
Single-index composite quantile regression for massive data

Rong Jianga; Keming Yub,1

aDepartment of Statistics, Donghua University, Shanghai, 201620, China
bBrunel University London, UK

Abstract

Composite quantile regression (CQR) is becoming increasingly popular due to its robustness from quantile regression.
Recently, the CQR method has been studied extensively with single-index models, which have wide applications
in many scientific fields including biostatistics, economics, and financial econometrics. However, the numerical
inference of CQR methods for single-index models must involve iteration. In this study, we propose a non-iterative
CQR (NICQR) estimation algorithm and derive the asymptotic distribution of the proposed estimator. Moreover,
we extend the NICQR method to the analysis of massive datasets via a divide-and-conquer strategy. The proposed
approach significantly reduces the computing time and the required primary memory. Simulation studies and two real
data applications are conducted to illustrate the finite sample performance of the proposed methods.
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1. Introduction

Single-index models provide an efficient way of coping with high-dimensional nonparametric estimation problems
and avoid the “curse of dimensionality” by assuming that the response is only related to a single linear combination
of the covariates. Because of its usefulness in several areas such as discrete choice analysis in econometrics and
dose-response models in biometrics (Härdle et al., 1993), we restrict our attention to the single-index model in the
following form:

Y = g0(X⊤γ0) + ε, (1.1)

where Y is the univariate response and X is a vector of the p-dimensional covariates. The function g0(·) is an unspeci-
fied, nonparametric smoothing function; γ0 is the unknown index vector coefficient; and for the sake of identifiability,
following Lin and Kulasekera (2007), we assume that ∥γ0∥ = 1 and that the first component of γ0 is positive, where
∥ · ∥ denotes the Euclidean norm and the error term ε is assumed to be independent of X with E[ε] = 0.

To estimate the parameters in model (1.1), Yu and Ruppert (2002) proposed the penalized spline estimation pro-
cedure, while Xia and Härdle (2006) applied the minimum average variance estimation (MAVE) method, which was
originally introduced by Xia et al. (2002) for dimension reduction. Wu et al. (2010) studied quantile regression (QR),
Feng et al. (2012) proposed the rank-based outer product of gradients estimator method, and Liu et al. (2013) applied
the local linear model regression estimator method. These estimators need to be solved via an iterative procedure.
That is, iteratively estimating both the nonparametric component and the parametric component usually involves high
computational complexity. For this problem, the non-iterative procedure is studied; for example, Wang et al. (2010)
proposed a two-stage procedure and Liang et al. (2010) employed a profile least squares approach. Christou and
Akritas (2016) developed a Nadaraya–Watson QR.

Existing non-iterative estimation procedures for single-index model were built on either least squares or quantile
regression methods. However, the least squares method is sensitive to outliers and does not perform well when the
error distribution is heavily skewed. The quantile regression method is an obvious alternative to the least squares.
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However, the relative efficiency of the quantile regression can be arbitrarily small when compared with the least
squares. In contrast to the above methods, the CQR method was first proposed by Zou and Yuan (2008) for estimating
the regression coefficients in the classical linear regression model. The loss function of CQR is

∑K
k=1 ρτk (·), where

ρτk (r) = τkr − rI(r < 0) is the QR loss functions with k = 1, . . . ,K and 0 < τ1 < · · · < τK < 1. It is easy to see that the
CQR method is a sum of different quantile regressions. Zou and Yuan (2008) showed that the CQR estimator shares
robustness from QR and the relative efficiency of the CQR estimator compared with the least squares estimator is
greater than 70% regardless of the error distribution. Jiang et al. (2012) proposed a CQR estimation for single-index
model, and Jiang et al. (2016a) showed the relative efficiency of the CQR estimator compared with the least squares
estimator for single-index model.

In this study, we use the CQR method to estimate the index coefficients γ0 in model (1.1). Furthermore, we propose
a non-iterative method based on the CQR method for estimating the parametric component of model (1.1) to avoid
such computational complexity. The proposed method is computationally more attractive while being as efficient as
the iterative CQR method proposed by Jiang et al. (2012). Therefore, the proposed procedure is a valuable method to
analyze massive datasets. There are two major challenges in analyzing massive datasets whose sizes usually exceed
the capacity of a single computer: (i) the data can be too big to hold in a computer’s memory and (ii) the computing
task can take too long to obtain the results. These barriers can be overcome with either newly developed statistical
methodologies or computational methodologies. As a solution to the memory and storage limitation problems, the
divide-and-conquer method (Lin and Xi, 2011; Chen and Xie, 2014; Schifano et al., 2016) could be an effective
approach to ease the statistical analysis of massive datasets. Divide-and-conquer involves (i) dividing data into subsets,
(ii) performing statistical analysis independently on each subset, and (iii) combining the results.

Combining the results in this way has long been studied in the statistical literature under the topic of meta. The
classical meta-analysis method is based on the inverse variance weighted average of separate point estimates, each
from one data batch. Lin and Zeng (2010) showed that such a meta-estimator asymptotically achieves the same
asymptotic variance as that based on the entire dataset. Lin and Xi (2011) introduced an aggregated estimating
equation estimator based on the Hessian matrix of the loss function. In our case with a composite quantile loss
function, however, the Hessian matrix does not exist. Xie et al. (2012) developed a robust meta-analysis-type approach
through the confidence distribution approach. Liu et al. (2015) proposed combining the confidence density function in
the same way as combining likelihood functions for inference. An advantage of the confidence distribution approach
is rooted in the fact that it provides a unified framework for combining the distributions of estimators, thus allowing
statistical inference with the combined estimator to be established in a straightforward and mathematically rigorous
fashion. Current references about massive datasets are based on the linear model (Lee et al., 2017), generalized linear
model (Lin and Xi, 2011; Chen and Xie, 2014; Tang et al., 2016; Zhao et al., 2017), and nonparametric model (Lu et
al., 2016; Kong and Xia, 2018). There are no references about single-index models with massive datasets. Therefore,
the goal of this study is to introduce a divide-and-conquer approach for single-index models with massive datasets,
using the approach of combining the confidence density functions derived from the summary statistics of each subset’s
analysis.

Overall, this study offers a novel approach and makes the following key contributions:
(1) Our estimation procedure directly targets the model parameter γ0 in model (1.1) and no iteration is needed for

the numerical computation. The method is robust under heavy-tailed noise distributions and is valid even when the
first two moments of the noise distribution do not exist.

(2) In terms of the limited existing work on single-index models for massive datasets, we develop a divide-and-
conquer NICQR (DC-NICQR) method for single-index models with massive datasets. The proposed approach sig-
nificantly reduces the required primary memory and the resulting estimates are as efficient as if the entire dataset was
analyzed simultaneously.

The remainder of the paper is organized as follows. In Section 2, we introduce the NICQR procedure for model
(1.1). We consider the NICQR method for massive datasets in Section 3. Both the simulation examples and the
applications of two real datasets are given in Section 4 to illustrate the proposed procedures. Final remarks are given
in Section 5. All the conditions and their discussions as well as technical proofs are relegated to the Appendix.

2. NICQR method for single-index models

In this section, we propose an NICQR estimation algorithm for single-index models.
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2.1. NICQR method
Theoretically, the true parameter vector γ0 in model (1.1) solves the following minimization problem:

γ0 = arg min
γ

K∑
k=1

E
[
ρτk

{
Y − Qτk

(
Y|X⊤γ

)}]
, (2.1)

where Qτk

(
Y|X⊤γ) = ck + g(X⊤γ), ck = F−1(τk), F(·) is the cumulative distribution function of the model error ε, and

ρτk (r) = τkr − rI(r < 0), k = 1, . . . ,K, is the K check loss functions with 0 < τ1 < · · · < τK < 1.
For model (1.1), Qτk

(
Y|x⊤γ) = inf{y : P(Y ≤ y | X⊤γ = x⊤γ) ≥ τk}. Since in (2.1), Qτk

(
Y|X⊤γ), k = 1, . . . ,K,

are unknown, (2.1) should be minimized by solving one simple problem that Qτk
(
Y|X⊤γ) must be replaced with an

estimator for each k. However, there are no closed-form expressions for the estimator of Qτk

(
Y|X⊤γ). Thus, this

often leads to iterative algorithms for estimating γ0, which raises the computational complexity. To overcome this
difficulty, we define, for any given γ ∈ Rp, the function Hτk (t | γ) : R → R as Hτk (t | γ) = E

[
Qτk (Y|X) | X⊤γ = t

]
,

k = 1, . . . ,K, where Qτk (Y|x) = inf{y : P(Y ≤ y | X = x) ≥ τk}. Hence, under single-index models, this specifies that
Qτk

(
Y|X⊤γ0

)
= Hτk (X⊤γ0 | γ0), k = 1, . . . ,K; thus γ0 also satisfies

γ0 = arg min
γ

K∑
k=1

E
[
ρτk

{
Y − Hτk (X

⊤γ | γ)
}]
. (2.2)

Let {Yi,Xi}ni=1 be an independent and identically distributed (i.i.d.) sample from {Y,X}. Thus, the right term of (2.2)
can be approximated by

1
n

n∑
i=1

K∑
k=1

ρτk

{
Yi − Hτk (X

⊤
i γ | γ)

}
.

