
12th International Workshop on Science Gateways (IWSG 2020), 10-12 June 2020

Industry Simulation Gateway on a Scalable Cloud

Jozsef Kovacs, Attila Farkas, Mark Emodi,

Robert Lovas, Peter Kacsuk

Parallel and Distributed Systems Laboratory,

SZTAKI,

Budapest, Hungary,

{Jozsef.Kovacs, Attila.Farkas, Mark.Emodi,

Robert.Lovas, Peter.Kacsuk}@sztaki.hu

Tamas Kiss

Centre for Parallel Computing,

University of Westminster,

London, UK,

T.Kiss@westminster.ac.uk

Gary Pattison, Shane Kite, James Petry,

George Snookes

Saker Solutions Ltd

Alcester, UK

{Gary.Pattison, Shane.Kite, James.Petry,

George.Snookes}@sakersolutions.com

Anastasia Anagnostou, Simon J. E. Taylor

Department of Computer Science

Brunel University London,

London, UK,

{Anastasia.Anagnostou, Simon.Taylor}@brunel.ac.uk

Abstract — Large scale simulation experimentation typically

requires significant computational resources due to an excessive

number of simulation runs and replications to be performed. The

traditional approach to provide such computational power, both

in academic research and industry/business applications, was to

use computing clusters or desktop grid resources. However, such

resources not only require upfront capital investment but also lack

the flexibility and scalability that is required to serve a variable

number of clients/users efficiently. This paper presents how

SakerGrid, a commercial desktop grid based simulation platform

and its associated science gateway have been extended towards a

scalable cloud computing solution. The integration of SakerGrid

with the MiCADO automated deployment and autoscaling

framework supports the execution of multiple simulation

experiments by dynamically allocating virtual machines in the

cloud in order to complete the experiment by a user-defined

deadline.

Keywords—simulation, cloud, orchestration, autoscaling,

science gateway

I. INTRODUCTION

Computer simulation can be effectively used to analyse
complex operational issues but in this paper we specifically
looked at how it is used to support different evacuation strategies
and train personnel in the context of emergency planning and
response. The technique uses a model, an electronic
representation of a real life system that can be used in a
simulation to run an experiment to study the effects of different
parameters and random number streams on the results. For
example, a computer model representing a facility, its personnel,
the nature of emergency, the medical facilities and the
emergency resources can be produced that captures the
interactions between people as they follow evacuation
procedures. A computer simulation of such a situation allows
different scenarios to be studied and evaluated under different
conditions. These simulations can be “immersive” as they allow
users to interact with the simulation via a sophisticated graphical
user interface that can give them a first person point of view.

One of the key issues facing simulation modellers and
analysts is the time it takes to run simulation models. As these
models are stochastic (time and choice within models are

typically represented by stochastic distributions that are sampled
using random number streams as the model is executed), each
experiment typically consists of multiple replications (the same
model with the same experimental parameters but with different
random number streams). Industrial models can take hours to
execute a single run. A scenario consisting of multiple
experiments (each with multiple replications) can take a
significant amount of time. This is compounded by runs needed
to test and validate a model. A typical simulation user will be
running multiple simulation projects, each generating its own
computational demands [1].

Saker Solutions Ltd [2] is an independent supplier of
simulation solutions from the United Kingdom that underpins its
simulation offers with the provision of innovative technologies
which support users to gain the most from simulation projects.
These offers encompass simulation related applications,
operational and strategic planning applications and visualisation.
An example of this is the SakerGrid Platform [3] which
significantly reduces the timeframe for users to undertake model
experimentation. SakerGrid is implemented as a desktop grid
and its client application is a science gateway for users running
simulation experiments. However, the capacity of SakerGrid is
restricted by the number of available desktop grid workers at any
time. As the number and complexity of the simulations are
continuously growing, the need for on-demand computational
resources became more and more natural and inevitable.
Moreover, in many scenarios (such as evacuation simulations)
executing a complex experiment by a given deadline is of
paramount importance.

