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We consider the efficiency of multiplexing spatially encoded information across random configu-
rations of a metasurface-programmable chaotic cavity in the microwave domain. The distribution of
the effective rank of the channel matrix is studied to quantify the channel diversity and to assess a
specific systems performance. System-specific features such as unstirred field components give rise
to nontrivial inter-channel correlations and need to be properly accounted for in modelling based on
random matrix theory. To address this challenge, we propose a two-step hybrid approach. Based
on an ensemble of experimentally measured scattering matrices for different random metasurface
configurations, we first learn a system-specific pair of coupling matrix and unstirred contribution to
the Hamiltonian, and then add an appropriately weighted stirred contribution. We verify that our
method is capable of reproducing the experimentally found distribution of the effective rank with
good accuracy. The approach can also be applied to other wave phenomena in complex media.

The phenomenon of wave multiplexing underpins a
wide range of applications in wave engineering [1]. Some-
times, multiplexing devices are carefully engineered [2–4];
often, however, multiplexing is a result of the complete
scrambling of wave fronts propagating through a complex
medium (e.g., multiply scattering layer, chaotic cavity,
multi-mode fiber). The most common example in the mi-
crowave domain is spatial multiplexing in multi-channel
wireless communication due to an irregular propagation
environment [5, 6]. More recently, in order to circum-
vent the need for costly coherent receiver networks, the
idea of multiplexing spatial information across different
frequencies [7–10] or configurations [11–15] of a complex
medium gained traction in electromagnetic imaging and
sensing.

Common to all multiplexing schemes is the descrip-
tion with the matrix formalism Y = HX, linking the
input vector X to the output vector Y via the chan-
nel matrix H. The amount of correlations between dif-
ferent channels determines the quality of the multiplex-
ing: the higher the correlations are, the more redun-
dant information is acquired. Incidentally, this insight
recently motivated efforts to tweak the disorder of com-
plex media in order to reduce channel correlations via
“disorder-engineering”, both in space-to-space [16] and
space-to-configuration [15] multiplexing. A convenient
metric to quantify channel correlations is the effective
rank, defined as Reff(H) = exp (−∑n

i=1 σ̃iln(σ̃i)), where
σ̃i = σi/

∑n
i=1 σi, σi are the singular values of H and n is

the smaller one of the two dimensions ofH [17]. Note that
only perfectly orthogonal channels yield Reff(H) = n.

The intuition used by the wave engineering commu-
nity to interpret multiplexing phenomena and to con-
ceive applications building upon them is largely based
on the assumption that H resembles a random matrix
with i.i.d. Gaussian entries. Consider for concreteness
space-to-configuration multiplexing with a reconfigurable
chaotic cavity, as depicted in Fig. 1 and discussed in
Refs. [11–15]. Ideally, such a system with considerable

losses is indeed characterized by a perfectly stirred field
distribution following the Rayleigh model [18, 19]. In
practice, however, a substantial unstirred field compo-
nent persists, resulting in additional channel correlations
and a lower-than-expected Reff [15]. As a result, the
wide-spread notion of degrees of freedom as correspond-
ing to the dimensions of H, rather than being related
to its singular value spectrum [15, 20, 21], needs to be
revisited [22, 23].

The unstirred field component also presents a signif-
icant challenge from a modelling point of view. Over
the past decades, random matrix theory (RMT) has
seen a large success in predicting universal features of
a wide range of wave-chaotic systems [24–27]. In other
words, non-universal features are usually removed before
comparing experimental data to RMT predictions [28–
30]. The crux of the space-to-configuration multiplexing
system we consider lies, however, precisely in the non-
universal features which cause additional correlations be-
tween channels. Our goal here is to model the statistical
properties of our specific system’s scattering matrix and
to thereby reproduce the experimentally observed distri-
bution of Reff .