Thus, a non-iterative estimation process based on the Nadaraya–Watson estimator method can be constructed. First,
we obtain the Nadaraya–Watson estimator of Hτk (· | γ) for each k (see Christou and Akritas, 2016):

Ĥτk (t | γ) =
∑n

i=1 Q̂τk (Y|Xi) K̃hk

(
X⊤i γ − t

)
∑n

i=1 K̃hk

(
X⊤i γ − t

) , (2.3)

where K̃hk (·) = K̃(·/hk), K̃(·) is a univariate kernel function, and hk is the bandwidth. Thus, we estimate γ0 by solving
the following minimization problem:

γ̂ = arg min
γ

1
n

n∑
i=1

K∑
k=1

ρτk
{
Yi − Ĥτk (X

⊤
i γ | γ)

}
. (2.4)

After obtaining the estimator γ̂ of γ0 in model (1.1), we can estimate g0(·) in model (1.1). We used the weighted
local CQR (WLCQR) proposed by Jiang et al. (2016b), which is valid without a symmetric error condition. For any
given point u, the final estimate of g0(·) is

ĝ(u | γ̂) =
K∑

k=1

vkâk, (2.5)

where the weight vector v = (v1, . . . , vK)⊤ satisfies conditions
∑K

k=1 vk = 1,
∑K

k=1 vkck = 0, and

(â1, . . . , âK , b̂) = arg min
(a1,...,aK ,b)

1
n

n∑
i=1

K∑
k=1

ρτk

{
Yi − ak − b

(
X⊤i γ̂ − u

)}
K̃h

(
XT

i γ̂ − u
)
. (2.6)

Remark 2.1: In general, given K, one can use the equally spaced quantiles at τk = k/(K + 1) for k = 1, . . . ,K; see
Zou and Yuan (2008). Moreover, we can use redefined BIC (Tian et al., 2016) to select K as follows:

BIC(K) =
2
n

RS K +
log(n)

n
(2K + p − 1), K = 1, . . .Kmax,
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where Kmax is a possible upper bound and RS K =
∑n

i=1
∑K

k=1 ρτk

{
Yi − Ĥτk (X⊤i γ̂ | γ̂)

}
is the residual sum of the estimated

model. The resulting optimal value of K is the smallest redefined BIC value.
Remark 2.2: Q̂τk (Y|Xi), k = 1, . . . ,K, in (2.3) can be obtained by the D-vine copula proposed by Kraus and Czado
(2017), as follows:

Q̂τk (Y|x) = F̂−1
Y

(
Ĉ−1

FY |F1,...,Fp

(
τk | F̂1(x1), . . . , F̂p(xp)

))
,

where Ĉ−1
FY |F1,...,Fp

is the estimator of the conditional Copula quantile function C−1
FY |F1,...,Fp

, F̂Y (y) = 1
n+1

∑n
i=1 I(Yi ≤ y),

and F̂ j(x j) = 1
n+1

∑n
i=1 I(Xi j ≤ x j), j = 1, . . . , p. The detailed estimation process can be found in Section 3.2 of Kraus

and Czado (2017).

2.2. Asymptotic properties

Let f (·) be the density function of the model error and denote by fU0 (·) the marginal density function of U0 =

X⊤γ0. We choose the kernel K̃(·) as a symmetric density function and write µ j =
∫

u jK̃(u)du, ν j =
∫

u jK̃2(u)du,

R1 =
{∑K

k=1 f (ck)
}−2 ∑K

k=1
∑K

k′=1 τkk′ , R2(v) =
∑K

k=1
∑K

k′=1
vkvk′τkk′

f (ck) f (ck′ )
, τkk′ = τk ∧ τk′ − τkτk′ , and hmax = max1≤k≤K{hk},

hmin = min1≤k≤K{hk}.
Theorem 2.1. Suppose that Conditions C1–C4 given in the Appendix hold. n → ∞, nh4

max → 0 and nhmin → ∞;
then, √

n(γ̂ − γ0)
L−→ N

(
0,S−R1

)
, (2.7)

where
L−→ stands for convergence in the distribution, S = E

{
{g′0(XTγ0)}2[X − E(X|XTγ0)][X − E(X|XTγ0)]T

}
, and S−

is the Moore-Penrose inverse of symmetric matrix S, since S is not full ranked (see Ma and He, 2016 and Tang, et al.,
2018).
Theorem 2.2. Under the same conditions as in Theorem 2.1, if n → ∞, h → 0 and nh → ∞, then for an interior
point u of the support of fU0 (·),

√
nh

{
ĝ(u | γ̂) − g0(u) − 1

2
g′′0 (u)µ2h2

}
L−→ N

(
0,
ν0R2(v)
fU0 (u)

)
.

The bias of ĝ(u | γ̂) is free of the choice of the weight vector v, and only the variance term depends on the weight
vector v. Then, the optimal weights correspond to the minimum asymptotic variance of ĝ(u | γ̂). Thus,

vopt = arg min
v

R2(v) =
(c⊤A−1c)A−11 − (1⊤A−1c)A−1c
(c⊤A−1c)(1⊤A−11) − (1⊤A−1c)2 , (2.8)

where c is a K-dimensional column vector with the kth element ck, 1 is a K-dimensional column vector with all
elements 1, and A is a K × K matrix with (k, k′)-element τkk′/( f (ck) f (ck′)), k, k′ = 1, . . . ,K. Thus, with these optimal
weights, the asymptotic variance of ĝ(u | γ̂) is f −1

U0
(u)ν0R2(vopt).

Remark 2.3: For Theorem 2.1, the proposed estimator achieves the same efficiency as the iterative CQR estimator
proposed by Jiang et al. (2012). The results of Theorem 2.2 are thus the same as those of Theorem 5 in Jiang et al.
(2016b). Thus, the selection of the optimal bandwidth h can be found in Jiang et al. (2016b).
Remark 2.4: From (2.8), we can see that the optimal weight vector vopt is complicated and involves the density of the
errors f (ck), k = 1, . . . ,K. In practice, the error density f (ck) is generally unknown. Typical nonparametric density
estimation methods such as kernel smoothing based on the estimated residual ε̂ can provide a consistent estimation
f̂ (ĉk) of f (ck), k = 1, . . . ,K. The details can be found in Section 2.3 of Jiang et al. (2016b).

2.3. Asymptotic relative efficiency (ARE)

In this section, we first investigate the ARE of the NICQR method relative to the MAVE method proposed by Xia
et al. (2002). The asymptotic variance of the MAVE method is S− under the homoscedastic model. Therefore, the
ARE of the CQR method with respect to the MAVE method is

AREγ0 (NICQR,MAVE) = R−1
1 .
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Note that AREγ0 (NICQR,MAVE) is the same as the result obtained by Zou and Yuan (2008). Thus,

AREγ0 (NICQR,MAVE) ≥ 70%.

Next, we consider the ARE of the WLCQR method relative to the mean regression by adopting the MAVE method
and the local CQR (LCQR) method proposed by Jiang et al. (2012). From a similar deduction to that of Jiang et al.
(2016a), we find that the asymptotic efficiency of the WLCQR estimation of g0(·) relative to the MAVE and LCQR
estimations for the case of symmetric errors is

AREg0 (WLCQR,MAVE) = R2(vopt)−4/5,

AREg0 (WLCQR, LCQR) =
[
R2(vopt)

R3

]−4/5

,

where R3 =
∑K

k=1
∑K

k′=1[τkk′/{ f (ck) f (ck′)}]/K2. Jiang et al. (2016a) showed that when the error distribution is sym-
metric, we have

lim
K→∞

inf AREg0 (WLCQR,MAVE) ≥ 1,

lim
K→∞

inf AREg0 (WLCQR, LCQR) ≥ 1.

Remark 2.5: To appreciate how much efficiency AREγ0 (NICQR,MAVE), AREg0 (WLCQR,MAVE), and AREg0 (WLCQR, LCQR)
is gained in practice, Figure 2 in Zou and Yuan (2008) reports AREγ0 (NICQR,MAVE) with various error distributions
for various K and Table 2 in Jiang et al. (2016a) reports AREg0 (WLCQR,MAVE) and AREg0 (WLCQR, LCQR) with
various error distributions for various K.

2.4. Algorithm

To obtain the estimator γ̂ by minimizing (2.4), we use the procedure introduced in Wang and Wu (2013), which
consists of using a local linear approximation of Ĥτk (X⊤i γ | γ) around an initial value γ̃ of γ0. This yields

Ĥτk (X
⊤
i γ | γ) ≈ Ĥτk (X

⊤
i γ̃ | γ̃) + Ĥ′τk

(X⊤i γ̃ | γ̃)(γ − γ̃),

where Ĥ′τk
(X⊤i γ̃ | γ̃) =

∂Ĥτk (X⊤i γ|γ)
∂γ

∣∣∣∣∣
γ=γ̃

. Then, the proposed estimator is obtained from

γ̂ = arg min
γ

1
n

n∑
i=1

K∑
k=1

ρτk
{
Yi − Ĥτk (X

⊤
i γ̃ | γ̃) − Ĥ′τk (X

⊤
i γ̃ | γ̃)(γ − γ̃)

}
. (2.9)

The steps of the NICQR procedure are summarized as follows.
Step 2.1 (Initialization step). Obtain an initial estimate γ̃ and g̃(·) by using the MAVE method, which can be obtained
from the R package MAVE.
Step 2.2. Q̂τk (Y|Xi) in (2.3) is obtained by the D-vine copula proposed by Kraus and Czado (2017), which can be
implemented by using the R package vinereg. Thus, we can obtain Ĥτk (X⊤i γ̃ | γ̃) and Ĥ′τk (X

⊤
i γ̃ | γ̃).

