been capturing constant research attention in the last two
decades [25]. In a networked control system, the information transmissions between different system
components are implemented via the shared network channels rather than the traditional point-to-point
cabling. As compared with traditional non-networked systems, the utilization of the communication
network brings many advertised merits which include, but are not limited to, more flexible installation
and lower installation and maintenance costs. These advantages have paved the way for the popularity
of networked systems in a wide range of domains. Nevertheless, great challenges have also been posed
for engineers and scientists due to the inevitable network-induced phenomena, and some typical
issues include packet dropouts, communication delays, fading channels, quantization effects, and
nonuniform sampling. Such networked-induced phenomena, if not well addressed, are likely to
deteriorate the system performance. Consequently, it is quite necessary to give full consideration to the
networked-induced phenomena in the course of designing controllers/filters for networked systems,
and some excellent results have been published in the recent literature, see, e.g., [5,6,9,26–31].

Among a variety of networked-induced features, quantization is deemed to be one of the most
important factors that affect the performance of networked systems. In practical engineering, it is often
the case that the signals might be quantized before transmitted via the communication channel, which
would give rise to certain “quantization error" and the degraded control/filtering performance [32].
So far, the filtering problem subject to quantization effects has gained a notably growing research
interest, see for instance [33–35] and the references therein. Roughly speaking, two types of modeling
approaches have appeared for the quantization in existing literature: one is the uniform quantization
model corresponding to the fixed-point quantization phenomenon, and the other is the logarithmic
quantization model corresponding to the floating-point quantization phenomenon [5,36].

In a networked system with multiple sensors, it is usually unrealistic to assume that all the sensors
are simultaneously granted access to the communication channel to send the measurement signals [37].
Obviously, the simultaneous data transmissions through a shared communication channel with limited
bandwidth could result in severe data collisions and other networked-induced phenomena. As such,
different scheduling protocols have been proposed to govern the order of the sensors by allocating the
network-access-opportunity at each transmission instant according to certain agreements. There are
three sorts of frequently used scheduling protocols in practice, i.e., the Round-Robin protocol [6,38–41],
the Try-Once-Discard protocol [42,43] and the Random Access protocol (RAP) [7,8,22,44]. From the
perspective of industry application, the RAP is the most preferred one due to its simplicity and
extensibility. Based on the scheduling principle of the RAP, the network nodes would obtain their
network access privileges in a random manner.

Concluding the aforementioned discussion, it seems interesting to investigate the ultimately
bounded filtering problem for a kind of time-delay nonlinear stochastic systems with RAP and
uniform quantization effects (UQEs) due to its practical significance and theoretical importance. This is
definitely a non-trivial task because of the following technical difficulties: (1) how to develop a method
to compute the ultimate bound of the filtering error? and (2) how to devise sufficient conditions under
which the desired filter exists? As such, the primary objective of this paper is to provide adequate
responses to the above two questions. The main novelties of this paper are outlined as follows:
(1) for the first time, the ultimately bounded filtering problem is examined for a kind of time-delay
nonlinear stochastic systems under RAP and UQEs; (2) a theoretical framework is built to analyze the
ultimate boundedness of the filtering error by utilizing the stochastic analysis technique; and (3) the
filter gain matrices are given by resorting to the feasibility of a few linear matrix inequalities (LMIs).
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The remainder of this paper is outlined as follows. In Section 2, the ultimately bounded filtering
problem is stated for the networked systems with RAP and UQEs. In Section 3, some sufficient
conditions are established, based on the standard theoretical analysis, to guarantee the ultimately
bounded performance of the designed filter. Section 4 provides two simulation examples to verify the
feasibility of the proposed filtering scheme. Finally, the conclusion is given in Section 5.

Notations: In this paper, Rn and Rn×m represent, respectively, the n-dimensional Euclidean space
and the set of all n×m real matrices. ‖δ‖ and ‖δ‖∞ stand for, respectively, the Euclidean norm and
the infinite norm of a vector δ. For real symmetric matrices X and Y, X ≤ Y (X < Y) indicates that
X−Y is negative semi-definite (negative definite). For a matrix B, BT and tr{B} refer to its transpose
and trace, respectively. [B]n×m represents the set of all n×m real matrices. ‖B‖ denotes the spectral
norm of the matrix B. λmin(B) denotes the minimum eigenvalue of B. For a random event “·”, Prob{·}
represents the occurrence probability. E{y} and E{y|z} denote, respectively, the expectation of the
stochastic variable y and the expectation of y conditional on z. 0n×m represents the n×m zero matrix.
In×m represents the n×m identity matrix. diag{·} is a block-diagonal matrix. In the symmetric block
matrices, “ ∗ ” stands for an ellipsis for terms induced by symmetry.

2. Problem Formulation and Preliminaries

2.1. System Model and Communication Channel

In this paper, a schematic sketch of the addressed filtering problem for a networked system
is depicted in Figure 1 (arrows indicate the signal flow), where the data transmission between the
sensors and the remote nonlinear filter is executed via a shared communication channel. It can be seen
from Figure 1 that the measurement outputs are transmitted to the remote filter via a communication
network. During the network, the signals are first affected by the quantization scheme and then
scheduled by the RAP. Finally, the signals enter the remote filter through the zero-order holder (ZOH).
In what follows, we will introduce the system model and the communication channel.

Plant Sensors
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r

ZOH Estimator

Communication Network (with the 
RAP scheduling) 

Communication 
medium

Protocol Scheduling

Figure 1. The structure block diagram of the RAP-based filtering scheme.