System-specific features arise from reflections at the
ports due to impedance mismatches [31–33], from rays
connecting two ports without ergodically exploring the
cavity [34, 35] and from ergodic rays that are not affected
by the stirring mechanism. Refs. [36–38] report efforts to
capture system-specific properties via semiclassical calcu-
lations of the average impedance matrix in terms of ray
trajectories between ports. Such an analysis is not feasi-
ble for a geometrically complex three-dimensional cavity
like the one we consider, see Fig. 1. An approach recently
proposed in Refs. [39, 40] addresses yet another system-
specific mechanism: the presence of an established direct
transmission mediated by a resonant mode coupled to
the (isolated) complex environment. This approach is
not applicable in our case, where scattering has a multi-
mode nature with both modes and channels being cou-
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pled mainly to the same chaotic environment.
To overcome the above limitations, we propose a two-

step approach to incorporate non-universal features in an
RMT framework relying on an effective non-Hermitian
Hamiltonian to describe the open wave system. First, we
learn a system-specific coupling matrix. Second, we de-
termine an appropriate weighting between the unstirred
(deterministic) and stirred (chaotic) components of the
Hamiltonian by employing a variant of parametric mo-
tion modelling [41]. Rather than relying on knowing
exact geometrical details of our system, we extract the
scattering distributions of our system from experimental
measurements of the scattering matrix for an ensemble
of configurations. We find a good agreement between
the distributions of Reff observed in our experiments and
RMT simulations.

Our experiment, depicted in Fig. 1, consists of an ir-
regularly shaped electrically large metallic cavity whose
walls are partially covered with a reconfigurable reflect-
array metasurface [15]. At the working frequency of
5.6 GHz, each of its 304 elements can be configured indi-
vidually via the bias voltage of a PIN diode to mimic
Dirichlet or Neumann boundary conditions [42]. By
choosing different random configurations, the field in-
side the chaotic cavity can therefore be stirred in an all-
electronic manner [11, 13–15, 43]. We modulate in situ
eight electromagnetic signals in amplitude and phase and
inject them into the cavity via eight randomly located
antennas. These eight pieces of information are multi-
plexed across P configurations of the system by probing
the field inside the cavity with a single antenna for P
random metasurface configurations. In total, M = 9
antennas are thus connected to the cavity. For concrete-
ness, we consider P = 8 in this work. As illustrated in
Fig. 1, each row of the resulting 8× 8 channel matrix H
is part of a different system’s 9× 9 scattering matrix S.
In our experiment, considering the ninth port as receiver,
based on 500 realizations we find the ensemble-averaged
〈Reff〉 = 4.11 ± 0.20 which is well below the value of
6.48 ± 0.23 expected for an 8 × 8 matrix whose random
complex entries are i.i.d. Gaussian distributed [15].

Following the RMT scattering approach [24, 44–46],
we model our system as consisting of N levels (modes)
which are coupled to the environment via M scattering
channels. The coupling is described by an N ×M real
matrix V . The (energy-dependent) M × M scattering
matrix SRMT (E) is represented in terms of the N × N
Hamiltonian H of the closed system and the coupling
matrix V as

SRMT (E) = IM − iV T 1(
E + iΓa

2

)
IN −

(
H − i

2V V
T
)V,

(1)
where IN denotes the N ×N identity matrix and Γa rep-
resents the dominant global absorption contribution to
the resonance width. Conventionally, for an open chaotic
system with time-reversal symmetry, H is a real symmet-
ric random matrix drawn from the Gaussian Orthogonal

FIG. 1. (a) Experimental setup: Eight modulated signals
are injected into a metasurface-reconfigurable chaotic cavity,
the resulting field is probed with a ninth antenna. (b) The
P × (M − 1) channel matrix H is constructed for space-to-
configuration multiplexing from entries of the M ×M scat-
tering matrix S for P different configurations of the system.

Ensemble (GOE) and the entries of V are mutually inde-
pendent zero-mean real Gaussian random variables. This
ensures that SRMT is a symmetric matrix. We evaluate
SRMT at E = 0 and follow the normalization conventions
used in Ref. [47].

To account for system-specific non-universal features,
we alter two details in the above-described conventional
RMT approach. First, we compose the Hamiltonian of
an unstirred component H0 and a stirred component Hs,
weighted by a parameter λ:

H = cos(λ)H0 + sin(λ)Hs. (2)

Both H0 and Hs are drawn from the GOE, but H0 is
kept fixed for different system realizations. The cosine
and sine terms ensure that the Hamiltonian’s eigenvalue
probability density function (PDF) is not altered through
our modification (see Sec. 11.10 in Ref. [41]). Second,
while H0 is chosen randomly, we optimize V and λ such
that the statistical properties of the resulting ensemble
of SRMT match as closely as possible those of the ex-
perimental ensemble of SEXP . We assume that the non-
diagonal nature of the ensemble-averaged scattering ma-
trix 〈S〉, i.e. the unstirred field components, are related
to correlations between V and H0 in light of Eq. (1); in
principle, one could thus also keep V fixed and optimize
H0 [48].