Step 2.3 (Estimation of γ0). Update γ̂ by minimizing the objective function in (2.9), which can be achieved by using
the cqr.cd in the R package cqrReg.
Step 2.4. Obtain the estimate v̂ of vopt in (2.8). The estimation of f̂ =

(
f̂ (ĉ1), . . . , f̂ (ĉK)

)⊤
is as follows: compute

ε̂i = Yi − g̃(X⊤i γ̃) from the results in Step 2.1 and then use the kernel density estimation f̂ (·) = 1
nh̃

∑n
i=1 K̃h̃ (ε̂i − ·)

to estimate f (·). The ĉk of ck is the sample τk-quantile of {ε̂i}ni=1, where the bandwidth h̃ is chosen from h̃ = 0.9 ×
min {std(ε̂1, . . . , ε̂n), IQR(ε̂1, . . . , ε̂n)/1.34} × n−1/5, std and IQR denote the sample standard deviation and sample
interquantile, respectively (see Silverman, 1986).
Step 2.5 (Estimation of g0(·)). From the estimate γ̂ in Step 2.3, for a given point u, estimate g0(u) from (2.6) with v̂ in
Step 2.4, which can be obtained by using a modified cqr.cd in the R package cqrReg.
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3. NICQR method for massive datasets

In this section, we propose a DC-NICQR estimation algorithm for massive datasets.

3.1. DC-NICQR method
It is infeasible to solve the optimization problem in (2.4) and (2.6) when sample size n is too large. To solve the

above problem, we consider a divide-and-conquer method that divides the dataset into several blocks, each containable
in the computer’s memory. Without loss of generality, the entire dataset is partitioned into M subsets and the mth
subset contains nm observations: (Xm,i, Ym,i), i = 1, . . . , nm, and n =

∑M
m=1 nm. Here we assume M is fixed. Based on

the asymptotic normality in (2.7), we form the asymptotic confidence density of γ0 as

ĥn(γ0) ∝ exp
[
−n

2
R−1

1 (γ0 − γ̂)⊤S(γ0 − γ̂)
]
.

Moreover, a data-driven version of the asymptotic confidence density is given by

ĥn(γ0) ∝ exp
[
−n

2
R̂−1

1 (γ0 − γ̂)⊤Ŝ (γ0 − γ̂)
]
,

where R̂1 =
{∑K

k=1 f̂ (ĉk)
}−2 ∑K

k=1
∑K

k′=1 τkk′ is the estimation of R1 and Ŝ = 1
n
∑n

i=1

[
Ĥ′(X⊤i γ̂ | γ̂)

]⊤
Ĥ′(X⊤i γ̂ | γ̂) is the

estimation of S . Note that Ĥτk (X⊤i γ | γ) is the estimator of Hτk (X⊤γ0 | γ0) = Qτk

(
Y|X⊤γ0

)
= ck + g(X⊤γ0). Thus,

Ĥ′τk
(X⊤γ | γ) is the estimator of g′0(XTγ0)[X−E(X|XTγ0)]T , which is independent of τk. A similar result can be found

in Section 4.1 of Christou and Akritas (2016). Therefore, we rewrite Ĥ′τk (X
⊤γ | γ) as Ĥ′(X⊤γ | γ). In the simulation,

we take Ĥ′(X⊤γ | γ) with Ĥ′1/2(X⊤γ | γ).
It is also infeasible to obtain ĥn(γ0) when sample size n is too large. Therefore, by again considering the divide-

and-conquer method, for each sub-dataset (Xm,Ym), we first apply (2.7) to construct the asymptotic confidence density
ĥnm (γ0), m = 1, . . . ,M. Then, we can combine the M confidence densities to derive a combined estimator of γ0. The
combined estimator is denoted by γ̂DC according to the following equation:

γ̂DC = arg max
γ

log
M∏

m=1

ĥnm (γ) = arg min
γ

M∑
m=1

nm

2
R̂−1

1,m(γ − γ̂m)⊤Ŝ m(γ − γ̂m), (3.1)

where R̂1,m =
{∑K

k=1 f̂m(ĉk,m)
}−2 ∑K

k=1
∑K

k′=1 τkk′ , Ŝ m =
1

nm

∑nm
i=1

[
Ĥ′(X⊤m,iγ̂m | γ̂m)

]⊤
Ĥ′(X⊤m,iγ̂m | γ̂m), and γ̂m is the

estimation of γ0 by using the methodology to solve equation (2.4) for the mth subset. We can then use the full data
to estimate fm(ck,m) because of the i.i.d. error setting (the details can be found in (3.3) in Section 3.3). Thus, we
use R̂1,m = R̂1 for m = 1, . . . ,M. By some simple algebra, the solution to the optimization problem in (3.1) can be
expressed as a form of the weighted average of γ̂m, m = 1, . . . ,M, as

γ̂DC =

 M∑
m=1

nmR̂−1
1 Ŝ m


− M∑

m=1

nmR̂−1
1 Ŝ mγ̂m =

 M∑
m=1

nmŜ m


− M∑

m=1

nmŜ mγ̂m.

In summary, we show that the DC-NICQR method can be obtained by using the following three key steps.
Step 3.1. Without loss of generality, the entire dataset is partitioned into M subsets; the mth subset contains nm

observations: (Xm,i,Ym,i), i = 1, . . . , nm, and n =
∑M

m=1 nm.
Step 3.2. For each subset, obtain the estimators γ̂m, m = 1, . . . ,M, using the methodology to solve equation (2.4). The
aggregated estimator for γ0, as a weighted average of γ̂m, m = 1, . . . ,M, is

γ̂DC =

 M∑
m=1

nmŜ m


− M∑

m=1

nmŜ mγ̂m.

Step 3.3. After obtaining the estimation γ̂DC of γ0 in model (1.1), we can estimate g0(·) in model (1.1). For any given
point u, we find the estimators ĝm(u) for each subset, using the methodology in (2.5). Then, the final estimate of
g0(u | γ̂DC), as a weighted average of ĝm(u | γ̂DC), m = 1, . . . ,M, is

ĝDC(u | γ̂DC) =
1
n

M∑
m=1

nmĝm(u | γ̂DC).
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3.2. Asymptotic normality of the resulting estimator

To reveal the advantages of the proposed divide-and-conquer methods, we now establish the asymptotic normali-
ties of γ̂DC and ĝ(·)DC .
Theorem 3.1. Assume that the conditions of Theorem 2.1 are satisfied; then,

√
n(γ̂DC − γ0)

L−→ N
(
0,S−R1

)
.

Theorem 3.2. Assume that the conditions of Theorem 2.2 are satisfied with the optimal weight vopt in (2.8); then,

√
nh

{
ĝDC(u | γ̂DC) − g0(u) − 1

2
g′′0 (u)µ2h2

}
L−→ N

(
0,
ν0R2(vopt)

fU0 (u)

)
.

Remark 3.1: The limiting distributions of γ̂DC and ĝ(·)DC in Theorems 3.1 and 3.2 are those of γ̂ and ĝ(·) in Theorems
2.1 and 2.2, where all the data are analyzed. Thus, the DC-NICQR estimators are asymptotically equivalent to the
corresponding estimator using the full datasets.
Remark 3.2: In Theorem 3.1 and Theorem 3.2, the resulting estimate is robust to the choice of block size M and
subset size nm,m = 1, . . . ,M. Thus, M and nm are chosen so that the estimation of γ0 can be easily handled within
each block.
Remark 3.3: In Step 3.3, we use the same bandwidth h for each subset based on Theorem 3.2 following the method
in Remark 2.3.

3.3. Estimation of the optimal weights vopt for massive datasets

As mentioned in Remark 2.4. the optimal weight vector vopt involves the density of the errors f (ck), k = 1, . . . ,K.
We can use the kernel density estimation 1

n
∑n

i=1 K̃h̃ (ε̂i − ·) to estimate f (·). The estimator ĉk of ck is the sample τk-
quantile of {ε̂i, i = 1, . . . , n}, where ε̂i = Yi− ĝDC(X⊤i γ̂

DC). Therefore, we can obtain the estimation of f (ck) from f̂ (ĉk)
for k = 1, . . . ,K. However, when the available computer memory is much smaller than n, sorting {ε̂i, i = 1, . . . , n}
becomes impossible. To overcome this difficulty, Li et al. (2013) proposed an approach to estimate the population
parameters in a massive dataset. Their method reduces the required primary memory, and the resulting estimate is as
efficient as if the entire dataset was analyzed simultaneously. By following the method of Li et al. (2013), we can
estimate ck, k = 1, . . . ,K, as follows:

ĉk =
1
n

M∑
m=1

nmĉk,m, (3.2)

where ĉk,m is the sample τk-quantile of {ε̂m,i, i = 1, . . . , nm} and ε̂m,i = Ym,i − ĝm(X⊤m,iγ̂
DC). Then, from (3.2), the

weighted combined estimator of f (ck), k = 1, . . . ,K, is given by

f̂ DC(ĉk) =
1
n

M∑
m=1

nm f̂m(ĉk), (3.3)

where f̂m(ĉk) = 1
nm

∑nm
i=1 K̃h̃m

(
ε̂m,i − ĉk

)
,m = 1, . . . ,M, are the kernel density estimations within each subset. Then, we

can obtain

v̂ =
(ĉ⊤Â−1ĉ)Â−11 − (1⊤Â−1ĉ)Â−1ĉ
(ĉ⊤Â−1ĉ)(1⊤Â−11) − (1⊤Â−1ĉ)2

,

where ĉ is a K-dimensional column vector with the kth element ĉk and Â is a K × K matrix with the (k, k′) element
τkk′/

(
f̂ DC(ĉk) f̂ DC(ĉk′)

)
, k, k′ = 1, . . . ,K.

