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ABSTRACT Given a set of noisy data values from a polynomial, determining the degree and coefficients of the polynomial is a 
problem of polynomial regressions. Polynomial regressions are very common in engineering, science, and other disciplines, and it 
is at the heart of data science. Linear regressions and the least squares method have been around for two hundred years. Existing 
techniques select a model, which includes both the degree and coefficients of a polynomial, from a set of candidate models which 
have already been fitted to the data. The philosophy behind the proposed method is fundamentally different to what have been 
practised in the last two hundred years. In the first stage only the degree of a polynomial to represent the noisy data is selected 
without any knowledge or reference to its coefficient values. Having selected the degree, polynomial coefficients are estimated in 
the second stage. The development of the first stage has been inspired by the very recent results that all polynomials of degree q 
give rise to the same set of known time-series coefficients of autoregressive models and a constant term µ. Computer experiments 
have been carried out with simulated noisy data from polynomials using four well known model selection criteria as well as the 
proposed method (PTS1). The results obtained from the proposed method for degree selection and predictions are significantly 
better than those from the existing methods. Also, it is experimentally observed that the root-mean square (RMS) prediction errors 
and the variation of the RMS prediction errors from the proposed method scale linearly with the standard deviations of the noise 
for each degree of a polynomial.   
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I. INTRODUCTION 
 
Polynomial regression aims to select a polynomial that passes 
near a collection of noisy data values from a polynomial. 
Polynomial regressions are very common in engineering, 
science, and other disciplines, and it is one of the important 
problems of data science. Polynomial regression models are 
generally fitted with the Least-Squares method to obtain 
estimated values of the polynomial coefficients. In 1805 
Legendre published the Least-Squares method [1] and Gauss 
published it in 1809 [2] and later in 1823 [35]. In 1815 
Gergonne wrote a paper on “The application of the method 
of least squares to the interpolation of sequences” [3]. This is 
an English translation by St. John and Stigler [4] of the 
original paper that was written in French. In the last 120 or 
so years, polynomial regressions contributed greatly to the 
development of regression analysis [5-7]. Few more recent 
and interesting diverse applications can be found in computer 
graphics [8], machine learning [9], and statistics [10], 
including robust regressions [11] without the use of the 
Least-Squares method. 

In the last fifty years many model order selection techniques 
have been developed; the corresponding literature is quite 
considerable, for example, see [12-13] and references therein. 
Some of these model order selection techniques are 
associated with specific model parameter estimation methods 

and naturally their general applicability is limited. In this 
paper comparison of the proposed method will be carried out 
with four model order selection techniques that have been 
developed around the maximum likelihood method, namely 
Akaike Information Criterion (AIC), corrected Akaike 
Information Criterion (AICc), Generalised Information 
Criterion (GIC), and Bayesian Information Criterion (BIC).    

In this paper the focus is on polynomial regressions. Existing 
techniques select a model, which includes both the degree 
and all coefficients of a polynomial, from a set of candidate 
models which have already been fitted to the data. The 
philosophy behind the proposed method is fundamentally 
different to what have been done in the last two hundred 
years. The proposed method for model selection is a two-
stage process. In the first stage only the degree of a 
polynomial to represent the noisy data will be selected 
without any knowledge or reference to its coefficient values. 
Having selected the degree, polynomial coefficients will be 
estimated in the second stage. The first stage has been 
inspired by the very recent results that all polynomials of 
degree q give rise to the same set of q known time-series 
coefficients of autoregressive models and an additional 
constant term µ [34]. Computer experiments are carried out 
with simulated noisy data from polynomials using four well 
known model selection criteria as well as the proposed 
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method to evaluate their accuracies in polynomial degree 
selection and predictions. 

This study is in the context of real-valued and uniformly 
sampled noisy data from polynomials. The paper presents the 
following original results: 

1) A new and fundamentally different approach to selection 
of a degree of a polynomial from noisy data, without 
using any knowledge or reference to the polynomial 
coefficients, is presented. This is illustrated in section III. 

2) New results with noisy data generated from polynomials 
of degrees 1, 2, 3, and 4 are presented. This can be found 
in section IV. 

3) It is experimentally observed that the model order 
selection accuracy of the proposed method is the best 
amongst all the methods compared.   

4) Comparison of new results from the existing four 
methods and the proposed method, are recorded in section 
IV. 

5) The prediction results obtained from the proposed 
method, PTS1, are significantly better than those from the 
existing methods. For both the normalised RMS 
prediction errors and the normalised variations of RMS 
prediction errors from the proposed method, their 
relationships with the values of noise standard deviation 
is linear for each of linear, quadratic, cubic, and quartic 
polynomials, with a slope of 1. 

6) As an internal check of the proposed method, two hidden 
parameters, specifically < 𝜇𝜇 > and its root-mean-square 
(RMS) error, 𝜎𝜎𝜇𝜇(𝑞𝑞),  have been estimated from the data for 
each value of the degree of a polynomial and each value 
of the standard deviation of noise. The agreements 
between estimated and theoretical values of < 𝜇𝜇 >  as 
well as between the estimated and theoretical values of 
𝜎𝜎𝜇𝜇(𝑞𝑞) are found to be remarkable. 

 

II Existing Methods 
 
A polynomial of degree q in continuous time can be written 
as 

𝑦𝑦(𝑡𝑡) =  �𝑐𝑐(𝑖𝑖) 𝑡𝑡𝑖𝑖
𝑞𝑞

𝑖𝑖=0

(1) 

For uniformly sampled discrete time, the continuous time, t, 
is represented as 𝑡𝑡 = 𝑛𝑛𝑛𝑛, where n is an integer and T is the 
sampling period. In this scenario, the above equation can be 
rewritten as  

𝑦𝑦(𝑛𝑛𝑛𝑛) =  �𝑐𝑐(𝑖𝑖) (𝑛𝑛𝑛𝑛)𝑖𝑖
𝑞𝑞

𝑖𝑖=0

  

A set of real-valued noisy data from polynomials in 
uniformly sampled discrete time, can be represented by   

𝑥𝑥(𝑛𝑛) =  �𝑐𝑐(𝑖𝑖) (𝑛𝑛)𝑖𝑖
𝑞𝑞

𝑖𝑖=0

+ 𝑒𝑒(𝑛𝑛), (2) 

where 𝑒𝑒(𝑛𝑛) represents errors and T has been removed for the 
sake of simplicity in notations without the loss of any 
generalisations as the new value of 𝑐𝑐(𝑖𝑖) is the old value of 
𝑐𝑐(𝑖𝑖) multiplied by 𝑇𝑇𝑖𝑖. 

In fitting polynomials to such data, 𝑥𝑥(𝑛𝑛), the challenge is to 
estimate the polynomial coefficients, 𝑐𝑐(0), 𝑐𝑐(1), … , 𝑐𝑐(𝑞𝑞), as 
well as the degree of the polynomial, q. One may take the 
following approach: 

1) Choose a value of q.  
2) Estimate the corresponding polynomial coefficients, 

𝑐𝑐(0), 𝑐𝑐(1), … , 𝑐𝑐(𝑞𝑞). 
3) Calculate the relevant RMS fitting error, 𝑓𝑓𝑓𝑓(𝑞𝑞), which is 

defined as 

𝑓𝑓𝑓𝑓(𝑞𝑞) = �

⎣
⎢
⎢
⎡�� �𝑥𝑥�(𝑖𝑖) −  𝑥𝑥(𝑖𝑖)�2

𝑁𝑁

𝑖𝑖=1
�

𝑁𝑁
⎦
⎥
⎥
⎤
 (3) 

where N is the number of data values being fitted and 𝑥𝑥�(𝑖𝑖) 
are the fitted values. 

4) Choose another value of q and go to the step 2 or stop. 
5) Find the value of q for which 𝑓𝑓𝑓𝑓(𝑞𝑞) is the smallest.  
6) Choose this value of q as the estimated degree of the 

polynomial and the corresponding 𝑐𝑐(0), 𝑐𝑐(1), … , 𝑐𝑐(𝑞𝑞) as 
the estimated coefficients of the polynomial. 

Unfortunately, this choice is flawed. In general, a larger value 
of q will result in a lower value of 𝑓𝑓𝑓𝑓(𝑞𝑞), and choosing 𝑞𝑞 =
(𝑁𝑁 − 1) will always produce a fitting error of 𝑓𝑓𝑓𝑓(𝑁𝑁 − 1) =
0, which is often described as overfitting. Therefore, a fitting 
error, in itself, is not a good indicator of the degree of the 
underlying polynomial. The aim of model selection 
techniques is to find a balance between overfitting (too many 
parameters and zero error) and underfitting (too few 
parameters and higher error).  

