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Abstract: Hypertension affects huge number of people around the world. It also 
has a great contribution to cardiovascular and renal related diseases. This study 
investigates the ability deep convolutional autoencoder (DCAE) to generate the 
continuous arterial blood pressure (ABP) by only utilizing the 
photoplethysmography (PPG) to generate the continuous ABP. The total of 18 
patients is utilized. LeNet-5 and U-Net based DCAEs, respectively for LDCAE and 
UDCAE, are compared to the MP60 IntelliVue Patient Monitor, as the golden 
standard. Moreover, in order to investigate the data generalization, leave-one-out 
cross-validation (CV) method is conducted. The results show that the UDCAE 
provides superior results in producing the SBP estimation. Meanwhile, LDCAE 
gives a slightly better for the DBP prediction. Finally, the genetic algorithm (GA) 
based optimization deep convolutional autoencoder (GDCAE) is further 
administered to optimize the ensemble of the CV models. The results reveal that 
the GDCAE is superior to either the LDCAE or UDCAE. For conclusion, this study 
reveals that the SBP and DBP can also be accurately achieved by only utilizing the 
single PPG signal. 

Keywords: photoplethysmography; continuous arterial blood pressure; systolic 
blood pressure; diastolic blood pressure; deep convolutional autoencoder; genetic 
algorithm 
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1. Introduction 

According to World Health Organization (WHO), blood pressure (BP) is the 
pressure driven by the blood circulation to the artery wall. Meanwhile, the 
hypertension or high blood pressure (HBP) is the excessive amount of the given force 
against blood vessels. In further, WHO also stated that HBP affects more than one 
billion people in the world [1].  

With having impact to many people, HBP in further can incite several diseases. 
It has solid contribution to cardiovascular and renal diseases [2]. HBP also 
contributed to stroke and ischemic heart diseases [3]. Furthermore, HBP can 
generate vascular damage of retina related to the cardiovascular-related fatality [4]. 
These aforementioned studies make the HBP-related inspection, utilizing the other 
vital signs, become significant. 

Photoplethysmography (PPG), one of the vital signs, has been a solid indicator 
for some medical-related investigations. PPG has been deployed as the heart rate 
measurement in the motion artifact-interfered condition with empirical mode 
decomposition-based filter and time-frequency evaluation [5]. It also has been 
utilized, alongside electrocardiography, for the atrial fibrillation in acute stroke 
patient [6]. Another study has involved the PPG morphological feature for the 
hypertension early identification [7]. Moreover, Phillips et. al., applied the PPG 
sensors to non-invasively evaluate the hemoglobin concentration [8]. Meanwhile, 
Perpetuini et. al., supervised the general linear model-based PPG to evaluate the 
ankle-brachial index, which was initially measured using commercial instrument as 
the golden standard [9]. In another case, lately, entropy-based PPG evaluations have 
been successfully distinguished between healthy and diabetic patients [10]. 

There are specifically assorted previous studies that effectively demonstrated 
the substantial interconnection between PPG and BP. A study investigated the 
relationship of the PPG with intermittent systolic and diastolic blood pressures using 
multi-scale entropy and ensemble neural network [11]. Sideris et. al., evaluated the 
continuous arterial blood pressure (ABP) using long-short term memory (LSTM) 
from patients in intensive care unit (ICU) using the only PPG signal [12]. 
Furthermore, the hybrid of LSTM and artificial neural network (ANN) were 
performed via ECG and PPG to measure the BP [13]. In further, autoregressive 
moving average to investigate the blood pressure also by using features of PPG 
signal with related to the specific breathing conditions was performed and showed 
a quality evaluation [14]. Meanwhile, multiple signals from ECG, PPG and 
ballistocardiograms (BCG) were used to investigate the systolic blood pressure (SBP) 
and diastolic blood pressure (DBP) by utilizing hybrid artificial intelligence (AI) 
methods [15]. 

Recently, AI has been widely used in many fields. It has been used 
simultaneously with computational fluid dynamics in order to optimize the control 
scheme by adjusting the triangular membership function for the cooling system in a 
heat exchanger [16]. The hybrid AI, combining the extreme learning machine with 
cuckoo search algorithm, was applied for biodiesel production [17]. Meanwhile, a 
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study used neural network with multi-armed bandit algorithm for solid oxide fuel 
cell problem [18]. Moreover, Zaidan et. al., applied the AI model for the gas turbine 
engine inspection [19]. 

