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Abstract 
Rotating machinery, especially if powered by electric motors in a lab environment, can exhibit a low amount 
of random operational excitation. This can inhibit the excitation of resonances and thus the successful 
application of Operational Modal Analysis (OMA) at stationary operating conditions. Alternatively, 
measurements form acceleration or deceleration runs can be used for modal identification if the machine 
orders provide enough excitation and sweep through the frequency range of interest. By a review of existing 
case studies, this paper evaluates the performance of Order-based Modal Analysis (OBMA) and general 
OMA methods when applied to such run-up conditions and gauges the influence of the excitation on the 
resulting modal estimations. In addition, a foundation of related theory is provided, including a discussion 
on characteristic loads of rotating machinery, OMA by the polyreference Least Squares Frequency-domain 
(pLSCF/PolyMax) method and order tracking by the Time Variant Discrete Fourier Transform (TVDFT). 

1 Introduction 

Rotating parts and components like compressors, turbines, shafts, gears and bearings are omnipresent in 
mechanical structures. These include machines such as generators, pumps, compressors, automotive and 
aircraft engines. Accurate estimation of their modal parameters is a crucial step in the design process of new 
rotating hardware to reduce the risk of damage due to resonance, to optimise simulations by FEM model 
updating and can be also used for machine condition monitoring in frame of fatigue testing and maintenance. 
In experimental modal analysis (EMA), a structure is tested while stationary with experimental boundary 
conditions applied to it. Operational modal analysis (OMA), on the other hand, is performed on operating 
structures. Thus, OMA can provide especially valuable data because it describes the structural dynamics 
corresponding closer to the actual operational conditions of the structure. 
Harmonic signals in the excitation spectrum are characteristic for rotating machinery in operation and can 
occur due to rotation unbalance, meshing gears, bearings, periodic aerodynamic disturbances in trailing 
regions of blades and vanes, etc. The resulting operational vibration response of rotating machinery makes 
a proper estimation of modal parameters more challenging as the harmonics can be falsely identified as 
modes or mask actual structural modes [1]–[3]. The issue is further intensified at operating conditions with 
low random and high harmonic amplitudes in the excitation force, where the structural response amplitude 
due to the input harmonics can exceed the response amplitude due to resonances [4], [5].  Such conditions 
are, for example, reinforced by machines with electric drives, where components associated with 
combustion, such as the combustion chamber, exhaust components and transmission parts, are absent. 
Without the contribution of random excitation from these components, the operational excitation can be 
insufficient to excite modes of interest, thereby hindering their identification [6]. The aforementioned 



characteristics of machinery with electric powertrains make this work especially relevant for the e-mobility 
domain and mechanical spinning tests. These spinning tests often utilise electric motors and are also used 
for testing and qualification of rotating components from conventional aircraft engines and gas turbines. 
Thus, the target areas of this research extend beyond primarily electrically powered applications such as 
electric automotive, rail service and wind power technology.  
For a successful excitation and identification of structural modes from operating conditions, a solution can 
be to perform OMA on the response from an acceleration or deceleration run of the rotating machinery. In 
this case, the idea is that the harmonics in the input force sweep through the frequency range of interest and 
thereby excite structural modes without the necessity of random excitation. Order-based Modal Analysis 
(OBMA) [7] is a method that utilises such transient responses by combining OMA with order tracking. It 
was shown that regular OMA methods can result in false, so called “end-of-order” modes, when applied to 
this type of response data, while OBMA resolves this issue [7]–[9]. However, there is no clear picture how 
OBMA performs otherwise in terms of the estimated modal parameters compared to OMA. This study 
addresses this question by conducting an extensive literature review of case studies involving OBMA. 
OBMA relies on the assumption that the primary excitation is due periodic input from the machine’s orders, 
while general OMA methods are not limited by this requirement. In addition, operating rotating machinery 
in general experiences a combination of harmonic and random excitation. Thus, the present study also 
focuses on the composition of the excitation signals both in the presented theoretical topics as well as in the 
reviewed case studies. 
The main contributions of this paper are 1) an evaluation of the overall performance of OBMA based on 
existing case studies for a clearer picture of the method’s strengths and weaknesses and 2) the qualitative 
estimation of the potential impact of the operating conditions, especially in terms of the excitation signature, 
to support the effort of matching the most appropriate modal identification method to the tested machine’s 
operating conditions or vice versa. 
The theoretical part of this paper covers a discussion on excitation characteristics of rotating machinery in 
Section 2, the pLSCF method for OMA in Section 3 and an introduction to OBMA with order tracking by 
the TVDFT algorithm in Section 4. A survey of current literature in Section 5 focuses on practical case 
studies to identify trends in the performance of OBMA at different operating and excitation conditions of 
rotating machinery. Finally, Section 6 concludes with the main findings from the reviewed case studies and 
gives suggestions for future work in the domain of OMA and OBMA for rotating machinery. A central 
observation is that the presented research area would benefit from a parametric study to systematically 
analyse the performance of OBMA and general OMA at various operating conditions of rotating machinery. 
Such study would alleviate the uncertainty from qualitative comparisons of independent case studies and is 
a work in progress of the authors of this paper. First results from this study will be presented at the 
ISMA2020 Noise and Vibration Engineering Conference. 

2 Operational excitation of rotating machinery 

Operational Modal Analysis (OMA) is applied to conditions where the excitation force is not measured, so 
OMA relies only on the measured output of the system caused by operational input forces. This is the main 
difference to Experimental Modal Analysis (EMA), where both the input force and the system response (in 
terms of displacements, velocity or accelerations) are available. In EMA, the output can be then related to 
the input force, providing Frequency Response Functions (FRFs). Since the excitation signal is not available 
in OMA, traditionally the input force is assumed to cover a broadband, approximately flat frequency 
spectrum, i.e. to follow the properties of white noise [10], [11]. This idealisation is often sufficient when the 
excitation is mainly caused by wind and motor traffic, usually encountered in civil engineering structures 
[12]–[14]. In case of rotating machinery, unbalance and periodic aerodynamic perturbations, can lead to 
dominant harmonic narrow-banded components in the excitation. Therefore, in applications where rotating 
components are the main excitation source, the assumption of a broadband approximately flat input 
frequency spectrum, is substantially violated. The following sections describe types of excitation typically 
present in operating rotating machinery and outline the potential impact on OMA. 