There are many model order selection techniques. Four 
commonly used and well-regarded ones are briefly described 
below and compared for polynomial data fitting in Section IV 
and predictions. These are Akaike Information Criterion 
(AIC), corrected Akaike Information Criterion (AICc), 
Generalised Information Criterion (GIC), and Bayesian 
Information Criterion (BIC) [33]. 

 

A. Akaike Information Criterion (AIC) 

 
Given a set of models, AIC [13-22] aims to select the best 
model from this set. Thus, the selected model is not 
guaranteed to be the best model as it represents a relative 
choice amongst the given models in the set. AIC tries to 
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balance between the risk of overfitting and the risk of 
underfitting, as it is a compromise between the best fitted 
model and the simplicity of the model.  

AIC uses the log-likelihood as a measure of the goodness of 
fit. Suppose that there is a statistical model of the data, that 𝑞𝑞 
is the number of estimated parameters, and that L is the 
maximum value of the likelihood function for the model. AIC 
is defined as  

𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞) = 2𝑞𝑞 − 2 ln(𝐿𝐿) (4) 

The first term in equation (4) attempts to keep the polynomial 
degree small while the second term attempts to obtain the 
maximum value of the likelihood or the minimum value of 
the log-likelihood. The selected model will correspond to the 
one for which AIC is the minimum. 

The log-likelihood function for N independent and identical 
Gaussian distributions is given by 

𝑙𝑙𝑙𝑙𝑙𝑙�𝜎𝜎, 𝑦𝑦(𝑖𝑖)� = −�
𝑁𝑁
2
� ln(π) −

�
𝑁𝑁
2
� ln(σ2) − �

1
2σ2

���𝑥𝑥(𝑖𝑖) −  𝑦𝑦(𝑖𝑖)�2
𝑁𝑁

𝑖𝑖=1

(5)
 

For a polynomial of degree 1, i.e., 𝑞𝑞 = 1 , 𝑦𝑦(𝑖𝑖) = 𝑐𝑐(0) +
𝑐𝑐(1)𝑖𝑖. Thus, ∂𝐿𝐿/∂𝑐𝑐(0) = ∑ (𝑥𝑥(𝑖𝑖) − 𝑐𝑐(1)𝑖𝑖 − 𝑐𝑐(0))/𝜎𝜎2𝑁𝑁

𝑖𝑖=1 , 

∂𝐿𝐿/∂𝑐𝑐(1) = ∑ (𝑥𝑥(𝑖𝑖) − 𝑐𝑐(1)𝑖𝑖 − 𝑐𝑐(0))𝑖𝑖/𝜎𝜎2𝑁𝑁
𝑖𝑖=1 , and ∂𝐿𝐿/∂(𝜎𝜎2) = 

�𝑁𝑁
2
� 1/𝜎𝜎2 − �1

2
�1/(𝜎𝜎4)∑ �𝑥𝑥(𝑖𝑖) −  𝑦𝑦(𝑖𝑖)�2𝑁𝑁

𝑖𝑖=1 . The minimum 
of this log-likelihood function corresponds to the following 
three equations: 

��𝑥𝑥(𝑖𝑖) −  𝑐𝑐(1)𝑖𝑖 − 𝑐𝑐(0)�
𝑁𝑁

𝑖𝑖=1

= 0 (6) 

��𝑥𝑥(𝑖𝑖) −  𝑐𝑐(1)𝑖𝑖 − 𝑐𝑐(0)�𝑖𝑖
𝑁𝑁

𝑖𝑖=1

= 0 (7) 

��𝑥𝑥(𝑖𝑖) −  𝑦𝑦(𝑖𝑖)�2
𝑁𝑁

𝑖𝑖=1

= 𝑁𝑁𝜎𝜎2 (8) 

Using equations (6) and (7), one obtains the ordinary least 
squares estimates of 𝑐𝑐(0)  and 𝑐𝑐(1) . If one sets up two 
matrices, 𝑋𝑋𝑇𝑇 = [𝑥𝑥(1) 𝑥𝑥(2) … 𝑥𝑥(𝑁𝑁)] and 𝐴𝐴𝑇𝑇 = [1 2 … N; 1 1 
… 1], then [ 𝑐𝑐(1) 𝑐𝑐(0) ]T = (𝐴𝐴𝑇𝑇𝐴𝐴)−1𝐴𝐴𝑇𝑇𝑋𝑋 . It should be 
remarked that one cannot calculate a value for 𝜎𝜎2  from 
equation (8) in the absence of the knowledge of the noise-free 
data, 𝑦𝑦(𝑖𝑖).  

Similarly, for a polynomial of degree 2, i.e., 𝑞𝑞 = 2, 𝑦𝑦(𝑖𝑖) =
𝑐𝑐(0) + 𝑐𝑐(1)𝑖𝑖 + 𝑐𝑐(2)𝑖𝑖2 . Thus, ∂ 𝐿𝐿 /∂ 𝑐𝑐(0)  = ∑ (𝑥𝑥(𝑖𝑖) −𝑁𝑁

𝑖𝑖=1
𝑐𝑐(2)𝑖𝑖2 − 𝑐𝑐(1)𝑖𝑖 − 𝑐𝑐(0))/𝜎𝜎2 , ∂ 𝐿𝐿 /∂ 𝑐𝑐(1)  = ∑ (𝑥𝑥(𝑖𝑖) −𝑁𝑁

𝑖𝑖=1
𝑐𝑐(2)𝑖𝑖2 − 𝑐𝑐(1)𝑖𝑖 − 𝑐𝑐(0))𝑖𝑖/𝜎𝜎2 , ∂ 𝐿𝐿 /∂ 𝑐𝑐(2)  = ∑ �𝑥𝑥(𝑖𝑖) −𝑁𝑁

𝑖𝑖=1

𝑐𝑐(2)𝑖𝑖2 − 𝑐𝑐(1)𝑖𝑖 − 𝑐𝑐(0)�𝑖𝑖2/𝜎𝜎2, and ∂𝐿𝐿/∂(𝜎𝜎2) = �𝑁𝑁
2
� 1/𝜎𝜎2 −

�1
2
�1/(𝜎𝜎4)∑ �𝑥𝑥(𝑖𝑖) −  𝑦𝑦(𝑖𝑖)�2𝑁𝑁

𝑖𝑖=1 . The minimum of this log-
likelihood function corresponds to the following four 
equations: 

��𝑥𝑥(𝑖𝑖) −  𝑐𝑐(2)𝑖𝑖2 − 𝑐𝑐(1)𝑖𝑖 − 𝑐𝑐(0)�
𝑁𝑁

𝑖𝑖=1

= 0 (9) 

��𝑥𝑥(𝑖𝑖) −  𝑐𝑐(2)𝑖𝑖2 −  𝑐𝑐(1)𝑖𝑖 − 𝑐𝑐(0)�𝑖𝑖
𝑁𝑁

𝑖𝑖=1

= 0 (10) 

��𝑥𝑥(𝑖𝑖) −  𝑐𝑐(2)𝑖𝑖2 −  𝑐𝑐(1)𝑖𝑖 − 𝑐𝑐(0)�𝑖𝑖2
𝑁𝑁

𝑖𝑖=1

= 0 (11) 

��𝑥𝑥(𝑖𝑖) −  𝑦𝑦(𝑖𝑖)�2
𝑁𝑁

𝑖𝑖=1

= 𝑁𝑁𝜎𝜎2 (12) 

Using equations (9), (10) and (11), one obtains the ordinary 
least squares estimates of 𝑐𝑐(0), 𝑐𝑐(1), and 𝑐𝑐(2). If one sets up 
two matrices, 𝑋𝑋𝑇𝑇 = [𝑥𝑥(1) 𝑥𝑥(2) … 𝑥𝑥(𝑁𝑁)] and 𝐵𝐵𝑇𝑇  = [1 4 … N2;  
1 2 … N; 1 1 … 1], then [𝑐𝑐(2) 𝑐𝑐(1) 𝑐𝑐(0)]T = (𝐵𝐵𝑇𝑇𝐵𝐵)−1𝐵𝐵𝑇𝑇𝑋𝑋. 
Again, it should be remarked that one cannot calculate a 
value for 𝜎𝜎2  from equation (12) in the absence of the 
knowledge of the noise-free data, 𝑦𝑦(𝑖𝑖).  

Thus, for each selected value of the degree of a polynomial 
(q), one can estimate the corresponding coefficients of the 
polynomial, [𝑐𝑐(0) 𝑐𝑐(1) … 𝑐𝑐(𝑞𝑞)], using the above procedure.  

 

B. Corrected Akaike Information Criterion (AICc) 

 
Asymptotically, AIC has certain desirable properties, i.e., as 
the number of data values tends to ∞. However, whenever 
the number of data values (𝑁𝑁) is small, there is a significant 
chance that AIC will choose models with too many 
parameters. This implies that AIC will overfit, despite having 
the two terms in equation (4), which are intended to offer a 
balance between underfitting and overfitting. It is worth 
noting that equation (4) does not have any dependence on the 
number of data values. 