Remark 3.4: The bandwidth selection is taken by h̃m =
(

nm
n

)1/5
h∗m as selected by Li et al. (2013), where h∗m is selected

as 0.9 × 1.06 × σm × n−1/5
m and σ̂m = std(ε̂m,1, . . . , ε̂m,nm ) to estimate σm.
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4. Numerical studies

In this section, we first use Monte Carlo simulation studies to assess the finite sample performance of the proposed
procedures and then demonstrate the application of the proposed methods with two real data analyses. Tian et al.
(2016) proposed redefined BIC to select the number of composite quantiles K. However, the performance of the
CQR method with different K values is similar in their simulation. Moreover, from Tables 1 and 2 in Jiang et al.
(2016a), we see that K = 9 is a good choice for single-index model. Therefore, we choose K = 9 as a compromise
between the estimation and computational efficiency of the CQR method and let the equally spaced quantile levels be
τk = k/10, k = 1, . . . , 9. All programs are written in R and our computer has a 2.4 GHz Pentium processor and 4G
memory.

4.1. Example for the NICQR method
In this section, we include five competitors in our comparison:

(1) MAVE (see Xia and Härdle, 2006);
(2) QR with τ = 0.5 (QR0.5) (see Wu et al., 2010);
(3) CQR with K = 9 (CQR9) (see Jiang et al., 2012);
(4) Non-iterative least squares estimation (NILSE) (see Wang and Wu, 2013); and
(5) Non-iterative QR with τ = 0.5 (NIQR0.5) (see Christou and Akritas, 2016),
where methods (1)–(3) need to be solved via an iterative procedure and (4) and (5) are non-iterative estimation algo-
rithms.

4.1.1. Simulation example 1
We conduct a small simulation study with n = 200 and the data are generated from the following “sine-bump”

model:
Y = sin{π(X⊤γ0 − A)/(B − A)} + 0.2ε, (4.1)

where X is uniformly distributed on [0, 1]3, γ0 = (1, 1, 1)⊤/
√

3 , and A =
√

3/2 − 1.645/
√

12 and B =
√

3/2 +
1.645/

√
12 are taken to ensure that the design is relatively thick in the tail. In our simulation, we consider three

error distributions for ε: a standard normal distribution (N(0, 1)), uniformly distributed on [−2, 2] (U(−2, 2)), and a
Chi-square distribution with three degrees of freedom (χ2(3)). All the simulations are run for 500 replicates.

Table 1 depicts the mean squared errors (MSEs)
(
MS E =

√
(γ̂ − γ0)⊤(γ̂ − γ0)

)
, and Absolute Bias = |γ̂ − γ0| of

the estimate γ̂ to assess the accuracy of the estimation methods. From Table 1, the following conclusions can be
drawn:

(i) All the estimators are close to the true value because the absolute bias are very small.
(ii) The NICQR9 estimator performs better than NIQR9 and is close to CQR9 for different error distributions.

Moreover, NICQR9 is consistently superior to the other four methods except CQR9 when the error is the Chi-square
distribution.

(iii) t in Table 1 and Figure 1 are the average computing time in seconds used to estimate the index parameter.
From t, we see that the operation time of NICQR9 is faster than that of CQR9 and with the increase of n, the gap is
more obvious. Moreover, for the uniform and Chi-square error distributions, the operation time of NICQR9 is faster
than that of QR0.5.

The performance of ĝ(·) is assessed by taking the average squared error:

AS E =
1

ngrid

ngrid∑
i=1

{ĝ(ui) − g(ui)}2 ,

where ui, i = 1, . . . , ngrid are the grid points of the support of X⊤γ0. Here, ngrid = 200 is used. The results in Table 2
suggest the following findings:

(i) When the error follows N(0,1), MAVE is the best of the six estimators and the other methods perform nearly
as well as MAVE.

(ii) For a non-normal and symmetric error U[-2,2], QR0.5 and NIQR9 perform worse than the other four methods.
CQR9 and NICQR9 perform nearly as well as MAVE and NILSE.

(iii) For the asymmetric error χ2(3), NICQR9 performs the best.
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Table 1 The means of Absolute Bias, MSE and t (standard deviation) for model (4.1).
Error Methods γ1 γ2 γ3 MSE t
N(0,1) MAVE 0.0188 (0.0137) 0.0183 (0.0144) 0.0171 (0.0126) 0.0349 (0.0178) 0.2831

QR0.5 0.0213 (0.0160) 0.0195 (0.0152) 0.0194 (0.0144) 0.0386 (0.0204) 1.2297
CQR9 0.0269 (0.0155) 0.0192 (0.0229) 0.0229 (0.0154) 0.0441 (0.0174) 47.4721
NILSE 0.0218 (0.0165) 0.0207 (0.0166) 0.0203 (0.0147) 0.0399 (0.0220) 0.3156
NIQR0.5 0.0333 (0.0259) 0.0322 (0.0261) 0.0322 (0.0239) 0.0629 (0.0337) 0.5427
NICQR9 0.0309 (0.0251) 0.0319 (0.0233) 0.0287 (0.0235) 0.0586 (0.0329) 2.8645

U(-2,2) MAVE 0.0245 (0.0180) 0.0250 (0.0198) 0.0218 (0.0167) 0.0459 (0.0242) 0.2932
QR0.5 0.0328 (0.0243) 0.0317 (0.0254) 0.0306 (0.0230) 0.0609 (0.0328) 3.5831
CQR9 0.0347 (0.0248) 0.0357 (0.0249) 0.0230 (0.0172) 0.0600 (0.0296) 44.6668
NILSE 0.0245 (0.0188) 0.0238 (0.0201) 0.0219 (0.0167) 0.0450 (0.0258) 0.3279
NIQR0.5 0.0486 (0.0352) 0.0443 (0.0361) 0.0479 (0.0367) 0.0906 (0.0478) 0.5757
NICQR9 0.0316 (0.0217) 0.0285 (0.0223) 0.0305 (0.0244) 0.0581 (0.0304) 2.9971

χ2(3) MAVE 0.0361 (0.0276) 0.0374 (0.0286) 0.0347 (0.0300) 0.0697 (0.0391) 0.3695
QR0.5 0.0448 (0.0355) 0.0475 (0.0363) 0.0440 (0.0344) 0.0874 (0.0481) 3.8438
CQR9 0.0294 (0.0249) 0.0344 (0.0166) 0.0295 (0.0203) 0.0605 (0.0207) 52.3415
NILSE 0.0510 (0.0381) 0.0569 (0.0435) 0.0491 (0.0379) 0.0999 (0.0553) 0.4121
NIQR0.5 0.0620 (0.0471) 0.0656 (0.0480) 0.0600 (0.0443) 0.1198 (0.0621) 0.7341
NICQR9 0.0298 (0.0252) 0.0306 (0.0236) 0.0297 (0.0242) 0.0618 (0.0335) 3.4304

Table 2 The mean of ASE (standard deviation) for model (4.1).
Methods N(0,1) U(-2,2) χ2(3)
MAVE 0.0027 (0.0010) 0.0039 (0.0012) 0.3723 (0.0302)
QR0.5 0.0035 (0.0019) 0.0084 (0.0030) 0.2756 (0.0355)
CQR9 0.0033 (0.0016) 0.0046 (0.0013) 0.3297 (0.0272)
NILSE 0.0034 (0.0015) 0.0042 (0.0016) 0.3975 (0.0563)
NIQR0.5 0.0036 (0.0023) 0.0091 (0.0038) 0.2872 (0.0456)
NICQR9 0.0037 (0.0027) 0.0049 (0.0020) 0.2725 (0.0327)

4.1.2. Simulation example 2
It is necessary to investigate the effect of heteroscedastic errors. Consider the following model:

Y = sin(2X⊤γ0) + exp{(X⊤γ0)2} + 0.5 cos{2π(X⊤γ0)}ε, (4.2)

where the index parameter γ0 = (2, 2, 1)⊤/3, and X is uniformly distributed on [0, 1]3, and the residual ε follows a
t distribution with three degrees of freedom. Other settings are defined the same as those in Simulation example 1.
In this section, we add a method WCQR9 proposed by Jiang et al. (2016a) for comparison. The simulation results
are summarized in Table 3. From Table 3, we can see that all the estimators are close to the true value because the
absolute bias are very small. The NICQR9 estimator performs better than MAVE, QR0.5, NILSE and NIQR9 because
of smaller MSE. From t, we see that the operation time of NICQR9 is faster than that of CQR9 and WCQR9.

4.1.3. Real data example 1: Boston housing data
As an illustration, we now apply the proposed methodology to Boston housing data. These data contain 506

observations on 14 variables, and the dependent variable of interest is medv. Thirteen other statistical measurements
on the 506 census tracts in suburban Boston from the 1970 census are also included.

Table 3 The means of Absolute Bias, MSE, and t (standard deviation) for model (4.2).
Methods γ1 γ2 γ3 MSE t
MAVE 0.0109 (0.0098) 0.0122 (0.0088) 0.0155 (0.0114) 0.0251 (0.0134) 0.2390
QR0.5 0.0116 (0.0109) 0.0113 (0.0104) 0.0136 (0.0103) 0.0236 (0.0149) 0.8455
CQR9 0.0097 (0.0081) 0.0076 (0.0053) 0.0089 (0.0081) 0.0171 (0.0109) 17.7260
WCQR9 0.0064 (0.0070) 0.0062 (0.0030) 0.0079 (0.0082) 0.0131 (0.0095) 23.2382
NILSE 0.0134 (0.0098) 0.0136 (0.0102) 0.0152 (0.0126) 0.0273 (0.0162) 0.2646
NIQR0.5 0.0120 (0.0105) 0.0126 (0.0098) 0.0137 (0.0130) 0.0246 (0.0144) 0.4396
NICQR9 0.0089 (0.0073) 0.0094 (0.0068) 0.0111 (0.0079) 0.0189 (0.0097) 1.4211
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Figure 1: The average computing time (in seconds) of estimated γ0 based on CQR9 and NICQR9 for different n.

