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Abstract

This article develops a single-index approach for modeling the expectile-based
value at risk (EVaR). EVaR has an advantage over the conventional quantile-based
VaR (QVaR) of being more sensitive to the magnitude of extreme losses. EVaR can
also be used for calculating QVaR and expected shortfall (ES) by exploiting the one-
to-one mapping from expectiles to quantiles, and the relationship between VaR and
ES. We develop an asymmetric least squares technique for estimating the unknown
regression parameter and link function in a single-index model, and establish the
asymptotic normality of the resultant estimators. Simulation studies and real data
applications are conducted to illustrate the finite sample performance of the proposed
methods.
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1 Introduction

In financial time series, expectiles emerge as alternative to popular risk measures such

as value at risk (VaR) and expected shortfall (ES), see Ziegel (2014). VaR is a popular

measure to evaluate the market risk of a portfolio. VaR identifies the loss that is likely

to be exceeded by a specified probability that generally ranges between 0.90 and 0.99 over

a defined period. VaR is therefore a quantile of the portfolio loss distribution; however,

the use of VaR is not without criticism. It is generally agreed that VaR has three major
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drawbacks. First, it focuses exclusively on the lower tail of the distribution, and hence

it conveys only a small slice of the information about the loss distribution. Second, it

lacks subadditivity. That means the VaR of a portfolio can be larger than the sum of the

individual VaRs, which contradicts the conventional wisdom that diversification reduces

risk. Third, VaR tells us nothing about the magnitude of the loss as it accounts only for

the probabilities of the losses but not their sizes. In light of these shortcomings of the

VaR, Artzner et al. (1999) proposed to measure portfolio risk by expected shortfall (ES)

instead. The ES is defined as the conditional expectation of a loss given that the loss is

larger than the VaR. Contrary to VaR, ES provides information on the magnitude of the

loss beyond the VaR level and is subadditive. However, the calculation of ES can be an

intricate computational exercise due to the lack of a closed form formula (Yuan and Wong,

2010).

Taylor (2008) developed a simple way to calculate the ES associated with a given expec-

tile based VaR (EVaR) estimate. EVaR proposed by Kuan et al. (2009) is an alternative

to the quantile-based VaR (QVaR) as a downside risk measure. The population α-quantile

of Y , qα(Y ), which is obtained by minimizing the quantile-check function

qα(Y ) = argmin
m

E [|α− I{Y < m}| · |Y −m|] .

Newey and Powell (1987) adopted the asymmetric concept from quantile regression in

a smooth manner and proposed asymmetric least squares (ALS) estimation, from which

expectile originates. The τ -expectile of Y , τ ∈ (0, 1), is defined as the value of Qτ (Y ) which

minimizes the following loss function

Qτ (Y ) = argmin
m

E
[
|τ − I{Y < m}| · (Y −m)2

]
.

By comparing the above two loss functions, we can see that expectiles are more sensitive

to the extreme values of the data than quantile estimates which are based on absolute

errors. Specially, when τ = α = 0.5, the Qτ (Y ) and qα(Y ) are reduced to the mean and

median of Y , respectively. This feature makes the EVaR correspondingly more sensitive

to the scale of losses than the conventional QVaR. Moreover, expectile estimates and their

covariances are easier to compute, reasonably efficient under normality conditions (Efron,

1991; Schnabel and Eilers, 2009), and can always be calculated regardless of the quantile

2



level, while the empirical quantiles can be undefined at the extreme tails. It has been

shown that for a given distribution, there is an one-to-one mapping between quantiles and

expectiles (Efron, 1991; Yao and Tong, 1996). In view of this, Efron (1991) proposed to

estimate the α-quantile by the expectile for which there is 100α% of sample observations

lying below it. As pointed out by Kuan et al. (2009), this one-to-one relationship permits

the interpretation of EVaR as a flexible QVaR, in the sense that its tail probability is

determined not a priori but by the underlying distribution. Kuan et al. (2009) also showed

that the asymmetric parameter in the weighted mean squared errors may be interpreted as

the relative cost of the expected margin shortfall which represents prudentiality, and the

EVaR is thus a risk measure under a given level of prudentiality.

In virtue of the aforementioned advantages of expectile, there has been an increas-

ing number of studies devoted to developing conditional expectile models in recent years.

For example, Kuan et al. (2009) proposed a class of conditional autoregressive expectile

(CARE) models which allow for asymmetric dynamic effects of the magnitude of positive

and negative lagged returns on tail expectiles. Xie et al. (2014) enriched the conditional

dynamic expectile model by including variables reflecting current information of invest-

ment environment and adopting a varying-coefficient setup. Cai et al. (2018) proposed

a three-stage estimation procedure for a class of dynamic expectile models with partial-

ly varying coefficients. In such a way, a varying-coefficient setup allows the conditional

expectile model to be linear in some components with their coefficients determined by un-

known functions of other variables. Compared to parametric models, nonparametric and

semiparametric methods can provide more flexibility and capture parameter heterogeneity

and nonlinearity. The single-index approach has in particular the advantage of mitigat-

ing the risk of misclassifying the link function over existing parametric regression models

and circumventing the curse of dimensionality that afflicts the estimation of many non-

parametric and semiparametric regression models. These important advantages make the

single-index approach a widely accepted modeling approach. The literature of single-index

models is extensive. However, the single-index approach to the estimation of expectiles

remains heretofore unexamined. In this study, let the τ -conditional expectile of Y given X
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be modeled by the single-index model:

Qτ (Y |X) = g0(X
⊤γ0), (1.1)

where Y is the univariate response and X is a vector of p-dimensional covariates. The

function g0(·) is unspecified, nonparametric smoothing function. γ0 is the unknown index

vector coefficient, and for the sake of identifiability (Lin and Kulasekera, 2007), we assume

that ∥γ0∥ = 1 and that the first component of γ0 is positive. Here ∥ · ∥ denotes the

Euclidean norm. Note that g0(·) and γ0 may be dependent on τ . For notational simplicity,

τ is dropped in g0(·) and γ0, whenever there is confusion. We call our model (1.1) single-

index expectile model. It encompasses the CARE model of Kuan et al. (2009) as a special

case.

Overall, this study offers a novel approach and makes the following two key contribu-

tions:

(1) We consider a new class of conditional dynamic expectile models: single-index

expectile models.

(2) The proposed model and its inferential procedures are applied to assess the condi-

tional VaR and ES.