The huge computational requirements that simulations
require and the desire to complete the experiments by given
deadlines can be served by on-demand cloud resources. Utilising
flexible, on-demand access to cloud computing resources and
services can result in significant cost and time savings.
Moreover, large, upfront capital investments can be replaced by
day-to-day operational costs over a longer period of time. There
are, however, definite barriers to entry for the scientific research
community and smaller companies that lack the cloud-specific
skills and knowledge necessary for shifting to the cloud.
Additionally, organizations may struggle with achieving

12th International Workshop on Science Gateways (IWSG 2020), 10-12 June 2020

maximum savings due to a lack of flexibility and scalability at
the level of the application.

The European funded COLA [4] (Cloud Orchestration at the
Level of Application) project set out to address these issues, and
designed and developed a generic framework to support the
automated deployment and scalable execution of a wide range
of applications on heterogeneous cloud resources. The proposed
framework is called MiCADO [5] (Microservices-based Cloud
Application-level Dynamic Orchestrator), a platform for the
deployment and dynamic automated scaling of applications in
the cloud. MiCADO is entirely open source and implements a
microservices architecture in a modular way. The modular
design supports varied implementations where components can
easily be replaced with a different realization of the same
functionality. At the time of writing, the current implementation
of MiCADO uses widely applied open source technologies such
as Kubernetes [6] (container orchestrator), Occopus [7] (cloud
orchestrator) and Prometheus [8] (monitoring), and some
additional custom implemented components.

The work described in this paper aimed to provide the Saker
Simulation Manager, the central component of SakerGrid, with
on-demand cloud resources for running simulations with the
help of the MiCADO framework. The aim of this extension is to
dynamically expand SakerGrid with cloud resources on demand
in order to complete a complex simulation experimentation by a
given deadline. The rest of the paper is organised as follows.
First, related works are detailed in section II. Then an
introduction is given on the SakerGrid Platform and the
MiCADO framework in sections III and IV. In section V a more
detailed description will introduce how the two systems have
been integrated. Experiences and results are presented in section
VI and conclusions are given in section VII.

II. RELATED WORK

The use of deadline constraints to minimize resource use in
simulation has been described by several authors. Thai et al. [9]
identified that the use of deadlines in this context is the most
frequent requirement of Bag of Things applications, including
simulation parameter sweep applications, essentially the type of
experimentation performed by Saker.

Cai et al. [10] performed experiments with deadline-based
workflow applications on cloud resources and demonstrated that
when task execution time is stochastic, the cost of leased
resources is increased and often the deadline constraint is
violated. To address this they developed a simulator for
evaluating deadline-based workflow applications with a
stochastic task execution time that was used to evaluate
infrastructure performance.

Mao et al. [11] propose an auto-scaling mechanism to
schedule VM instances by considering the budget and the job
deadline. In this approach, preliminary knowledge required to
do the calculations of required VMs. They investigated different
types of VM to achieve lower cost without extending the
deadline. They implemented their mechanism in Azure.

Vecchiola et al. [12] discussed deadline-based cloud auto-
scaling at the level of hardware virtualization. They developed
an algorithm and implemented in Aneka platforms, respectively.

Candeia et al. [13] proposed a formalized model that
schedules an application considering the deadline and costs into
account. They simulated different scenarios by determining the
number of public VM used. The scheduler selects the best
acceptable result for the execution.

Bicer et al. [14] propose a mathematical model for predicting
the execution time and the total cost of the hybrid cloud. They
calculated with the communication overhead of the clusters,
which is a crucial part of a hybrid platform. The model calculates
the required number of public VM instances to satisfy the
deadline or cost requirements.

Menache et al. [15] propose a framework which can
determine on-demand resources when there is no spot instance
available. It can adaptively allocate resources, helping to
maintain a user-defined policy. This idea can ensure that the
performance will always be available, and jobs can be finished
before the deadline.