Consider the following class of nonlinear stochastic time-delayed systems:
xk+1 = f (xk, xk−T ) + D1ωk

xj = ϕj, j = 0,−1, · · · ,−T
yk = h(xk) + D2νk

(1)

where xk ∈ Rn and yk ∈ Rm denote, respectively, the system state and the measurement signal
before transmitted via the communication channel; f (·, ·) : Rn ×Rn 7→ Rn and h(·) : Rn 7→ Rm are
two nonlinear vector-valued functions; T stands for the known state delay; ϕj (j = 0,−1, · · · ,−T )
represent the initial conditions; νk ∈ Rnν and ωk ∈ Rnω denote, respectively, the measurement noise
and the process noise; D1 and D2 are known constant matrices with appropriate dimensions.
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Remark 1. In this paper, it is reasonable to assume that the state time-delay is completely known, since the
system dynamics including the information about time-delay can always be obtained by using the mathematical
modeling and parameter identification in many practical applications. For the case where only partial information
about state time-delay is available (e.g., the bounds of the time-delay), the corresponding filtering problem is
always handled by using the robust schemes, see, e.g., [45,46].

Assumption 1. The measurement noise νk and the process noise ωk, which are mutually uncorrelated, are
zero-mean Gaussian white noises with the following statistical properties:

E{ωkωT
k } = L̄L̄T , E{νkνT

k } = ῩῩT (2)

where L̄ and Ῡ are known time-invariant matrices with proper dimensions.

Assumption 2. The functions f (·, ·) and h(·) satisfy the conditions: f (0, 0) = 0, h(0) = 0 and
∥∥∥∥ f (xk + σ, xk−T + δ)− f (xk, xk−T )−

[
A B

] [σ

δ

] ∥∥∥∥ ≤ a1

∥∥∥∥
[

σ

δ

] ∥∥∥∥∥∥h(xk + σ)− h(xk)− Cσ
∥∥ ≤ a2‖σ‖

(3)

for all vectors σ, δ ∈ Rn, where A ∈ Rn×n, B ∈ Rn×n, and C ∈ Rm×n are known time-invariant matrices;
a1 and a2 are known positive constants.

Next, let us discuss the effects incurred by the communication protocol. For technical convenience,
the measurement output before being transmitted is rewritten as

yk =
[
yT

1,k yT
2,k · · · yT

m,k
]T (4)

where yj,k ∈ R (j = 1, 2, · · · , m) is the measurement output of the jth sensor node.
The measurement signal, on the other hand, is firstly quantized by the uniform quantizer, and then

sent through the communication channel with the RAP scheduling. Define the quantized measurement
signal at time instant k as follows:

ỹk , R(yk) ,
[
ỹT

1,k ỹT
2,k · · · ỹT

m,k

]T
(5)

where ỹj,k , vH
( yj,k

v

)
∈ R (j = 1, 2, · · · , m), v denotes the quantizing level, and H (·) denotes a

function that rounds a number to its nearest integer. Letting ∆k , R(yk)− yk = ỹk − yk, it is not
difficult to verify that

‖∆k‖∞ ≤
v

2
. (6)

Remark 2. In this paper, we adopt the uniform quantization scheme. The reasons for adopting this scheme are
summarized as follows: (1) the uniform quantizer is easier to be realized in the practice due to its relatively
simple mechanism; and (2) when the large-amplitude signals are quantized, the signal-to-noise ratio under the
uniform quantization scheme is lower than that in the logarithmic quantization case.

We are now in a position to analyze the effects of RAP scheduling. In this paper, aiming
to prevent transmissions from data collisions, only one sensor node is permitted to get access
to the communication channel and transmit the measurement signal to the remote filter at each
transmission instant. As such, the RAP is employed to orchestrate the order of the data transmissions.
Let εk ∈ {1, 2, · · · , m} represent the current sensor node getting access to the communication channel.
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Under the effects of the RAP scheduling, εk is characterized by a homogeneous Markov chain whose
transition probability matrix Π = [pji]m×m is

Prob{εk+1 = i|εk = j} = pji, j, i ∈ {1, 2, · · · , m} (7)

where pji ≥ 0 (j, i ∈ {1, 2, · · · , m}) is the transition probability from node j to node i and ∑m
i=1 pji =

1, ∀j ∈ {1, 2, · · · , m}.
Define the measurement signal after being transmitted as follows:

ȳk ,
[
ȳT

1,k ȳT
2,k · · · ȳT

m,k
]T . (8)

By using the ZOH (a kind of data-holding strategies), the updating rule of ȳj,k is described as

ȳj,k =

{
ỹj,k, j = εk

ȳj,k−1, otherwise.
(9)

Accordingly, the measurement signal after transmitted ȳk is rewritten as follows:

ȳk = Φεk ỹk + (I −Φεk )ȳk−1 (10)

where Φεk , diag{δ(εk− 1), δ(εk− 2), · · · , δ(εk−m)} and δ(a) ∈ {0, 1} is the Kronecker delta function
that equals 1 if a = 0 and equals 0 otherwise.

Remark 3. The RAP is also called the stochastic communication protocol. In general, there are mainly two
kinds of stochastic processes to characterize the scheduling behaviors of the RAP, one is the discrete-time Markov
chain [3], and the other is the independent and identically distributed sequence of stochastic variables [7]. In this
work, the RAP scheduling behaviors are modeled by the discrete-time homogeneous Markov chain.