The remainder of the paper is organized as follows. In Section 2, we introduce the

ALS procedure for model (1.1). In Section 3, we introduce using expectile to estimate

conditional VaR and ES. Both the simulation examples and the applications of two real

datasets are given in Section 4 to illustrate the proposed procedures. Finally, Section 5

concludes the paper. All the conditions and technical proofs are relegated to the Appendix.

2 Asymmetric least squares estimation

2.1 Methodology

We set Y be asset returns, X be risk factors that may include lagged returns or other

economic and financial factors. We assume that all series {Xt, Yt}Tt=1 in (X,Y ) are strict-

ly stationary processes satisfying the strong mixing (α-mixing) condition with finite two

moments. Theoretically, the true parameter vector γ0 in model (1.1) solves the following
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minimization problem:

γ0 = arg min
∥γ∥=1,γ1>0

E
[
ρτ
(
Y − g0(X

⊤γ)
)]
, (2.1)

where ρτ (λ) = |τ − I(λ < 0)| · λ2 for τ ∈ (0, 1) is the loss function and the superscript (⊤)

denotes the transpose of a vector or matrix. The right-hand side of (2.1) is the expected

loss which can be equivalently written as

E
[
ρτ
(
Y − g0(X

⊤γ)
)]

= E
{
E
[
ρτ
(
Y − g0(X

⊤γ)
)
| X⊤γ

]}
. (2.2)

We estimate the index function g0(·) in (2.1) by local linear smoothing. For X⊤
t γ “close”

to u, g(X⊤
t γ) can be approximated linearly by

g(X⊤
t γ) ≈ g(u) + g′(u)(X⊤

t γ − u) ≡ a+ b(X⊤
t γ − u), (2.3)

where a ≡ g(u) and b ≡ g′(u). Following (2.3), E
[
ρτ
(
Y − g0(X

⊤γ)
)
| X⊤γ = u

]
can be

approximated by
T∑
t=1

ρτ
{
Yt − a− b(X⊤

t γ − u)
}
K

(
X⊤

t γ − u

h

)
,

where K(·) is the kernel function and h is the bandwidth. By averaging on u, the empirical

approximation of (2.2) is

T∑
t′=1

T∑
t=1

ρτ

{
Yt − at′ − bt′ (Xt −Xt′)

⊤ γ
}
Kt,t′ , (2.4)

where Kt,t′ = Kh

(
(Xt −Xt′)

⊤ γ
)
/
∑T

t=1Kh

(
(Xt −Xt′)

⊤ γ
)
and Kh(·) = K(·/h)/h. By

(2.1), (2.2) and (2.4), the expectile regression estimate of γ0 is

γ̂ = arg min
∥γ∥=1,γ1>0

T∑
t′=1

T∑
t=1

ρτ

{
Yt − at′ − bt′ (Xt −Xt′)

⊤ γ
}
Kt,t′ . (2.5)

Since in (2.5), at′ and bt′ , t
′ = 1, . . . , T are unknown, minimization of (2.5) should be

done by iteratively solving two simple problems, one with respect to at′ and bt′ , t
′ = 1, . . . , T ,

and the other with respect to γ. The estimation procedure for estimating γ0 is stated as

follows:

Step 0. (Initialization step): Obtain initial γ̂0 from the minimum average variance

estimation (MAVE) in Xia and Härdle (2006), which is an ALS estimate with τ = 0.5.
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Step 1. Given γ̂0, obtain {ât′ , b̂t′}Tt′=1 by solving a series of the following minimisations

min
(at′ ,bt′ )

T∑
t′=1

ρτ
{
Yt − at′ − bt′(Xt −Xt′)

⊤γ̂0
}
Kh

(
(Xt −Xt′)

⊤γ̂0
)
,

with the bandwidth h chosen optimally.

Step 2. Given {ât′ , b̂t′}Tt′=1 in Step 1, obtain γ̂ by solving

min
∥γ∥=1,γ1>0

T∑
t′=1

T∑
t=1

ρτ

{
Yt − ât′ − b̂t′ (Xt −Xt′)

⊤ γ
}
Kt,t′ .

with Kt,t′ evaluated at γ̂0 and h from Step 1.

Step 3. Repeat Steps 1 and 2 until convergence.

After obtaining the estimator γ̂ of γ0 in model (1.1) by the above estimation procedure,

we can estimate g0(·) in model (1.1) at any given point u by ĝ(u | γ̂) = â, where

(â, b̂) = argmin
a,b

T∑
t=1

ρτ
{
Yt − a− b(X⊤

t γ̂ − u)
}
Kh

(
X⊤

t γ̂ − u
)
.

Remark 2.1: For the selection of h, the multifold cross-validation criterion proposed by

Cai et al. (2000) is used to the model (1.1). The main idea behind this approach is that

since the classical cross-validation may not work well for time series data in the literature.

The multifold cross validation criterion is attentive to the structure of stationary time series

data. Let l and H be two positive integers and the window l satisfies T > lH. First, with

the H sub-series of length T−ql, q = 1, . . . , H, the unknown functions are estimated. Then

it computes, based on the estimated model, the one-step forecast errors of other subseries

each of length l. Specifically, the optimal bandwidth is obtained by minimizing the average

asymmetric mean squared error (AAMSE),

AAMSE(h) =
H∑
q=1

AAMSEq(h),

where AAMSEq(h) = l−1
∑T−ql+l

t=T−ql+1 ρτ
(
Yt − ĝ(X⊤

t γ̂)
)
. It is worth noting that bandwidth

is rescaled for different sample size according to the optimal rate h = O(T−1/5), and one

can take l = [T/10] and H = 4 in practical implementations as suggested in Cai et al.

(2000).
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2.2 Asymptotic properties

Let FY (·|u) be the distribution function of Y conditional on u. Denote by fU0(·) the

marginal density function of U0 = X⊤γ0. We state the asymptotic normality for ĝ(u|γ̂)

and γ̂ in the following theorems with proofs in appendix.