Specifically to medical-related studies, ANN has been used for detecting depth 
of anesthesia with involving multi-vital signs [20]. This previous study applied the 
entropy-based calculation to extract the feature from one vital sign, which is the 
EEG. Meanwhile, the 5-second intermittent data from other vital signs were later 
combined with the extracted entropy value from the EEG. Finally, the cross-
validation technique was used to evaluate the data generalization when dealing with 
data shuffling for the training season. A wearable device-related study also utilized 
ANN in classifying arrhythmia [21]. Fast Fourier transform (FFT) was also 
administered to evaluate one of the arrhythmia in the frequency domain evaluation. 
Moreover, The ANN model was also implemented to predict the pneumonia [22, 
23]. 

Besides being utilized for the generalization evaluation [20], the ensemble 
technique is likely used to increase the accuracy of the models. However, selecting 
all the models for the ensemble system has not always been the best solution [24]. 
The combination of the fuzzy clustering, ANN and genetic algorithm (GA), was 
administered for ensemble model for the highly unbalanced data evaluation in 
emergency medical service [25]. The GA was called to investigate which models 
should be allocated to have a good ensemble mode. Furthermore, this related study 
examined the quality of the model best on the area under the curve (AUC) from the 
receiver operating characteristic (ROC) as the fitness function. The result from this 
study [25] convincingly supported the study by Zhou, Z.H. et. al [24]. The ensemble 
model definitely will increase the result. Nevertheless, selecting several classifiers is 
likely to produce a better result than combining all of them [24]. 

Recently, the neural network method tends to move towards the deeper 
structure, called deep neural network [26]. This system has been administered to the 
substantial studies. One of the methods, the convolutional neural network (CNN), 
has been used to predict the arrhythmia with very precise result with comparison to 
cardiologist [27]. Another powerful evidence by the CNN based evaluation 
technique has also been performed to solve the seizure problem using 
encephalogram (EEG) [28]. Moreover, a study evaluated the depth of anesthesia that 
utilizing short time Fourier transform (STFT) and CNN [29] was investigated to 
evaluate a four-class system classification in anesthesia from this related study in 
comparison with several CNN models.  

As revealed in the aforementioned details, PPG, as one of the vital signs, is 
highly potentially able to estimate the blood pressure system. In further, the AI 
method, especially the deep neural network has been very widely utilized in many 
area particularly medical related fields either in the classification or the regression 
system. Moreover, with the help of the GA, as the optimizer, the ensemble model of 
the deep learning algorithm is prospectively utilized. Hence, the aim of this paper is 
to investigate the generative continuous ABP  using deep neural network models 
via deep convolutional autoencoder (DCAE) by utilizing only  a single PPG sensor. 
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Finally, the GA will form the ensemble model from the evaluation of the cross-
validation models. 

2. Materials and Methods 

This study has been approved by the Research Ethics Committee, National 
Taiwan University Hospital (NTUH) in Taiwan. Furthermore, the written informed 
consent was received for the permission by the patients. Totally, 18 patients dataset 
is used for the evaluation. The dataset is acquired using MP60 IntelliVue Patient 
Monitor (Koninklijke Philips N.V, Amsterdam, Netherlands) that is connected to a 
PC. 

Regarding to the dataset and the deep learning evaluations. The sampling rate 
of the PPG and ABP is 128 Hz. The window size evaluation is based on each 5-second 
signal both the PPG and ABP. This phenomenon means that each 5-second PPG 
signal is able to predict the current 5-second of the ABP signal. The data in manually 
filtered based on its quality. In this study, the range of the data is limited between 
10 mmHg and 250 mmHg. Some noisy ABP signals are likely affected by the high-
frequency noise. The dataset is randomly divided into 85% and 15% respectively for 
the training and testing data. MATLAB R2014b (The MathWorks, Inc., Natick, 
Massachusetts, USA) is utilized for pre-processing the data and post-processing the 
results. TensorFlow (Ver. 1.15.2) [30] and Keras (Ver. 2.3.1) are utilized in Google 
Colaboratory (Google Inc., California, USA) for the deep learning training using 
Python 3.6. The training is conducted for 200 epochs with batch size of 16 with Adam 
optimizer [31]. The model checkpoint is also set for the training system. As well, the 
training data is shuffled. Finally, cross-validation (CV) method is conducted to 
investigate the model regularity.  