When compared to these previous efforts, the work
presented in this paper introduces a production quality, generic,
cloud platform and middleware independent deadline-based
autoscaling solution that can be efficiently applied in both
private and public cloud settings. The use of the MiCADO
framework enables application developers to concentrate on the
specificities of their application and the required scaling
policies, freeing them from the low-level details of cloud
deployment and autoscaling solutions.

III. SAKERGRID PLATFORM

The SakerGrid Platform [3] consists of three main
components: the Saker Simulation Manager, the SakerGrid
Client application and the SakerGrid Manager Service. The
main functionalities of the Saker Simulation Manager are to
provide input parameters for a simulation run and to get the
results back for visualisation. An example of the Simulation
Manager’s visualisation component is depicted in Figure 1,
including graphical output of the simulation results and the
visualisation of the simulation (for this particular project the
FlexSim [16] commercial simulation package was used for
model development). The SakerGrid Client application is a web
service that can be accessed by a web client using its API and
provides a science gateway with a user-friendly interface for
performing multiple simulation runs on SakerGrid. Finally,
SakerGrid Manager Service is responsible for allocating jobs to
worker nodes.

Figure 1 Visualisation in Saker Simulation Manager

The top-level architecture of SakerGrid is presented in
Figure 2. The Saker Simulation Manager and the SakerGrid
Client and Manager Services share a database server. This
database server is an SQL server that hosts four databases. The
Simulation Manager Database stores information about all
simulation projects’ experimentation. The Project Database
contains data relevant to a specific simulation project
experimentation. The Blob Store acts as a file repository for

12th International Workshop on Science Gateways (IWSG 2020), 10-12 June 2020

models and collateral (e.g. DLL files). Finally, the Grid
Manager Database stores configuration information for the

desktop grid.
The Database Server and the SakerGrid Client and manager

services reside on the same node, denoted here as Server Node.
The simulation software is pre-installed on every worker node,
denoted here as WNn, and the software license is managed by a
license server. For this project, the worker nodes have the
FlexSim software pre-installed and these run the jobs that are
submitted to them by the SakerGrid Manager Service running
on the server Node. The FlexSim License Manager has a 100
seat network licence installed and FlexSim also requires
Windows and its relevant license to run.

Figure 3 SakerGrid Client – jobs info view

The SakerGrid Client application provides a science gateway

for users running simulations on the SakerGrid. Users can
specify various parameters when uploading a job via a graphical
user interface, such as the name of the job, the number of
replications which the job will run (all of which will run an
experiment using the same parameters and different random
number stream each time), a priority value used to determine
which jobs are given to the worker nodes first, a timeout value
that represents the maximum time in minutes that a single
replication of the job is allowed before the SakerGrid stops
running it and returns an error, the simulation application to be
executed on SakerGrid (e.g. FlexSim [16]), the input data

sources (e.g. an Excel spreadsheet), and the models, scenarios
and data associated with a given set of experiments.

 These initial input parameters of the SakerGrid have been
extended, as result of the work described in Section V of this
paper, according to the requirements of the scalable cloud
solution, such as the deadline by that the job needs to be
completed, the maximum number of processor cores that a
worker can use whilst running the job, and the estimated runtime
for a single replication. Once a job is submitted, the jobs info
view allows users to monitor the progress of the job (Figure 3).
An overview of the running worker nodes are shown on the top
while details of the job’s individual replications can be viewed
by selecting the targeted job (bottom right).

IV. MICADO FRAMEWORK

When extending SakerGrid towards scalable cloud resources
with deadline-based execution policy, the MiCADO framework
was applied. MiCADO is an application-level multi-cloud
orchestration and auto-scaling framework. The concept of
MiCADO is described in detail in [5]. In this section a high-level
overview of the framework is provided only to explain its
architecture, building blocks and implementation.

The high-level architecture of MiCADO is presented in
Figure 4. MiCADO consists of two main logical components:
Master Node and Worker Node.