Our two-step optimization is based on the intuition
that V and λ determine center and diameter, respec-
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tively, of the clouds of Si,j in the complex Argand di-
agram. We hypothesize that using H = H0 or H =
cos(λ)H0 + sin(λ)Hs in Eq. (1) will approximately yield
the same 〈SRMT 〉 – an intuitive assumption that we ob-
serve to be heuristically verified in Fig. 2(a). Therefore,
using H = H0 (and hence independent of λ), we can
first optimize V to ensure that SRMT

0 = 〈SEXP 〉, where
SRMT

0 is the scattering matrix obtained via Eq. (1) with
H = H0. Once V is fixed, we identify a suitable value
of λ to ensure that the standard deviations (SDs) of the
Si,j , a measure of the cloud sizes in the Argand diagram,
match the experimentally observed ones.

We choose N = 250 which is sufficiently large to en-
sure the local character of fluctuations but at the same
time not too large in terms of the computational cost
of optimizing V . Assuming that global absorption ef-
fects dominate, we extract Γa = 7.4 (in units of the
mean level spacing) from the average decay rate of inverse
Fourier transforms of experimentally measured transmis-
sion spectra. The optimization of V is based on sequen-
tial least squares programming as originally introduced
in Ref. [49] and achieves equality of SRMT

0 and 〈SEXP 〉
within large precision, as evidenced in Fig. 2(a). The
conventional RMT approach would assume that 〈S〉 is

diagonal and norm(Vi) ≈
√

2κiN/π, where 1−|〈Sii〉|2 =

4κi/ (1 + κi)
2
. For our optimized coupling matrix, this

is no longer the case in order to account for the above-
mentioned correlations between V and H0. Moreover,
we observe that for different optimization runs (for the
same objective ensemble of SEXP but using a different
H0), completely different norm(Vi) are obtained. This is
a typical observation in inverse problems, where usually
a large number of different configurations (local optima)
yields optimization outcomes of comparable quality.

Having optimized V , we now identify the optimal value
of λ based on the SDs of Si,j across 500 realizations. For
SD[SEXP ], shown in Fig. 2(c), we notice that the aver-
age of the diagonal SDs (0.0673) is roughly double that of
the off-diagonal SDs (0.0302). Moreover, the distribution
of off-diagonal SDs shown in Fig. 2(c) is narrowly peaked
close to the average value but a weaker second peak at
roughly double the value indicates that for a few entries
of S the SD is much stronger than on average. The fluc-
tuations of the diagonal SDs for the experimental data
are much larger than for the RMT data. To optimize
λ, we search for the value that yields the lowest aver-
age error of the SDs of Si,j , εSD. As shown in Fig. 2(b),
λ ≈ 0.05 is optimal if the error of the SD is averaged over
all entries of S or only over the off-diagonal entries of S.
For the diagonal entries of S, however, λ ≈ 0.09 would
be ideal. We use the former since our channel matrix is
exclusively built from off-diagonal entries of S.

Using the optimized V and λ in combination with an
ensemble of 500 realizations of Hs drawn from the GOE,
we obtain an ensemble of 500 realizations of SRMT via
Eq. (1). As seen in Fig. 2(a), its average value 〈SRMT 〉 is
still extremely similar to 〈SEXP 〉, heuristically confirm-
ing our hypothesis that 〈SRMT 〉 is approximately inde-

FIG. 2. (a) Comparison of 〈SEXP 〉, SRMT
0 and 〈SRMT 〉 in

terms of magnitude and phase. The magnitude of the dif-
ference of the latter two from 〈SEXP 〉 is also shown. (b)
Dependence of εSD on λ considering all entries, only diagonal
entries or only off-diagonal entries of S. (c) SD of SEXP and
SRMT and PDF of the SD of the off-diagonal entries of S.

pendent of λ. The SDs obtained for the RMT ensemble,
shown in Fig. 2(c), nicely match the experimental ones
for most off-diagonal entries. We notice that the RMT
SDs are very uniform without any outliers, as evidenced
by the narrow single-peaked PDF of the off-diagonal SDs.
Consequently, our RMT model essentially appears to as-
sume that all off-diagonal entries have the same SD of
0.03 and that all diagonal entries have a SD of 0.04. Dif-
ferent optimization runs starting with a different random
H0 yield very similar results.