The evaluations are conducted based on mean absolute error (MAE), root mean 
squared error (RMSE), and Pearson's linear correlation coefficient. These evaluations 
are given on Eqs. 1-3. The Pearson's linear correlation coefficient evaluates between 
the MP60, as the golden standard, and the generated continuous arterial blood 
pressures. It also investigates the systolic blood pressure (SBP) and diastolic blood 
pressure (DBP) values, by taking the maximum and minimum values from the 
continuous signal, respectively for SBP and DBP, between MP60 IntelliVue Patient 
Monitor and the models. The given error is in mmHg. The R_(x,y) value is in range 
between 0 and 1. The model and the reference are perfectly correlated when the 
given R_(x,y) value is equal to 1. 

𝑀𝑀𝑀𝑀𝑀𝑀 =  1 𝑛𝑛� �|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 (1) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1 𝑛𝑛� �(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 (2) 
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Where the 𝑥𝑥𝑖𝑖 is the reference, 𝑦𝑦𝑖𝑖 is the estimated result, 𝑛𝑛 is the number of sample, 
𝑥̅𝑥 is the mean of the reference, and 𝑦𝑦� is the mean of the estimated result.  
 

This study evaluates two DCAE models. Basically, the autoencoder structure is 
shown in Figure 1. The first model is generated based on the LeNet-5 CNN model 
[32]. Originally, this model worked for the digit recognition system. The architecture 
of this model is relatively simple compared to other models. The convolution layer 
on this model is regularly followed by the subsampling. For the classification system, 
there are several fully connected layers installed to the network. This study uses only 
the convolution layer with the subsampling from the original LeNet-5 model to form 
the encoder. Meanwhile, the decoder utilizes the opposite way of the encoder. The 
detail of the LeNet-5 based deep convolutional autoencoder (LDCAE) utilized in this 
study can be seen on Table 1. From this table, it can be seen that the original 5 seconds 
of the 1-dimensional PPG signal and the sampling rate of 128 Hz, with size of 640 
points, is used for the input layer. For the encoder, this study applies the increasing 
filter size. All convolution layers administer the rectified linear unit (ReLU) 
activation function, shown on Eq. 4. This structure also uses the same padding. After 
the input layer, for the encoder, the first convolution layer starts with 16 filters and 
ends with 64 filters. However, the decoder works with initially 64 filters to 16 filters. 
The output layer is equal to the input layer. This layer is the 5-second ABP signal. 
This model has equal total parameter and trainable parameter, which is about sixty 
thousand parameters. 

 

f(x) = max(0,x) (4) 

  

Another model is the deep convolutional autoencoder based on the U-Net 
architecture [33]. This model was originally applied for the biomedical 
segmentation. One of the uniqueness of the U-Net model is the concatenating 
between a layer in encoder and another layer in decoder that has the same feature 
map. The detail structure of the U-Net based convolutional autoencoder (UDCAE) 
used in this study can be seen on Table 2. In parallel  with the LDCAE model, this 
model also has input size of 640 data point of the PPG. The encoder and decoder 
structures are also very identical the LDCAE. However, the first filter in the encoder 
has 32 filters and ends with 256 filters. In further, the concatenated layer filters in the 
decoder are formed by considering the filter from the encoder layer. The UDCAE 
also utilizes the ReLU activation function. This UDCAE model has equal total 
number of settings and trainable parameters, which are about three hundred 
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thousand parameters. These numbers of parameter are much bigger compared to 
the LDCAE structure. 

 
 

Figure 1. Basic autoencoder structure. 
 

Table 1. LeNet-5 based deep convolution autoencoder (LDCAE) structure. 
 