Master Node is the head of the cluster performing the
collection of information on microservices, the calculation of
optimized resource usage, the decision making, and the
realization of decisions related to handling resources and
scheduling microservices. Worker Nodes are volatile
components representing execution environments for the
microservices. These nodes are continuously allocated/released
based on the dynamically changing requirements of the running
microservices. Once a new Worker Node is allocated and
attached to the cluster, the Master Node utilises its resources by
allocating microservices on it. The input to MiCADO is a
TOSCA-based [17] Application Description Template (ADT)
[18] detailing the applications topology and the required scaling
and security policies.

The MiCADO Master Node includes six components.
MiCADO Submitter is the primary service endpoint for creating
an infrastructure to run an application, and managing this
infrastructure and the application itself. The incoming ADT is
interpreted by the MiCADO Submitter and related parts are

Figure 2 SakerGrid Platform top level architecture

12th International Workshop on Science Gateways (IWSG 2020), 10-12 June 2020

forwarded to other key components. Creating new MiCADO
Worker Nodes and deploying application containers on these
Worker Nodes are the responsibility of the Cloud Orchestrator
and Container Orchestrator components, respectively. The
Cloud Orchestrator is responsible for communication with the
Cloud API to allocate and release resources, and create and shut
down MiCADO Worker Nodes when necessary. The Container
Orchestrator allocates new microservices (realized by
containers) on the Worker Nodes, keeps track of their execution
and destroys them if necessary. The Monitoring System collects
metrics on worker node resources and on resource usage of the
container services, and makes this information available for the
Policy Keeper component. It also provides alerting functionality
in relation to the measured attributes to detect values that require
reaction and sends these alerts to the Policy Keeper. Based on
the metrics and alerts provided by the Monitoring System, the
Policy Keeper applies the implemented scaling policies to make
scaling decisions and call the components (Cloud and Container
Orchestrators) responsible for allocating/releasing cloud
resources and scheduling container services among the Worker
Nodes. Moreover, this component makes sure that the Cloud and
the Container Orchestrators are instructed in a synchronized way
during the operation of the entire system. Lastly, the Execution
Optimizer is a background microservice performing long-
running calculations on demand for finding optimized setup of
both cloud resources and container infrastructures.

Figure 4 High-level architecture of MiCADO

MiCADO Worker Nodes contain the Node/container
monitor that is responsible for measuring the load of the
resources and the resource usage of the container services. The
measured attributes are then provided to the Monitoring System
running on the Master Node. The Container Executor starts,
executes and destroys containers upon request from the
Container Orchestrator. Container components are realising the
user services defined in the (container) infrastructure description
submitted through the MiCADO Submitter on the Master Node.

The current implementation of MiCADO utilises Occopus
[7], an open source multi-cloud orchestration solution as Cloud
Orchestrator that is capable of launching virtual machines
(VMs) on various private (e.g. OpenStack or OpenNebula-
based) or public (e.g. Amazon Web Services or CloudSigma
[19]) cloud infrastructures, and also via the CloudBroker
Platform [20]. For Container Orchestration, MiCADO uses
Kubernetes [6]. The monitoring component is based on
Prometheus [8], a lightweight, low resource consuming, but
powerful monitoring tool. The MiCADO Submitter [21], Policy
Keeper [22] and Optimiser components were custom
implemented during the COLA Project.

V. INTEGRATION

In order to extend the execution of SakerGrid jobs to cloud
computing resources, the existing SakerGrid architecture has
been integrated with MiCADO. This integration enables
Simulation Manager to execute simulation experiments on-
demand using cloud-based virtual machines that are
dynamically created and destroyed based on the specified
scaling policy. When designing and implementing this
integration, two major requirements were taken into
consideration. First, Simulation Manager needed to be capable
of executing multiple independent simulation experiments in the
cloud and scaling and managing them independently from each
other. Such a solution allows Saker Solutions to serve multiple
clients and their requirements simultaneously. Second, the
execution strategy requires a deadline-based scaling policy
where a certain simulation experiment, including numerous
replications, needs to be completed by a user-defined deadline
while utilising only the required number of resources (virtual
machines).