Table 4 Single-index coefficient estimates and MSE for Boston housing data.
Method γ̂1 γ̂2 γ̂3 MSE t
MAVE 0.3572 -0.9277 0.1087 21.2104 0.7660
QR0.5 0.5193 -0.8470 -0.1131 19.4245 8.2829
CQR9 0.3501 -0.9312 -0.1018 18.6905 162.2150
NILSE 0.3383 -0.9296 -0.1462 21.6905 0.6552
NIQR0.5 0.5193 -0.8470 -0.1131 19.7036 1.7464
NICQR9 0.4966 -0.8612 -0.1078 19.3236 8.2151

Many regression studies have used this dataset and found potential relationships among medv and RM, LSTAT
and DIS (see Wu et al., 2010). In this study, we focus on the following three covariates:

RM: average number of rooms per dwelling;
LSTAT: lower status of the population (percent);
DIS: weighted distances to five Boston employment centers.
All three covariates are standardized to have zero mean and unit variance. The dependent variable is centered on

zero. In this study, the following single-index model is used to fit the data

medv = g{γ1RM + γ2LS T AT + γ3DIS } + ε.

The mean squared error (MSE) for fitting is used to assess the relative success of the six estimation methods,
where MSE = 1

506
∑506

i=1 (yi − ŷi)2, and ŷi is the fitted value of yi (medv). Table 4 summarizes the estimated coefficients
for the above model, showing that DIS has the smallest effect on house prices among the three covariates and LSTAT
is the most important covariate. Table 4 also presents the MSE and t (computing time) for the estimation method
fitting. We find that our methodology (NICQR9) fits the Boston housing dataset well and that the computing time
of NICQR9 is faster than that of CQR9. Figure 2 shows the estimated medv along with the observations, where
Index = γ̂1RM + γ̂2LS T AT + γ̂3DIS , illustrating that NICQR9 is close to the true value.

4.2. Example for massive datasets

In this section, we investigate the performance of our DC-NICQR9 method compared with the oracle full data
NICQR9 method. We evaluate the methods from two perspectives: (i) accuracy in estimating the oracle full data
NICQR9 statistics and (ii) computational efficiency in terms of run time.
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Figure 2: Estimated single index composite quantile regression for Boston housing data. The dots are the observations medv and the curve is the
estimated medv.

Table 5 The means of MSE, Absolute Bias (standard deviation) and tγ for model (4.3).
n M Absolute Bias (γ1) Absolute Bias (γ2) MSE tγ AE tg

2000 1 0.0185 (0.0205) 0.0094 (0.0109) 0.0208 (0.0232) 20.18 0.0262 (0.0181) 3.45
5 0.0221 (0.0115) 0.0164 (0.0088) 0.0249 (0.0186) 15.98 0.0242 (0.0159) 2.12

10 0.0300 (0.0140) 0.0154 (0.0076) 0.0337 (0.0159) 13.90 0.0296 (0.0147) 1.90
5000 1 0.0112 (0.0061) 0.0057 (0.0031) 0.0136 (0.0068) 89.22 0.0126 (0.0146) 27.76

5 0.0131 (0.0067) 0.0086 (0.0045) 0.0147 (0.0097) 41.31 0.0153 (0.0149) 5.91
10 0.0121 (0.0062) 0.0076 (0.0040) 0.0139 (0.0086) 34.38 0.0124 (0.0111) 4.40

10000 1 0.0118 (0.0085) 0.0060 (0.0044) 0.0133 (0.0096) 356.51 0.0123 (0.0137) 159.10
5 0.0110 (0.0086) 0.0056 (0.0043) 0.0123 (0.0095) 100.23 0.0194 (0.0150) 17.64

10 0.0130 (0.0077) 0.0071 (0.0040) 0.0145 (0.0087) 77.47 0.0223 (0.0176) 11.14
100000 10 0.0045 (0.0030) 0.0022 (0.0015) 0.0050 (0.0033) 3977.09 0.0205 (0.0149) 1792.62

4.2.1. Simulation example 3
We conduct a simulation study and the data are generated from the following model:

y = cos
(
X⊤γ0

)
+ exp

{
−

(
X⊤γ0

)2
}
+ 0.2ε, (4.3)

where γ0 = (1, 2)⊤/
√

5, the covariate vector X is generated as a multivariate normal with mean zero and covariance

matrix Var(X) =
(

1 0.5
0.5 1

)
, and the residual ε follows a t distribution with three degrees of freedom. All the

simulations are run for 100 replicates.
Table 5 shows the simulation results. Table 5 presents the Absolute Bias, MSE, computing time (tγ) of the estimate

γ̂, the absolute error (AE=|g(·)− ĝ(·)|) and computing time (tg) of the estimate ĝ(·) for one point of the support of X⊤γ0.
According to Table 5, the performance of the DC-NICQR9 estimators is similar to that of the estimators analyzing the
full dataset (M = 1). Further, the computing time of γ and g(·) decreases drastically as M increases, as seen in Table 5
and Figure 3. With n = 100000, we cannot perform the DC-NICQR9 method on the full dataset because of computer
memory limitations. (The same situation also occurred in Chen and Xie (2014), who considered the CQR9 method
for the linear model.) However, we can obtain estimators by using the divide-and-conquer procedure with M = 10
(see Table 5).
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Figure 3: The curve is observation and the dots are the estimated values.

Table 6 The coefficient estimates and MSE for the airline on-time data.
Mthod HD DIS NF WF MSE
LS 0.0044 -0.0505 -0.0004 -0.0451 0.0836
DC-NICQR9 0.0608 -0.8030 0.0377 -0.5917 0.0831

4.2.2. Real data example 2: Airline on-time data
Here, airline on-time performance data from the 2009 ASA Data Expo (http://stat-computing.org/ dataexpo/2009/the-

data.html) are used as a case study. These data are publicly available and were used as a demonstration of massive
datasets by Schifano et al. (2016). This dataset consists of flight arrival and departure details for all commercial
flights within the United States from October 1987 to April 2008. About 12 million flights were recorded with 29
variables. Because of the computing limit, we only consider the 2008 data (the number of samples is 1,011,963). The
first 1,000,000 data points are used for the estimation and the remaining 11,963 data are used for the prediction.

Schifano et al. (2016) developed a linear model that fit the data as follows:

AD = γ1HD + γ2DIS + γ3NF + γ4WF + ε, (4.4)

where AD is the arrival delay (ArrDelay), which is a continuous variable found by modeling log(ArrDelay−min(ArrDelay)+
1), HD is the departure hour (range 0 to 24), DIS is the distance (in 1000 miles), NF is the dummy variable for a
night flight (1 if departure between 8 p.m. and 5 a.m., 0 otherwise), and WF is the dummy variable for a weekend
flight (1 if departure occurred during the weekend, 0 otherwise).

In this study, the following single-index model is used to fit the data:

AD = g {γ1HD + γ2DIS + γ3NF + γ4WF} + ε. (4.5)

For comparison purposes, we use the least squares method proposed by Draper and Smith (1998) to estimate (γ1, γ2, γ3, γ4)⊤

in model (4.4), and use the DC-NICQR9 method proposed in Section 3 to estimate (γ1, γ2, γ3, γ4)⊤ in model (4.5).
The number of blocks is 500 for these two methods. Furthermore, we evaluate the performance of these estimators
based on their out-of-sample prediction. We present the MSE of the predictions. Table 6 presents the estimated co-
efficients and MSEs of the two methods. Figure 4 illustrates the estimated AD along with the data, showing that the
DC-NICQR9 method performs well with smaller MSE.

5. Conclusion

We proposed an NICQR method to deal with massive datasets. The NICQR method is a non-iterative estimation
algorithm that allows us to analyze massive datasets more quickly. Specifically, we used the divide-and-conquer
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Figure 4: DC-NICQR9 for airline on-time data for model (4.4). The dots are the observations AD and the curve is the estimated AD.

algorithm for massive datasets, which divides the dataset into several blocks, each within the computer’s memory. For
each block, we applied the NICQR method and constructed the asymptotic confidence density function. We obtained
the final estimator by the maximization of the combination of the asymptotic confidence density functions.

The methods in this study were designed for the analysis of massive datasets. An extension to the case in which
dimension p and sample size n are both extremely large is an interesting consideration (see Zhao et al., 2015 and Chen
et al., 2019).
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Appendix

To establish the asymptotic properties of the proposed estimators, the following technical conditions are imposed.
C1. The kernel K̃(·) is a symmetric density function with a bounded support, satisfying a Lipschitz condition.
C2. The density function of U = X⊤γ is positive and uniformly continuous for γ in a neighborhood of γ0. Further the
density of X⊤γ0 is continuous and bounded away from 0 and∞ on its support.
C3. The function g0(·) has a continuous and bounded second derivative.
C4. Assume that the model error ε has a positive density f (·).
Remark: Conditions C1-C4 are standard conditions, which are commonly used in single-index regression model, see
Jiang et al. (2016b) and Christou and Akritas (2016).
Lemma 1. Let (X1,Y1), · · · , (Xn,Yn) be independent and identically distributed random vectors, where Y is scalar
random variable. Further assume that E|y|s < ∞, and supx

∫
|y|s f (x, y)dy < ∞, where f (·, ·) denotes the joint density

of (X,Y). Let K̃ be a bounded positive function with a bounded support, satisfying a Lipschitz condition. Given that
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n2ε−1h→ ∞ for some ε < 1 − s−1, then

sup
x

∣∣∣∣∣∣∣1n
n∑

i=1

{
K̃h(Xi − x)Yi − E(K̃h(Xi − x)Yi)

}∣∣∣∣∣∣∣ = Op

[ log(1/h)
nh

]1/2 .
Proof. This follows immediately from the result obtained by Mack and Silverman (1982).
Lemma 2. Suppose that conditions C1-C2 given in the Appendix hold, and nh4

max → 0, then for any γ

1
√

n

n∑
i=1

[
Ĥτk (X

⊤
i γ | γ) − Hτk (X

⊤
i γ | γ)

]
= op(1).