2.1 Periodic input forces 

The frequency of a periodic excitation that corresponds to the rotating speed of an observed shaft is known 
as the foundational frequency. In addition to this frequency, integer multiples of the foundational frequency, 
known as harmonics, are commonly observed in the measured frequency spectrum as well and can be 
explained by the following example. 
In the context of turbomachinery, the air stream of a rotor blade is typically disrupted by preceding or 
succeeding stator vanes, inlet or outlet guide vanes. During a single shaft revolution, each blade is exposed 
to this periodic aerodynamic excitation for l times, where l equals the number of blades on a neighbouring 
disc. 
Such multiples of the rotation frequency are more generally referred to as (engine or rotation) orders, which 
are not limited to integers. Based on the measured rotational frequency in rotations per minute (rpm), in 
rotations per second (Hz) specified by f0 or in radians per second specified by ω0 (known as the angular 
speed), the frequency fl of the lth order is calculated as follows: 

 𝑓𝑓𝑙𝑙 = 𝑙𝑙𝑓𝑓0 = 𝑙𝑙 rpm
60

= 𝑙𝑙 𝜔𝜔0
2𝜋𝜋

 (1) 

Operational speeds where the frequency of the lth engine order collides with the natural frequency of the 
engine provoke a resonant state and therefore should be avoided. 

 
Figure 1: Exemplary Campbell diagram of a fan blade excited by harmonic orders [15] 

The described relations can be visualised with a Campbell diagram. The Campbell diagram in Figure 1 
shows an exemplary assessment of the modal response of a fan blade in an operational environment. The X 
axis shows the engine rpm and the Y axis provides the frequency range. The rising lines originating from 
the diagram root are the relevant order lines – in this example, the 12th engine order and its higher harmonics. 
Natural frequencies of the analysed fan blade are shown as approximately horizontal lines with a slightly 
positive slope. The circled areas of intersection represent the resonant states of the component at the 
corresponding engine speed. 

2.2 Stationary operating conditions 

At stationary operating conditions of rotating machinery, the described harmonics cause increased input 
force amplitudes at fixed frequencies. OMA algorithms can falsely interpret the peaks as a system response 
even though they originate from the excitation spectrum. This is not necessarily problematic, because such 



falsely identified modes can be discarded based on the knowledge of operational speed and corresponding 
harmonics. However, depending on the amplitude and spread of the resonance and harmonic peaks, it is 
possible that the harmonic masks the structural response peak. Consequently, especially in close proximity 
of harmonics and structural (i.e. actual) modes of the system, a biased mode estimation can occur where the 
sole knowledge of harmonic frequencies and rejection of corresponding false modes does not suffice. This 
issue can be addressed by a reduction of harmonics from the vibration response signal as a pre-processing 
step prior to the modal identification. This approach was shown to have potential to uncover structural 
modes, that would be otherwise not identified by OMA [5], [16]. A literature review of several existing 
postprocessing methods for reduction of harmonics can be found for example in [17]. 
Machines with a reduced number of mechanical components and an electric powertrain, such as the 
previously mentioned example of component spinning tests, pose an additional difficulty. Combustion 
processes, ambient excitation and friction between interacting components can contribute to a broadband 
excitation of an operating machine. However, these contributing factors are either limited or missing in 
laboratory spinning tests, so random excitation can be limited to a low amplitude, insufficient to excite 
system modes. With a lack of modal response like this, modal identification is physically impossible 
regardless of the employed modal estimation algorithm or additional data processing, e.g. for the reduction 
of harmonics. In such cases, an alternative might be to record the vibration response of the operating 
structure during an acceleration or deceleration of its rotating components, which is described in the 
following section. 

2.3 Acceleration or deceleration runs 

The previous section considered harmonics as a disturbing factor, occurring during approximately stationary 
operation of rotating machinery. In this case, sufficient random excitation (with approximately stationary 
harmonic disturbances) is assumed. If this condition is not met, the input harmonics can be used as the 
primary driver for the excitation of structural modes during a machines’ acceleration or deceleration run. 
Due to the relation of the order input forces and the machine’s rotation speed as given by Equation (1), these 
orders can cover a range of frequencies and thereby excite structural modes, similar to a multi-sweep 
excitation. This approach, while not limited to OBMA, is the foundation and requirement for OBMA, which 
will be discussed in more detail in Section 4. 
In this case, it is important to consider the sweeping duration (i.e. the ramp up rate or acceleration). First, 
the Discrete Fourier Transform (DFT) relationship between the measurement time T and corresponding 
frequency resolution Δf of the measured signal applies: Δf = 1/T. While this is a general consideration, i.e. 
independent from the excitation, this means that a shorter transient run that is transformed into the frequency 
domain will result in a coarser frequency resolution. 
In addition, a higher ramp up rate leads to a shorter duration when the excitation frequency passes through 
individual resonances. Especially for lightly damped modes, such transient excitation conditions can lead to 
flatter response peaks, which are tilted towards the frequency sweeping direction. This, in turn, causes a 
higher estimated damping and higher natural frequencies from an acceleration test run [18], [19]. 

2.4 Distribution and correlation of input forces 

Depending on the specific configuration of the tested rotating machinery, the number of spatially separated 
and independent loads can vary. For example, it can be assumed that an in-flight operating aircraft engine 
is subjected to a larger number of independent loads compared to a rotating component on a spinning test 
rig, which is operated by an electric motor. In contrast to the in-flight engine, the spinning test rig example 
features a much lower number of parts and subsystems, which can transmit and introduce independent loads 
to the structure. In that regard, the excitation from the spinning rig case is more likely to be dominated by a 
periodic unbalance load with its higher harmonics. This loading condition is spatially limited by the bearing 
locations, where the vibration forces are transferred to the tested structure. Centrifugal unbalance forces are 
limited to the plane perpendicular to the rotating shaft, so modes of interest with main deflections in the 