2.2. Structure of the Filter

In this subsection, we are going to construct a nonlinear filter for the networked system described
by (1) under the effects of uniform quantization and RAP scheduling. For convenience, let us denote

n(k) , h̃(xk)− h̃(x̂k), h̃(xk) , h(xk)− Cxk, f̃ (xk, xk−T ) , f (xk, xk−T )− Axk − Bxk−T ,

l(k) , f̃ (xk, xk−T )− f̃ (x̂k, x̂k−T )
(11)

where x̂k ∈ Rn denotes the estimate of xk which will be clarified later. Then, the nonlinear stochastic
time-delayed system (1) can be rewritten as follows:{

xk+1 = Axk + Bxk−T + f̃ (xk, xk−T ) + D1ωk

ȳk =Φεk Cxk + Φεk h̃(xk) + Φεk D2νk + Φεk ∆k + (I −Φεk )ȳk−1.
(12)

Letting x̄k+1 ,
[

xT
k+1 ȳT

k

]T
, we have

{
x̄k+1 = Ãεk x̄k + B̃εk f̃ (x̄k) + C̃εk ω̃k + D̃εk x̄k−T

ȳk = Aεk x̄k + Bεk f̃ (x̄k) + Cεk ω̃k
(13)

where

f̃ (x̄k) ,
[

f̃ T(xk, xk−T ) h̃T(xk)
]T

, ω̃k ,
[
ωT

k νT
k ∆T

k

]T
,
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Ãεk ,

[
A 0n×m

Φεk C Im×m −Φεk

]
, B̃εk ,

[
In×n 0n×m

0m×n Φεk

]
, Aεk ,

[
Φεk C Im×m −Φεk

]
,

Bεk ,
[
0m×n Φεk

]
, C̃εk ,

[
D1 0n×nν 0n×m

0m×nω Φεk D2 Φεk

]
, D̃εk ,

[
B 0n×m

0m×n 0m×m

]
,

Cεk ,
[
0m×nω Φεk D2 Φεk

]
.

In this paper, the filter is constructed for the augmented system (13) as the following form{
ˆ̄xk+1 = Ãεk

ˆ̄xk + B̃εk f̃ ( ˆ̄xk) + D̃εk
ˆ̄xk−T + Kεk

(
ȳk − ŷk

)
ŷk = Aεk

ˆ̄xk + Bεk f̃ ( ˆ̄xk)
(14)

where ˆ̄xk ,
[

x̂T
k ŷT

k−1

]T
is the estimate of x̄k and Kεk ∈ R(m+n)×m is the filter gain matrix

to be designed.

Remark 4. In this paper, a switch approach is adopted to deal with the effects caused by the RAP scheduling.
By taking fully the dynamical behavior of the RAP into account, we design a switch-signal-dependent piecewise
filter to achieve the prescribed filtering task. As the real plant runs, the side of filter can detect that which sensor
node is connected to the communication network, and then activates the related filter. Such a kind of filter posses
more flexibility and is easy to be implemented in the practice.

Letting ek , x̄k − ˆ̄xk, the filtering error dynamics is given by

ek+1 = x̄k+1 − ˆ̄xk+1

= Ãεk x̄k + B̃εk f̃ (x̄k) + C̃εk ω̃k + D̃εk x̄k−T − Ãεk
ˆ̄xk − B̃εk f̃ ( ˆ̄xk)− D̃εk

ˆ̄xk−T − Kεk

(
ȳk − ŷk

)
= Ãεk x̄k + B̃εk f̃ (x̄k) + C̃εk ω̃k + D̃εk x̄k−T − Ãεk

ˆ̄xk − B̃εk f̃ ( ˆ̄xk)− D̃εk
ˆ̄xk−T

− Kεk

(
Aεk x̄k + Bεk f̃ (x̄k) + Cεk ω̃k − Aεk

ˆ̄xk − Bεk f̃ ( ˆ̄xk)

)
= Ãεk ek + B̃εk f̃ (ek) + C̃εk ω̃k + D̃εk ek−T − Kεk

(
Aεk ek + Bεk f̃ (ek) + Cεk ω̃k

)
= ~Aεk ek + ~Bεk f̃ (ek) + ~Cεk ω̃k + ~Dεk ek−T

(15)

where

f̃ (ek) ,
[
lT
k nT

k

]T
, ~Aεk , Ãεk − Kεk Aεk , ~Bεk , B̃εk − Kεk Bεk ,

~Cεk , C̃εk − Kεk Cεk , ~Dεk , D̃εk .

Before proceeding further, we introduce the following definition concerning the exponential
ultimate boundedness (EUB).

Definition 1. Let ek;ι represent the state trajectory of the filtering error system (15) from the initial data eθ , ιθ
(−T ≤ θ ≤ 0). The filtering error is said to be EUBMS if there exist constants η > 0, β ∈ [0, 1), κ ≥ 0
such that

E{‖ek;ι‖2} ≤ ηβk sup
−T ≤θ≤0

E{‖ιθ‖2}+ κ (16)

where κ is an asymptotic upper bound.
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The objective of this paper is to devise a filter of the form (15) to estimate the state of the system (13)
such that the dynamics of the filtering error is EUBMS.

3. Main Results

In this section, a sufficient condition is established to guarantee the EUB of the system (15) in mean
square. Moreover, the desired filter parameters are obtained by solving a set of LMIs.

Now, we are in a position to consider the EUB of the system (15).