Proof. Write

1
√

n

n∑
i=1

[
Ĥτk (X

⊤
i γ | γ) − Hτk (X

⊤
i γ | γ)

]
=

1
√

n

n∑
i=1

n∑
j=1

Q̂τk

(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}
∑n

j=1 K̃hk

{
(Xi − X j)⊤γ

} − 1
√

n

n∑
i=1

Hτk (X
⊤
i γ | γ)

=
1

n3/2hk

n∑
i=1

n∑
j=1

Q̂τk
(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}
f̂γ(X⊤i γ)

− 1
√

n

n∑
i=1

Hτk (X
⊤
i γ | γ)

=
1

n3/2hk

n∑
i=1

n∑
j=1

Q̂τk
(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}
f̂γ(X⊤i γ)

− 1
n3/2hk

n∑
i=1

n∑
j=1

Qτk

(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}
fγ(X⊤i γ)

+

 1
n3/2hk

n∑
i=1

n∑
j=1

Qτk

(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}
fγ(X⊤i γ)

− 1
√

n

n∑
i=1

Hτk (X
⊤
i γ | γ)


≡T1 + T2,

where f̂γ(t) = (nhk)−1 ∑n
i=1 K̃hk

(
X⊤i γ − t

)
and

T1 =
1

n3/2hk

n∑
i=1

n∑
j=1

Q̂τk

(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}
f̂γ(X⊤i γ)

− 1
n3/2hk

n∑
i=1

n∑
j=1

Qτk
(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}
fγ(X⊤i γ)

,

T2 =
1

n3/2hk

n∑
i=1

n∑
j=1

Qτk

(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}
fγ(X⊤i γ)

− 1
√

n

n∑
i=1

Hτk (X
⊤
i γ | γ).

In the first step it will be shown that T1 = op(1),

T1 =
1

n3/2hk

n∑
i=1

n∑
j=1

Q̂τk
(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}
f̂γ(X⊤i γ)

− 1
n3/2hk

n∑
i=1

n∑
j=1

Qτk

(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}
f̂γ(X⊤i γ)

+
1

n3/2hk

n∑
i=1

n∑
j=1

Qτk

(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}
f̂γ(X⊤i γ)

− 1
n3/2hk

n∑
i=1

n∑
j=1

Qτk

(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}
fγ(X⊤i γ)

=
1

n3/2hk

n∑
i=1

n∑
j=1

[
Q̂τk

(
Y|X j

)
− Qτk

(
Y|X j

)] K̃hk

{
(Xi − X j)⊤γ

}
f̂γ(X⊤i γ)

+
1

n3/2hk

n∑
i=1

n∑
j=1

Qτk

(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}  1

f̂γ(X⊤i γ)
− 1

fγ(X⊤i γ)


≡T11 + T12,
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where

T11 =
1

n3/2hk

n∑
i=1

n∑
j=1

[
Q̂τk

(
Y|X j

)
− Qτk

(
Y|X j

)] K̃hk

{
(Xi − X j)⊤γ

}
f̂γ(X⊤i γ)

,

T12 =
1

n3/2hk

n∑
i=1

n∑
j=1

Qτk

(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}  1

f̂γ(X⊤i γ)
− 1

fγ(X⊤i γ)

 .
The T11 = op(1) because of supx∈X |Q̂τk (Y|x) − Qτk (Y|x) | = Op(n−1/2), see Rémillard et al. (2017). Under the
condition C2 and nh4

max = o(1), T12 = op(1). Thus, T1 = op(1). Next, to show that T2 = op(1).

T2 =
1

n3/2hk

n∑
i=1

n∑
j=1

Qτk

(
Y|X j

)
K̃hk

{
(Xi − X j)⊤γ

}
fγ(X⊤i γ)

− 1
n3/2hk

n∑
i=1

n∑
j=1

Hτk (X⊤i γ | γ)K̃hk

{
(Xi − X j)⊤γ

}
fγ(X⊤i γ)

+
1

n3/2hk

n∑
i=1

n∑
j=1

Hτk (X⊤i γ | γ)K̃hk

{
(Xi − X j)⊤γ

}
fγ(X⊤i γ)

− 1
√

n

n∑
i=1

Hτk (X
⊤
i γ | γ)

=
1

n3/2hk

n∑
i=1

n∑
j=1

[
Qτk

(
Y|X j

)
− Hτk (X

⊤
i γ | γ)

] K̃hk

{
(Xi − X j)⊤γ

}
fγ(X⊤i γ)

+
1

n3/2hk

n∑
i=1

n∑
j=1

Hτk (X
⊤
i γ | γ)K̃hk

{
(Xi − X j)⊤γ

}  1
fγ(X⊤i γ)

− 1

f̂γ(X⊤i γ)


=

1
n3/2hk

n∑
i=1

n∑
j=1

[
Qτk

(
Y|X j

)
− Hτk (X

⊤
i γ | γ)

] K̃hk

{
(Xi − X j)⊤γ

}
fγ(X⊤i γ)

+ op(1).

By the U-statistics techniques and condition nh4
max = o(1), we can proof that T2 = op(1).

Proof of Theorem 2.1. Set γ̂∗ =
√

n(γ̂ − γ0) and γ∗ =
√

n(γ − γ0). Then, γ̂∗ is also the minimizer of

Ln(γ∗) =
n∑

i=1

K∑
k=1

{
ρτk

(
Y∗i,τk
− H̃τk (Xi | γ∗/

√
n + γ0)

)
− ρτk

(
Y∗i,τk

)}
,

where Y∗i,τk
= Yi − Ĥτk (X⊤i γ0 | γ0)+Op(n−1), and H̃τk (Xi | γ∗/

√
n+ γ0) = Ĥτk (X⊤i γ | γ)− Ĥτk (X⊤i γ0 | γ0). Write Ln(γ∗)

as

Ln(γ∗) = E
[
Ln(γ∗) | X] − n∑

i=1

K∑
k=1

{
ρ′τk

(
Y∗i,τk

)
− E

[
ρ′τk

(
Y∗i,τk

)
| X

]}
H̃τk (Xi | γ∗/

√
n + γ0) + Rn(γ∗),

where Rn(γ∗) is the remainder term, and to save space, we obtain Rn(γ∗) = op(1) by similar idea of proof in Fan et al.
(1994). Note that

E
[
Ln(γ∗) | X]

=

n∑
i=1

K∑
k=1

E
[
ρτk

(
Y∗i,τk
− H̃τk (Xi | γ∗/

√
n + γ0)

)
− ρτk

(
Y∗i,τk

)
| X

]
= −

n∑
i=1

K∑
k=1

E
[
ρ′τk

(
Y∗i,τk

)
| X

]
H̃τk (Xi | γ∗/

√
n + γ0)

+
1
2

n∑
i=1

K∑
k=1

E
[
ρ′′τk

(
Y∗i,τk

)
| X

]
H̃2
τk

(Xi | γ∗/
√

n + γ0) + op(1),

15



and E
[
ρ′′τk

(
Y∗i,τk

)
| X

]
= fε(ck) + op(n−1/2). Thus, we can obtain

Ln(γ∗) = −
K∑

k=1

n∑
i=1

ρ′τk

(
Y∗i,τk

)
H̃τk (Xi | γ∗/

√
n + γ0) +

1
2

K∑
k=1

fε(ck)
n∑

i=1

H̃2
τk

(Xi | γ∗/
√

n + γ0) + op(1)

= −
K∑

k=1

n∑
i=1

ρ′τk

(
Y∗i,τk

) [
Ĥτk

(
X⊤i (γ∗/

√
n + γ0) | γ∗/

√
n + γ0

)
− Ĥτk

(
X⊤i γ0 | γ0

)]
+

1
2

K∑
k=1

fε(ck)
n∑

i=1

[
Ĥτk

(
X⊤i (γ∗/

√
n + γ0) | γ∗/

√
n + γ0

)
− Ĥτk

(
X⊤i γ0 | γ0

)]2
+ op(1).

By Lemma 2, we can obtain

n∑
i=1

[
Ĥτk

(
X⊤i (γ∗/

√
n + γ0) | γ∗/

√
n + γ0

)
− Ĥτk

(
X⊤i γ0 | γ0

)]
=

n∑
i=1

[
Hτk

(
X⊤i (γ∗/

√
n + γ0) | γ∗/

√
n + γ0

)
− Hτk

(
X⊤i γ0 | γ0

)]
+ op(n−1/2),

and

Hτk

(
X⊤i (γ∗/

√
n + γ0) | γ∗/

√
n + γ0

)
− Hτk

(
X⊤i γ0 | γ0

)
=
γ∗
√

n

∂Hτk (X⊤i γ | γ)
∂γ

∣∣∣∣∣
γ0

+ Op(n−1) =
1
√

n
g′(X⊤i γ0)

(
Xi − E[X | X⊤γ0]

)⊤
γ∗ + Op(n−1).