AICc was introduced to address potential overfittings by 
Sugiura [23] in the context of linear regression. Since then 
Hurvich and Tsai [24] as well as many other researchers, e.g., 
[13], [16], [20], and [25], have extended the applicability of 
AICc. AICc can be defined as 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑞𝑞) =
2𝑞𝑞𝑞𝑞

𝑁𝑁 − 𝑞𝑞 − 1
− 2 ln(𝐿𝐿) (13) 

It is clear from equation (13) that AICc depends, amongst 
other factors, on the number of data values (𝑁𝑁). As in AIC, 
AICc also attempts to find a balance between underfitting and 
overfitting. 
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The procedure for selecting the best model from a given set 
of models, i.e., the degree of a polynomial (q) and the 
corresponding coefficients of the polynomial, 
[𝑐𝑐(0) 𝑐𝑐(1) … 𝑐𝑐(𝑞𝑞)], requires the minimisation of AICc and is 
essentially the same as outlined in section IIA. Similar 
observations, as for AIC, can be made for AICc. While, for 
each value of the degree of a polynomial (q), one can estimate 
the corresponding coefficients of the polynomial, 
[𝑐𝑐(0) 𝑐𝑐(1) … 𝑐𝑐(𝑞𝑞)], using the above procedure, it should be 
remarked that one cannot calculate a value for 𝜎𝜎2  in the 
absence of the knowledge of the noise-free data, 𝑦𝑦(𝑖𝑖).  

 

C. Generalised Information Criterion (GIC) 

 
In AIC, the factor of 2𝑞𝑞  has been designed to address the 
issue of overfitting. Intuitively, the probability of overfitting 
will be reduced as the number of data values increases. In 
finite sample situations, extensive simulation studies have 
demonstrated that the following generalised information 
criterion (GIC) [26] 

𝐺𝐺𝐺𝐺𝐺𝐺(𝑞𝑞) = 𝛼𝛼𝑞𝑞 − 2 ln(𝐿𝐿) (14) 

can perform better than AIC if 𝛼𝛼 > 2. Values of 𝛼𝛼  in the 
range from 2 to 6 appear to offer the best performance. The 
optimal value for 𝛼𝛼 appears to depend on many factors and 
there is no clear hint on how to choose its value in a specific 
scenario. Note that 𝛼𝛼 = 2  corresponds to AIC. In the 
following investigations the value for 𝛼𝛼 has been chosen to 
be 4. Note that GIC does not explicitly depend on the number 
of data values. 

The procedure for selecting the best model from a given set 
of models, i.e., the degree of a polynomial (q) and the 
corresponding coefficients of the polynomial, 
[𝑐𝑐(0) 𝑐𝑐(1) … 𝑐𝑐(𝑞𝑞)], requires the minimisation of GIC and is 
essentially the same as outlined in section IIA. Again, similar 
observations, as for AIC and AICc, can be made for GIC. 
While, for each value of the degree of a polynomial (q), one 
can estimate the corresponding coefficients of the 
polynomial, [𝑐𝑐(0) 𝑐𝑐(1) … 𝑐𝑐(𝑞𝑞)], using the above procedure, 
it should be remarked that one cannot calculate a value for 𝜎𝜎2 
in the absence of the knowledge of the noise-free data, 𝑦𝑦(𝑖𝑖). 

 

D.  Bayesian Information Criterion (BIC) 

 
The form of BIC [27-32], [13], [16] is very similar to AIC, in 
that they both have two terms – a negative log-likelihood one 
and a penalty term for the number of parameters. However, 
their origins are different. The log-likelihood term is identical 
in both cases. The penalty term is 2𝑞𝑞  in AIC, while it is 
ln(𝑁𝑁) (𝑞𝑞)  in BIC. Note that AIC does not depend on the 
number of data values ( 𝑁𝑁 ), but BIC does include a 
dependence on 𝑁𝑁. In that sense, BIC captures something of 
AIC and AICc. BIC can be written as 

𝐵𝐵𝐵𝐵𝐵𝐵(𝑞𝑞) = ln(𝑁𝑁) (𝑞𝑞) − 2 ln(𝐿𝐿) (15) 

The procedure for selecting the best model from a given set 
of models, i.e., the degree of a polynomial (q) and the 
corresponding coefficients of the polynomial, 
[𝑐𝑐(0) 𝑐𝑐(1) … 𝑐𝑐(𝑞𝑞)], requires the minimisation of BIC and is 
essentially the same as outlined in section IIA. Similar 
observations, as for AIC, AICc, and GIC, can be made for 
BIC. While, for each value of the degree of a polynomial (q), 
one can estimate the corresponding coefficients of the 
polynomial, [𝑐𝑐(0) 𝑐𝑐(1) … 𝑐𝑐(𝑞𝑞)], using the above procedure, 
it should be remarked that one cannot calculate a value for 𝜎𝜎2 
in the absence of the knowledge of the noise-free data, 𝑦𝑦(𝑖𝑖). 

Yang [31] compared AIC and BIC in the context of 
regression under the assumption that the true model is not 
present in the set of models being compared. It was 
demonstrated that AIC was asymptotically optimal for 
selecting the model with the least mean squared error, while 
BIC was not asymptotically optimal under the same 
assumption. In the following investigations, the true model 
order is present in the set of models being compared though 
not the exact coefficient values but only the estimated values 
from ordinary Least-Squares (OLS).  

When the true model is present in the set of models being 
compared, it is well documented that BIC will select the true 
model with probability 1 asymptotically, i.e., as 𝑁𝑁 tends to 
∞. Vrieze [32] carried out a simulation study including the 
true model in the set of models being compared. It was shown 
that AIC can sometimes choose a much better model than 
BIC, since there is a significant chance of BIC choosing a bad 
model for finite values of 𝑁𝑁. 

 

III Proposed Method 
 
The proposed method is fundamentally different from all 
existing methods. All existing methods, including AIC, 
AICc, GIC, and BIC, selects one of the given polynomial 
models from a given a set of models where each model 
consists of a value for the degree of a polynomial as well as 
values for its coefficients. It should be noted that the 
knowledge of coefficient values of the polynomial are needed 
to generate the log-likelihood estimates [33]. Therefore, these 
methods require both the values of the estimated polynomial 
coefficients, 𝑐𝑐(0), 𝑐𝑐(1), … , 𝑐𝑐(𝑞𝑞), as well as the degree of the 
polynomial, q.  

It is important to note that in the proposed method there are 
two stages. In the first stage, the selection of only the degree 
of the polynomial is carried out without the knowledge of the 
values of the corresponding coefficients. Having selected the 
degree of the polynomial in the first stage, the polynomial 
coefficients are calculated in the second stage. The first stage 
is certainly novel and may seem impossible, as there are 
infinitely many polynomials of any one value for the degree. 
Nonetheless, this has been inspired by the very recent results 

https://en.wikipedia.org/wiki/Mean_squared_error
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[34], as shown below, which proved that all data from 
uniformly sampled polynomials of finite degree q can be 
perfectly represented by an autoregressive time-series model 
of order q such that  

𝑦𝑦(𝑛𝑛) =  �𝑎𝑎(𝑖𝑖) 𝑦𝑦(𝑛𝑛 − 𝑖𝑖) +
𝑞𝑞

𝑖𝑖=1

 µ (16) 

where  

𝑎𝑎(𝑖𝑖) = (−1)𝑖𝑖+1 �
𝑞𝑞
𝑖𝑖
�  (17) 

for 𝑖𝑖 = 1, 2, … , 𝑞𝑞, and 

µ = 𝑐𝑐(𝑞𝑞)(𝑞𝑞!) (18) 

 

A. Selection of the degree of a polynomial 

 
Equation (16) can be rewritten as 

−  �𝑎𝑎(𝑖𝑖) 𝑦𝑦(𝑛𝑛 − 𝑖𝑖)  + 𝑦𝑦(𝑛𝑛) =
𝑞𝑞

𝑖𝑖=1

 µ 

As noise-free 𝑦𝑦(𝑛𝑛) values are not available, this equation is 
recast with known noisy data values 𝑥𝑥(𝑛𝑛) as follows 

−  �𝑎𝑎(𝑖𝑖) 𝑥𝑥(𝑛𝑛 − 𝑖𝑖)  + 𝑥𝑥(𝑛𝑛) =
𝑞𝑞

𝑖𝑖=1

 µ(𝑛𝑛, 𝑞𝑞) (19) 

where µ(𝑛𝑛, 𝑞𝑞) may depend on both n and q. Equation (19) 
can be written in matrix form as XA = M, where X is a (𝑓𝑓 −
𝑞𝑞) x (𝑞𝑞 + 1)  matrix and X = [ �𝑥𝑥(1) …  𝑥𝑥(𝑓𝑓 − 𝑞𝑞)�𝑇𝑇 ; 

�𝑥𝑥(2) …  𝑥𝑥(𝑓𝑓 − 𝑞𝑞 + 1)�𝑇𝑇 ; … �𝑥𝑥(𝑞𝑞 + 1) …  𝑥𝑥(𝑓𝑓)�𝑇𝑇 ], A is a 
(𝑞𝑞 + 1)x1 matrix and A = [(−𝑎𝑎(1) …− 𝑎𝑎(𝑞𝑞) 1)𝑇𝑇], M is a 
(𝑓𝑓 − 𝑞𝑞)x1 matrix and M = [µ(𝑞𝑞 + 1, 𝑞𝑞) …  µ(𝑓𝑓, 𝑞𝑞))𝑇𝑇], as well 
as f is the number of data values being used for estimation. 