Layer (type) Output Shape Param # 

input_1 (InputLayer) (None, 640, 1) 0 

CONV_01 (Conv1D) (None, 640, 16) 64 

D_POOL_01 (MaxPooling1D) (None, 320, 16) 0 

CONV_02 (Conv1D) (None, 320, 16) 784 

D_POOL_02 (MaxPooling1D) (None, 160, 16) 0 

CONV_03 (Conv1D) (None, 160, 32) 1568 

D_POOL_03 (MaxPooling1D) (None, 80, 32) 0 

CONV_04 (Conv1D) (None, 80, 32) 3104 

D_POOL_04 (MaxPooling1D) (None, 40, 32) 0 

CONV_05 (Conv1D) (None, 40, 64) 6208 

D_POOL_05 (MaxPooling1D) (None, 20, 64) 0 

CONV_06 (Conv1D) (None, 20, 64) 12352 

D_POOL_06 (MaxPooling1D) (None, 10, 64) 0 

CONV_07 (Conv1D) (None, 10, 64) 12352 

U_POOL_01 (UpSampling1D) (None, 20, 64) 0 

CONV_08 (Conv1D) (None, 20, 64) 12352 

U_POOL_02 (UpSampling1D) (None, 40, 64) 0 

CONV_09 (Conv1D) (None, 40, 32) 6176 

U_POOL_03 (UpSampling1D) (None, 80, 32) 0 

CONV_10 (Conv1D) (None, 80, 32) 3104 

U_POOL_04 (UpSampling1D) (None, 160, 32) 0 

CONV_11 (Conv1D) (None, 160, 16) 1552 

U_POOL_05 (UpSampling1D) (None, 320, 16) 0 
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CONV_12 (Conv1D) (None, 320, 1) 33 

U_POOL_06 (UpSampling1D) (None, 640, 1) 0 

Table 2. U-Net based deep convolution autoencoder (UDCAE) structure. 
 

Layer (type) Output Shape Param # Connected to 

INPUT (InputLayer) (None, 640, 1) 0   

CONV_01 (Conv1D) (None, 640, 32) 128 INPUT[0][0] 

D_POOL_01 (MaxPooling1D) (None, 320, 32) 0 CONV_01[0][0] 

CONV_02 (Conv1D) (None, 320, 32) 3104 D_POOL_01[0][0] 

D_POOL_02 (MaxPooling1D) (None, 160, 32) 0 CONV_02[0][0] 

CONV_03 (Conv1D) (None, 160, 64) 6208 D_POOL_02[0][0] 

D_POOL_03 (MaxPooling1D) (None, 80, 64) 0 CONV_03[0][0] 

CONV_04 (Conv1D) (None, 80, 64) 12352 D_POOL_03[0][0] 

D_POOL_04 (MaxPooling1D) (None, 40, 64) 0 CONV_04[0][0] 

CONV_05 (Conv1D) (None, 40, 128) 24704 D_POOL_04[0][0] 

D_POOL_05 (MaxPooling1D) (None, 20, 128) 0 CONV_05[0][0] 

CONV_06 (Conv1D) (None, 20, 128) 49280 D_POOL_05[0][0] 

D_POOL_06 (MaxPooling1D) (None, 10, 128) 0 CONV_06[0][0] 

CONV_07 (Conv1D) (None, 10, 128) 49280 D_POOL_06[0][0] 

U_POOL_01 (UpSampling1D) (None, 20, 128) 0 CONV_07[0][0] 

CONC_01 (Concatenate) (None, 20, 256) 0 CONV_06[0][0] 

      U_POOL_01[0][0] 

CONV_08 (Conv1D) (None, 20, 128) 98432 CONC_01[0][0] 

U_POOL_02 (UpSampling1D) (None, 40, 128) 0 CONV_08[0][0] 

CONC_02 (Concatenate) (None, 40, 256) 0 CONV_05[0][0] 

      U_POOL_02[0][0] 

CONV_09 (Conv1D) (None, 40, 64) 32832 CONC_02[0][0] 

U_POOL_03 (UpSampling1D) (None, 80, 64) 0 CONV_09[0][0] 

CONC_03 (Concatenate) (None, 80, 128) 0 CONV_04[0][0] 

      U_POOL_03[0][0] 