The integrated SakerGrid-MiCADO architecture that
satisfies these initial requirements is illustrated in Figure 5.
Beyond the deployment of SakerGrid Manager and Worker
nodes, enhancements in both SakerGrid and MiCADO were
required in order to support multiple experiments through
contextualisation of the Worker nodes and the delivery of
several dynamically changing parameters to MiCADO for the
implementation of the desired deadline-based scaling policy.

Identification of the experiment through contextualisation
was required in order to associate a Worker Service to a given
simulation experimentation. When worker nodes are
instantiated, MiCADO must make sure that the new Worker
Service does not process replications belonging to another
experiment. During the integration work, the Worker node was
updated to take the experiment ID through contextualisation and
the Worker Service instructs the Manager Service to send jobs
belonging only to the given experiment.

An important update in the Manager Service was performed
regarding exposing the necessary information for MiCADO to
perform the desired deadline-based scaling of jobs. The Manager
Service has been extended to make some parts of its internal
database visible (see DB in Figure 5). An SQL table has been
created and maintained by the Manager Service to provide
information to MiCADO a) on the number of running and
waiting replications, b) on the average execution time of a
replication, c) on the deadline of the experiment, and d) on the
current number of idle and busy workers. These parameters are
necessary for MiCADO to implement deadline-based scaling
and they are continuously monitored by an SQL exporter [23]
(see SQL exporter in Figure 5) which is then scraped (collected)
by Prometheus.

In the current implementation of MiCADO, the Master
component supports the deployment, execution and scaling of
only one application at a time. To support parallel execution of
multiple experiments on the SakerGrid platform, a dedicated
MiCADO instance is needed to be deployed for the lifetime of
every experiment. For this purpose, a launcher component (see
MiCADO launcher in Figure 5) has been designed and
implemented, which instantiates a new MiCADO master
whenever the SakerGrid Manager Service requires. When a user
creates a new experiment through the SakerGrid Client Service,
the SakerGrid Manager invokes a REST call of the MiCADO
Launcher component interface and passes the experiment ID to

cAdvisor

Cloud
Orchestrator

Monitoring
system

Translates
ADT

Enforces
scaling

Container
Orchestrator

Occopus Prometheus

Submitter Policy Keeper

TOSCA
Application
Description
Template

(ADT)

Container/Node
monitoring

MiCADO MASTER NODE MiCADO
WORKER NODE

Node Exporter

Docker

ML based
optimisation

Optimiser

SwarmOccopus Kubernetes

Container Executor

12th International Workshop on Science Gateways (IWSG 2020), 10-12 June 2020

be delivered to the Worker nodes through contextualisation. The
Launcher a) instantiates the MiCADO master, b) generates the
TOSCA-based ADT according to a template by inserting the

experiment ID and c) submits the ADT to the newly created
MiCADO master instance. The ADT contains blocks to describe
the components to be deployed and the related scaling policy.
The policy has sections to describe parameters with assigned
Prometheus queries and the scaling algorithm in Python that may
refer to these parameters. The ADT is finalised by the Launcher
component by adding experiment ID to the contextualisation of
the Worker nodes as well as inserting experiment ID into the
Prometheus queries to make the parameters contain the
experiment-related information.

Although MiCADO supports various private and public
cloud resources, the current implementation of the integrated
solution specifically utilises the CloudSigma commercial cloud.
By default, CloudSigma provides a public IP address for every
created virtual machine. However, in our case the Worker VMs
do not need public IP addresses and must be hidden from the
outside world for safety reasons. Therefore, a private VLAN has
been created for the Worker nodes together with a gateway and
a DHCP server (see DHCP server in Figure 5) as well. In this
private VLAN the is no to apply firewall. For the sake of
efficient resource usage, the SQL exporter, the DHCP server and
the Launcher components are all deployed on one single VM
called MiCADO launcher.