Theorem 2.1. Suppose that conditions (C1)-(C5) given in the Appendix hold. If T → ∞,

and h = cT−1/5 with 0 < c <∞, then for an interior point u of the support of fU0(·),

√
Th

{
ĝ(u|γ̂)− g0(u)−

1

2
g′′0(u)µ2h

2

}
L−→ N

(
0, ν0f

−1
U0

(u)S−2(u)Σ(u)
)
,

where
L−→ stands for convergence in distribution, µ2 =

∫
u2K(u)du, ν0 =

∫
K2(u)du, and

S(u) = 2 [τ{1− FY (g0(u)|u)}+ (1− τ)FY (g0(u)|u)] ,

Σ(u) = 4E [|τ − I{Y ≤ g0(u)}|(Y − g0(u))]
2 .

Theorem 2.2. Under the same conditions as in Theorem 2.1, then

√
T (γ̂ − γ0)

L−→ N(0, S̃−1Σ̃S̃−1),

where S̃−1 is the generalized inverse of S̃, and

S̃ = 2E
{∣∣τ − I{Y ≤ g0(X

⊤γ0)}
∣∣ {g′0(X⊤γ0)}2(X − E(X|X⊤γ0))(X − E(X|X⊤γ0))

⊤} ,
Σ̃ = 4E

[{
|τ − I{Y ≤ g0(X

⊤γ0)}|(Y − g0(X
⊤γ0))g

′
0(X

⊤γ0)
}2

(X − E(X|X⊤γ0))(X − E(X|X⊤γ0))
⊤
]
.

2.3 Variance estimation

We consider estimation of the covariance matrix of ĝ(u|γ̂) and γ̂. By the proofs of Theorems

2.1 and 2.2 in the Appendix, we have

Ŝ(u) =
2

Th

T∑
t=1

∣∣τ − I
{
Yt ≤ ĝ(X⊤

t γ̂)
}∣∣Kh(X

⊤
t γ̂ − u)

P−→ fU0(u)S(u),

Σ̂(u) =
4

Th

T∑
t=1

[∣∣τ − I
{
Yt ≤ ĝ(X⊤

t γ̂)
}∣∣ (Yt − ĝ(X⊤

t γ̂)
)
Kh(X

⊤
t γ̂ − u)

]2 P−→ ν0fU0(u)Σ(u),

S̃∗ =
2

T

T∑
t′=1

T∑
t=1

∣∣τ − I
{
Yt ≤ ĝ(X⊤

t γ̂)
}∣∣ ĝ′2(X⊤

t′ γ̂)(Xt −Xt′)(Xt −Xt′)
⊤K̂t,t′

P−→ S̃,

Σ̃∗ =
4

T

T∑
t′=1

T∑
t=1

[∣∣τ − I
{
Yt ≤ ĝ(X⊤

t γ̂)
}∣∣ (Yt − ĝ(X⊤

t γ̂)
)
ĝ′(X⊤

t′ γ̂)K̂t,t′

]2
(Xt −Xt′)(Xt −Xt′)

⊤ P−→ Σ̃,
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where K̂t,t′ = Kh

(
(Xt −Xt′)

⊤ γ̂
)
/
∑⊤

t=1Kh

(
(Xt −Xt′)

⊤ γ̂
)
. Thus, consistent estima-

tors of the asymptotic covariance matrix of ĝ(u, γ̂) and γ̂ are Ŝ−1(u)Σ̂(u)Ŝ−1(u) and

S̃∗−1Σ̃∗S̃∗−1, respectively. We usually call them sandwich estimators. Based on the Theo-

rems 2.1-2.2 and above results, we can conduct statistical inference for g0(·) and γ0, such

as confidence interval and hypotheses testing.

2.4 An algorithm for computing estimates

In this section, we use an iterative asymmetric least squares (IALS) approach in conjunction

for obtaining the estimates of γ0 and g0(·). The IALS algorithm is detailed as following:

Step 0. Obtain initial γ̂0 and {â0t′ , b̂0t′}Tt′=1 by MAVE.

Step 1. Given γ̂0 and {â0t′ , b̂0t′}Tt′=1, obtain {ât′ , b̂t′}Tt′=1 with an iterative solution, ât′

b̂t′

 =

[
T∑
t=1

wτ (êt,t′)Kh

(
(Xt −Xt′)

⊤γ̂0
)
Zt,t′Z

⊤
t,t′

]−1 T∑
t=1

wτ (êt,t′)Kh

(
(Xt −Xt′)

⊤γ̂0
)
Zt,t′Yt,

where wτ (e) = |τ−I {e ≤ 0} |, êt,t′ = Yt−â0−b̂0(Xt−Xt′)
⊤γ̂0 and Zt,t′ = (1, (Xt −Xt′)γ̂

0)
⊤
.

Step 2. Given {ât′ , b̂t′}Tt′=1 obtained in Step 1, obtain γ̂ with an iterative solution,

γ̂ =

[
T∑

t′=1

T∑
t=1

wτ (ēt,t′)K̄t,t′ b̂
2
t′(Xt −Xt′)(Xt −Xt′)

⊤

]−1 T∑
t′=1

T∑
t=1

wτ (ēt,t′)K̄t,t′ b̂t′(Xt−Xt′)(Yt−ât′),

(2.6)

where ēt,t′ = Yt−ât′−b̂t′(Xt−Xt′)
⊤γ̂0 and K̄t,t′ = Kh

(
(Xt −Xt′)

⊤γ̂0
)
/
∑T

t=1Kh

(
(Xt −Xt′)

⊤γ̂0
)
.

Step 3. Repeat Steps 1 and 2 until convergence.

Step 4. After obtaining the estimator γ̂, we can obtain ĝ(u | γ̂) = â at any given point

u with an iterative solution, â

b̂

 =

[
T∑
t=1

wτ (ẽt)Kh

(
X⊤

t γ̂ − u
)
Z̃tZ̃

⊤
t

]−1 T∑
t=1

wτ (ẽt)Kh

(
X⊤

t γ̂ − u
)
Z̃tYt, (2.7)

where ẽt = Yt− â0− b̂0(X⊤
t γ̂−u) and Z̃t = (1, (Xtγ̂ − u))⊤. â0 and b̂0 can obtain by MAVE.
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3 Using expectile to estimate conditional VaR and

ES

In this section, we introduce using expectile to estimate conditional VaR and ES.