shaft direction might remain unidentified due to a lack of excitation. In addition, the periodic loads in both 
axes of the plane are correlated, with a 90° phase difference [18]. Since the number of independent loads in 
the described example approaches one, the identification of close modes becomes more challenging [20]. 
Close modes often occur in structures with geometrical symmetry, torsional unbalances or light attachment 
parts, which have localised modes with frequencies similar to other modes of the structure [21]. This 
includes rotation symmetric geometries, which are, for example, common in components of aircraft engines, 
such as the inlet, casings and the exhaust nozzle. 
In controlled vibration testing of large structures such as aircraft, where sine sweep excitation is induced at 
multiple input locations, the issue of correlated inputs is also encountered. For example, a configuration of 
two shakers attached symmetrically to the aircraft wings, can be used to excite symmetrical modes by 
running both sweep inputs in sync, while asymmetrical modes are excited by performing a sweep excitation 
with 180° phase difference between one input and the other. However, the inputs at each test run are still 
correlated, which contradicts the requirement of uncorrelated forces for the conventional estimation of FRFs 
from multi-input test configurations [22]. 
For this case, several methods exist to construct FRFs for subsequent modal analysis and a classical 
approach is to calculate a common multi-input-multi-output (MIMO) FRF matrix [H] from both the 
symmetric (subscript S) and antisymmetric (subscript A) runs using the relation in Equation (2) [22]. {�̈�𝑢(𝜔𝜔)} 
is the acceleration vector and {𝑓𝑓(𝜔𝜔)} is the input force vector at frequency ω. 
 [{�̈�𝑢(𝜔𝜔)}𝑆𝑆 {�̈�𝑢(𝜔𝜔)}𝐴𝐴 ] = [𝐻𝐻(𝜔𝜔)] [{𝑓𝑓(𝜔𝜔)}𝑆𝑆 {𝑓𝑓(𝜔𝜔)}𝐴𝐴] (2) 
However, since the symmetric and antisymmetric response sets have resonances at similar frequencies, the 
combined FRF will show closely spaced modes, which makes their accurate identification more challenging. 
Therefore, an alternative is to construct an individual SIMO FRF matrix for the symmetric and 
antisymmetric test runs, which can be afterwards processed separately for modal identification. This 
procedure introduces a virtual single driving point with a virtual load consisting of a combination of the 
actual input loads. Depending on the specific approach, a correction factor for the determined modal masses 
is needed as well [22]. 
After the modal analysis from the FRF sets, both sets of (symmetric and antisymmetric) modal parameters 
can be simply combined into a single set of modal parameters, resulting in higher accuracy of the estimations 
compared to the modal identification from a combined FRF [22], [23]. 

3 Operational modal analysis with the polyreference least squares 
complex frequency-domain method 

The polyreference Least Squares Complex Frequency-domain (pLSCF/PolyMax) OMA method extends the 
LSCF method to consider multiple references, thereby increasing the method’s theoretical performance to 
identify closely spaced modes. In contrast to LSCF, the method also does not require a Singular Value 
Decomposition (SVD) step, which not only adds computational effort but also results in a worse fit of the 
data to the modal model [24]. 
A detailed theoretical description of the pLSCF EMA method is given in [24]. It operates on FRFs as the 
primary input data. The OMA version of pLSCF is described in [25] and requires spectra from operational 
response measurements instead. On this foundation, this section describes the main steps of the operational 
pLSCF algorithm. 
To calculate spectral estimations from the measurements, first the correlation function R is determined over 
the time lags i from the measurement samples y: 

 𝑅𝑅𝑖𝑖 = 1
𝑁𝑁
∑ 𝑦𝑦𝑘𝑘+𝑖𝑖 𝑦𝑦𝑘𝑘𝑇𝑇𝑁𝑁−1
𝑘𝑘=0  (3) 

When the correlation functions of positive time lags i are multiplied by a window weighting function w (to 
reduce frequency-domain leakage) and the DFT is applied, so-called half-spectra 𝑆𝑆𝑦𝑦𝑦𝑦+  are obtained as shown 



in Equation (4). L specifies the maximum time lag, which is typically much smaller than the total number 
of measurement samples N to avoid high variance that occurs at high time lags in correlation functions. 

 𝑆𝑆𝑦𝑦𝑦𝑦+ (𝜔𝜔) = 𝑤𝑤0𝑅𝑅0
2

+ ∑ 𝑤𝑤𝑘𝑘𝑅𝑅𝑘𝑘 exp(−𝑗𝑗𝜔𝜔𝑗𝑗∆𝑡𝑡)𝐿𝐿
𝑘𝑘=1  (4) 

In the same way, the cross spectra between all l outputs and a (smaller) set of m reference outputs are 
computed and assembled into an l×m half spectrum matrix. 
Due to the symmetry of full spectra, all information on the system dynamics is retained by the half spectra 
and a modal decomposition from the matrix of half spectra can be obtained as shown in Equation (5). Here, 
{𝑣𝑣𝑖𝑖} are the mode shape vectors and 〈𝑔𝑔𝑖𝑖〉 are the operational reference factors, which are related to the modal 
participation factors known from EMA. The notation uses [•] to specify a matrix, {•} for a column vector, 
〈•〉 for a row vector and •∗ for a complex conjugate. 

 �𝑆𝑆𝑦𝑦𝑦𝑦+ (𝜔𝜔)� = ∑ {𝑣𝑣𝑖𝑖}〈𝑔𝑔𝑖𝑖〉
𝑗𝑗𝜔𝜔−𝜆𝜆𝑖𝑖

+ {𝑣𝑣𝑖𝑖∗}〈𝑔𝑔𝑖𝑖∗〉
𝑗𝑗𝜔𝜔−𝜆𝜆𝑖𝑖

∗
𝑛𝑛
𝑖𝑖=1  (5) 

λi are the poles, which describe the natural frequencies ωi and damping ratios ξi: 

 𝜆𝜆𝑖𝑖, 𝜆𝜆𝑖𝑖
∗ = −𝜉𝜉𝑖𝑖𝜔𝜔𝑖𝑖 ± 𝑗𝑗�1 − 𝜉𝜉𝑖𝑖

2 𝜔𝜔𝑖𝑖 (6) 

There are different methods to calculate spectra and the previously described spectrum estimation is known 
as the weighted correlogram. An alternative is the modified Welch’s periodogram, which estimates spectra 
directly form the DFT of window-weighted measurements without the need of correlation functions. The 
benefit of the weighted correlogram, however, is that an exponential window can be applied to reduce 
leakage, while the modified Welch’s periodogram typically requires a Hanning window, leading to a bias 
of modal damping estimates. 
Next, the estimated half spectra are used to fit a right matrix-fraction description model in the complex z-
domain with 𝑧𝑧 = exp(𝑗𝑗𝜔𝜔∆𝑡𝑡) as shown in Equation (7). The numerator polynomial matrix [B] and the 
denominator polynomial matrix [A] consists of polynomial coefficients [βr] and [αr], respectively, with the 
polynomial order p. 