All the entries in matrix X are known as they represent the 
noisy data values. Also, all the entries in matrix A are known 
from equation (17). Therefore, M can be obtained from XA, 
containing (𝑓𝑓 − 𝑞𝑞)  values. For a chosen value of q, these 
(𝑓𝑓 − 𝑞𝑞) values are estimates of the constant term, µ(𝑞𝑞), for a 
polynomial of degree q. From these (𝑓𝑓 − 𝑞𝑞) values, one can 
estimate the mean value, < µ(𝑞𝑞)>, and the root-mean square 
value, 𝜎𝜎𝜇𝜇(𝑞𝑞), of the µ(𝑞𝑞).  

Now, equation (19) can be rearranged and approximated as 
follows 

𝑥𝑥�(𝑛𝑛) =  �𝑎𝑎(𝑖𝑖) 𝑥𝑥(𝑛𝑛 − 𝑖𝑖) +
𝑞𝑞

𝑖𝑖=1

< µ(𝑞𝑞) > 

As everything on the right hand of the above equation is 
known, these (𝑓𝑓 − 𝑞𝑞) values of 𝑥𝑥�(𝑛𝑛) are calculated and can 
be regarded as time-series “fitted” values. The relevant root-

mean square time-series estimation error, 𝑓𝑓𝑓𝑓(𝑞𝑞), is defined 
as 

𝑓𝑓𝑓𝑓(𝑞𝑞) = �

⎣
⎢
⎢
⎢
⎡�� �𝑥𝑥�(𝑖𝑖) −  𝑥𝑥(𝑖𝑖)�2

𝑓𝑓

𝑖𝑖=𝑞𝑞
�

(𝑓𝑓 − 𝑞𝑞)
⎦
⎥
⎥
⎥
⎤
 (20) 

where (𝑓𝑓 − 𝑞𝑞) is the number of data values being estimated 
and 𝑥𝑥�(𝑖𝑖) are the estimated values. It should be noted that 
𝑓𝑓𝑓𝑓(𝑞𝑞) generally decreases as q increases. 

Thus, for every value of 𝑞𝑞, there are three parameters - the 
mean value, < µ(𝑞𝑞)>, the root-mean square value, 𝜎𝜎𝜇𝜇(𝑞𝑞), of 
the µ(𝑞𝑞), and the root-mean square time-series estimation 
error, 𝑓𝑓𝑓𝑓(𝑞𝑞). These are used to select the appropriate value 
of q for the noisy polynomial data.  

 

Recall that each of AIC, AICc, GIC, and BIC attempts to 
balance between overfitting and underfitting scenarios. In 
one scenario errors reduce and in the other scenario errors 
increase with increasing values of q. A similar scenario arises 
here, in that 𝑓𝑓𝑓𝑓(𝑞𝑞) generally decreases as 𝑞𝑞 increases, while 
𝜎𝜎𝜇𝜇(𝑞𝑞)
2  increases with 𝑞𝑞 . Now the following parameter is 

defined  

𝑃𝑃𝑃𝑃𝑃𝑃1(𝑞𝑞) = �𝑓𝑓𝑓𝑓(𝑞𝑞)�2 + 𝜎𝜎𝜇𝜇(𝑞𝑞)
2  (21) 

The selected value of 𝑞𝑞 is the one for which PTS1(𝑞𝑞) is the 
minimum. This is the proposed selection criterion. 

 

B. Estimation of polynomial coefficients  

 
In section IIIA, the appropriate degree, q, for the noisy 
polynomial data has already been selected. Now equation (2) 
can be written in matrix form as GC = X, where G is a 𝑓𝑓x(𝑞𝑞 +
1) matrix and G = [(1 2𝑞𝑞 …𝑓𝑓𝑞𝑞)𝑇𝑇; … (1 2 …𝑓𝑓)𝑇𝑇; (1 … 1)𝑇𝑇], 
C is a (𝑞𝑞 + 1)x1 matrix and C = [(𝑐𝑐(𝑞𝑞) … 𝑐𝑐(0))𝑇𝑇], X is a 𝑓𝑓x1 
matrix and X = [𝑥𝑥(1) …  𝑥𝑥(𝑓𝑓))𝑇𝑇], as well as f is the number 
of data values being used for estimation. 

All the entries in matrix G are known as they represent integer 
powers of integers (see equation (2)). Also, all the entries in 
matrix X are known as they represent noisy data values (see 
equation (2)). Therefore, C, containing the coefficients of the 
polynomial of the selected degree, can be estimated. As the 
matrix G is not square, one can obtain the Ordinary Least 
Squares (OLS) solution using the pseudoinverse of G, 
namely, 

𝐶𝐶 = 𝑖𝑖𝑖𝑖𝑖𝑖(𝐺𝐺𝑇𝑇𝐺𝐺)𝐺𝐺𝑇𝑇𝑋𝑋 (22) 

Thus, for the selected value of q, the matrix C contains 
estimated values of the q coefficients of the polynomial. 
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C. Predictions  
In section III A and B, the appropriate degree, q, for the noisy 
polynomial data has already been selected and the 
corresponding polynomial coefficients have been estimated 
using the first f data values. Using this information, the 
remaining (𝑁𝑁 − 𝑓𝑓) data values are predicted. The predicted 
data values are obtained using a similar matrix equation to 
𝐺𝐺𝐺𝐺 = 𝑋𝑋� , where G is a (𝑁𝑁 − 𝑓𝑓)x(𝑞𝑞 + 1)  matrix and G = 
[((𝑓𝑓 + 1)𝑞𝑞 …𝑁𝑁𝑞𝑞)𝑇𝑇 ; … ((𝑓𝑓 + 1) …𝑁𝑁)𝑇𝑇; (1 … 1)𝑇𝑇 ], C is a 
(𝑞𝑞 + 1)x1 matrix and C = [(𝑐𝑐(𝑞𝑞) … 𝑐𝑐(0))𝑇𝑇 ], X is a 𝑓𝑓x1 
matrix and 𝑋𝑋� = [𝑥𝑥�(𝑓𝑓 + 1) … 𝑥𝑥�(𝑁𝑁))𝑇𝑇], as well as (𝑁𝑁 − 𝑓𝑓) is 
the number of data values being used for prediction. The 
relevant root-mean square prediction errors, 𝑝𝑝𝑝𝑝(𝑞𝑞), defined 
as 

𝑝𝑝𝑝𝑝(𝑞𝑞) = �

⎣
⎢
⎢
⎢
⎡�� �𝑥𝑥�(𝑖𝑖) −  𝑥𝑥(𝑖𝑖)�2

𝑁𝑁

𝑖𝑖=𝑓𝑓+1
�

(𝑁𝑁 − 𝑓𝑓)
⎦
⎥
⎥
⎥
⎤
 (23) 

where (𝑁𝑁 − 𝑓𝑓) is the number of data values being predicted 
and 𝑥𝑥�(𝑖𝑖) are the fitted values, have been calculated. 

 

IV Results 
 
In this section are described some computer experiments to 
assess the performance of the four existing techniques (AIC, 
AICc, GIC, and BIC) as well as the proposed method (PTS1) 
for selecting polynomial models and predicting noisy 
polynomial data. Linear, quadratic, cubic, and quartic 
polynomials with different amounts of Gaussian noise have 
been considered. It is clear from equations (4), (13), (14), and 
(15) that AIC, AICc, GIC, and BIC calculate log-likelihoods 
which require the knowledge of the standard deviation of 
noise, which is not available in real situations. One can 
attempt to get a reasonable estimate of this using the fitted 
values from the model and the noise-free data using equation 
(8). Since noise-free data are not available in real situations, 
one can attempt to estimate the standard deviations of noise.  

Earlier experiments using estimated standard deviations have 
produced poor results from AIC, AICc, GIC, and BIC. 