CONV_10 (Conv1D) (None, 80, 64) 16448 CONC_03[0][0] 

U_POOL_04 (UpSampling1D) (None, 160, 64) 0 CONV_10[0][0] 

CONC_04 (Concatenate) (None, 160, 128) 0 CONV_03[0][0] 

      U_POOL_04[0][0] 

CONV_11 (Conv1D) (None, 160, 32) 8224 CONC_04[0][0] 

U_POOL_05 (UpSampling1D) (None, 320, 32) 0 CONV_11[0][0] 

CONC_05 (Concatenate) (None, 320, 64) 0 CONV_02[0][0] 

      U_POOL_05[0][0] 

CONV_12 (Conv1D) (None, 320, 32) 4128 CONC_05[0][0] 

U_POOL_06 (UpSampling1D) (None, 640, 32) 0 CONV_12[0][0] 

CONC_06 (Concatenate) (None, 640, 64) 0 CONV_01[0][0] 

      U_POOL_06[0][0] 
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CONV_13 (Conv1D) (None, 640, 1) 129 CONC_06[0][0] 

 
Moreover, 10-fold cross-validation (CV) system is conducted to evaluate the 

data generalization to the models. This CV method uses leave one out cross-
validation (LOOCV) technique, meaning that the CV model shuffles only the 
training part and keeps the testing data outside the shuffling system. The highest 
average BP of the CV fold, combining the DCAE models, is selected as the best single 
model.  

Finally, this study deploys the genetic algorithm (GA) optimization method, 
named genetic deep autoencoder (GDCAE) to ensemble the ten CV models for each 
LDCAE and UDCAE. Each CV model has the equally distributed weight, meaning 
this each model will have the chance to be combined to other models. Therefore, this 
GA will have the total of 20 bits for each chromosome. The chromosome will contain 
the binary values. Zero means the model is not selected and one means the selected 
model. In further, this study uses 32 chromosomes, single point crossover system, 
95% of mutation rate and 2000 generations. The GA fitness function equation is given 
by Eq. 5. This equation is a purely modified of Eq. 3. The Eq. 5 is also the average 
value of the Pearson's linear correlation coefficient between SBP and DBP, meaning 
that the weights are equally distributed. 
 

𝑅𝑅𝑏𝑏𝑏𝑏����� =  
1
2
�

∑ �𝑥𝑥𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠 −  𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠��������𝑦𝑦𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠 −  𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠�������𝑛𝑛
𝑖𝑖=1
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2𝑛𝑛

𝑖𝑖=1 ∑ �𝑦𝑦𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠 −  𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠�������
2𝑛𝑛

𝑖𝑖=1 �
1
2�

+
∑ �𝑥𝑥𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑 −  𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑��������𝑦𝑦𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑 −  𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑�������𝑛𝑛
𝑖𝑖=1

�∑ �𝑥𝑥𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑 −  𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑�������
2𝑛𝑛

𝑖𝑖=1 ∑ �𝑦𝑦𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑 −  𝑦𝑦𝑑𝑑𝑑𝑑𝑑𝑑�������
2𝑛𝑛

𝑖𝑖=1 �
1
2�
� 

(5) 

 

3. Results 

This study utilizes the deep convolutional autoencoder (DCAE) models to 
generate the continuous arterial blood pressure signal (ABP) by using single 
photoplethysmography (PPG). The result produced by the models are compared to 
investigated the better model compared to the MP60 IntelliVue Patient Monitor as 
the golden standard. The evaluations cover the continuous arterial blood pressure 
signal and the systolic and diastolic blood pressures. 

The training of the DCAE models can be seen on Figure 2. It can be seen that, for 
training, the UDCAE converges faster and better than the LDCAE. Furthermore, for 
the testing, the UDCAE model also provides a preferable result compared to the 
LDCAE. In addition, the UDCAE model shows relatively less fluctuation. 
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Figure 2. The training and testing of the LDCAE and UDCAE models. 

 
Figure 3 shows the input of the PPG signal and its corresponding output of the 

continuous ABP signals, generated by the DCAE based models for the testing 
results. It can be seen that both models, LDCAE and UDCAE, successfully produce 
continuous ABP. In further, this figure also reveals the SBP and DBP can be 
accurately achieved. Both models display a fine estimation result in either the PPG 
has significant or non-significant second peak. 