  �𝑆𝑆𝑦𝑦𝑦𝑦+ (𝜔𝜔)� = [𝐵𝐵(𝜔𝜔)] ∙ [𝐴𝐴(𝜔𝜔)]−1 = ∑ 𝑧𝑧𝑟𝑟[𝛽𝛽𝑟𝑟]𝑝𝑝
𝑟𝑟=0 ∙ �∑ 𝑧𝑧𝑟𝑟[𝛼𝛼𝑟𝑟]𝑝𝑝

𝑟𝑟=0 �−1  (7) 

A linearized equation system of data fit errors in Equation (7) is constructed from each discrete frequency 
ω and minimised by the least-squares method. This yields estimations of the model coefficients [βr] and 
[αr]. The companion matrix of the denominator coefficients [αr] provides pm poles λi and operational 
reference factors 〈𝑔𝑔𝑖𝑖〉 as its eigenvalues and eigenvectors, respectively. At this point, eigenfrequencies and 
damping rations are determined from the poles as shown by Equation (6). A stabilisation diagram is obtained 
from results of models with increasing order p. When estimations for corresponding modal parameters (and 
operational reference factors) deviate within a specified threshold in a group of subsequent model orders, 
they are classified as stable poles. 
Equation (5) is extended to Equation (8) to consider the effect of out-of-band modes using the operational 
residuals LR and UR. The set of determined stable poles and corresponding operational reference factors 
from the previous step are then used to determine the unknown quantities from Equation (8), which are the 
mode shapes and residuals. This is also achieved by utilising the least-squares method.  

 �𝑆𝑆𝑦𝑦𝑦𝑦+ (𝜔𝜔)� = ∑ {𝑣𝑣𝑖𝑖}〈𝑔𝑔𝑖𝑖〉
𝑗𝑗𝜔𝜔−𝜆𝜆𝑖𝑖

+ {𝑣𝑣𝑖𝑖∗}〈𝑔𝑔𝑖𝑖∗〉
𝑗𝑗𝜔𝜔−𝜆𝜆𝑖𝑖

∗
𝑛𝑛
𝑖𝑖=1 + 𝐿𝐿𝑅𝑅

𝑗𝑗𝜔𝜔
+ 𝑗𝑗𝜔𝜔 𝑈𝑈𝑅𝑅 (8) 

This concludes the modal estimation as the modal parameters (eigenfrequencies, damping ratios and mode 
shapes) have been estimated from the measured system output. 

4 Order-based modal analysis (OBMA) 

Order-Based Modal Analysis (OBMA) is an OMA method, which assumes primary loading by sweeping 
harmonic input forces or orders, that typically stem from rotating machinery as discussed in Section 2.3. 



In OBMA, order tracking is applied to the measurements to extract the amplitude and phase of individual 
orders as a function of rpm and frequency. Afterwards, these frequency spectra of an order are used as the 
input for an OMA method, such as the pLSCF, to determine system modes from the resonances of the 
tracked order in the frequency domain [8]. 
Other OMA methods apart from OBMA can be applied to the same response data without the intermediate 
order tracking step, too. However, the measured spectra of the acceleration/deceleration run can exhibit 
spurious peaks, which occur at each of the dominant orders’ frequencies, which were reached at the end of 
the measurement. These peaks can lead to an identification of false modes, called end-of-order modes [7], 
[9], although their presence and amount varies from test-case to test-case [18]. OBMA bypasses the issue 
of end-of-order modes by considering only a single (tracked) order per analysis. 

4.1 Order tracking by the time variant discrete Fourier transform (TVDFT)  

Order tracking is a crucial first step of OBMA since the subsequent estimation of modal parameters is based 
on the extracted orders. 
The performance of several order tracking methods specifically for the use with OBMA have been evaluated 
in prior studies by Di Lorenzo et al. The authors report that the Angle Domain (AD) resampling-based order 
tracking [9], [26] along with the Vold-Kalman (VK) order tracking and the Time Variant Discrete Fourier 
Transform (TVDFT) order tracking [19] provide the best results in terms of clean extracted order functions 
as well as the subsequent modal estimation results by OBMA. However, it is also noted, that the choice of 
a suitable order tracking method depends on the specific test conditions and requirements. For example, the 
VK and TVDFT order tracking surpass the AD order tracking in cases with close or crossing orders that 
need to be separated. Furthermore, the TVDFT method is computationally less demanding compared to VK 
and AD and thus advantageous in time-critical test conditions. [9], [27] 
In the following paragraphs, the TVDFT order tracking method is introduced by a comparison to the regular 
DFT and the main data processing steps involved. 
The Fourier Transform (FT) can be regarded as a cross-correlation between an analysed time signal and an 
analysing function. In case of the FT, the analysing function (also called the basis function or kernel) is a 
complex sinusoid that, in correspondence with Euler’s formula, can be equivalently expressed in exponential 
or sine-cosine form. These observations also apply to the DFT shown in Equation (9) [28]. 