Once the MiCADO master is alive and the launcher has
generated and submitted the ADT, the deployment is performed
automatically and the scaling activity is started by the MiCADO
master. Based on the ADT, the Submitter generates the
necessary descriptors for Policy Keeper and Occopus (see
MiCADO master in Figure 5). Occopus descriptor contains the
experiment ID in the contextualisation of the Worker VMs in
order to specify the associated experiment. Policy Keeper
descriptor includes the scaling policy and the specific
Prometheus queries for the current experiment. With these
descriptors, the Submitter initiates the Worker VM creation
through Occopus with the initial number of VMs. Next, each
newly created Worker VM starts the Worker Service which joins
to the Manager Service and executes the simulation application,

in our case FlexSim, to process simulation replications
belonging to the experiment. Finally, Prometheus starts
monitoring by collecting periodically the necessary parameters

and delivering them to the Policy Keeper that makes the
necessary decisions on the number of required Worker nodes.

The scaling algorithm is a short Python code developed for
this particular environment. In MiCADO the Policy Keeper
component is executing the scaling algorithm periodically which
returns the number of Worker VMs to be kept for the
experiment. The algorithm takes the following metrics as input:
1) remaining time until deadline (RemTime), 2) estimated
running time of one replication (ERD), 3) number of replications
(jobs) which has not yet started (WaitingReps), 4) number of
replications being processed (RunningReps) and 5) number of
idle workers (IdleWorkers). These variables are periodically
queried from Prometheus and used by the scaling algorithm
during execution.

The deadline-based scaling policy consists of two stages. In
Stage 1 when there are waiting replications, the number of
Worker VMs are periodically calculated based on the
max(WaitingReps*ERD/RemTime) formula. At this stage, only
upscale is enabled, but limited to the sum of running and waiting
replications and to the maximum worker nodes defined by the
user. With this limitation we can avoid to create too many
Worker VMs causing the jobs finish much before the deadline
or causing unutilised/empty VMs. When there are no more
waiting replications but we are still having running replications,
we step into Stage 2 and start downscaling the idle worker nodes.
The algorithm queries the list of idle nodes and passes their IDs
to Occopus for dropping. This is repeated until all idle worker
nodes are dropped and the number of running replications reach
zero. Please, note that the deadline-based policy algorithm is
also an input for the system, so it can be further tuned at any time
in case the policy developer decides so.

When the execution of the experiment finished (i.e. all
replications successfully completed), the SakerGrid manager
may instruct the MiCADO launcher to shut down the MiCADO
master belonging to the given experiment to release all resources
associated with the experiment. Otherwise it is possible to
generate new replications in this experiment, override the

MiCADO
launcher

SQL
exporter

DHCP
server

MiCADO launcher

DB
Manager
Service

Client Service

SakerGrid manager

MiCADO master

Submitter

Policy
Keeper

Occopus

Scaling
Up /

Down

Virtual LAN

CloudSigma

Experiment #1

Prometheus

info on
Workers,

Replicas and
Experiments

Send SAKER ADT

Deploy
MiCADO

Query
scaling
metrics

Request
to launch
MiCADO

Worker
Service

FlexSim

Worker VMs
Execute replicas,
Handle results

Query scaling
metrics

Request to deploy
Workers for given expID

Scaling
algorithm

Set
Worker

VM
number

Scrape metrics:

RemTime,
ERD,

WaitingReps,
RunningReps,
IdleWorkers

Figure 5 Integrated SakerGrid-MiCADO architecture

12th International Workshop on Science Gateways (IWSG 2020), 10-12 June 2020

deadline and start new Worker nodes to process replications
again.