3.1 Using expectile to estimate conditional VaR

In this section, we use expectiles as estimators of quantiles. This was first proposed by

Efron (1991) who was attracted by the computational simplicity of ALS relative to quantile

regression. The proposal involves using, as an estimator of the α quantile, the expectile

for which the proportion of in-sample observations lying below the expectile is α. This is

based on the fact that, for each τ expectile, there is a corresponding α quantile, though

τ is typically not equal to α. The existence of a one-to-one mapping from expectiles

to quantiles is supported by the theoretical work of Yao and Tong (1996). Thus, we

set, as estimator of the α quantile, the τ expectile for which the proportion of in-sample

observations lying below the expectile is α. Then, for model (1.1), instead of calculating

the quantile-based conditional VaR (QCVaR) at a predetermined α level, a more sensible

strategy is to compute the expectile-based conditional VaR (ECVaR) at a corresponding τ

as following (see Taylor, 2008):

QCV aR(α|X) = ECV aR(τ |X) = |Qτ (Y |X)| =
∣∣g0(X⊤γ0)

∣∣ .
Then, after obtaining the estimators γ̂ of γ0 by (2.6), we can obtain the ĝ(X⊤γ̂) for any

given X by (2.7) with an iterative solution. Thus, the estimation of conditional VaR is

Q̂CV aR(α|X) = ÊCV aR(τ |X) =
∣∣ĝ(X⊤γ̂)

∣∣ .
3.2 Using expectile to estimate conditional ES

As mentioned in Section 1, ES overcomes certain weaknesses of VaR and is becoming a

widely used downside risk measure. Now, expectiles can also be used to calculate ES by

using the relationship between VaR and ES, and that between expectiles and quantiles.

We consider the minimization of the function E [|τ − I{Y < m}| · (Y −m)2 | X] over m
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for model (1.1). It is straightforward to show that the solution Qτ (Y |X) = g0(X
⊤γ0) of

the minimization satisfies following expression:

1− 2τ

τ
E
[(
Y − g0(X

⊤γ0)
)
I{Y < g0(X

⊤γ0)} | X
]
= g0(X

⊤γ0)− E[Y |X]. (3.1)

This suggests a link between expectiles and ES. Expression (3.1) can be rewritten as

E(Y | Y < g0(X
⊤γ0), X)

=

(
1 +

τ

(1− 2τ)FY (g0(X⊤γ0) | X)

)
g0(X

⊤γ0)−
τ

(1− 2τ)FY (g0(X⊤γ0) | X)
E[Y |X].

This expression provides a formula for the conditional ES of the quantile α that coincides

with the τ expectile. Referring to the relationship between expectile and quantile, we have

FY (g0(X
⊤γ0) | X) = α. Hence, we can obtain

ES(α|X) = E(Y | Y < g0(X
⊤γ0), X) =

(
1 +

τ

(1− 2τ)α

)
g0(X

⊤γ0)−
τ

(1− 2τ)α
E[Y |X].

(3.2)

If Y is defined to be E[Y |X] = 0, expression (3.2) becomes a simple form as following

ES(α|X) =

(
1 +

τ

(1− 2τ)α

)
g0(X

⊤γ0). (3.3)

This expression relates the conditional ES associated with the α-quantile to the correspond-

ing τ -expectile under a conditional zero-mean distribution. The expression applies to the

ES in the lower tail of the distribution; the corresponding upper tail expression may be

obtained by replacing α and τ by (1− α) and (1− τ), respectively. Similar to section 3.1,

we can obtain the estimation of (3.3) as

ÊS(α|X) =

(
1 +

τ

(1− 2τ)α

)
ĝ(X⊤γ̂).

4 Numerical studies

In this section, we first use Monte Carlo simulation studies to assess the finite sample per-

formance of the proposed procedures and then demonstrate the application of the proposed

methods with the daily data of the S&P500 return series. The programs are written in R

and are available upon request from the authors.
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4.1 Simulation example

In this example, we focus on the finite sample performance of the proposed model and its

IALS estimators. The data are generated from the following model:

Yt = 2 exp
{
−3
(
X⊤

t γ
)2}

+ σ
(
X⊤

t γ
)
εt, (4.1)

whereX⊤
t γ = Yt−1γ1+Yt−2γ2, γ = (γ1, γ2)

⊤ = (1, 1)⊤/
√
2 and εt is i.i.d. N(0, 1). In this sec-

tion, sample sizes are considered to be T = 200, 500 and simulations are repeated 100 times

for each of given sample sizes. The Quartic kernel function K(u) = 15
16
(1 − u2)I(|u| ≤ 1)

is used for local linear smoothing. Homoscedastic and heteroscedastic models are consid-

ered by Case 1: σ
(
X⊤

t γ
)
≡ 0.5 and Case 2: σ

(
X⊤

t γ
)
≡ 0.5

√
1 + sin

(
X⊤

t γ
)
, respectively.

We consider τ = 0.10, 0.25, 0.50, 0.75, 0.90. The corresponding τ -level expectiles Qτ (εt) of

εt are -0.86,-0.44, 0, 0.44, and 0.86, respectively. This means that these Qτ (εt)’s are the

solutions to E [ρτ (εt −Q)] = 0 under the stated error distribution of εt. The expectile

regression model is Qτ (Yt|Xt) = 2 exp
{
−3
(
X⊤

t γ
)2}

+ σ
(
X⊤

t γ
)
Qτ (εt).

To measure the performance of single-index coefficient estimate γ̂, the mean and stan-

dard deviation (SD) of Bias are reported. The Bias of γ̂j is defined by γ̂j − γj(true-value).

The mean and SD of Bias are summarized in Tables 1 and 2. From Tables 1 and 2, one

can see that the estimators are close to the true value, because the Bias are all very small.

The performances of ĝ(u) with u = 0.2, 0.3, 0.4 are assessed by taking the relative

absolute error (RAE):

RAE(u) =

∣∣∣∣ ĝ(u)− g0(u)

g0(u)

∣∣∣∣ .
The mean and standard deviation (in parentheses) of RAE are summarized in Table 3.

From Table 3, one can see that the estimators are close to the true value, because of the

small RAE. Moreover, Figure 1 illustrates the estimated ĝ(·) along with the data of g0(·)

under Case 2 and T = 500, showing that the proposed method performs well.

Tables 1-3 also report results relating to the performance of the sandwich method for

constructing standard errors. In the Tables 1-3, SD is the standard deviation of γ̂ or

ĝ(u) across 100 replications. The mean and standard deviation of 100 estimated standard

deviation of γ̂ or ĝ(u) by the sandwich method (see Section 2.3), denoted by ESD and

ESDsd, respectively. ESD provides information on the accuracy of the sandwich method.
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The results show that the differences of SD and ESD are generally small.