 𝑋𝑋𝑘𝑘 = 1
𝑁𝑁
∑ �𝑥𝑥𝑛𝑛 ⋅ 𝑒𝑒

−𝑗𝑗2𝜋𝜋𝑘𝑘𝑁𝑁𝑛𝑛�����
𝑎𝑎𝑛𝑛𝑎𝑎𝑙𝑙𝑦𝑦𝑎𝑎𝑖𝑖𝑛𝑛𝑔𝑔
𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑛𝑛

�𝑁𝑁−1
𝑛𝑛=0 = 1

𝑁𝑁
∑ �𝑥𝑥𝑛𝑛 ⋅ �cos �2𝜋𝜋 𝑘𝑘

𝑁𝑁
𝑛𝑛� − 𝑗𝑗 sin �2𝜋𝜋 𝑘𝑘

𝑁𝑁
𝑛𝑛�����������������������

𝑎𝑎𝑛𝑛𝑎𝑎𝑙𝑙𝑦𝑦𝑎𝑎𝑖𝑖𝑛𝑛𝑔𝑔 𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑛𝑛

�𝑁𝑁−1
𝑛𝑛=0  (9) 

In this equation, Xk is the DFT for the kth frequency bin, 𝑥𝑥𝑛𝑛 = 𝑥𝑥(𝑛𝑛 ⋅ Δ𝑡𝑡) is the value of the nth signal sample 
and N is the total number of samples. 
The Inverse DFT (IDFT) transforms the frequency coefficients Xk back to the time samples xn and, for the 
sake of completeness, is shown in Equation (10). 

 𝑥𝑥𝑛𝑛 = ∑ �𝑋𝑋𝑘𝑘 ⋅ 𝑒𝑒
𝑗𝑗2𝜋𝜋𝑘𝑘𝑁𝑁𝑛𝑛�𝑁𝑁−1

𝑛𝑛=0  (10) 

It is worth noting that there are different common formulations and notations for the DFT in the literature 
depending on conventions and application areas. This concerns, for example, the scaling factor of the DFT 
and IDFT, like 1/N in case of the DFT definition used in Equation (9). Furthermore, the use of a centred 
interval like [-N/2, N/2] is more common in areas with spatially sampled data (e.g. image or surface data), 
while an uncentred interval like [0, N - 1] is often used in context of time sequences. [29], [30] 
Equation (9) is evaluated for individual integer values of 𝑗𝑗 ∈ [0,𝑁𝑁 − 1]. Hence, each of the resulting 
frequency bins Xk is obtained from N signal samples xn and a complex sinusoidal function with a constant 
frequency k/N (k cycles per N samples). Considering the sampling frequency fs of the signal, the resulting 



frequency resolution of the DFT is calculated as Δf = fs / N and the kth frequency bin can be associated with 
the frequency fk = k fs / N = k Δf in Hz (i.e. fk cycles per second). 
The TVDFT, shown in Equation (11), is formulated similar to the DFT. 𝑋𝑋𝑞𝑞,𝑙𝑙 = 𝑋𝑋𝑙𝑙(𝑞𝑞 ∙ Δ𝑟𝑟) is the TVDFT for 
the lth machine order and qth signal block covering Δr rotations. 𝑓𝑓0(𝑚𝑚∆𝑡𝑡) is the mth sample of the tacho signal 
in rotations per second, i.e. in Hz. 

 𝑋𝑋𝑞𝑞,𝑙𝑙 = 1
𝑁𝑁
∑ �𝑥𝑥𝑞𝑞,𝑛𝑛 ⋅ 𝑒𝑒−𝑗𝑗𝜑𝜑𝑛𝑛,𝑙𝑙�𝑁𝑁−1
𝑛𝑛=0 = 1

𝑁𝑁
∑ �𝑥𝑥𝑞𝑞,𝑛𝑛 ⋅ exp(−𝑗𝑗 𝑙𝑙 ∆𝑡𝑡 ∑ 2𝜋𝜋𝑓𝑓0(𝑚𝑚∆𝑡𝑡)𝑛𝑛−1

𝑚𝑚=0 )�𝑁𝑁−1
𝑛𝑛=0  (11) 

The main difference of the TVDFT compared to the regular DFT lies in the analysing function, i.e. the 
complex sinusoid, marked in Equation (9). While the DFT uses a sinusoidal function with a constant 
frequency, the sinusoid of the TVDFT has a frequency that is time-dependent and corresponds to the 
instantaneous frequency of the analysed machine order l. Table 1 compares the equations for different 
formulations of the phase φ used in the complex analysing function e-i φ of the DFT and TVDFT. The phase 
with a constant frequency (like in the DFT case) is shown in Equations (13) and (14). Equations (15) and 
(16) describe a phase with a time-varying machine order frequency that is inferred from the tacho signal f0 
(like in the TVDFT case). The derivation of the order phase φl from the tacho signal f0 is explained by 
Equation (12). It is based on the fact that the instantaneous phase φ corresponds to the integral of the 
instantaneous angular speed ω, since ω = dφ/dt. 

 𝜑𝜑𝑙𝑙(𝑡𝑡) = ∫ 𝜔𝜔𝑙𝑙(𝜏𝜏)𝑑𝑑𝜏𝜏𝑓𝑓
0 = ∫ 2𝜋𝜋𝑓𝑓𝑙𝑙(𝜏𝜏)𝑑𝑑𝜏𝜏𝑓𝑓

0 = 𝑙𝑙 ∫ 2𝜋𝜋𝑓𝑓0(𝜏𝜏)𝑑𝑑𝜏𝜏𝑓𝑓
0  (12) 

Table 1: Different formulations of the instantaneous phase φ for the complex sinusoidal function e-i φ 
 Continuous Discrete 

Constant 
frequency 

𝜑𝜑𝑓𝑓(𝑡𝑡) = 2𝜋𝜋 𝑓𝑓⏟
=𝑓𝑓𝑓𝑓𝑛𝑛𝑎𝑎𝑓𝑓.

𝑡𝑡  (13) 
 

𝜑𝜑𝑛𝑛,𝑘𝑘 = 2𝜋𝜋 𝑘𝑘
𝑁𝑁⏟

=𝑓𝑓𝑓𝑓𝑛𝑛𝑎𝑎𝑓𝑓.

𝑛𝑛  (14) 
 

Time-varying 
order frequency 

𝜑𝜑𝑙𝑙(𝑡𝑡) = 𝑙𝑙 ∫ 2𝜋𝜋 𝑓𝑓0(𝜏𝜏)���
≠𝑓𝑓𝑓𝑓𝑛𝑛𝑎𝑎𝑓𝑓.

𝑑𝑑𝜏𝜏𝑓𝑓
0   (15) 

 

𝜑𝜑𝑛𝑛,𝑙𝑙 = 𝑙𝑙 ∆𝑡𝑡 ∑ 2𝜋𝜋 𝑓𝑓0(𝑚𝑚∆𝑡𝑡)�����
≠𝑓𝑓𝑓𝑓𝑛𝑛𝑎𝑎𝑓𝑓.