VI. EXPERIENCES

Multiple simulation experiments were conducted in order to
test the autoscaling behaviour of the SakerGrid-MiCADO
integration. All tests used cloud resources provided by
CloudSigma. The model used for the initial experimentation is
an evacuation simulation developed in FlexSim where a single
replication of the model is executed in 25 minutes (ERD = 25).

Figure 6 shows two simulation experiments executed one
after the other. The upper part of the figure illustrates the number
of VMs actively running, while the lower part is the number of
replications still to be executed.

In case of the first experiment the user estimated the
expected run-time of a replication correctly. As it can be seen
from the chart MiCADO scales up the number of VMs based on
this estimate and this number stays stabile until the end of the
experiment. Once all replications are assigned to workers,
MiCADO starts scaling down the VMs as the last replications

on the VMs finish.
The second experiment shows an example for a situation

where MiCADO needed to perform adjustments regarding the
number of VMs during execution in order to complete the
experiment by the set deadline. It is visible from the chart that
MiCADO increases the number of VMs several times during
execution in order to assure completion before the deadline. This
experiment illustrates how MiCADO can adjust in case of
incorrect initial user estimation or when this estimation is almost
impossible due to varying length of replications.

VII. CONCLUSION

As simulation experimentation requires large computational
power and the execution of experiments is typically deadline-
based, cloud computing offers a viable option to provide
scalable resources on demand for such tasks. This paper
described how a desktop grid based commercial simulation
gateway was integrated with a cloud-based automated

deployment and autoscaling framework. The resulting solution
enables the deadline-based execution of multiple simultaneous
simulation experiments from a high-level user interface on
dynamically provisioned cloud resources.

It must also be noted that, at the time of writing, the UK is in
lockdown in response to the COVID-19 pandemic and many
simulation modellers and analysts are working from home. The
transition of SakerGrid to cloud provides a capability to run
simulations remotely, an additional business benefit from
moving to cloud that was not foreseen at the outset of the project.

Work is currently ongoing to port the solution to Microsoft
Azure (a cloud resource most preferred by Saker clients) and to
roll it out and offer it in production for perspective clients.

ACKNOWLEDGMENT

This work was funded by the COLA Cloud Orchestration at
the level of Applications (Project No. 731574) and ASCLEPIOS
Advanced Secure Cloud Encrypted Platform for Internationally
Orchestrated Solutions in Healthcare (Project No. 826093).

REFERENCES

[1] Taylor, S.J.E. (2019) Distributed simulation: state-of-the-art and potential
for operational research, European Journal of Operational Research,
273(1):1-19.

[2] “Saker Slolutions Ltd” [Online]. Available:
https://www.sakersolutions.com/. [Accessed: 1-Mar-2019].

[3] S. Kite, C. Wood, S. J. E. Taylor and N. Mustafee, "Sakergrid: Simulation
experimentation using grid enabled simulation software," Proceedings of
the 2011 Winter Simulation Conference (WSC), Phoenix, AZ, 2011, pp.
2278-2288. doi: 10.1109/WSC.2011.6147939

[4] “COLA – Cloud Orchestration at the Level of Application.” [Online].
Available: https://project-cola.eu/. [Accessed: 1-Mar-2019].

[5] T. Kiss, et al., “MiCADO - Microservices-based Cloud Application-level
Dynamic Orchestrator”, Future Generation Computer Systems, Vol 95,
pp 937 – 946, May 2019. DOI:
https://doi.org/10.1016/j.future.2017.09.050.

[6] Kubernetes, “Production-Grade Container Orchestration.” [Online].
Available: https://kubernetes.io/. [Accessed: 1-Mar-2019].

[7] J. Kovacs, P. Kacsuk, “Occopus: a Multi-Cloud Orchestrator to Deploy
and Manage Complex Scientific Infrastructures”, Journal of Grid
Computing, vol 16, issue 1, pp 19-37, 2018.

[8] “Prometheus,” [Online]. Available: https://prometheus.io/. [Accessed: 1-
Mar-2019].