Finally, we evaluate the sensitivity of ECVaR and QCVaR to catastrophic events. We

do so in the case εt’s are obtained from an independent N(0, 1/
√
0.99) distribution with

probability 0.99 or from N(c, 1/
√
0.01) with probability 0.01. We consider the following

two cases: τ = α = 0.05 and τ = α = 0.01. In both cases, we let c = [−50,−1], T = 200

and σ
(
X⊤

t γ
)
≡ 1. Figure 2 depicts the ECVaR and QCVaR,

ECV aRτ = argmin
m

T∑
t=1

[
|τ − I{ε̂t < m}| · (ε̂t −m)2

]
,

QCV aRα = argmin
m

T∑
t=1

[|α− I{ε̂t < m}| · |ε̂t −m|] ,

where ε̂t = Yt− ĝ(X⊤
t γ̂), ĝ(·) and γ̂ are based on τ = 0.5. One can observe that the ECVaR

is very sensitive to the change of values of c, while the QCVaR does not change when the

values of c increase under τ = α = 0.05. For the case of τ = α = 0.01, both ECVaR

and QCVaR vary with c. However, the change of ECVaR is relatively larger than that of

QCVaR for each c. The results here are similar to those obtained in Kuan et al. (2009),

Xie et al. (2014) and Cai et al. (2018).

4.2 Real data example 1: Boston housing data.

As an illustration, we now apply the proposed methodology to Boston housing data. Har-

rison and Rubinfeld (1978) firstly studied this housing data and estimated the demand for

clean air. This data contain 506 observations on 14 variables, and is available in the MASS

library in R or http://lib.stat.cmu.edu/datasets/boston. The dependent variable of inter-

est is medv, the median value of owner-occupied homes in $1000s, and the other thirteen

variables are statistical measurements on the 506 census tracts in suburban Boston from

the 1970 census.

Many regression studies have used this data set and found potential relationship between

medv and RM, TAX, PTRATIO, LSTAT (see Wu, et al., 2010 and Jiang, et al., 2016). In

this study, we focus on the following four covariates:

RM: average number of rooms per dwelling;

TAX: full-value property tax (in dollar) per $10,000;

12



PTRATIO: pupil-teacher ratio by town;

LSTAT: lower status of the population (percent).

We follow previous studies and take logarithmic transformations on TAX and LSTAT.

The dependent variable is centered around zero. In this study, the single-index expectile

model (1.1) is used to fit the data for five different expectile levels τ=0.10, 0.25, 0.50, 0.75,

0.90. We apply our methodology in Section 2 to analyze this data. The estimated 10th,

25th, 50th, 75th, 90th expectiles and their 95% pointwise confidence intervals are shown

in Figure 3 together with scatter plots of medv and the estimated indices. These plots

suggest that the estimated conditional expectile function provides a good fit to the data.

4.3 Real data example 2: S&P500 index data.

To illustrate the practical usefulness of application of our proposed expectile model, a

daily data of S&P500 index between January 4, 2010 and November 23, 2018 with 2240

observations is downloaded from Yahoo Finance. The daily returns are computed as 100

times the difference of the log of the prices, that is, Yt = 100 log(pt/pt−1), where pt is the

daily price. Table 4 collects the summary statistics of the daily returns. It is shown that

the sample mean is close to zero with slightly negatively skewed, and by the histogram and

estimated density in Figure 4, we can see that the data is approximate to skewed normal

distribution, which gives a motivation to use expectile rather than quantile model. Figure

4 also gives the time series plot for S&P500, and it shows that extreme values mainly occur

during 2011, and the return series is less volatile from 2012 to 2015.

We let the τ -level expectile be modeled by

Qτ

(
Yt | Y +

t−1, Y
−
t−1, Y

+
t−2, Y

−
t−2

)
= gτ

(
Y +
t−1γτ,1 + Y −

t−1γτ,2 + Y +
t−2γτ,1 + Y −

t−2γτ,2
)
, (4.2)

and denote the corresponding single-index model as SI(2). The first 1500 observations from

2010 to 2015 are used for model estimation and the remaining 740 observations are reserved

for the out-of-sample evaluation. For comparison purpose, we consider the following SQ(2)

and ABS(2) parametric models used in Kuan et al. (2009):

SQ(2) model:

Yt = a0,τ + a1,τYt−1 + b1,τ (Y
+
t−1)

2 + β1,τ (Y
−
t−1)

2 + b2,τ (Y
+
t−2)

2 + β2,τ (Y
−
t−2)

2 + εt,τ .
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ABS(2) model:

Yt = a0,τ + δ1,τY
+
t−1 + λ1,τY

−
t−1 + δ2,τY

+
t−2 + λ2,τY

−
t−2 + εt,τ ,

where v+ = max(v, 0) and v− = max(−v, 0). The index coefficient estimates and the

standard deviation of index coefficient (Sd) are present in Table 5. It shows that Y −
t−1 and

Y −
t−2 are more important than Y +

t−1 and Y +
t−2. We also calculate the in-sample τin and out-

of-sample τout tail probabilities for the estimated expectiles in Table 6. These probabilities

are almost all bigger than given τ . This suggests that, when the index of prudentiality τ

is our concern, the QCVaR will likely underestimate value at risk at the same level. Note

that the out-of-sample tail probabilities are all smaller than their in-sample counterparts.

This may be explained by the fact that both indices are less volatile in the out-of-sample

period, as can be seen from Figure 4. Among the three models, the SI(2) model yields the

smallest |τout−τin|/τin for any given τ except τ = 0.01. This may be taken as an indication

that the SI(2) model produces more stable estimates than the SQ(2) and ABS(2) models.