Theorem 1. Let the filter gain matrices Kj (j = 1, 2, · · · , m) be given. Assume that there exist m + 3 positive
definite matrices Pj ∈ R(n+m)×(n+m) (j = 1, 2, · · · , m), Q ∈ R(n+m)×(n+m), H ∈ Rnω×nω , T ∈ Rnν×nν ,
four positive scalars γς (ς = 1, 2, 3), α ≤ 1, such that the following matrix inequalities hold, for j = 1, 2, · · · , m:

Λj =


Λj

11 Λj
12 Λj

13 Λj
14 0

∗ Λj
22 Λj

23 Λj
24 0

∗ ∗ Λj
33 Λj

34 0
∗ ∗ ∗ Λj

44 0
∗ ∗ ∗ ∗ Λj

55

 < 0 (17)

where

A
j

331 ,
[

Inω×nω 0nω×nν 0nω×m

]
, A

j
332 ,

[
0nν×nω Inν×nν 0nν×m

]
, A

j
112 ,

[
a2

2 In×n 0n×m

0m×n 0m×m

]
,

A
j

221 ,

[
In×n 0n×m

0m×n 0m×m

]
, A

j
111 ,

[
a2

1 In×n 0n×m

0m×n 0m×m

]
, A

j
222 ,

[
0n×n 0n×m

0m×n Im×m

]
,

A
j

333 ,
[
0m×nω 0m×nν Im×m

]
, A

j
441 ,

[
a2

1 In×n 0n×m

0m×n 0m×m

]
,

Λj
13 , ~AT

j

m

∑
i=1

pjiPi~Cj, Λj
11 , ~AT

j

m

∑
i=1

pjiPi ~Aj + T Q− Pj + γ1A
j

111 + γ2A
j

112 + αPj,

Λj
12 , ~AT

j

m

∑
i=1

pjiPi~Bj, Λj
14 , ~AT

j

m

∑
i=1

pjiPi~Dj, Λj
34 , ~CT

j

m

∑
i=1

pjiPi~Dj,

Λj
22 ,~BT

j

m

∑
i=1

pjiPi~Bj − γ1A
j

221 − γ2A
j

222, Λj
23 , ~BT

j

m

∑
i=1

pjiPi~Cj, Λj
24 , ~BT

j

m

∑
i=1

pjiPi~Dj,

Λj
44 , ~DT

j

m

∑
i=1

pjiPi~Dj −Q + γ1A
j

441 + αQ, Λj
55 , diag{−Q + 2αQ,−Q + 3αQ, · · · ,−Q + T αQ},

Λj
33 , ~CT

j

m

∑
i=1

pjiPi~Cj −A
j

331
T

HA
j

331 −A
j

332
T

TA
j

332 −A
j

333
T

γ3A
j

333.

Then, the filtering error dynamics (15) is EUBMS.

Proof of Theorem 1. In order to analyze the EUB of the system (15), we choose the Lyapunov-like
functional as follows:

Vk = eT
k Pεk ek +

T −1

∑
$=0

k−1

∑
j=k−T +$

eT
j Qej. (18)

Then, we have

Vk+1 = eT
k+1Pεk+1 ek+1 +

T −1

∑
$=0

k

∑
j=k−T +$+1

eT
j Qej. (19)
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Letting εk = j, it follows from (18) and (19) that

∆Vk =Vk+1 −Vk

= eT
k+1Pεk+1 ek+1 +

T −1

∑
$=0

k

∑
j=k−T +$+1

eT
j Qej − eT

k Pεk ek −
T −1

∑
$=0

k−1

∑
j=k−T +$

eT
j Qej

= eT
k+1Pεk+1 ek+1 − eT

k Pεk ek +
T −1

∑
$=0

k

∑
j=k−T +$+1

eT
j Qej −

T −1

∑
$=0

k−1

∑
j=k−T +$

eT
j Qej

= eT
k+1Pεk+1 ek+1 − eT

k Pεk ek + eT
k Qek − eT

k−T Qek−T + eT
k Qek − eT

k−T +1Qek−T +1

+ · · ·+ eT
k Qek − eT

k−2Qek−2 + eT
k Qek − eT

k−1Qek−1

= eT
k+1Pεk+1 ek+1 + T eT

k Qek − eT
k Pεk ek − eT

k−T Qek−T − eT
k−T +1Qek−T +1

− · · · − eT
k−2Qek−2 − eT

k−1Qek−1

= (eT
k
~AT

εk
+ f̃ T(ek)~BT

εk
+ ω̃T

k
~CT

εk
+ eT

k−T ~D
T
εk
)Pεk+1 (

~Aεk ek + ~Bεk f̃ (ek) + ~Cεk ω̃k + ~Dεk ek−T )

+ T eT
k Qek − eT

k Pεk ek − eT
k−T Qek−T − eT

k−T +1Qek−T +1 − · · · − eT
k−1Qek−1

= eT
k
~AT

εk
Pεk+1

~Aεk ek + eT
k
~AT

εk
Pεk+1

~Bεk f̃ (ek) + eT
k
~AT

εk
Pεk+1

~Cεk ω̃k + eT
k
~AT

εk
Pεk+1

~Dεk ek−T

+ f̃ T(ek)~BT
εk

Pεk+1
~Aεk ek + f̃ T(ek)~BT

εk
Pεk+1

~Bεk f̃ (ek) + f̃ T(ek)~BT
εk

Pεk+1
~Cεk ω̃k

+ f̃ T(ek)~BT
εk

Pεk+1
~Dεk ek−T + ω̃T

k
~CT

εk
Pεk+1

~Aεk ek + ω̃T
k
~CT

εk
Pεk+1

~Bεk f̃ (ek) + ω̃T
k
~CT

εk
Pεk+1

~Cεk ω̃k

+ ω̃T
k
~CT

εk
Pεk+1

~Dεk ek−T + eT
k−T ~D

T
εk

Pεk+1
~Aεk ek + eT

k−T ~D
T
εk

Pεk+1
~Bεk f̃ (ek) + eT

k−T ~D
T
εk

Pεk+1
~Cεk ω̃k

+ eT
k−T ~D

T
εk

Pεk+1
~Dεk ek−T + T eT

k Qek − eT
k Pεk ek − eT

k−T Qek−T − eT
k−T +1Qek−T +1

− · · · − eT
k−1Qek−1

= ξT
k



h11
j h12

j h13
j h14

j 0

∗ h22
j h23

j h24
j 0

∗ ∗ h33
j h34

j 0

∗ ∗ ∗ h44
j 0

∗ ∗ ∗ ∗ h55
j


ξk

= ξT
k [h

pq
j ]5×5ξk

(20)

where

ξk ,


ek

f̃ (ek)