After performing the continuous ABP, the evaluation of SBP and DBP is further 
investigated. The maximum value of a 5-second segment is defined as the SBP. 
Meanwhile the minimum value is the DBP. This approach is deployed for both the 
DCAE models and the MP60, as the golden standard. The evaluation of the SBP and 
DBP can be seen on the error distribution on Figure 4. From this figure, both LDCAE 
and UDCAE are compared to the MP60 IntelliVue Patient Monitor values. It can be 
seen that the UDCAE model produces better outcomes by delivering more 
frequency result approaching to zero than the LDCAE model. 

In further, to investigate the model prediction quality of the SBP and the DBP 
results compared to the MP60, another Pearson's linear correlation coefficient 
evaluation is performed. This estimation provides heterogeneous outcomes. The 
UDCAE has a slightly better result in envisaging the SBP prediction. Meanwhile, the 
LDCAE displays insignificantly better for the DBP estimation. The detail evaluation 
is shown in Figure 5. 
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Figure 3. The PPG input signal and comparison results between LDCAE and 
UDCAE models and MP60 IntelliVue Patient Monitor. 
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Figure 4. The error comparison between DCAE based models and MP60 
IntelliVue Patient Monitor. 

 
Figure 5. The Pearson's linear correlation comparison between DCAE based 
models and MP60 IntelliVue Patient Monitor. 
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Another powerful approach given by the DCAE models is the ability to generate 
the continuous ABP signal and is not interfered by any noise since the quality PPG 
is supplied. From Figure 6, it can be seen that some signals produced by the MP60 
IntelliVue Patient Monitor are relatively noisy. However, the DCAE models are able 
to overcome it. Moreover, the predicted SBP and DBP values are comparable, by 
comparing them to either the preceding or the succeeding cycles. 

 

 
Figure 6. The comparison of the noisy MP60 ABP signal and the generated 
ABP signal by the LDCAE and UDCAE models. 
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The cross-validation is later performed in order to evaluate the data 

generalization and for the ensemble combination. The results show that the data has 
very high generalization. Good generalization is given by the standard deviation of 
the Pearson's linear correlation for the SBP, DBP and waveform evaluations, given 
in Table 3. Moreover, also the relatively small standard deviation of RMSE and MAE 
for the SBP, DBP and waveform evaluations are shown in Table 4. 

The selection of the best single model from the CV results is evaluated based on 
the Pearson's linear correlation coefficient given in Table 3. It can be seen that the 
fourth CV model provides the highest average value between the SBP and DBP, 
which is 0.9643. Hence, this model is selected as the best single model. 

 
 
Table 3. The Pearson's linear correlation coefficient evaluation of LDCAE and 
UDCAE models from cross-validation method. [Note: Bold value is the best 
single CV model]. 
 

CV 
Correlation coefficient 

SBP DBP Waveform 
Average 

LDCAE UDCAE LDCAE UDCAE LDCAE UDCAE 
1 0.956 0.958 0.958 0.953 0.968 0.974 0.9612 
2 0.960 0.961 0.954 0.942 0.969 0.974 0.9600 
3 0.962 0.965 0.951 0.941 0.968 0.975 0.9603 
4 0.958 0.969 0.962 0.953 0.968 0.976 0.9643 
5 0.954 0.964 0.963 0.962 0.966 0.975 0.9640 
6 0.951 0.960 0.959 0.956 0.966 0.974 0.9610 
7 0.956 0.957 0.947 0.951 0.967 0.973 0.9585 
8 0.959 0.964 0.949 0.956 0.968 0.976 0.9620 
9 0.957 0.963 0.947 0.946 0.966 0.975 0.9590 
10 0.958 0.968 0.963 0.947 0.967 0.975 0.9630 

Mean 0.957 0.963 0.955 0.951 0.967 0.975   
STD 0.003 0.004 0.007 0.007 0.001 0.001   
 