Finally, we apply the conditional VaR and ES estimated from the SI(2) model for the last

740 observations. As discussed in Section 3, ECV aR(τ |X) is identical to QCV aR(α|X)

at the τ -level. We consider α = 0.05, where the corresponding τ = 0.0158. Figure 5

presents the estimated 5% QCVaR and 5% ES based on the SI(2) model for the last 740

out-of-sample observations of S&P500 index data, together with the actual observation-

s. Furthermore, to compare the calculation time of the conditional VaR and ES using

expectile and quantile methods, we present the computational running time for the full

implementation of these methods with the SI(2) mode. The QCV aR(α|X) can be ob-

tained by the quantile regression (Wu et al., 2010), and we can calculate the ES(α|X) as

the average of less than QCV aR(α|X). Due to the need to estimate the value of τ , the

estimation of expectile method would appear to be more computationally demanding than

quantile method. However, it is interesting to note that, even with this extra task, the

computational running time of expectile method (38.8702 seconds) was less than for the

quantile method (110.2207 seconds). This is because the ALS minimization is somewhat

less challenging than the quantile regression minimization. Taylor (2008) reached similar

conclusions.
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5 Conclusion

Model-based risk measurers in finance such as quantile regression and expectile regression

models have received increasing attention among economists and practitioners. Nonpara-

metric regression and semiparametric regression models could provide insight for parametric

regression models and avoid model misspecification, but may face the curse of dimensional-

ity phenomena that arise when analyzing and organizing data in high-dimensional analysis

of large panel of economic and financial data which can be generated and stored with

cheaper cost in this era of big data. It is well-known that single-index models can effec-

tively avoid curse of dimensionality and are powerful tools for dimension reduction and

semiparametric modeling. In this paper a single-index expectile model is first proposed

and then an estimation procedure is employed to estimate the index coefficients and index

function. Our simulation results re-confirm the fact that expectile models are more sensi-

tive to extreme values than quantile models. Using the S&P500 return series, the proposed

single-index expectile model outperforms the existing parametric models. For future works,

it is interesting to consider expectile model for massive dataset.
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Appendix

To establish the asymptotic properties of the proposed estimators, the following technical

conditions are imposed.

C1. The function g0(·) has a continuous and bounded second-order derivative.

C2. The kernel K(·) ≥ 0 has a compact support and its first derivative is bounded. It sat-

isfies
∫ +∞
−∞ K(u)du = 1,

∫ +∞
−∞ uK(u)du = 0,

∫ +∞
−∞ u2K(u)du < ∞, and |

∫ +∞
−∞ ujK2(u)du| <

∞, j = 0, 1, 2.
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C3. The conditional density function of Y given u, fY (y|u) is continuous and bounded

away from 0 and ∞ in u for each y.

C4. The density function of X⊤γ is positive and uniformly continuous for γ in a neighbor-

hood of γ0. Further the density of X⊤γ0 (fU0(·)) is continuous and bounded away from 0

and ∞ on its support. fU0,Ul
(·, ·) is the density of (U0, Ul) with fU0,Ul

(·, ·) bounded.

C5. All process in {Yt, Xt} are α-mixing such that
∑

l l
c̄[α(l)]1−2/δ ≤ ∞ for some δ > 2 and

c̄ > 1 − 2/δ. Moreover, there exists a sequence of positive integers sT such that sT → ∞,

sT = o
(√

Th
)
, and

√
T/hα(sT ) → 0 as T → ∞.

Remark A.1: Conditions C1-C5 are standard conditions, which are commonly used in

single-index models and expectile models, see Xia and Härdle (2006), Wu et al., (2010),

and Xie et al., (2014).

Lemma 1. For any x, y ∈ R, and τ ∈ (0, 1),

|ρτ (x+ y)− ρτ (x)− ρ′τ (x)y| ≤ 4y2,

|ρ′τ (x+ y)− ρ′τ (x)− ρ′′τ (x)y| ≤ 4|y|,

where ρ′τ (x) = ∂2ρτ (x)/∂x
2 for x ̸= 0, and ρ′′τ (0) = 0.

Proof. See Yao and Tong (1996).

Proof of Theorem 2.1. Note that

√
Th{ĝ(u|γ̂)− g0(u)} =

√
Th{ĝ(u|γ̂)− ĝ(u|γ0)}+

√
Th{ĝ(u|γ0)− g0(u)},

where ĝ(·|γ0) is a local linear estimator of g0(·) when the index coefficient γ0 is known.

ĝ(u|γ̂)− ĝ(u|γ0) can be shown op(h
2). The details are given below. For given u,

(ĝ(u|γ̂), ĝ′(u|γ̂)) = argmin
(a,b)

T∑
t=1

ρτ{Yt − a− b(X⊤
t γ̂ − u)}K

(
X⊤

t γ̂ − u

h

)
,

(ĝ(u|γ0), ĝ′(u|γ0)) = argmin
(a,b)

T∑
t=1

ρτ{Yt − a− b(X⊤
t γ0 − u)}K

(
X⊤

t γ0 − u

h

)
.
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Denote

θ̄∗ =
√
Th{ĝ(u|γ̂)− g0(u), h(ĝ

′(u|γ̂)− g′0(u))}⊤,

θ̄∗∗ =
√
Th{ĝ(u|γ0)− g0(u), h(ĝ

′(u|γ0)− g′0(u))}⊤,

Z∗
t = (1, (X⊤

t γ̂ − u)/h)⊤, Z∗∗
t = (1, (X⊤

t γ0 − u)/h)⊤,

Y ∗
t = Yt − g0(u)− g′0(u)(X

⊤
t γ̂ − u), Y ∗∗

t = Yt − g0(u)− g′0(u)(X
⊤
t γ0 − u),

K∗
t = K

([
X⊤

t γ̂ − u
]
/h
)
, K∗∗

t = K
([
X⊤

t γ0 − u
]
/h
)
.

Thus θ̄∗ and θ̄∗∗ minimize

L∗
T (θ) =

T∑
t=1

[
ρτ (Y

∗
t − θ⊤Z∗

t /
√
Th)− ρτ (Y

∗
t )
]
K∗

t ,

L∗∗
T (θ) =

T∑
t=1

[
ρτ (Y

∗∗
t − θ⊤Z∗∗

t /
√
Th)− ρτ (Y

∗∗
t )
]
K∗∗

t .

Write

L∗
T (θ) = E[L∗

T (θ)|X ]− (Th)−1/2

(
T∑
t=1

ρ′τ (Y
∗
t )Z

∗⊤
t K∗

t − E[ρ′τ (Y
∗
t )|Ut]Z

∗⊤
t K∗

t

)
θ +R∗

T (θ),

(A.1)

where X is the σ-field generated by {X⊤
t γ̂}Tt=1, Ut = X⊤

t γ̂, and

E[L∗
T (θ)|X ]

=− (Th)−1/2

T∑
t=1

E[ρ′τ (Y
∗
t )|Ut]θ

⊤Z∗
tK

∗
t + (2Th)−1θ⊤

(
T∑
t=1

K∗
tE[ρ

′′
τ (Y

∗
t )|Ut]Z

∗
t Z

∗⊤
t

)
θ(1 + op(1)),

and
1

Th

T∑
t=1

K∗
tE[ρ

′′
τ (Y

∗
t )|Ut]Z

∗
t Z

∗⊤
t = E

[
h−1K∗

tE[ρ
′′
τ (Y

∗
t )|Ut]Z

∗
t Z

∗⊤
t

]
+ op(1).