ω̃k
ek−T
ék−1

 , h11
j , ~AT

j

m

∑
i=1

pjiPi ~Aj + T Q− Pj, ék−1 ,


eT

k−T +1
eT

k−T +2
...

eT
k−1

 ,

h12
j , ~AT

j

m

∑
i=1

pjiPi~Bj, h13
j , ~AT

j

m

∑
i=1

pjiPi~Cj, h14
j , ~AT

j

m

∑
i=1

pjiPi~Dj, h22
j , ~BT

j

m

∑
i=1

pjiPi~Bj,

h23
j , ~BT

j

m

∑
i=1

pjiPi~Cj, h24
j , ~BT

j

m

∑
i=1

pjiPi~Dj, h33
j , ~CT

j

m

∑
i=1

pjiPi~Cj, h34
j , ~CT

j

m

∑
i=1

pjiPi~Dj,

h44
j , ~DT

j

m

∑
i=1

pjiPi~Dj −Q, h55
j , diagT −1{−Q}.

Furthermore, one can infer from (3) and (11) that

γ1

(
f (xk , xk−T )− f (x̂k , x̂k−T )−

[
A B

]  xk − x̂k

xk−T − x̂k−T

)T(
f (xk , xk−T )

− f (x̂k , x̂k−T )−
[

A B
]  xk − x̂k

xk−T − x̂k−T

)
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=γ1

(
f̃ (xk , xk−T ) + Axk + Bxk−T − f̃ (x̂k , x̂k−T )− Ax̂k − Bx̂k−T −

[
A B

]  xk − x̂k

xk−T − x̂k−T

)T

×
(

f̃ (xk , xk−T ) + Axk + Bxk−T − f̃ (x̂k , x̂k−T )− Ax̂k − Bx̂k−T −
[

A B
]  xk − x̂k

xk−T − x̂k−T

)

=γ1

(
f̃ (xk , xk−T )− f̃ (x̂k , x̂k−T ) + A(xk − x̂k) + B(xk−T − x̂k−T )−

[
A B

]  xk − x̂k

xk−T − x̂k−T

)T

×
(

f̃ (xk , xk−T )− f̃ (x̂k , x̂k−T ) + A(xk − x̂k) + B(xk−T − x̂k−T )−
[

A B
]  xk − x̂k

xk−T − x̂k−T

)

=γ1

(
lk + A(xk − x̂k) + B(xk−T − x̂k−T )−

[
A B

]  xk − x̂k

xk−T − x̂k−T

)T

×
(

lk + A(xk − x̂k) + B(xk−T − x̂k−T )−
[

A B
]  xk − x̂k

xk−T − x̂k−T

)

=γ1

(
lk + A(xk − x̂k) + B(xk−T − x̂k−T )− A(xk − x̂k)− B(xk−T − x̂k−T )

)T

×
(

lk + A(xk − x̂k) + B(xk−T − x̂k−T )− A(xk − x̂k)− B(xk−T − x̂k−T )

)
=γ1lT

k lk

=γ1 f̃ T(ek)A
j

221 f̃ (ek)

≤γ1a2
1

 xk − x̂k

xk−T − x̂k−T

T  xk − x̂k

xk−T − x̂k−T


=γ1a2

1(xk−T − x̂k−T )
T(xk−T − x̂k−T ) + γ1a2

1(xk − x̂k)
T(xk − x̂k)

=γ1eT
k A

j
111ek + γ1eT

k−T A
j

441ek−T (21)

and

γ2
(
h(xk)− h(x̂k)− C(xk − x̂k)

)T(h(xk)− h(x̂k)− C(xk − x̂k)
)

=γ2(h̃(xk) + Cxk − h̃(x̂k)− Cx̂k − C(xk − x̂k))
T
(h̃(xk) + Cxk − h̃(x̂k)− Cx̂k − C(xk − x̂k))

=γ2(h̃(xk)− h̃(x̂k) + Cxk − Cx̂k − C(xk − x̂k))
T
(h̃(xk)− h̃(x̂k) + Cxk − Cx̂k − C(xk − x̂k))

=γ2(nk + C(xk − x̂k)− C(xk − x̂k))
T(nk + C(xk − x̂k)− C(xk − x̂k))

=γ2nT
k nk

=γ2 f̃ T(ek)A
j

222 f̃ (ek)

≤γ2a2
2(xk − x̂k)

T(xk − x̂k)

=γ2eT
k A

j
112ek.