Therefore, in the following experiments, AIC, AICc, GIC, 
and BIC results are based on using the exact values of the 
standard deviations of noise (known from simulations), 
which give them an advantage over the proposed method, 
PTS1, that does not use such exact knowledge. 

    

A. Linear polynomial 

 
Here a polynomial of degree 1 has been considered for data 
generation: 𝑦𝑦(𝑛𝑛) = 𝑛𝑛 + 1. For this experiment, 1,000 sets of 
101 data values have been generated for each value of the 
standard deviation (𝜎𝜎) of noise using the zero-mean Gaussian 
distribution, ℕ(0,𝜎𝜎). Thus, the generated noisy data can be 
described by  

𝑥𝑥(𝑛𝑛,𝜎𝜎) = 𝑛𝑛 + 1 + ℕ(0,𝜎𝜎), 

for 𝑛𝑛 = −50: 1: 50 and 𝜎𝜎 = 1: 1: 5           (24)             

In each set of 101 data values, the first 60 data values have 
been used for estimating the degree of the polynomial and its 
coefficients. Figure 1 shows the accuracy (%) of degree 
selection using AIC (green lower triangles), AICc (black 
upper triangles), GIC (magenta + signs), BIC (blue circles), 

Figure 1. The accuracy (%) of degree selection using AIC (green lower 
triangles), AICc (black upper triangles), GIC (magenta + signs), BIC (blue 
circles), and PTS1 (red stars) versus noise standard deviations for a linear 
polynomial. 

Table 1. Root mean-square errors for predicting 𝑥𝑥(𝑛𝑛) = 𝑛𝑛 + 1 +  ℕ(0,𝜎𝜎)  using five different techniques, including the 
proposed technique 

Degree of 
polynomial, 

𝑞𝑞 

Standard deviation 
of noise, σ 

AIC 
(exact σ) 

AICc 
(exact σ) 

GIC 
(exact σ) 

BIC 
(exact σ) 

Proposed technique 
(estimated σ) 

1 1 124 93.9 11.7 11.7 1.08 
1 2 241 131 5.77 4.11 2.17 
1 3 339 238 43.1 43.1 3.24 
1 4 561 420 15.1 12.3 4.35 
1 5 543 406 24.7 23.2 5.41 
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and PTS1 (red stars) versus noise standard deviations for the 
linear polynomial. AICc is always better than AIC. GIC and 
BIC are very similar, and they are always much better than 
AIC and AICc. The proposed method, PTS1, is always the 
best by far. 

The remaining 41 data values have been predicted and the 
root-mean square (RMS) prediction errors have been 
calculated. The RMS prediction errors for AIC, AICc, GIC, 
BIC, and the proposed method for each of the five values of 
the standard deviation of noise are presented in Table 1. 

Of the existing techniques AIC, AICc, GIC, and BIC, GIC 
and BIC offer much better performance. Each of AIC, AICc, 
GIC, and BIC calculates log-likelihoods, which require, 
amongst others, the value of 𝜎𝜎 , and was allowed the 
advantage of using the exact values of 𝜎𝜎 for the above results, 
even though these are not available in reality. Despite this, 
the proposed technique is the best and offers significantly 
better performance than GIC and BIC (as well as the other 
two). 

The upper half of Figure 2 displays the RMS prediction errors 
from GIC (magenta + signs), BIC (blue circles), and the 
proposed method (red stars), while the lower half of Figure 2 

depicts the variation of RMS prediction errors from GIC 
(magenta + signs), BIC (blue circles), and the proposed 
method (red stars). It is remarkable how much smaller the 
RMS prediction errors from the proposed method are 
compared to those from GIC and BIC. Also, the variations of 
RMS prediction errors from the proposed method are 
significantly smaller compared to those from GIC and BIC. 

B. Quadratic polynomial 

 
Here a polynomial of degree 2 has been considered for data 
generation: 𝑦𝑦(𝑛𝑛) = 𝑛𝑛2 + 𝑛𝑛 + 1. For this experiment, 1,000 
sets of 101 data values have been generated for each value of 
the standard deviation (𝜎𝜎 ) of noise using the zero-mean 
Gaussian distribution, ℕ(0,𝜎𝜎) . Thus, the generated noisy 
data can be described by  

𝑥𝑥(𝑛𝑛,𝜎𝜎) = 𝑛𝑛2 + 𝑛𝑛 + 1 + ℕ(0,𝜎𝜎), 

for 𝑛𝑛 = −50: 1: 50 and 𝜎𝜎 = 1: 1: 5,           (25)             

In each set of 101 data values, the first 60 data values have 
been used for estimating the degree of the polynomial and its 
coefficients. Figure 3 shows the accuracy (%) of degree 
selection using AIC (green lower triangles), AICc (black 

Figure 3. The accuracy (%) of degree selection using AIC (green lower 
triangles), AICc (black upper triangles), GIC (magenta + signs), BIC (blue 
circles), and PTS1 (red stars) versus noise standard deviations for a 
quadratic polynomial. 

Table 2. Root mean-square errors for predicting 𝑥𝑥(𝑛𝑛) = 𝑛𝑛2 + 𝑛𝑛 + 1 +  ℕ(0,𝜎𝜎)  using five different techniques, including the 
proposed technique. 

Degree of 
polynomial, 

𝑞𝑞 

Standard 
deviation 

of noise, σ 

AIC 
(exact σ) 

AICc 
(exact σ) 

GIC 
(exact σ) 

BIC 
(exact σ) 

Proposed technique 
(estimated σ) 

2 1 127 90.9 16.5 16.4 1.66 
2 2 273 191 30.0 26.5 3.32 
2 3 425 332 162 160 5.16 
2 4 593 470 132 129 6.70 
2 5 729 532 220 220 8.49 

 

Figure 2. The upper figure shows the RMS prediction errors from GIC 
(magenta + signs), BIC (blue circles), and the proposed method (red stars), 
and the lower figure shows the variation of RMS prediction errors versus 
the standard deviations of noise for a linear polynomial. 



                                                                                                                             Author: Asoke K. Nandi 
 
upper triangles), GIC (magenta + signs), BIC (blue circles), 
and PTS1 (red stars) versus noise standard deviations for the 
quadratic polynomial. AICc is always better than AIC. GIC 
and BIC are very similar, and they are always much better 
than AIC and AICc. The proposed method, PTS1, is always 
the best by far.  

The remaining 41 data values have been predicted and the 
root-mean square (RMS) prediction errors have been 
calculated. The RMS prediction errors for AIC, AICc, GIC, 
BIC, and the proposed method for each of the five values of 
the standard deviation of noise are presented in Table 2.  

 Of the existing techniques AIC, AICc, GIC, and BIC, GIC 
and BIC offer much better performance. Each of AIC, AICc, 
GIC, and BIC calculates log-likelihoods, which require, 
amongst others, the value of 𝜎𝜎 , and was allowed the 
advantage of using the exact values of 𝜎𝜎 for the above results, 
even though these are not available in reality. Despite this, 
the proposed technique is the best and offers significantly 
better performance than GIC and BIC, typically an order of 
magnitude better. 

The upper half of Figure 4 displays the RMS prediction errors 
from GIC (magenta + signs), BIC (blue circles) and the 
proposed method (red stars), while the lower half of Figure 4 
depicts the variation of RMS prediction errors from GIC 
(magenta + signs), BIC (blue circles) and the proposed 
method (red stars). It is remarkable how much smaller the 
RMS prediction errors from the proposed method are 
compared to those from GIC and BIC. Also, the variations of 
RMS prediction errors from the proposed method are 
significantly smaller compared to those from GIC and BIC. 

 

C. Cubic polynomial 

 
Here a polynomial of degree 3 has been considered for data 
generation: 𝑦𝑦(𝑛𝑛) = 𝑛𝑛3 + 𝑛𝑛2 + 𝑛𝑛 + 1 . For this experiment, 

1,000 sets of 101 data values have been generated for each 
value of the standard deviation (𝜎𝜎) of noise using the zero-
mean Gaussian distribution, ℕ(0,𝜎𝜎) . Thus, the generated 
noisy data can be described by  

𝑥𝑥(𝑛𝑛,𝜎𝜎) = 𝑛𝑛3 + 𝑛𝑛2 + 𝑛𝑛 + 1 + ℕ(0,𝜎𝜎), 

for 𝑛𝑛 = −50: 1: 50 and 𝜎𝜎 = 1: 1: 5,            (26) 

In each set of 101 data values, the first 60 data values have 
been used for estimating the degree of the polynomial and its 
coefficients. Figure 5 shows the accuracy (%) of degree 
selection using AIC (green lower triangles), AICc (black 
upper triangles), GIC (magenta + signs), BIC (blue circles), 
and PTS1 (red stars) versus noise standard deviations for the 
cubic polynomial. AICc is always better than AIC. GIC and 
BIC are very similar, and they are always much better than 
AIC and AICc. The proposed method, PTS1, is always the 
best by far.  