 
After having the CV models, both from LDACE and UDCAE, the genetic 

algorithm based optimization deep convolutional autoencoder (GDCAE) is 
subsequently performed. This GA will work as the selector of the DCAE models that 
will be combined for the ensemble system. As the result, the CV models 1, 2, 3, 4, 5 
and 10 are selected by GA from the LDCAE model. Meanwhile, GA appoints all the 
UDCAE models, except the first model. The result also shows the reliability from the 
fourth model of the LDCAE and UDCAE systems.  
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The convergence of the GDCAE is shown in Figure 7. Several chromosome sizes 
of 4, 8, 16, 32 and 64 are investigated. The average result from the SBP and DBP of 
GDCAE is 0.980. This GDCAE result is better compared to the average value of SBP 
and DBP from best single CV model, 0.960 and 0.961 for LDCAE and UDCAE 
models, respectively. By having this combination, the GA-optimized reconstructed 
signal is later performed. The results also provide some improvements in 
comparison to the best CV model in Pearson's linear correlation coefficient and error 
evaluations, which can be seen in Table 5. 

 

 
Figure 7. GDCAE generation convergence. 

 

4. Discussion 

Initially in this study, the PPG signal is trained by using DCAE models, LeNet 
and U-Net based models, to generate the continuous arterial blood pressure (ABP) 
signal. In this step, the PPG and MP60 IntelliVue Patient Monitor generated 
continuous arterial blood pressure signals are compared. Moreover, the systolic and 
diastolic blood pressures are evaluated by root mean squared error (RMSE) and the 
correlation coefficient between the models with the MP60 IntelliVue Patient Monitor 
as the golden standard. Finally, the GA regulated DCAE based on the cross-
validation results is deployed to ensemble the model and evaluate the system. 
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Table 5. Comparison between LDCAE, UDCAE and GDCAE models. 
 

Method 
Correlation Coefficient Error evaluations [mmHg] 

Waveform SBP DBP Waveform SBP DBP 

LDCAE R = 0.968 R = 0.958 R = 0.962 

RMSE = 5.10 
STD = 8.82 
MAE = 3.52 
STD = 3.69 

RMSE = 5.19 
STD = 7.86 
MAE = 3.80 
STD = 3.54 

RMSE = 2.76 
STD = 5.36 
MAE = 2.00 
STD = 1.89 

UDACE R = 0.976 R = 0.969 R = 0.953 

RMSE = 4.25 
STD = 8.78 
MAE = 2.77 
STD = 3.22 

RMSE = 3.85 
STD = 6.62 
MAE = 2.73 
STD = 2.72 

RMSE = 3.25 
STD = 9.40 
MAE = 1.95 
STD = 2.62 

GDCAE R = 0.984 R = 0.981 R = 0.979 

RMSE = 3.46 
STD = 6.25 
MAE = 2.33 
STD = 2.56 

RMSE = 3.41 
STD = 4.97 
MAE = 2.54 
STD = 2.74 

RMSE = 2.14 
STD = 4.63 
MAE = 1.48 
STD = 1.54 

 
 
In order to investigate the quality of the proposed methods, the comparative 

study to the previously organized researches is conducted. The comparison method 
is included the dataset, input signal, methodology, generative system, error 
evaluations and linear correlations. The detail of the comparative studies is given in 
Table 6. Sideris et. al. [12] utilized the forty two patients dataset from MIMIC 
PhysioNet, originally two hundred dataset after applying some filtering steps based 
on the quality of the blood pressure signal. This study also only used the single PPG 
signal. The overlapped window size was used in order to form either the training or 
the testing. In further, the LSTM, one of the deep neural network methods, applied 
for the prediction. One of the essential achievements from this study is the ability to 
generate the continuous arterial blood pressure signal. As it can be seen, the 
capability of LSTM is able to produce the continuous arterial blood pressure by only 
utilizing the PPG signal. It, however, did not mention specifically about the RMSE 
of the DBP. Nevertheless, in this study they provided a table consisting the tabulated 
RMSE result of SBP, DBP and ABP. With full respect to all of the authors in this study 
[12], we re-evaluate the ABP and SBP results based on the corresponding table. This 
is conducted to recalculate the mean and standard deviation which found to be . 
very identical results to their reported results. Hence, we perform the DBP 
calculation, in parallel to the aforementioned method for the ABP and SBP 
calculations. The results of DBP, for mean and standard deviation, is 1.98±1.06 
mmHg. In comparison to our study, this study has slightly better results in RMSEs 
of SBP and DBP error evaluations. However, our study, the GDCAE, provides a 
better outcome in the waveform error evaluation, which is 0.984. Moreover, our 
GDCAE also delivers a superior solution for the correlation coefficient for the 
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waveform evaluation. Meanwhile, Sideris et. al. [12] did not provide any 
information about the SBP and DBP correlation coefficient results. 