By Condition C4, we can obtain fU(·) = fU0(·)(1+o(1)), where U = X⊤γ̂, and by Condition

C2, we can obtain

E
[
h−1K∗

tE[ρ
′′
τ (Y

∗
t )|Ut]Z

∗
t Z

∗⊤
t

]
=2fU0(u [τ{1− FY (g0(u) | u)}+ (1− τ)FY (g0(u) | u)]

 1 0

0 µ2

 (1 + op(1)),

thus

(Th)−1

T∑
t=1

K∗
tE[ρ

′′
τ (Y

∗
t )|Ut]Z

∗
t Z

∗⊤
t = S∗(1 + op(1)),
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where S∗ = 2fU0(u) [τ{1− FY (g0(u) | u)}+ (1− τ)FY (g0(u) | u)]

 1 0

0 µ2

. Thus,

E[L∗
T (θ)|X ] = −(Th)−1/2

T∑
t=1

E[ρ′τ (Y
∗
t )|Ut]θ

⊤Z∗
tK

∗
t +

1

2
θ⊤S∗θ(1 + op(1)). (A.2)

For R∗
T (θ) defined in (A.1), similar to the idea of proof Lemma B.2 in Xie et al. (2014), we

can obtain R∗
T (θ) = op(1). Thus, substitute (A.2) into (A.1), we have

L∗
T (θ) =

1

2
θ⊤S∗θ +W ∗⊤

T θ + op(1),

where W ∗
T = −(Th)−1/2

∑T
t=1 ρ

′
τ (Y

∗
t )Z

∗
tK

∗
t . By applying the convexity lemma (Pollard,

1991) and the quadratic approximation lemma (Fan and Gijbels, 1996), the minimizer of

L∗
T (θ

∗) can be expressed as

θ̄∗ = −{S∗}−1W ∗
T + op(1).

θ̄∗∗ can be shown similarly as θ̄∗∗ = −{S∗}−1W ∗∗
T +op(1), whereW

∗∗
T = −(Th)−1/2

∑T
t=1 ρ

′
τ (Y

∗∗
t )Z∗∗

t K
∗∗
t .

So, by the definitions of θ̄∗ and θ̄∗∗, we have

√
Th{ĝ(u|γ̂)− ĝ(u|γ0)} = f−1

U0
(u)S(u)−1(Th)−1/2

T∑
t=1

[ρ′τ (Y
∗
t )K

∗
t − ρ′τ (Y

∗∗
t )K∗∗

t ]

= 2f−1
U0

(u)S(u)−1(Th)−1/2

T∑
t=1

|τ − I(Y ∗∗
t < 0)| (Y ∗

t K
∗
t − Y ∗∗

t K∗∗
t ) ,

where S(u) = 2 [τ{1− FY (g0(u) | u)}+ (1− τ)FY (g0(u) | u)] and the last equality is due

to the fact that Y ∗
t has the same sign as Y ∗∗

t a.s. when ∥γ̂ − γ0∥ = Op(T
−1/2). Thus, we

can obtain

E
[√

Th{ĝ(u|γ̂)− ĝ(u|γ0)}
]2

= O
(
h−1E [Y ∗

t K
∗
t − Y ∗∗

t K∗∗
t ]2
)
= O(o(1)) = o(1),

which also implies E
[√

Th{ĝ(u|γ̂)− ĝ(u|γ0)}
]
= o(1). Thus,

√
Th{ĝ(u|γ̂) − ĝ(u|γ0)} =

op(1) according to its first and second moment. Therefore, ĝ(u|γ̂)− ĝ(u|γ0) = op(h
2) under

condition h = cT−1/5 with 0 < c <∞. Following, we need to prove that

√
Th{ĝ(u|γ0)− g0(u)−

1

2
g′′0(u)µ2h

2} L−→ N
(
0, ν0f

−1
U0

(u)S−2(u)Σ(u)
)
.

The details are given below. By θ̄∗∗ = −{S∗}−1W ∗∗
T + op(1), we have

√
Th(ĝ(u|γ0)− g0(u)) =

1√
Th

f−1
U0

(u)S−1(u)W̃T + op(1),
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where W̃T =
∑T

t=1 ρ
′
τ (Y

∗∗
t )K∗∗

t . The asymptotic normality of W̃T/
√
T is based on the

Cramér-World method. Denote that

W̃ ∗
T =

1√
Th

(W̃T − EW̃T ) =
1√
T

T∑
t=1

1√
h
{ρ′τ (Y ∗∗

t )K∗∗
t − E [ρ′τ (Y

∗∗
t )K∗∗

t ]} ≡ 1√
T

T−1∑
t=0

W̄t,

where W̄t =
1√
h
{ρ′τ (Y ∗∗

t )K∗∗
t − E [ρ′τ (Y

∗∗
t )K∗∗

t ]}. Let us partition {1, 2, . . . , T} into 2k + 1

subsets with large blocks of size r = rT and small blocks of size s = sT . Set

k =

[
T

rT + sT

]
, (A.3)

where [·] is an integer function. Similar to Lemma 1, we obtain

V ar(W̄0) = ν0fU0(u)Σ(u)(1 + o(p)), (A.4)

where Σ(u) = 4E [|τ − I(Y ≤ g0(u))|(Y − g0(u))]
2, and

T−1∑
l=0

∣∣cov(W̄0, W̄l)
∣∣ = o(1). (A.5)

Now, define the random variables, ηj =
∑j(r+s)+r−1

i=j(r+s) W̄i, φj =
∑(j+1)(r+s)

i=j(r+s)+r W̄i, and ψk =∑T−1
i=k(r+s) W̄i for 0 ≤ j ≤ k − 1. Then, we have

W̃ ∗
T =

1√
T

{
k−1∑
j=0

ηj +
k−1∑
j=0

φj + ψk

}
. (A.6)

Condition C5 implies that there is a sequence of positive constants cT → ∞ such that

cT sT = o(
√
Th) and

√
Th−1α(sT ) → 0. Define the large-block size rT =

[√
Th/cT

]
and

the small-block size sT . Then, as T → ∞, we can obtain

sT/rT → 0, rT/k → 0, rT/
√
Th→ 0, (A.7)

and (T/rT )α(sT ) → 0. By the properties of stationary, (A.4) and (A.5), we have

E

[
k−1∑
j=0

φj

]2
=

k−1∑
j=0

V ar(φj) + 2
∑

0≤t<l≤k−1

cov(φt, φl)

=ksT [V ar(W̄0) + op(1)] +O

(
T

T−1∑
l=0

∣∣cov(W̄0, W̄l)
∣∣)

=O(ksT ) + o(T ).