The remaining 41 data values have been predicted and the 
root-mean square (RMS) prediction errors have been 
calculated. The RMS prediction errors for AIC, AICc, GIC, 
BIC, and the proposed method for each of the five values of 
the standard deviation of noise are presented in Table 3. 

Of the existing techniques AIC, AICc, GIC, and BIC, GIC 
and BIC offer much better performance. Each of AIC, AICc, 
GIC, and BIC calculates log-likelihoods, which require, 
amongst others, the value of 𝜎𝜎 , and was allowed the 
advantage of using the exact values of 𝜎𝜎 for the above results, 
even though these are not available in reality. Despite this, 
the proposed technique is the best and offers significantly 
better performance than GIC and BIC (as well as the other 
two).  

Figure 4. The upper figure shows the RMS prediction errors from GIC 
(magenta + signs), BIC (blue circles), and the proposed method (red stars), 
and the lower figure shows the variation of RMS prediction errors versus 
the standard deviations of noise for a quadratic polynomial. 

Figure 5. The accuracy (%) of degree selection using AIC (green lower 
triangles), AICc (black upper triangles), GIC (magenta + signs), BIC (blue 
circles), and PTS1 (red stars) versus noise standard deviations a cubic 
polynomial. 
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The upper half of Figure 6 displays the RMS prediction errors 
from GIC (magenta + signs), BIC (blue circles) and the 
proposed method (red stars), while the lower half of Figure 6 
depicts the variation of RMS prediction errors from GIC 
(magenta + signs), BIC (blue circles) and the proposed 
method (red stars). It is remarkable how much smaller the 
RMS prediction errors from the proposed method are 
compared to those from GIC and BIC. Also, the variations of 
RMS prediction errors from the proposed method are 
significantly smaller compared to those from GIC and BIC.  

 

D. Quartic polynomial 

 
Here a polynomial of degree 4 has been considered for data 
generation: 𝑦𝑦(𝑛𝑛) = 𝑛𝑛4 + 𝑛𝑛3 + 𝑛𝑛2 + 𝑛𝑛 + 1.  For this 
experiment, 1,000 sets of 101 data values have been 
generated for each value of the standard deviation (𝜎𝜎) of 
noise using the zero-mean Gaussian distribution, ℕ(0,𝜎𝜎). 
Thus, the generated noisy data can be described by  

𝑥𝑥(𝑛𝑛,𝜎𝜎) = 𝑛𝑛4 + 𝑛𝑛3 + 𝑛𝑛2 + 𝑛𝑛 + 1 + ℕ(0,𝜎𝜎), 

for 𝑛𝑛 = −50: 1: 50 and 𝜎𝜎 = 1: 1: 5,           (27)             

In each set of 101 data values, the first 60 data values have 
been used for estimating the degree of the polynomial and its 
coefficients. Figure 7 shows the accuracy (%) of degree 
selection using AIC (green lower triangles), AICc (black 
upper triangles), GIC (magenta + signs), BIC (blue circles), 
and PTS1 (red stars) versus noise standard deviations for the 
quartic polynomial. AICc is always better than AIC. GIC and 
BIC are very similar, and they are always much better than 
AIC and AICc. The proposed method, PTS1, is always the 
best by far.  

The remaining 41 data values have been predicted and the 
root-mean square (RMS) prediction errors have been 
calculated. The RMS prediction errors for AIC, AICc, GIC, 
BIC, and the proposed method for each of the five values of 
the standard deviation of noise are presented in Table 4. 

Of the existing techniques AIC, AICc, GIC, and BIC, GIC 
and BIC offer much better performance. Each of AIC, AICc, 
GIC, and BIC calculates log-likelihoods, which require, 
amongst others, the value of 𝜎𝜎 , and was allowed the 
advantage of using the exact values of 𝜎𝜎 for the above results, 
even though these are not available in reality. Despite this, 
the proposed technique is the best and offers significantly 
better performance than GIC and BIC (as well as the other 
two). 

Table 3. Root mean-square errors for predicting 𝑥𝑥(𝑛𝑛) = 𝑛𝑛3 + 𝑛𝑛2 + 𝑛𝑛 + 1 + ℕ(0,𝜎𝜎)  using five different techniques, including 
the proposed technique. 

Degree of 
polynomial, 

N 

Standard deviation 
of noise, σ 

AIC 
(exact σ) 

AICc 
(exact σ) 

GIC 
(exact σ) 

BIC 
(exact σ) 

Proposed technique 
(estimated σ) 

3 1 140 90.5 41.9 30.8 5.19 
3 2 323 264 122 122 10.2 
3 3 565 489 252 251 15.1 
3 4 561 452 193 183 20.1 
3 5 904 630 215 199 25.6 

 

Figure 6. The upper figure shows the RMS prediction errors from GIC 
(magenta + signs), BIC (blue circles), and the proposed method (red stars), 
and the lower figure shows the variation of RMS prediction errors versus 
the standard deviations of noise for a cubic polynomial. 

Figure 7. The accuracy (%) of degree selection using AIC (green lower 
triangles), AICc (black upper triangles), GIC (magenta + signs), BIC (blue 
circles), and PTS1 (red stars) versus noise standard deviations for a quartic 
polynomial. 
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The upper half of Figure 8 displays the RMS prediction errors 
from GIC (magenta + signs), BIC (blue circles) and the 
proposed method (red stars), while the lower half of Figure 8 
depicts the variation of RMS prediction errors from GIC 
(magenta + signs), BIC (blue circles) and the proposed 
method (red stars). It is remarkable how much smaller the 
RMS prediction errors from the proposed method are 
compared to those from GIC and BIC. Also, the variations of 
RMS prediction errors from the proposed method are 
significantly smaller compared to those from GIC and BIC. 

 

E. Normalised results from the proposed method 

 
Figure 9 displays the normalised RMS prediction errors and 
the normalised variation of RMS prediction errors from the 
proposed method for linear, quadratic, cubic, and quartic 
polynomials. All the RMS prediction errors from the 
proposed method for the linear polynomial were divided by 
its RMS error at 𝜎𝜎 = 1. This ensured that the normalised RMS 
prediction error for the linear polynomial 𝜎𝜎  = 1 is 1. 
Similarly, all the variations of RMS prediction errors from 
the proposed method for the linear polynomial were divided 
by its value at 𝜎𝜎  = 1. This ensured that the normalised 

variation of RMS prediction error for the linear polynomial 
𝜎𝜎 = 1 is 1. Similar procedures were repeated for quadratic, 
cubic, and quartic polynomials.  

Table 4. Root mean-square errors for predicting 𝑥𝑥(𝑛𝑛) = 𝑛𝑛4 + 𝑛𝑛3 + 𝑛𝑛2 + 𝑛𝑛 + 1 + ℕ(0,𝜎𝜎) using five different techniques, 
including the proposed technique. 

Degree of 
polynomial, 

N 

Standard deviation 
of noise, σ 

AIC 
(exact σ) 

AICc 
(exact σ) 

GIC 
(exact σ) 

BIC 
(exact σ) 

Proposed technique 
(estimated σ) 

4 1 209 179 121 121 19.7 
4 2 415 356 214 213 38.7 
4 3 658 566 330 329 58.8 
4 4 855 731 429 406 81.4 
4 5 947 808 582 582 94.6 

 

Figure 8. The upper figure shows the RMS prediction errors from GIC 
(magenta + signs), BIC (blue circles), and the proposed method (red stars), 
and the lower figure shows the variation of RMS prediction errors versus 
the standard deviations of noise for a quartic polynomial. 

Figure 10. The left column shows the histograms of 1000 values of <μ> 
for degrees ranging from 1 to 4. The right column shows the histograms 
of 1000 values of 𝜎𝜎𝜇𝜇(𝑞𝑞) for degrees ranging from 1 to 4. 

Figure 9. The upper figure shows the normalised RMS prediction errors 
from the proposed method for linear (red stars), quadratic (red open 
circles), cubic (red upper triangles), and quartic (red plus signs) 
polynomials. The lower figure shows the normalised variations of RMS 
prediction errors versus the standard deviations of noise. The two blue 
straight lines with the slope of 1 and the intercept of 0 are for guidance. 
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The upper half of Figure 9 displays the normalised RMS 
prediction errors from the proposed method for linear 
(marked by red stars), quadratic (marked by red open circles), 
cubic (marked by red upper triangles), and quartic (marked 
by red plus signs) polynomials. The description of the lower 
half of Figure 9 is essentially the same, except that these 
values represent the normalised variations of RMS prediction 
errors. The two blue straight lines in Figure 9 have a slope of 
1 and an intercept of 0 for guidance.  