𝑛𝑛−1
𝑚𝑚=0   (16) 

 

 
Equation (16) formulates the discrete approximation of the integral from Equation (15) as the rectangle 
Riemann sum over the discrete samples with the sampling interval Δt. Similarly, the trapezoidal rule or 
Simpson’s method can be employed for the integral calculation. 
In practice, order tracking with TVDFT can be implemented as the following procedure: First, N phase 
samples with the time-varying frequency of the target order l are calculated as defined in Equation (16). 
Subsequently, this sequence is used for the calculation of the complex sinusoidal function (i.e. the 
exponential function in Equation (11)), which has also N samples, like the analysed signal. In addition, the 
phase signal calculated form Equation (16) is used to determine at which sample indices a full rotation is 
completed by evaluating phase samples that cross an integer multiple of 2π. 
Based on these determined sample indices indicating a full rotation, the complex analysing function as 
well as the vibration time signal and tacho measurements are split into subsequent blocks of samples. Each 
block q then contains a constant integer number of machine revolutions Δr that can be set as a user 
parameter. This ensures a constant order bandwidth, which is beneficial for order tracking [31]. Finally, 
the TVDFT is applied to the vibration signal samples from each data block q, providing a TVDFT 
coefficient per data block. These coefficients can then be plotted over each data block’s average of the 
analysed order frequency fl, which is known from the tacho measurements as shown in Equation (1). 
Like in regular DFT, the samples xq,n from each processed data block q in Equation (11) can be also 
weighted by a window function to reduce leakage. In addition, the data blocks often do not cover an exact 
integer number of Δr due to the sampling discretisation, which also introduces leakage. Oversampling can 
be used to increase this precision and thus reduce leakage. Moreover, an Orthogonality Compensation 
Matrix (OCM) can be introduced to combat this effect and furthermore allow a more accurate order 
tracking of fast sweeping, closely spaced and crossing orders [31]. 



5 Existing literature on OBMA 

Current literature contains a variety of OMA methods, which have been tested and, in some cases, 
specifically adapted or developed with periodic excitations in mind, typically due to rotating machinery.  
For a broader context, a recent review paper [17] introduces such OMA methods and gives a qualitative 
review of their performance in applications with harmonic input loads. The study suggests that OBMA has 
potential to prove beneficial, especially in the mentioned challenging cases where low random excitation 
amplitudes prevent modal estimation at stationary operating conditions. 
In contrast to the previous paper, the following literature review of OBMA focuses on the composition of 
the excitation in the reviewed case studies in terms of relative random and periodic contributions. This 
observation is important, since modal identification fundamentally depends on the present excitation forces. 
The aim is thereby distinguishing a relationship between the type of excitation and the performance of 
OBMA. In this context, existing comparison case studies involving OBMA can be grouped into three 
categories defined by Table 2. 

Table 2: Categories of OBMA case studies in existing literature 

Number, 
section 

Research object Reference 
Method Test conditions Method Test conditions 

1, Section 5.1 OBMA Operational run-up OMA Operational run-up 

2, Section 5.2 OBMA Operational run-up OMA Operational stationary 

3, Section 5.3 OBMA Operational run-up 
Simulation/ 
EMA/  
OMA 

Respective optimal conditions, such 
as hammer impact (EMA) or white 
noise shaker input (OMA) 

 
As specified in the first column of Table 2, the following subsections review OBMA based on existing 
literature from each of these categories. 

5.1 Comparisons of solely operational run-up conditions 

Published studies of this category include a tested wind turbine gearbox [8] as well as acoustic [7] and 
vibrational measurements from a 4-cylinder car [9]. In these studies, linear operational run-ups (i.e. with a 
constant acceleration) were performed while the structural response as well as the tacho signal were 
recorded. Based on this data, OMBA was compared to operational PolyMax as a general OMA method.  
In the observed frequency ranges, 5, 2 and 3 end-of-order modes were falsely identified when the general 
OMA method was applied to the tested wind turbine gearbox [8], car interior acoustics [7] and vibrational 
car measurements [9], respectively. 
The case studies were conducted in a laboratory environment, namely on a car roller bench [9] or using a 
gearbox test rig [8]. Thus, environmental excitation forces are minimised and the excitation source is 
primarily the operating machine itself, which increases the expected amplitude of periodic input forces in 
relation to random input forces. While the car test cases involved a conventional combustion engine, the test 
rig for the wind turbine gearbox is operated by an electric motor, which can lead to a further reduction of 
random input due to its reduced number of mechanically interacting components. 
In the wind turbine gearbox test [8], only the number and approximate frequency of modes identified by 
OBMA and OMA are compared to highlight the successful elimination of end-of-order modes by OBMA. 
However, neither difference nor absolute values of the estimated common modes’ modal parameters are 
provided in this study. A comparison of the estimated modal parameters is also heavily limited in the studies 
involving a car structure: While the study with acoustic microphone measurements of a car interior [7] 
reports the OBMA identification results for natural frequencies and damping ratios, it does not provide these 



values for the OMA identification. The case study of a large vibration measurement campaign of a car [9] 
with 144 measurement channels also does not provide values of the modal parameters estimated by OBMA 
and OMA. The comparison is limited to a MAC matrix between operational deflection shapes (ODS) and 
OMA mode shapes on one hand and between ODS and OBMA mode shapes on the other hand, without a 
direct comparison between OMA and OBMA mode shapes [9]. In fact, the other two mentioned case studies 
[7], [8] also don’t consider the comparison of mode shapes, although in case of the acoustic measurement 
[7] this is due to the use of a single microphone. 
In conclusion, the reviewed studies, which compare OMA and OBMA during operational run-up test 
conditions lack a comparison of the values or differences for the estimated modal parameters (i.e. natural 
frequencies, damping ratios and mode shapes). However, all three case studies show that OBMA avoids the 
issue of falsely identified end-of-order modes in contrast to the compared OMA method. The discussed lack 
of substantial random input forces might have reinforced the presence of end-of-order modes in the 
presented cases. 