Figure 6 Evacuation simulation experiments with FlexSim using the integrated SakeGrid – MiCADO

12th International Workshop on Science Gateways (IWSG 2020), 10-12 June 2020

[9] Thai, L., B. Varghese, and A. Barker. 2018. “A Survey and Taxonomy of
Resource Optimisation for Executing Bag-of-Task Applications on Public
Clouds”. Future Generation Computer Systems 82(May 2018):1-11.

[10] Cai, Z., Q. Li, and X. Li. 2017. “A Toolkit for Simulating Workflows with
Cloud Resource Runtime Auto-Scaling and Stochastic Task Execution
Times”. Journal of Grid Computing 15(2):257-272.

[11] Mao, M., J. Li, and M. Humphrey. 2010. “Cloud Auto-Scaling with
Deadline and Budget Constraints”. In Proceedings of the 11th IEEE/ACM
International Conference on Grid Computing, Brussels, 2010, pp. 41-48.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc. doi: 10.1109/GRID.2010.5697966

[12] Vecchiola, C., R. N. Calheiros, D. Karunamoorthy, and R. Buyya. 2012.
“Deadline-driven Provisioning of Resources for Scientific Applications in
Hybrid Clouds with Aneka”. Future Generation Computer Systems
28(1):58-65.

[13] D. Candeia, R. Araujo, R. Lopes and F. Brasileiro, "Investigating
Business-Driven Cloudburst Schedulers for E-Science Bag-of-Tasks
Applications," 2010 IEEE Second International Conference on Cloud
Computing Technology and Science, Indianapolis, IN, 2010, pp. 343-350,
doi: 10.1109/CloudCom.2010.67.

[14] T. Bicer, D. Chiu and G. Agrawal, "Time and Cost Sensitive Data-
Intensive Computing on Hybrid Clouds," 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid
2012), Ottawa, ON, 2012, pp. 636-643, doi: 10.1109/CCGrid.2012.95.

[15] Menache, I., Shamir, O., & Jain, N. (2014). On-demand, spot, or both:
Dynamic resource allocation for executing batch jobs in the cloud. In 11th

International Conference on Autonomic Computing ({ICAC} 14) (pp.
177-187).

[16] “FlexSim Simulation Software” [Online]. Available:
https://www.flexsim.com/. [Accessed: 1-Mar-2019].

[17] Oasis, “TOSCA Simple Profile in YAML Version 1.2.” [Online].
Available: http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html. [Accessed: 5-
Mar-2019].

[18] J. Deslauriers, T. Kiss, G. Pierantoni, G. Gesmier, G. Terstyanszky:
Enabling Modular Design of an Application-Level Auto-Scaling and
Orchestration Framework using TOSCA-based Application Description
Templates, 11th International Workshop on Science Gateways, IWSG
2019. Ljubljana, Slovenia 12 - 14 Jun 2019.

[19] Cloudsigma Holding AG. “Cloud servers & Hosting”. [Online].
Available: https://www.cloudsigma.com/. [Accessed: 5-Mar-2019].

[20] CloudBroker GmbH., “Compute-intensive applications in the cloud.”
[Online]. Available: http://cloudbroker.com/. [Accessed: 5-Mar-2019].

[21] G. Pierantoni, T. Kiss, G. Gesmier, et al: Flexible Deployment of Social
Media Analysis Tools, Flexible, Policy-Oriented and Multi-Cloud
deployment of Social Media Analysis Tools in the COLA Project, IWSG
2018, 10th International Workshop on Science Gateways, 13-15 June
2018, Edinburgh, UK.

[22] J. Kovacs, “Supporting Programmable Autoscaling Rules for Containers
and Virtual Machines on Clouds”, Journal of Grid Computing (2019) 17:
813. https://doi.org/10.1007/s10723-019-09488-w

[23] Prometheus SQL exporter, https://github.com/free/sql_exporter
[Accessed: 5-Mar-2020]