There are three remarkable observations from Figure 9: 

1) For both the normalised RMS prediction errors and the 
normalised variations of RMS prediction errors from the 
proposed method, their relationships with the values of 𝜎𝜎 
appear to be linear for each of linear, quadratic, cubic, and 
quartic polynomials.  

2) For both the normalised RMS prediction errors and the 
normalised variations of RMS prediction errors from the 
proposed method, their relationships with the values of 𝜎𝜎 
for each of linear, quadratic, cubic, and quartic 
polynomials appear to be identical.  

3) For both the normalised RMS prediction errors and the 
normalised variations of RMS prediction errors from the 
proposed method, their relationships with the values of 𝜎𝜎 
may be described by a single line with a slope of 1. 

 

F. 𝝁𝝁 values and RMS of 𝝁𝝁 values 

 
In [34], it has been proven that, for the correct degree, µ =
𝑐𝑐(𝑞𝑞) (𝑞𝑞!) , for noise-free data. Taking the expectation of 
equation (19), one can write 

< 𝜇𝜇 > = < 𝜇𝜇(𝑞𝑞) > = < 〈−�𝑎𝑎(𝑖𝑖) 𝑥𝑥(𝑛𝑛 − 𝑖𝑖)  + 𝑥𝑥(𝑛𝑛)
𝑞𝑞

𝑖𝑖=1

〉 >

=  −  �𝑎𝑎(𝑖𝑖) 𝑦𝑦(𝑛𝑛 − 𝑖𝑖)  + 𝑦𝑦(𝑛𝑛)
𝑞𝑞

𝑖𝑖=1

= 𝑐𝑐(𝑞𝑞) (𝑞𝑞!) (28)

 

Since in these experiments 𝑐𝑐(𝑞𝑞) = 1  in all cases, the 
theoretical expectations are that < 𝜇𝜇 > =  𝑞𝑞!.  

Given that µ(𝑛𝑛, 𝑞𝑞) = 𝑥𝑥(𝑛𝑛) −  ∑ 𝑎𝑎(𝑖𝑖) 𝑥𝑥(𝑛𝑛 − 𝑖𝑖)𝑞𝑞
𝑖𝑖=1 , variations 

in µ(𝑛𝑛, 𝑞𝑞) values will come, in the current scenario of having 
chosen the correct degree, from variations in 𝑥𝑥(𝑛𝑛) . 
Therefore, the variance is given by 

< 𝜎𝜎𝜇𝜇(𝑞𝑞) >2 = �(1)2 + �𝑎𝑎(𝑖𝑖)2 
𝑞𝑞

𝑖𝑖=1

� 𝜎𝜎2 (29) 

Combining equations (17) and (29), theoretically expected 
values of < 𝜎𝜎𝜇𝜇(𝑞𝑞) >2  are 50, 150, 500, and 1750, for 
polynomial degree (𝑞𝑞) values of 1, 2, 3, and 4 respectively 
for noise standard deviation of 5.  

In computer experiments there are 1,000 realisations for each 
degree of polynomial and each value of noise standard 
deviation, 𝜎𝜎. In each of these 1,000 realisations there is one 
value for < 𝜇𝜇 > and one value for 𝜎𝜎𝜇𝜇(𝑞𝑞). Figure 10 has four 
rows and two columns. All the eight subplots correspond to 
𝜎𝜎 = 5. Each column contains four subplots. The first column 
displays histograms of 1,000 values of < 𝜇𝜇 >  for degree = 1 
in the top subplot, for degree = 2 in the next subplot, for 
degree = 3 in the next subplot, and for degree = 4 in the 
bottom subplot. The second column displays histogram of 
1,000 values of 𝜎𝜎𝜇𝜇(𝑞𝑞) for degree = 1 in the top subplot, for 
degree = 2 in the next subplot, for degree = 3 in the next 
subplot, and for degree = 4 in the bottom subplot. All eight 
distributions look fairly symmetrical.  

Table 5 records the average of these 1,000 values and RMS 
values from computer experiments as well as the 
corresponding theoretical values for each value of degree and 
𝜎𝜎 = 5. Theoretical values of  < 𝜇𝜇 > for different values of 𝑞𝑞 
can be calculated from equation (28) and theoretical values 
of 𝜎𝜎𝜇𝜇(𝑞𝑞) can be calculated from equation (29). From Table 5 
it is clear that the agreements between estimated and 
theoretical values of < 𝜇𝜇 > as well as between estimated and 
theoretical values of 𝜎𝜎𝜇𝜇(𝑞𝑞) are remarkable. 

 

V Discussion 
 
In the above experiments, for model selections and 
predictions, AIC results are the worst and AICc results are 
better than AIC results. GIC and BIC results are very similar, 
and they are much better than AIC and AICc results. 
Remarkably, results from the proposed method are the best 
and significantly better than GIC and BIC results. 

One natural question is “what is the statistical significance of 
the polynomial degree estimation results from the various 
estimators for the four different polynomial degrees and the 
five different noise standard deviations”. For each 

Table 5. Estimated and theoretical values of < 𝜇𝜇 > and 𝜎𝜎𝜇𝜇(𝑞𝑞) for different polynomial degrees and noise, σ, of 5. 

Degree of polynomial, 
𝑞𝑞 

Standard deviation 
of noise, σ 

Estimated 
< 𝜇𝜇 > 

Theoretical 
< 𝜇𝜇 > 

Estimated 
𝜎𝜎𝜇𝜇(𝑞𝑞) 

Theoretical 
𝜎𝜎𝜇𝜇(𝑞𝑞) 

1 5 1.0 1.0 7.1 7.1 
2 5 2.0 2.0 12.3 12.2 
3 5 6.0 6.0 22.4 22.4 
4 5 24.0 24.0 41.7 41.8 
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combination of a polynomial degree and a noise standard 
deviation, there are 1000 estimated values of the polynomial 
degree for each of the five estimators. As estimated 
polynomial degrees are discrete, the “poissfit” function in 

MATLAB has been used to obtain the maximum likelihood 
estimate of the degree and its 95% confidence interval (i.e., 
the significance level of 0.05). The maximum likelihood 
estimate of the degree in all 20 cases for each of the four 
existing estimators AIC, AICc, GIC, and BIC is different 
from the true value of the degree. Table 6 contains the results 
from these four estimators, describing either the true 
polynomial degree is inside or outside the 95% confidence 
intervals. For AIC and AICc, confidence intervals do not 
contain the true degree 100% of these cases. For GIC and 
BIC, confidence intervals do not contain the true degree 25% 
of these cases. On the other hand, PTS1 has selected the 
correct polynomial degree in all of these 20 cases (4 degrees 
* 5 noise standard deviations). Thus, PTS1 results are 
consistent with the true degree for 100% of these cases in the 
presence of zero-mean Gaussian noise. 

Another question is “how does PTS1 work for a non-
Gaussian noise distribution”. There are very many non-
Gaussian distributions. A new set of 20 experiments were 
carried out using zero-mean noise from a Uniform 
distribution at the same five noise standard deviations and 
four polynomial degrees. For each of the five estimators, 
there are now 20 (4 degrees * 5 noise standard deviations) 
pairs of numbers; one number is the percentage accuracy with 
Gaussian noise while the other number is the percentage 
accuracy with Uniform noise. For each estimator, 20 values 

of the percentage accuracy with Gaussian noise minus the 
corresponding percentage accuracy with Uniform noise have 
been calculated. For each estimator, both the average of these 
difference percentage accuracies and the standard deviation 

of these difference percentage accuracies have been 
calculated from these 20 values. The results are 0.65% ± 
2.10% for AIC, -0.24% ± 1.78% for AICc, -0.37% ± 0.97% 
for GIC, -0.37% ± 0.97% for BIC, and 0.0% ± 0.0% for 
PTS1. This confirms that the results with Gaussian noise and 
Uniform noise are very similar for each estimator. Again, the 
PTS1 is the only one to select the correct degree of a 
polynomial every time; its performance was always the best. 
BIC and GIC performances are very similar, and their 
performances are better than AICc, which performed better 
than AIC. 

For Uniform noise, the same “poissfit” function in MATLAB 
has been used to obtain the maximum likelihood estimate of 
the degree and its 95% confidence interval (i.e., the 
significance level of 0.05). The maximum likelihood estimate 
of the degree in all 20 cases for each of the four existing 
estimators is different from the true value of the degree. For 
AIC and AICc, confidence intervals do not contain the true 
polynomial degree 100% of these cases. For GIC and BIC, 
confidence intervals do not contain the true degree 25% of 
these cases. On the other hand, PTS1 has selected the correct 
polynomial degree in all of these 20 cases (4 degrees * 5 noise 
standard deviations). Thus, PTS1 results are consistent with 
the true degree for 100% of these cases in the presence of 
zero-mean Uniform noise.  