5.2 Comparisons of operational run-up and operational stationary conditions 

A planetary gearbox [6] was evaluated by hammer impact EMA testing, a simulation model, OMA with the 
operational PolyMax method at stationary operation and OBMA at an acceleration run of the driving motor. 
Since, as additional baselines, this case study includes EMA and numerical results, it could also be assigned 
to the third category in Table 2, i.e. to the Section 5.3. However, it was assigned to the present section, since 
it is the only identified study where the test is performed at stationary operating conditions for OMA and an 
acceleration run for OBMA.  
The OMA method (at stationary operating conditions) only identified 8 out of 13 modes, that were captured 
by EMA and OBMA. OBMA determined partly much greater damping values with errors ranging between 
5% and 316% relative to the EMA damping results. There is less relative error in natural frequencies at a 
maximum deviation of 8%. A comparison between estimated values from OMA and OBMA shows a much 
closer agreement: OBMA parameters deviate up to 4% and 49% in relation to OMA results for natural 
frequencies and damping ratios, respectively. This indicates that the observed differences in comparison to 
EMA are also due to the operation of the structure and not primarily due to estimation errors introduced by 
OBMA specifically. Underlying changes of modal parameters at operating conditions can be caused by an 
increasing gearbox temperature, varying boundary conditions and gear mesh stiffness, as noted by the 
authors [6]. 
However, the relationship between the analysed orders and the presented modal results is not clear from the 
paper. Two dominant orders of the system are introduced and it is stated that both orders have been processed 
by OBMA using the operational PolyMax method [6]. However, only a single set of modes estimated by 
OBMA is presented and it is not clear from which of the two orders the presented results originate. The 
paper does not disclose the technique (if any), which was used to combine both data sources. In the worst 
case, individual estimated modes from both orders could have been manually constructed into a single set 
of results, potentially leading to a biased report of OBMA results. 
The analysed test case allows to assume a low amount of random input in relation to periodic excitation 
amplitudes, since it features an added rotational mass and consists of few components (two identical 
planetary gears in back-to-back configuration) driven by an electric motor. Therefore, the study confirms 
that a run of sweeping orders can be favourable for modal estimation if the alternative stationary operating 
condition does not provide enough input force to excite modes in the frequency range of interest. However, 
this observation rather concerns the operational conditions of the specific test structure and not the utilised 
OMA method. Depending on how pronounced the end-of-order effect would have been in this test case, 
regular OMA could provide similar results to OBMA when applied to the run-up measurements. Finally, 
the study validates OBMA by demonstrating matching modes from EMA, OMA and a simulated system. 
However, this excludes mode shapes or MAC values from OBMA and OMA, which have not been reported 
in the study. 



5.3 Comparisons of operational run-up and experimental/numerical response 

Simulation case studies of OBMA include an 8 DOF model with a simulated rotating mass [19] and a plate 
structure with two force input locations producing crossing orders [32]. In both cases the modal estimation 
results by OBMA correspond mostly well with the numerical reference solutions. 
Two additional studies conducted physical experiments using controlled excitation setups for the baseline 
response. In the test of a locomotive frame/cabin assembly [9], hammer impact EMA provided reference 
results while a different test utilised white noise excitation by a shaker to acquire a baseline response of car 
mock-up by OMA [18]. In the latter case study, the operational run-up condition was emulated by the same 
shaker, resembling the periodic multi-sweep input of 34 orders, which were subsequently processed by 
OBMA. 
In the case of the 8 DOF model [19], OBMA in combination with TVDFT order tracking resulted in 
maximum deviations of 3% and 106% for natural frequencies and damping ratios, respectively. The high 
relative error of the damping estimation is encountered in the first two modes, which are lightly damped. 
Excluding the first two modes, the maximum damping error is significantly lower at 1.8%. A similar effect 
can be observed from the locomotive experiment [9], where the damping ratio of a lightly damped mode 
was estimated by OBMA approximately 3 times higher compared to EMA. The plate simulation study [32] 
draws a slightly different picture, since its lightly damped modes were not affected by noticeably high 
estimation errors. In the case study of the car mock-up [18], the eigenfrequencies show consistent results 
with a maximum error of 2.6%. The damping ratio and mode shapes (quantified by MAC values), however, 
have a high variance depending on the specific order used in the OBMA method. For example, the relative 
error in the damping estimate of the third mode ranges from 2.4% to 85.4% depending on the chosen order. 
Unfortunately, from the four presented case studies of this subsection, mode shapes or MAC values have 
been only considered in the car mock-up study [18]. 
It can be concluded from several studies [9], [19], that the damping ratios of lightly damped modes can be 
strongly overestimated, which should be considered when analysing lightly damped structures with OBMA. 
A plate simulation study [32] demonstrated that VK order tracking can be successfully applied to separate 
crossing orders and use them for modal identification with OBMA. 
For more challenging estimation conditions and generalized findings, the plate simulation also included 
superposed measurement noise and two close structural modes. At the same time, however, it should be kept 
in mind that both simulations [19], [32] represent idealized and reduced models, which facilitates modal 
identification. For example, the periodic input force was not contaminated with noise in neither of the 
simulations and the plate response was simulated by modal superposition of a reduced modal subspace with 
6 modes. Similarly, the physical car-mock up experiment [18] was performed under idealised conditions 
with a controlled shaker excitation producing purely harmonic input forces. Depending on the specific 
application scenario, lower estimation performance can be expected if the test conditions are less 
predictable. 
This assumption is supported by the locomotive case study, which contained run-up excitation by an 
operating diesel engine [9] and suffered of unmatched modes as well as higher baseline errors compared to 
other studies of this subsection. More specifically, the OBMA estimation results in the locomotive study 
identified 11 modes while EMA suggests that only 5 modes are present in the observed frequency range. 
However, it is not clear if this discrepancy is due to the specific characteristics of the locomotive's 
operational excitation or OBMA itself, since no estimation results from other OMA methods are provided. 
The authors mention that the FRF curves acquired form EMA were noisy, which could also contribute to 
the observed discrepancy. 

5.4 Discussion 

Different comparison types of OBMA as defined by Table 2 serve important but different purposes, which 
must be kept in mind when drawing conclusions from case studies reviewed in the previous section.  