19



Hence by (A.3) and (A.7), we have

T−1E

[
k−1∑
j=0

φj

]2
= O(ksTT

−1) + o(1) = o(1). (A.8)

Similarly, we can show that

T−1E [ψk]
2 ≤ T−1(T−k(sT+rT ))V ar(W̄0)+2

T−1∑
l=1

∣∣cov(W̄0, W̄l)
∣∣ ≤ T−1(sT+rT )V ar(W̄0)+o(1) = o(1).

(A.9)

Then, by (A.6), (A.8) and (A.9), we have

W̃ ∗
T =

1√
T

k−1∑
j=0

ηj + op(1).

By Lemma 1.1 of Volkonskii and Rozanov (1959), we have∣∣∣∣∣E
[
exp

(
it

k−1∑
j=0

ηj

)]
−

k−1∏
j=0

E [exp (itηj)]

∣∣∣∣∣ ≤ 16(T/rT )α(sT ) → 0. (A.10)

Also, follows by using (A.4)-(A.6), we can obtain

T−1

k−1∑
j=0

E[η2j ] = ν0fU0(u)Σ(u) + o(1). (A.11)

Finally, by the definition of W̄t, we have

1√
T

max
0≤j≤p−1

|ηj| ≤ O(rT/
√
Th) = o(1),

and for any constant c̃ > 0, as T → ∞

max
0≤j≤p−1

P
(
|ηj| ≥ c̃

√
Tν0fU0(u)Σ

1/2(u)
)
→ 0,

thus,

T−1

k−1∑
j=0

E
[
η2j I

(
|ηj| ≥ c̃

√
Tν0fU0(u)Σ(u)

)]
→ 0. (A.12)

(A.10) states that the summands ηj are asymptotically independent, and (A.11) and

(A.12) are the standard Lindeberg-Feller conditions for the asymptotic normality of W̃ ∗
T

under the independent setup, such as

W̃ ∗
T

L−→ N(0, ν0fU0(u)Σ(u)).
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Moreover, we can obtain

E[
√
Th(ĝ(u|γ0)− g0(u))] =

1

2
g′′0(u)µ2h

2(1 + o(1)),

V ar[
√
Th(ĝ(u|γ0)− g0(u))] = ν0f

−1
U0

(u)S−2(u)Σ(u)(1 + o(1)).

This completes the proof.

Proof of Theorem 2.2. Given {ât′ , b̂t′}Tt′=1, minimize the following to obtain γ̂

T∑
t′=1

T∑
t=1

ρτ

{
Yt − ât′ − b̂t′ (Xt −Xt′)

⊤ γ
}
Kt,t′ .

Write γ̂∗ =
√
T (γ̂ − γ0), then γ̂

∗ minimizes the following,

Q∗
T (γ

∗) =
T∑

t′=1

T∑
t=1

[
ρτ

(
Ỹ ∗
t,t′ − b̂t′X

⊤
t,t′γ

∗/
√
T
)
− ρτ

(
Ỹ ∗
t,t′

)]
Kt,t′ ,

where Ỹ ∗
t,t′ = Yt − ât′ − b̂t′X

⊤
t,t′γ0 and Xt,t′ = Xt −Xt′ . Note that Q∗

T (γ
∗) can be write as

Q∗
T (γ

∗) = E [Q∗
T (γ

∗)]− 1√
T

T∑
t′=1

T∑
t=1

Kt,t′

{
ρ′τ (Ỹ

∗
t,t′)b̂t′X

⊤
t,t′ − E

[
ρ′τ (Ỹ

∗
t,t′)b̂t′X

⊤
t,t′

]}
γ∗ + op(1).

E [Q∗
T (γ

∗)] =
T∑

t′=1

T∑
t=1

{
E
[
ρτ

(
Ỹ ∗
t,t′ − b̂t′X

⊤
t,t′γ

∗/
√
T
)]

− E
[
ρτ

(
Ỹ ∗
t,t′

)]}
Kt,t′

=− 1√
T

T∑
t′=1

T∑
t=1

E
[
ρ′τ

(
Ỹ ∗
t,t′

)
b̂t′X

⊤
t,t′γ

∗
]
Kt,t′

+
1

2T
γ∗⊤

T∑
t′=1

T∑
t=1

E
[
ρ′′τ

(
Ỹ ∗
t,t′

)
b̂2t′Xt,t′X

⊤
t,t′

]
Kt,t′γ

∗ + op(1).

Thus, we have

Q∗
T (γ

∗) =− 1√
T

[
T∑

t′=1

T∑
t=1

Kt,t′ρ
′
τ (Ỹ

∗
t,t′)b̂t′X

⊤
t,t′

]
γ∗

+
1

2T
γ∗⊤

[
T∑

t′=1

T∑
t=1

E
[
ρ′′τ

(
Ỹ ∗
t,t′

)
b̂2t′Xt,t′X

⊤
t,t′

]
Kt,t′

]
γ∗ + op(1)

=− 1√
T

[
T∑

t′=1

T∑
t=1

Kt,t′ρ
′
τ (Ỹ

∗
t,t′)b̂t′X

⊤
t,t′

]
γ∗ +

1

2
γ∗⊤S̃γ∗ + op(1).

The proof of the asymptotic normality of γ̂ relies on quadratic approximation and literally

follow a similar logic as in the proof of Theorem 2.1,

√
T (γ̂ − γ0) = S̃−1 1√

T

T∑
t′=1

T∑
t=1

ρ′τ (Ỹ
∗
t,t′)b̂t′X

⊤
t,t′Kt,t′ + op(1)

L−→ N(0, S̃−1Σ̃S̃−1),

thus, the proof of Theorem 2.2 is finished.
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