Thus,

Ln(γ∗) = −Wnγ
∗ +

1
2
{γ∗}⊤

 K∑
k=1

fε(ck)

 S nγ
∗ + op(1),

where

Wn =
1
√

n

n∑
i=1

K∑
k=1

ρ′τk
(Y∗i,τk

)g′(X⊤i γ0)
(
Xi − E[X | X⊤γ0]

)⊤
,

S n =
1
n

n∑
i=1

{
g′(X⊤i γ0)

}2 (
Xi − E[X | X⊤γ0]

) (
Xi − E[X | X⊤γ0]

)⊤
.

It is easy to show that S n = S + op(1), thus

Ln(γ∗) = −Wnγ
∗ +

1
2
{γ∗}⊤

 K∑
k=1

fε(ck)

 Sγ∗ + op(1).

It follows by the convexity lemma (see Pollard, 1991) that the quadratic approximation to Ln(γ∗) holds uniformly for
γ∗ in any compact set. Thus, it follows that

γ̂∗ = −
 K∑

k=1

fε(ck)


−1

S−Wn + op(1).

By the Cramér-Wald theorem and the Central Limit Theorem for Wn holds and Var(Wn) → ∑K
k=1

∑K
k′=1 τkk′S. This

completes the proof.
Proof of Theorem 2.2. Note that

√
nh {ĝ(u | γ̂) − g0(u)} =

√
nh {ĝ(u | γ̂) − ĝ(u | γ0)} +

√
nh {ĝ(u | γ0) − g0(u)} ,
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where ĝ(u | γ0) is a local linear estimator of g0(u) when the index coefficient γ0 is known. For given u, for notational
simplicity, we write

∑K
k=1 vkâk,γ̂ = ĝ(u | γ̂), b̂γ̂ = ĝ′(u | γ̂), ∑K

k=1 vkâk,γ0 = ĝ(u | γ0), and b̂γ0 = ĝ′(u | γ0), which are the
solutions of the following minimization problems, respectively,

min
(a1,...,aK ,b)

K∑
k=1

n∑
i=1

ρτk

{
Yi − ak − b(XT

i γ̂ − u)
}

K̃h

(
XT

i γ̂ − u
)
,

min
(a1,...,aK ,b)

K∑
k=1

n∑
i=1

ρτk
{
Yi − ak − b(XT

i γ0 − u)
}

K̃h

(
XT

i γ0 − u
)
.

Denote

θ∗ =
√

nh
{
a1,γ̂ − g0(u) − c1, . . . , aK,γ̂ − g0(u) − cK , h[bγ̂ − g′0(u)]

}T
,

θ̄∗ =
√

nh
{
â1,γ̂ − g0(u) − c1, . . . , âK,γ̂ − g0(u) − cK , h[b̂γ̂ − g′0(u)]

}T
,

θ̄∗∗ =
√

nh
{
â1,γ0 − g0(u) − c1, . . . , âK,γ0 − g0(u) − cK , h[b̂γ0 − g′0(u)]

}T
,

Z∗i,k =
{
eT

k , (X
T
i γ̂ − u)/h

}T
,Z∗∗i,k =

{
eT

k , (X
T
i γ0 − u)/h

}T
,

where ek is a K-vector with 1 on the kth position and 0 elsewhere. Further, write K∗i = K̃h

(
XT

i γ̂ − u
)
, K∗∗i =

K̃h

(
XT

i γ0 − u
)
, ηi,k = I(εi ≤ ck) − τk, η∗i,k(u) = I{εi ≤ ck − d∗i,k} − τk, η∗∗i,k(u) = I{εi ≤ ck − d∗∗i,k} − τk, where

d∗i,k(u) = ck + g0(XT
i γ0) − g0(u) − g′0(u)(XT

i γ̂ − u) and d∗∗i,k(u) = ck + g0(XT
i γ0) − g0(u) − g′0(u)(XT

i γ0 − u). Thus,
Yi − ak − b(XT

i γ̂ − u) = εi − ck + d∗i,k − ∆i,k, where ∆i,k = {Z∗i,k}T θ∗/
√

nh. Then, θ̄∗ is also the minimizer of

L∗n(θ∗) =
K∑

k=1

n∑
i=1

[
ρτk

{
εi − ck + d∗i,k − ∆i,k

}
− ρτk

{
εi − ck + d∗i,k

}]
K∗i .

By applying the identity (Knight, 1998)

ρτ(x − y) − ρτ(x) = y {I(x ≤ 0) − τ} +
∫ y

0
{I(x ≤ z) − I(x ≤ 0)} dz,

we have

L∗n(θ∗) =
K∑

k=1

n∑
i=1

K∗i ∆i,k

[
I
(
εi ≤ ck − d∗i,k

)
− τk

]
+

K∑
k=1

n∑
i=1

K∗i

∫ ∆i,k

0

[
I
(
εi ≤ ck − d∗i,k + z

)
− I

(
εi ≤ ck − d∗i,k

)]
dz

≡W∗⊤n θ
∗ +

K∑
k=1

B∗n,k(θ∗),

where W∗n =
1√
nh

∑K
k=1

∑n
i=1 η

∗
i,k(u)Z∗i,kK∗i and B∗n,k(θ∗) =

∑n
i=1 K∗i

∫ ∆i,k

0

[
I
(
εi ≤ ck − d∗i,k + z

)
− I

(
εi ≤ ck − d∗i,k

)]
dz. Since

B∗n,k(θ∗) is a summation of i.i.d. random variables of the kernel form, it follows by Lemma 1 that

B∗n,k(θ∗) = E[B∗n,k(θ∗)] + Op

(
log1/2(1/h)/

√
nh

)
.

The conditional expectation of
∑K

k=1 B∗n,k(θ∗) can be calculated as

K∑
k=1

E[B∗n,k(θ∗)|U0] =
K∑

k=1

n∑
i=1

K∗i

∫ ∆i,k

0

[
F

(
ck − d∗i,k + z

)
− F

(
ck − d∗i,k

)]
dz

=
1
2
θ∗⊤

 1
nh

K∑
k=1

n∑
i=1

K∗i f
(
ck − d∗i,k

)
Z∗i,kZ∗⊤i,k

 θ∗ + Op

(
log1/2(1/h)/

√
nh

)
≡1

2
θ∗⊤S ∗nθ

∗ + Op

(
log1/2(1/h)/

√
nh

)
,
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where S ∗n =
1
nh

∑K
k=1

∑n
i=1 K∗i f

(
ck − d∗i,k

)
Z∗i,kZ∗⊤i,k . Then,

L∗n(θ∗) = W∗⊤n θ
∗ +

K∑
k=1

E[B∗n,k(θ∗)] + Op

(
log1/2(1/h)/

√
nh

)
= W∗⊤n θ

∗ +
K∑

k=1

E{E[B∗n,k(θ∗)|U0]} + Op

(
log1/2(1/h)/

√
nh

)
= W∗⊤n θ

∗ +
1
2
θ∗⊤E[S ∗n]θ∗ + Op

(
log1/2(1/h)/

√
nh

)
.

It can be shown that E[S ∗n] = fU0 (u)S ∗ + O(h2), where

S ∗ =
(

C∗ 0
0 µ2

∑K
k=1 f (ck)

)
.

where C∗ is a K × K diagonal matrix with C∗j j = f (c j). Therefore, we can write L∗n(θ∗) as

L∗n(θ∗) = W∗⊤n θ
∗ +

1
2

fU0 (u)θ∗⊤S ∗θ∗ + Op

(
log1/2(1/h)/

√
nh

)
.

By applying the convexity lemma (Pollard, 1991) and the quadratic approximation lemma (Fan and Gijbels, 1996),
the minimizer of L∗n(θ∗) can be expressed as

θ̄∗ = −{ fU0 (u)S ∗}−W∗n + op(1).

θ̄∗∗ can be shown similarly as
θ̄∗∗ = −{ fU0 (u)S ∗}−W∗∗n + op(1),

where W∗∗n =
1√
nh

∑K
k=1

∑n
i=1 η

∗∗
i,k(u)Z∗∗i,kK∗∗i . Thus, by the conditions

∑K
k=1 vk = 1 and

∑K
k=1 vkck = 0, we can obtain

√
nh {ĝ(u | γ0) − g0(u)} =

√
nh

 K∑
k=1

vkâk,γ0 − g0(u)

 = K∑
k=1

vk
√

nh
(
âk,γ0 − g0(u) − ck

)
= −

f −1
U0

(u)
√

nh

K∑
k=1

n∑
i=1

vk f −1(ck)
[
I
(
εi ≤ ck − d∗∗i,k

)
− τk

]
K∗∗i + op(1),

√
nh {ĝ(u | γ̂) − g0(u)} = −

f −1
U0

(u)
√

nh

K∑
k=1

n∑
i=1

vk f −1(ck)
[
I
(
εi ≤ ck − d∗i,k

)
− τk

]
K∗i + op(1).

Thus,
√

nh {ĝ(u | γ̂) − ĝ(u | γ0)} =
√

nh {ĝ(u | γ̂) − g0(u)} −
√

nh {ĝ(u | γ0) − g0(u)}

= −
f −1
U0

(u)
√

nh

K∑
k=1

n∑
i=1

vk f −1(ck)
{[

I
(
εi ≤ ck − d∗i,k

)
− τk

]
K∗i −

[
I
(
εi ≤ ck − d∗∗i,k

)
− τk

]
K∗∗i

}
+ op(1).