(22)

Therefore, we have

∆Vk = ξT
k [h

pq
j ]5×5ξk − αVk + γ3‖∆k‖2 + ωT

k Hωk + νT
k Tνk + αVk

− γ3‖∆k‖2 −ωT
k Hωk − νT

k Tνk

= (ξT
k [h

pq
j ]5×5ξk + αVk − γ3‖∆k‖2 −ωT

k Hωk − νT
k Tνk)− αVk

+ γ3‖∆k‖2 + ωT
k Hωk + νT

k Tνk

= ξT
k Λjξk − αVk + γ3‖∆k‖2 + ωT

k Hωk + νT
k Tνk

≤ − αVk + γ3‖∆k‖2 + ωT
k Hωk + νT

k Tνk, (23)
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which indicates that

E{∆Vk|εk = j} ≤ −αE{Vk|εk = j}+ ζ (24)

where ζ = γ3
v2

4 + tr{L̄T HL̄ + ῩTTῩ}. Furthermore, for any scalar µ ≥ 0, it can be obtained that

E{µk+1∆Vk|εk = j}
=E{µk+1Vk+1 − µk+1Vk|εk = j}
= µk+1(E{Vk+1|εk = j} −E{Vk|εk = j}) + µkE{Vk|εk = j} − µkE{Vk|εk = j}
= µk+1E{Vk+1|εk = j} − µkE{Vk|εk = j}+ µkE{Vk|εk = j} − µk+1E{Vk|εk = j}
= µk+1E{Vk+1|εk = j} − µkE{Vk|εk = j}+ µk(1− µ)E{Vk|εk = j}
≤ − µk+1αE{Vk|εk = j}+ µk+1ζ.

(25)

Hence, we have

E{µk+1Vk+1 − µkVk}
≤ − µk+1αE{Vk}+ µk+1ζ − µk(1− µ)E{Vk}
= − µk+1αE{Vk} − µk(1− µ)E{Vk}+ µk+1ζ

= µk(µ− 1)E{Vk} − µk+1αE{Vk}+ µk+1ζ

= µk(µ− 1− µα)E{Vk}+ µk+1ζ.

(26)

Letting µ = µ0 = 1
1−α and summing up both sides of (26) from 0 to τ − 1 with respect to k, i.e.,

E{µτ
0Vτ} −E{µτ−1

0 Vτ−1} ≤ µτ
0 ζ,

E{µτ−1
0 Vτ−1} −E{µτ−2

0 Vτ−2} ≤ µτ−1
0 ζ,

...

E{µ2
0V2} −E{µ1

0V1} ≤ µ2
0ζ,

E{µ1
0V1} −E{µ0

0V0} ≤ µ1
0ζ.

(27)

Then, we have

E{µτ
0Vτ} −E{V0}

≤µτ
0 ζ + µτ−1

0 ζ + · · ·+ µ2
0ζ + µ1

0ζ

≤
µ0(1− µτ

0)

1− µ0
ζ,

(28)

and it follows that

E{Vk}

≤µ−k
0 (E{V0}+

µ0(1− µk
0)

1− µ0
ζ)

≤µ−k
0 E{V0}+

µ1−k
0 (1− µk

0)

1− µ0
ζ

≤µ−k
0 E{V0}+

µ1−k
0

1− µ0
ζ − µ0

1− µ0
ζ

≤µ−k
0 E{V0} −

µ1−k
0

µ0 − 1
ζ +

µ0

µ0 − 1
ζ
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≤µ−k
0 (E{V0} −

µ0

µ0 − 1
ζ) +

µ0

µ0 − 1
ζ

≤(1− α)k(E{V0} −
ζ

α
) +

ζ

α
. (29)

Then, it is easy to see that

E{‖ek‖2}

≤ 1
p̌
E{Vk}

≤ (1− α)k

p̌

(
E{V0} −

ζ

α

)
+

ζ

α p̌

≤ (1− α)k

p̌
E{V0}+

ζ

α p̌

≤ (1− α)k

p̌
sup

−T ≤θ≤0
E{‖ι(θ)‖2}+ ζ

α p̌

(30)

where p̌ , min1≤j≤l{λmin{Pj}}. Hence, it can be concluded that the system (15) is EUBMS subject
to the quantization error ∆k, the measurement noise νk, and the process noise ωk. The proof
is complete.

Remark 5. Note that sometimes the covariances of the process and measurement noises might be unknown.
A viable method is to design the desired filter based on certain “virtual” covariances, which are sufficiently
large to “cover" the effects induced by the noises. The detailed information about such a method can be found
in [47–49].

Remark 6. Theorem 1 offers a sufficient condition to guarantee the EUB of the dynamics (15) in mean square
under the effects of the RAP scheduling and uniform quantization. From (30), we can easily see that the ultimate
bound of (15) is ζ

α p̌ .

In what follows, it will be shown that the filter gain matrices Kj (j = 1, 2, · · · , m) can be derived
via solving a set of LMIs.

Theorem 2. Let a scalar 0 < α < 1 be given. Assume that there exist 2m + 3 positive definite matrices
Q ∈ R(m+n)×(m+n), H ∈ Rnω×nω , T ∈ Rnν×nν , Zj ∈ Rm×(m+n) (j = 1, 2, · · · , m), Pj ∈ R(m+n)×(m+n)

(j = 1, 2, · · · , m) and three positive scalars γς (ς = 1, 2, 3), such that the following LMIs hold, for j =

1, 2, · · · , m:

´̄Λ
j
=



´̄Λ
j
11 0 0 0 0 ´̄Λ

j
16

∗ ´̄Λ
j
22 0 0 0 ´̄Λ

j
26

∗ ∗ ´̄Λ
j
33 0 0 ´̄Λ

j
36

∗ ∗ ∗ ´̄Λ
j
44 0 ´̄Λ

j
46

∗ ∗ ∗ ∗ ´̄Λ
j
55 0

∗ ∗ ∗ ∗ ∗ ´̄Λ
j
66


< 0 (31)

where

A
j

331 ,
[

Inω×nω 0nω×nν 0nω×m

]
, A

j
332 ,

[
0nν×nω Inν×nν 0nν×m

]
,

A
j

221 ,

[
In×n 0n×m

0m×n 0m×m

]
, A

j
111 ,

[
a2

1 In×n 0n×m

0m×n 0m×m

]
, A

j
222 ,

[
0n×n 0n×m

0m×n Im×m

]
,
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´̄Λ
j
16 , ÃT

j

m

∑
i=1

pjiPi−ĀT
j Zj, A

j
441 ,

[
a2

1 In×n 0n×m

0m×n 0m×m

]
, ´̄Λ

j
44 , γ1A

j
441 −Q + αQ,

A
j

333 ,
[
0m×nω 0m×nν Im×m

]
, A

j
112 ,

[
a2

2 In×n 0n×m

0m×n 0m×m

]
,

´̄Λ
j
11 , T Q− Pj + γ1A

j
111 + γ2A

j
112 + αPj, ´̄Λ

j
22 , −γ1A

j
221 − γ2A

j
222,

´̄Λ
j
26 , B̃T

j

m

∑
i=1

pjiPi−B̄T
j Zj, ´̄Λ

j
36 , C̃T

j

m

∑
i=1

pjiPi−C̄T
j Zj, ´̄Λ

j
46 , D̃T

j

m

∑
i=1

pjiPi−D̄T
j Zj,

´̄Λ
j
3,3 , −A

j
331

T
HA

j
331 −A

j
332

T
TA

j
332 −A

j
333

T
γ3A

j
333, ´̄Λ

j
66 , −

m

∑
i=1

pjiPi,

´̄Λ
j
55 , diag{−Q + 2αQ,−Q + 3αQ, · · · ,−Q + T αQ}.

Then, the filtering error dynamics (15) is EUBMS. Moreover, the filter gain matrices can be calculated by
Kj = (∑m

i=1 pjiPi)
−1ZT

j .

Proof of Theorem 2. According to the well-known Schur Complement lemma [50], Λj can be
rewritten as

Λj =~Λj +



~AT
j

~BT
j

~CT
j

~DT
j

0


m

∑
i=1

pjiPi

[
~Aj ~Bj ~Cj ~Dj 0

]

=~Λj +



~AT
j

~BT
j

~CT
j

~DT
j

0


m

∑
i=1

pjiPiP−1
i Pi

[
~Aj ~Bj ~Cj ~Dj 0

]

=~Λj +



~AT
j

~BT
j

~CT
j

~DT
j

0


m

∑
i=1

pjiPT
i P−1

i Pi

[
~Aj ~Bj ~Cj ~Dj 0

]

=~Λj +



~AT
j PT

i
~BT

j PT
i

~CT
j PT

i
~DT

j PT
i

0


m

∑
i=1

pjiP−1
i

[
Pi ~Aj Pi~Bj Pi~Cj Pi~Dj 0

]
(32)

where

~Λj ,



´̄Λ
j
11 0 0 0 0

∗ ´̄Λ
j
22 0 0 0

∗ ∗ ´̄Λ
j
33 0 0

∗ ∗ ∗ ´̄Λ
j
44 0

∗ ∗ ∗ ∗ ´̄Λ
i
55


.
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Then, it is easy to see from (31) that Λj < 0. Hence, it follows from Theorem 2 that the filter gain
matrices Kj can be given by resorting to the solution to the proposed LMIs.

Remark 7. So far, we have addressed the ultimately bounded filtering problem for a class of time-delay nonlinear
stochastic systems subject to the RAP scheduling and the UQEs. The upper bound of the filtering error has been
expressed explicitly. We have presented sufficient conditions under which the desired ultimately bounded filter
exists by means of certain matrix inequalities. In addition, the filter gain matrices Kj have been designed in
Theorem 2 by solving a set of LMIs.

Remark 8. It is worth mentioning that our main results are different from existing ones in the following two
aspects: (1) the proposed scheme is one of the first few attempts to address the ultimately bounded filtering
problem under RAP and UQEs, which better caters for the engineering practice; and (2) the established
theoretical framework of the networked systems is quite general, which takes both RAP and uniform quantization
into account.

4. Illustrative Examples

4.1. Example 1

Consider the following nonlinear stochastic time-delayed system:

x1,k+1 = 0.52x1,k + 0.62x2,k + 0.64 sin(x1,k) + 0.02ωk

x2,k+1 = 0.56x1,k + 0.52x2,k + 0.32 sin(x2,k−2) + 0.02ωk

x3,k+1 = 0.5x3,k + 0.02ωk

y1,k = 0.28x1,k + 0.27x2,k + x3,k + 0.64 sin(x1,k) + 0.01νk

y2,k = 0.15x1,k + 0.19x2,k + 0.32 sin(x2,k) + 0.01νk.

From (1) and (11), we can obtain that

A =

0.52 0.62 0
0.56 0.52 0

0 0 0.5

 , B = 0, T = 2, C =

[
0.28 0.27 1
0.15 0.19 0

]
, D1 =

[
0.02 0.02 0.02

]T
,

D2 =
[
0.01 0.01

]T
, a1 = 0.1, a2 = 0.1, h̃(xk) =

[
0.64 sin(x1,k)

0.32 sin(x2,k)

]
,

f̃ (xk, xk−T ) =

 0.64 sin(x1,k)

0.32 sin(x2,k−2)

0

 .

The matrices L̄ and Ȳ are given by 0.8 and 0.9, respectively. For the above system, assume that
there are two sensors connected to the communication channel and the transition probability matrix of
the RAP is given by

Π =

[
0.3 0.7
0.2 0.8

]
.