Table 6. Is the true polynomial degree inside or outside the 95% confidence intervals for different estimators at four different 
polynomial degrees and five different zero-mean Gaussian noise standard deviations? 

Polynomial 
degree noise AIC AICc GIC BIC 

1 1 Outside Outside Outside Outside 
1 2 Outside Outside Outside Outside 
1 3 Outside Outside Outside Outside 
1 4 Outside Outside Outside Outside 
1 5 Outside Outside Outside Outside 
2 1 Outside Outside Inside Inside 
2 2 Outside Outside Inside Inside 
2 3 Outside Outside Inside Inside 
2 4 Outside Outside Inside Inside 
2 5 Outside Outside Inside Inside 
3 1 Outside Outside Inside Inside 
3 2 Outside Outside Inside Inside 
3 3 Outside Outside Inside Inside 
3 4 Outside Outside Inside Inside 
3 5 Outside Outside Inside Inside 
4 1 Outside Outside Inside Inside 
4 2 Outside Outside Inside Inside 
4 3 Outside Outside Inside Inside 
4 4 Outside Outside Inside Inside 
4 5 Outside Outside Inside Inside 
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Recall that each of AIC, AICc, GIC, and BIC attempts to 
balance between overfitting and underfitting scenarios. In 
one scenario errors reduce and in the other scenario errors 
increase with increasing values of q. As can be seen from 
equations (4), (13), (14), and (15), each of them has the 
identical log-likelihood term, wherein one can find the fitting 
error. At a conceptual plane, the �𝑓𝑓𝑓𝑓(𝑞𝑞)�2 term in PTS1(𝑞𝑞) 
(see equation (21)) is similar in that it also represents “fitting” 
error (but not the same at all). The first term in these four 
existing estimators always depends on 𝑞𝑞 and on N for AICc 
and BIC. It is worth noting that this first term has no 
connection with the data values. On the contrary, the first 
term in equation (21) for PTS1(𝑞𝑞) is 𝜎𝜎𝜇𝜇(𝑞𝑞)

2 , which clearly 
connected with the underlying data values (beyond 𝑞𝑞 and N). 
This is yet another way that the proposed estimator is 
different from other four estimators.    

A great deal of attempts has been made to make the 
comparisons fair (see section II and IV). However, AIC, 
AICc, GIC, and BIC calculate log-likelihoods which require 
the knowledge of the standard deviation of noise, which is 
not available in real situations. One can attempt to get a 
reasonable estimate of this using the fitted values from the 
model as the noise-free data using equation (8). Earlier 
experiments using estimated standard deviations have 
produced poor results from AIC, AICc, GIC, and BIC. 
Therefore, in all the above experiments, AIC, AICc, GIC, and 
BIC results are based on using the exact values of the 
standard deviations of noise (known from simulations), 
which give them an advantage over the proposed method, 
PTS1. 

Just as in every study, there are some limitations of this study. 
It is important to remember that the observations have been 
based on zero-mean, symmetric noise distributions. It is not 
known how things will work out in non-symmetric or other 
(than Gaussian and Uniform) symmetric noise distributions. 
Also, these experiments have been performed with four 
different polynomial degrees and five different noise 
standard deviations. Extensions of these may be considered 
in future explorations. 

 

VI Conclusion 
 
Given a set of noisy data values from a polynomial, this paper 
has considered determining the degree and coefficients of the 
polynomial, which is the problem of polynomial regressions. 
Unlike existing techniques, which select a model, including 
both the degree and coefficients of a polynomial, from a set 
of candidate models which have already been fitted to the 
data, the proposed method is fundamentally different. In the 
first stage only the degree of a polynomial to represent the 
noisy data is selected without any knowledge or reference to 
its coefficient values. Having selected the degree, polynomial 
coefficients are estimated in the second stage. The first stage 
has been inspired by the very recent results that all 

polynomials of degree q give rise to the same set of known 
time-series coefficients of autoregressive models and a 
constant term µ [34] and it constitutes a different paradigm 
from anything that appeared in the last two hundred years. 
Computer experiments have been carried out with simulated 
noisy data, from polynomials of degree 1, 2, 3, and 4, using 
four well known model selection criteria – AIC, AICc, GIC, 
and BIC – as well as the proposed method, PTS1, for 
polynomial degree selection and predictions. The PTS1 is the 
only one to select the correct degree of a polynomial every 
time; its performance was always the best. BIC and GIC 
performances are very similar, and their performances are 
better than AICc, which performed better than AIC. 

The prediction results obtained from the proposed PTS1 are 
significantly better than those from the existing methods. For 
both the normalised RMS prediction errors and the 
normalised variations of RMS prediction errors from the 
proposed method, their relationships with the values of 𝜎𝜎  

1) appear to be linear for each of linear, quadratic, cubic, and 
quartic polynomials,  

2) appear to be identical for each of linear, quadratic, cubic, 
and quartic polynomials, and   

3) are described by a single line with a slope of 1. 

Therefore, the normalised root-mean square (RMS) 
prediction errors and the normalised variation of the RMS 
prediction errors scale linearly with the standard deviation of 
the noise. As an internal check of the proposed method, two 
hidden parameters, specifically < 𝜇𝜇 > and its RMS, 𝜎𝜎𝜇𝜇(𝑞𝑞) , 
have been estimated from the data. For each value of the 
degree of a polynomial and value of the standard deviation of 
noise, the agreements between estimated values and 
theoretical values of < 𝜇𝜇 >  as well as between estimated 
values and theoretical values of 𝜎𝜎𝜇𝜇(𝑞𝑞) are remarkable. 
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Figure Captions 

Figure 1 shows the accuracy (%) of degree selection using 
AIC (green lower triangles), AICc (black upper triangles), 
GIC (magenta + signs), BIC (blue circles), and PTS1 (red 
stars) versus noise standard deviations for a linear 
polynomial. 

The upper half of Figure 2 displays the RMS prediction errors 
from GIC (magenta + signs), BIC (blue circles), and the 
proposed method (red stars), while the lower half of Figure 2 
depicts the variation of RMS prediction errors versus the 
standard deviations of noise for a linear polynomial.  

Figure 3 shows the accuracy (%) of degree selection using 
AIC (green lower triangles), AICc (black upper triangles), 
GIC (magenta + signs), BIC (blue circles), and PTS1 (red 
stars) versus noise standard deviations for a quadratic 
polynomial. 

The upper half of Figure 4 displays the RMS prediction errors 
from GIC (magenta + signs), BIC (blue circles), and the 
proposed method (red stars), while the lower half of Figure 4 
depicts the variation of RMS prediction errors versus the 
standard deviations of noise for a quadratic polynomial. 

Figure 5 shows the accuracy (%) of degree selection using 
AIC (green lower triangles), AICc (black upper triangles), 
GIC (magenta + signs), BIC (blue circles), and PTS1 (red 
stars) versus noise standard deviations a cubic polynomial. 

The upper half of Figure 6 displays the RMS prediction errors 
from GIC (magenta + signs), BIC (blue circles), and the 
proposed method (red stars), while the lower half of Figure 6 
depicts the variation of RMS prediction errors versus the 
standard deviations of noise for a cubic polynomial. 

Figure 7 shows the accuracy (%) of degree selection using 
AIC (green lower triangles), AICc (black upper triangles), 
GIC (magenta + signs), BIC (blue circles), and PTS1 (red 
stars) versus noise standard deviations for a quartic 
polynomial. 

The upper half of Figure 8 displays the RMS prediction errors 
from GIC (magenta + signs), BIC (blue circles), and the 
proposed method (red stars), while the lower half of Figure 8 
depicts the variation of RMS prediction errors versus the 
standard deviations of noise for a quartic polynomial. 

The upper half of Figure 9 displays the normalised RMS 
prediction errors from the proposed method for linear (red 
stars), quadratic (red open circles), cubic (red upper 
triangles), and quartic (red plus signs) polynomials. The 
lower half of Figure 9 depicts the normalised variations of 
RMS prediction errors versus the standard deviations of 
noise. The two blue straight lines have the slope of 1 and the 
intercept of 0. 

All the eight subplots in Figure 10 correspond to 𝜎𝜎 = 5. The 
first column displays histograms of 1,000 values of < 𝜇𝜇 >  
for degree = 1 in the top subplot, for degree = 2 in the next 

subplot, for degree = 3 in the next subplot, and for degree = 
4 in the bottom subplot. The second column displays 
histogram of 1,000 values of 𝜎𝜎𝜇𝜇(𝑞𝑞) for degree = 1 in the top 
subplot, for degree = 2 in the next subplot, for degree = 3 in 
the next subplot, and for degree = 4 in the bottom subplot.  