When ∥γ̂ − γ0∥ = Op(n−1/2), we can obtain
√

nh{ĝ(u | γ̂) − ĝ(u | γ0)} = op(1). For above, it is easy to see that

√
nh {ĝ(u | γ̂) − g0(u)} =

√
nh {ĝ(u | γ̂) − ĝ(u | γ0)} +

√
nh {ĝ(u | γ0) − g0(u)}

= −
f −1
U0

(u)
√

nh

K∑
k=1

n∑
i=1

vk f −1(ck)
[
I
(
εi ≤ ck − d∗∗i,k

)
− τk

]
K∗∗i + op(1).
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Then, by the conditions
∑K

k=1 vk = 1 and
∑K

k=1 vkck = 0, we have

bias{ĝ(u | γ̂)|U0} = E
[
ĝ(u | γ̂) − g0(u)|U0

]
= −

f −1
U0

(u)

nh

K∑
k=1

n∑
i=1

vk f −1(ck)
[
F

(
ck − d∗∗i,k

)
− F(ck)

]
K∗∗i + op(1)

= −
f −1
U0

(u)

nh

K∑
k=1

n∑
i=1

vkd∗∗i,kK∗∗i (1 + op(1)) + op(1)

= −
f −1
U0

(u)

nh

K∑
k=1

n∑
i=1

vk

[
ck + g0(XT

i γ0) − g0(u) − g′0(u)(XT
i γ0 − u)

]
K∗∗i (1 + op(1)) + op(1)

= −
f −1
U0

(u)

nh

n∑
i=1

[
g0(XT

i γ0) − g0(u) − g′0(u)(XT
i γ0 − u)

]
K∗∗i (1 + op(1)) + op(1)

= − 1
2

g′′0 (u)µ2h2(1 + op(1)) + op(1) = −1
2

g′′0 (u)µ2h2 + op(h2).

Furthermore, Var{ĝ(u | γ̂)|U0} = ν0R2(v)/{nh fU0 (u)}. This completes the proof.
Proof of Theorem 3.1. By the similar proof of Theorem 2.1,

1
n

M∑
m=1

nmŜ m =
1
n

M∑
m=1

nm∑
i=1

{
g′(X⊤m,iγ0)

}2 (
Xm,i − E[Xm | X⊤mγ0]

) (
Xm,i − E[Xm | X⊤mγ0]

)⊤
+

1
n

M∑
m=1

op(nm)

=
1
n

n∑
i=1

{
g′(X⊤i γ0)

}2 (
Xi − E[X | X⊤γ0]

) (
Xi − E[X | X⊤γ0]

)⊤
+ op(1)

=Sn + op(1) = S + op(1).

Moreover, from the proof of Theorem 2.1, for each subsets nm → ∞, m = 1, . . . ,M, we have

nmSm(γ̂m − γ0) = −
 K∑

k=1

f (ck)


−1 nm∑

i=1

K∑
k=1

ρ′τk (Y
∗
i,τk

)g′(X⊤m,iγ0)
(
Xm,i − E[Xm | X⊤mγ0]

)⊤
+ op(

√
nm).

Thus, we can obtain

√
n(γ̂DC − γ0) =

√
n


 M∑

m=1

nmŜm


− M∑

m=1

nmŜmγ̂m − γ0


=

1
n

M∑
m=1

nmŜm


−  1
√

n

M∑
m=1

nmŜm (γ̂m − γ0)


=

{
S− + op(1)

}  1
√

n

M∑
m=1

nmSm (γ̂m − γ0) +
1
√

n

M∑
m=1

op(
√

nm)


= − S−

 K∑
k=1

f (ck)


−1

1
√

n

M∑
m=1

nm∑
i=1

K∑
k=1

ρ′τk
(Y∗i,τk )g

′(X⊤m,iγ0)
(
Xm,i − E[Xm | X⊤mγ0]

)⊤
+ op(1)

= − S−
 K∑

k=1

f (ck)


−1

1
√

n

n∑
i=1

K∑
k=1

ρ′τk
(Y∗i,τk

)g′(X⊤i γ0)
(
Xi − E[X | X⊤γ0]

)⊤
+ op(1).

By the Cramér-Wald theorem and the Central Limit Theorem, the Theorem 3.1 can be proof.
Proof of Theorem 3.2. From the proof of Theorem 2.2, for each subsets nm → ∞, m = 1, . . . ,M, we have√

nmh
{
ĝm(u | γ̂DC) − g0(u)

}
= −

f −1
U0

(u)
√

nmh

K∑
k=1

nm∑
i=1

vk f −1(ck)
[
I
(
εi ≤ ck − d∗∗i,k

)
− τk

]
K∗∗i + op(1).
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Thus, we can obtain

√
nh

{
ĝDC(u | γ̂DC) − g0(u)

}
=
√

nh

1
n

M∑
m=1

nmĝDC
m (u | γ̂DC) − g0(u)


= −

f −1
U0

(u)
√

nh

K∑
k=1

n∑
i=1

vk f −1(ck)
[
I
(
εi ≤ ck − d∗∗i,k

)
− τk

]
K∗∗i + op(1).

Thus, the Theorem 3.2 can be proof.
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Härdle, W., Hall, P. and Ichimura, H. (1993). Optimal smoothing in single-index models. The Annals of Statistics
21 157–178.

Jiang, R., Zhou, Z. G., Qian, W. M. and Shao, W. Q. (2012). Single-index composite quantile regression. Journal of
the Korean Statistical Society 3 323–332.

Jiang, R., Qian, W. M. and Zhou, Z. G. (2016a). Weighted composite quantile regression for single-index models.
Journal of Multivariate Analysis 148 34–48.

Jiang, R., Qian, W. M. and Zhou, Z. G. (2016b). Single-index composite quantile regression with heteroscedasticity
and general error distributions. Statistical Papers 57 185–203.

Kong, E. and Xia, Y. (2018). On the efficiency of online approach to nonparametric smoothing of big data. Statistica
Sinica DOI: 10.5705/ss.202015.0365.

Knight, K. (1998). Limiting distributions for L1 regression estimators under general conditions. The Annals of
Statistics 26 755–770.

Kraus, D. and Czado, C. (2017). D-vine copula based quantile regression. Computational Statistics and Data
Analysis 110 1–18.

Lee, J. D., Liu, Q., Sun, Y. and Taylor, J. E. (2017). Communication-efficient sparse regression. Journal of Machine
Learning Research 18 1–30.

Li, R., Lin, D. and Li, B. (2013). Statistics inference in massive data sets. Applied Stochastic Models in Business
and Industry 29 399–409.

20



Liang, H., Liu, X., Li, R. Z. and Tsai, C. L. (2010). Estimation and testing for partially linear single-index models.
The Annals of Statistics 6 3811–3836.

Lin, W. and Kulasekera, K. B. (2007). Identifiability of single-index models and additive-index models. Biometrika
94 496–501.

Lin, N. and Xi, R. (2011). Aggregated estimating equation estimation. Statistics and Its Interface 4 73–83.

Lin, D. and Zeng, D. (2010). On the relative efficiency of using summary statistics versus individual-level data in
meta-analysis. Biometrika 97 321–332.

Liu, J., Zhang, R., Zhao, W. and Lv, Y. (2013). A robust and efficient estimation method for single index models.
Journal of Multivariate Analysis 122 226–238.

Liu, D. G., Liu R. Y. and Xie, M. G. (2015). Multivariate meta-analysis of heterogeneous studies using only summary
statistics: efficiency and robustness. Journal of the American Statistical Association 110 326–340.

Lu, J., Cheng, G. and Liu. H. (2016). Nonparametric heterogeneity testing for massive data. arXiv:1601.06212.

Ma, S. J. and He, X. M. (2016). Inference for single-index quantile regression models with profile optimization. The
Annals of Statistics 4 1234–1268.

Mack, Y. and Silverman, B. (1982). Weak and strong uniform consistency of kernel regression estimates. Z.Wahrscheinlichkeitstheorie
Verw. Geb. 61 405–415.

Pollard, D. (1991). Asymptotics for least absolute deviation regression estimators. Econometric Theory 7 186–199.

Rémillard, B., Nasri, B. and Bouezmarni, T. (2017). On copula-based conditional quantile estimators. Statistics
and Probability Letters 128 14–20.

Silverman, B. W. (1986). Density Estimation. Chapman and Hall, London.

Schifano, E. D., Wu, J., Wang, C., Yan, J. and Chen, M. H. (2016). Online updating of statistical inference in the big
data setting. Technometrics 58 393–403.

Tang, L., Zhou, L. and Song, X. K. (2016). Method of divide-and-combine in regularised generalised linear models
for big data. arXiv:1611.06208.

Tang, Y. L., Wang, H. and Liang, H. (2018). Composite estimation for single-index models with responses subject
to detection limits. Scandinavian Journal of Statistics 45 444–464.

Tian, Y., Zhu, Q. and Tian, M. (2016). Estimation of linear composite quantile regression using EM algorithm.
Statistics and Probability Letters 117 183–191.

Wang, J. L., Xue, L. G., Zhu, L. X. and Chong, Y. S. (2010). Estimation for a partial-linear single-index model. The
Annals of Statistics 1 246–274.

Wang, Q. and Wu, R. (2013). Shrinkage estimation of partially linear single-index models. Statistics and Probability
Letters 83 2324–2331.

Wu, T. Z., Yu, K. and Yu, Y. (2010). Single-index quantile regression. Journal of Multivariate analysis 101 1607–
1621.
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