Set the parameter α as α = 0.01. Then, by solving the inequalities presented in Theorem 2,
the desired filter gain matrices Kj can be calculated directly as follows:
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K1 =


1.2677 −6.4683
1.2039 1.0281
0.1225 −5.6653
1.0000 −5.1454
2.9017 1.0000

 , K2 =


−1.9956 2.5173
−7.1714 2.3810
2.9402 −0.0027
1.0000 6.2394
2.1537 1.0000

 .

Let the initial state be

ȳ0 =

[
0
0

]
, ȳ1 =

[
0.1
0.1

]
, ŷ0 =

[
0
0

]
, ŷ1 =

[
0.5
0.6

]
, x̂2 =

−2
10
2


x0 =

 5
−3
0.6

, x1 =

0
0
0

, x2 =

0.1
0.1
0.1

, x̂0 =

0
0
0

, x̂1 =

0
0
0

.

Based on the system model, the proposed filter structure as well as the derived filter gains,
numerical simulation results are given in Figures 2–8. Among them, Figures 2–4 show the state
trajectories and their corresponding estimates for x1,k, x2,k and x3,k, respectively. The filtering error e1,k
under the RAP scheduling is depicted in Figure 5. Figures 6–7 depict the filtering errors e2,k and e3,k
under the RAP scheduling, respectively. In Figure 8, the access situation of two sensor nodes under the
RAP scheduling is exhibited, from which we can clearly see the random selection feature of the RAP.
On the other hand, it is obvious that the system under consideration is indeed unstable. The simulation
results have verified that the designed ultimately bounded filter performs very well.
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Figure 2. The state evolutions of x1,k and corresponding estimates x̂1,k.
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Figure 3. The state evolutions of x2,k and corresponding estimates x̂2,k.
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Figure 4. The state evolutions of x3,k and corresponding estimates x̂3,k.
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Figure 5. Filtering error e1,k under the RAP scheduling.
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Figure 6. Filtering error e2,k under the RAP scheduling.
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Figure 7. Filtering error e3,k under the RAP scheduling.
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Figure 8. The evolutions of selected node under the RAP scheduling.

4.2. Example 2

In order to further verify the effectiveness of the proposed filtering method, we consider the
following time-delayed nonlinear stochastic system:

x1,k+1 = 0.52x1,k + 0.62x2,k + 0.32 sin(x1,k) + 0.02ωk

x2,k+1 = 0.6x1,k + 0.52x2,k + 0.96 sin(x2,k−2) + 0.02ωk

y1,k = 0.28x1,k + 0.27x2,k + 0.64 sin(x1,k) + 0.01νk

y2,k = 0.15x1,k + 0.19x2,k + 0.01νk.

From (1) and (11), we can see that

A =

[
0.52 0.62
0.6 0.52

]
, B = 0, T = 2, C =

[
0.28 0.27
0.15 0.19

]
, D1 =

[
0.02 0.02

]T
,

D2 =
[
0.01 0.01

]T
, a1 = 0.1, a2 = 0.1, h̃(xk) =

[
0.64 sin(x1,k)

0

]
,

f̃ (xk, xk−T ) =

[
0.32 sin(x1,k)

0.96 sin(x2,k−2)

]
.

The matrices L̄ and Ȳ are set to be 0.8 and 0.9, respectively. The transition probability matrix of
the RAP is selected as

Π =

[
0.4 0.6
0.2 0.8

]
.

The parameter α is set to be 0.3. Then, the filter gains Kj are obtained by using Theorem 2:

K1 =


2.0210 3.2909
1.9908 −1.1649
1.0000 −3.5153
−1.4609 1.0000

 , K2 =


−8.2250 3.0315
−1.0058 2.9526
1.0000 3.8047
1.3884 1.0000

 .

The initial states are chosen as:

ȳ0 =

[
0
0

]
, ȳ1 =

[
0.1
0.1

]
, ŷ0 =

[
0
0

]
, ŷ1 =

[
0.5
0.6

]
, x̂2 =

[
−2
10

]

x0 =

[
5
−3

]
, x1 =

[
0
0

]
, x2 =

[
0.1
0.1

]
, x̂0 =

[
0
0

]
, x̂1 =

[
0
0

]
.
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The simulation results are given in Figures 9–13. Among them, the state trajectories and their
corresponding estimates for x1,k and x2,k are depicted in Figures 9–10, respectively. Figures 11–12 show
the filtering error e1,k and e2,k under the RAP scheduling. Figure 13 exhibits the access situation of
the sensors.
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Figure 9. The state evolutions of x1,k and corresponding estimates x̂1,k.
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Figure 10. The state evolutions of x2,k and corresponding estimates x̂2,k.
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Figure 11. Filtering error e1,k under the RAP scheduling.
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Figure 12. Filtering error e2,k under the RAP scheduling.
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Figure 13. The evolutions of selected node under the RAP scheduling.

Next, let us consider the effects of the noise covariances on the ultimate bound. The simulation
results are given in Table 1, from which we can easily see the large noise covariances would lead to a
large ultimate bound of the filtering error.

Table 1. The effects of the noise covariances on the ultimate bound.

E{ωkωT
k } 0.64 0.16 0.0064

E{νkνT
k } 0.81 0.225 0.0081

Ultimate bound 163.9338 43.5281 1.6394

5. Conclusions

In this paper, the ultimately bounded filtering problem has been studied for a class of time-delay
nonlinear stochastic systems with RAP scheduling and UQEs. The scheduling behavior of the
so-called RAP has been modeled by a discrete-time homogeneous Markov chain with known transition
probability matrix. A novel and easy-to-implement ultimately bounded filter has been presented to
reconstruct the real state variables under the pre-defined performance index, and the desired filter
gains have been derived by solving a set of LMIs. Finally, two simulation examples have been exploited
to verify the validity of the proposed filtering scheme.
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