Another study related to blood pressure evaluation was conducted by Tanveer 
et. al. [13]. This study applied multiple vital signs, which are ECG and PPG. This 
study used the dataset of thirty-nine patients, from originally ninety-three patients, 
of MIMIC I PhysioNet database. This study had 16-second and 40-second of window 
sizes, with 125 Hz of sampling frequency. This study also deployed the LSTM 
method, similar to the study performed by Sideris et. al. [12], alongside the ANN. 
This study provided an outstanding result in the error estimation in mmHg. Based 
on the combination of LSTM and ANN method, their study produced significantly 
small RMSEs, which are 1.26 mmHg and 0.73 mmHg, respectively for SBP and DBP. 
Moreover, the MAEs for the SBP and DBP are respectively 0.93 mmHg and 0.52 
mmHg. Identical to the error evaluation, the Pearson's linear correlation coefficient 
evaluation is also an exceptional finding. The nearly perfectly correlated system is 
produced, which are 0.999 and 0.998 for the SBP and DBP, respectively. This result 
is produced by the longer size, which is the 40-second window size system. 
However, this method has a drawback. It did not provide the information about the 
generative continuous arterial blood pressure.  

A study investigated by Zadi et. al. [14] used fifteen young subjects. This study 
evaluated the blood pressure based on two conditions, which are normal breath and 
breath hold. The autoregressive moving average (ARMA) was deployed the 
modeling. This study produced relatively good result. It has RMSEs of 7.21 mmHg 
and 5.12 mmHg, respectively for the systolic and diastolic blood pressure. However, 
neither correlation coefficient for waveform, SBP nor DBP was provided. Moreover, 
there was no available generative continuous ABP signal investigation.  

The last comparative study is the finding by Eom et. al. [15]. This study was 
conducted on fifteen subjects. It used several vital signs, which are ECG, PPG and 
BCG. The 5-second window size was also used in this study. The combination of 
CNN, bidirectional gated recurrent unit (Bi-GRU) and attention mechanism. The 
result showed the produced MAEs and standard deviations are 4.06±4.04 mmHg 
and 3.33±3.42 mmHg, respectively for the SBP and DBP. However, this study has a 
disadvantage, which is no generative continuous blood pressure estimation was 
performed.   

As it can be seen from the aforementioned information comparing our proposed 
methods to previously performed studies, our study shows assorted advantages. 
Our proposed methods, working based on the deep autoencoder and using only a 
single PPG signal, provide a leading achievement for correlation coefficient for the 
waveform of the generative continuous blood pressure signal. Additionally, our 
proposed methods produce highly correlated results of the estimated SBP and DBP 
to the MP60 IntelliVue Patient Monitor, as the golden standard. 
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Table 6. Comparative results for dataset and methodology between the 
proposed method and previous related studies.  
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However, this study has several limitations. The number of the patients utilized 
in this study is relatively small. Furthermore, the algorithm to evaluate the SBP and 
the DBP from the 5-second sliding window can be improved. This technique is 
selected based on the consideration of either SBP or the DBP does not fluctuate 
significantly within five seconds. In addition, the noisy PPG will contribute to the 
low-quality continuous ABP prediction, as it can be seen in Figure 8. 

 
 

 
Figure 8. Low quality generated continuous ABP. 

 
 

5. Conclusions 

This study provides the consideration revealing that the deep convolutional 
autoencoder methods with the genetic algorithm based optimization has 
successfully evaluated the continuous arterial blood pressure system by only using 
a single PPG signal. In further, this study, supporting the previous studies, also 
shows straightforward information that the PPG is highly correlated to the 
continuous arterial blood pressure. Hence, the SBP and DBP measurements can be 
precisely achieved by only a single PPG signal. 
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