The first category allows to directly compare the outputs of OBMA and OMA, since both methods are 
compared at the same operational run-up condition (including the excitation forces). However, due to 
incomplete or missing reports of estimated modal parameters, the reviewed papers don’t achieve this 
comparison in terms of absolute or relative values between the methods. Nevertheless, the studies 
demonstrate that regular OMA methods can suffer from end-of-order modes and that OBMA successfully 
eliminates this issue [7]–[9]. All reviewed case studies show factors that typically reduce random excitation 
in comparison to periodic input, which could contribute to the presence of end-of-order modes in these 
cases. 
The study of the second category presents a case where OBMA estimations from a run-up are compared to 
OMA results from stationary operating conditions [6]. A limitation of this study is that it compares different 
types of excitation/operating conditions and different modal estimation methods (OBMA and a general 
OMA method) at the same time. Therefore, the methods are compared at two substantially different 
operating conditions, so the conclusions drawn from observed differences in estimated modes cannot be 
directly attributed to the respective modal estimation method. A main observation of the study is that OMA 
was not able to identify several modes, which have been detected by OBMA and confirmed by EMA. This 
primarily shows that sweeping orders from an operational acceleration or deceleration run can be more 
suitable for modal estimation compared to a stationary operation. Due to the mentioned limitation, however, 
this general conclusion is not specific to OBMA.  
Studies of the third category [9], [18], [19], [32] provide a general validation of OBMA but don’t evaluate 
the modal estimation performance in comparison to other established OMA methods. 

6 Conclusions 

The previous sections of the present paper provided a theoretical foundation including the characteristics of 
the operational excitation by rotating machinery as well as OMA by pLSCF and order tracking by TVDFT, 
which are commonly used methods for OBMA and the vibration analysis of rotating hardware in general. 
A survey of current literature focusing on modal identification from operating rotating machinery with 
OBMA and general OMA was performed, highlighting the main findings and limitations of each practical 
case study. 
This section summarises the main findings form the literature review in the previous section. Identified gaps 
in the research literature are highlighted along with suggestions for future work to promote further 
development of OBMA and OMA of rotating machinery. 
The practical differences between OBMA and general OMA methods are summarised in Table 3, which 
lists the main benefits and limitations of these methods using a qualitative classification into four main types 
of operating conditions. The comparison illustrates that stationary operating conditions in combination with 
mainly periodic (and low random) excitation are especially challenging for modal extraction. It is also 
visible that in this case, an acceleration or deceleration run should be preferred if the operation allows to 
generate sweeping orders covering the frequency range of interest. 
It has been demonstrated that the choice of a tracked order can have a large influence on OBMA estimation 
results [18]. Existing literature suggests a method for an automated determination/selection of most 
significant orders (based on local amplitude maxima in the mean order domain spectrum) [7]. However, the 
described variance of the results indicates that OBMA could be further improved by an additional estimation 
of the most suitable order per mode or a combination of data acquired from multiple tracked orders by data 
fusion. 
Only one study [18] was identified, which directly compares the mode shapes of OBMA and general OMA. 
Therefore, it is worth to further evaluate the performance of OBMA with respect to mode shape estimation. 
All the reviewed studies focus on proprietary test cases. The lack of open benchmark data in the domain of 
vibration analysis applied to rotating machinery hampers comparisons across research groups in this field. 
A future set of open benchmark data could therefore promote further, more efficient development of OMA 
methods for rotating machinery. 



Table 3: Qualitative comparison of OBMA and general OMA at different operating conditions 
  Operating condition 

  Stationary Sweeping orders 
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 OMA OBMA 
[5], [16], [6] 

- Modes not excited 
- Modes masked by 

harmonics 
+ Harmonics can be 

partially reduced 

× Not 
applicable 

 

OMA OBMA 
[8], [7] 

+ Modes excited 
- Analysis band 

limited to sweep 
range 

- False end-of-order 
modes 

[6]–[9], [18], [32] 
+ Modes excited 
- Analysis band limited to sweep 

range 
- Extra analysis steps (order 

tracking, alternative results from 
different orders) 
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 OMA OBMA 

[18], [33]–[36] 
+ Modes excited 
+ Harmonics can be 

rejected/reduced 

× Not 
applicable 

 

OMA OBMA 

- Not limited by 
sweep range* 

- (Weak) false end-
of-order modes* 

- Extraction band limited to sweep 
range 

- Weak order response amplitudes* 
- Extra analysis steps (order 

tracking, alternative results from 
different orders) 

 

* Hypothesis (to be evaluated) 

No studies have been found, where OMA or OBMA are evaluated at mainly random excitation with a low 
periodic input of sweeping orders, which is reflected by Table 3. Thus, the specified characteristics of OMA 
and OBMA in this case is mostly based on assumptions. However, depending on the tested structure, such 
operating conditions can be encountered, so more research in this area is encouraged. 
Several studies show that the damping ratio of lightly damped modes can be severely overestimated by 
OBMA [6], [9], [18], [19]. Since this is likely a result of transient excitation, it can be assumed that a lower 
ramp-up speed as well as a greater excitation by random input compared to periodic input should alleviate 
this effect. However, from existing literature is not clear yet, which factors (such as the relative amount of 
periodic and random excitation or ramp-up rate) are relevant for this issue and to what degree. A deeper 
understanding would help for the planning of operational tests and the interpretation of test-results from 
acceleration/deceleration runs. This is especially relevant, since, as demonstrated before, such transient test 
conditions can lead to a more complete modal estimation [6]. 
A clear contribution of OBMA is the solution to the end-of-order issue [7]–[9]. Since potential end-of-order 
frequencies can be calculated from the tacho signal in advance, an alternative solution might be to reduce 
the resulting spurious spectral peaks from the vibration measurements by data processing [17] or to reject 
end-of-order modes after modal estimation. The utilisation of OBMA is limited by the requirement of an 
acceleration or deceleration run of the rotating component and a recorded tacho signal. Therefore, to achieve 
optimal modal estimation throughout different operating conditions of a structure, a combination of OBMA 
with one or multiple OMA methods might be desirable. 
A parametric study is a current work in progress of the authors of this paper and can be used to address 
several research gaps highlighted in this work. It will be based on the findings of the present paper and 
provide quantitative results, which can complement and concretise qualitative and theoretical observations. 
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