Given our system-specific RMT model, we proceed
with constructing the space-to-configuration multiplex-
ing channel matrix H by picking eight random realiza-
tions out of the 500 available ones. We repeat this 105

times to compute the PDF of Reff . We perform this
analysis for all nine possible choices of receiving antenna
and for five optimization runs starting with a different
random H0. The results are summarized in Fig. 3. To
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FIG. 3. For the nine different possible choices of receiving
port (number indicated as inset), we compare the PDF of
Reff extracted from SEXP with that extract from SRMT . For
the latter, five different optimization runs (starting with a
different random H0) are shown in different colours (blue for
run #1, etc.). A Gaussian fit to the experimental distribution
is also shown. Moreover, we show the PDFs for five different
ensembles with conventional RMT as well as for the case of H
being a simple complex Gaussian matrix with i.i.d. entries.

evidence how closely our proposed RMT model matches
the experimental distribution in contrast to conventional
RMT, we include the latter as benchmark in Fig. 3, too.
Specifically, for each of the five runs with conventional
RMT, we generate 500 scattering matrices by drawing
500 Hamiltonians from the GOE but keeping the ran-
dom coupling vector V fixed for all 500 realizations. We
also plot the PDF of Reff obtained for an 8×8 matrix for
which the real and imaginary components of the entries
are simply drawn from a normal distribution.

It is evident in Fig. 3 that the PDFs of Reff for con-
ventional RMT and for such a Gaussian matrix are iden-
tical and independent of the choice of receiving port (i.e.
of antenna coupling etc.). They clearly fail completely
to predict the experimentally observed PDF, which mo-
tivates this paper. Moreover, it can be seen that the
experimentally observed PDF is very well fitted with a
Gaussian normal distribution. The PDFs resulting from
five runs with our proposed RMT model differ slightly
from run to run. Overall, the agreement of our proposed
RMT model’s PDF with the experimentally observed one

FIG. 4. Distribution of selected Si,j in the complex plane and
corresponding PDFs of Re[Si,j ] and Im[Si,j ]. Experiment and
simulation are presented in blue and red, respectively.

is occasionally perfect (receiving port #7) but always de-
cent such that our proposed model serves its purpose.

Fig. 2(c) already hints at the reason why the agree-
ment with the experiments is not perfect: the centered
distributions of the Si,j are not identical for all i, j. To
shed some light on this limitation of our model, we plot
in Fig. 4 the distribution of selected Si,j in the complex
Argand diagram as well as PDFs of real and imaginary
component, using the data from the optimization run al-
ready considered in Fig. 2. The first example, S4,7, is
representative of the behavior seen for most off-diagonal
entries of S: the cloud in the complex plane is circu-
lar and the PDFs from our proposed RMT model match
the experimentally obtained ones. One exception, illus-
trated by S2,8, is due to clouds with a diameter that is
significantly larger than the average. Another exception,
namely S1,4, is a case in which the cloud is not circular
but elliptical. In both cases, our model fails to repro-
duce the PDFs correctly. For the off-diagonal entries of
S, as already obvious in Fig. 2(c), our model’s prediction
is not very good. In general the diameter of the cloud is
much larger in the experimental data, e.g. for S1,1, and
in some cases the cloud is not circular, as for S8,8.

The Si,j clouds thus occasionally deviate from the ex-
pected behavior, either having a different radius or be-
ing deformed. Deformed (non-circular) clouds of Si,j

were not seen in Ref. [43], possibly by chance because
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only a single Si,j was considered. Such exceptions im-
ply that simply using centered quantities Sij−〈Sij〉 does
not always guarantee Rayleigh statistics in a tunable-
metasurface-stirred chaotic cavity. Indeed, it was re-
cently shown that in the presence of a deterministic scat-
tering component the transmission amplitude and phase
develop nontrivial statistical correlations even at strong
absorption [50]. Such correlations may also impact tech-
niques using such centered quantities, for instance, for
antenna characterization in reverberation chambers [51].

Finally, we mention an alternative parametric model
in which H = H0 +λCC†, where C is a N ×Npix matrix
whose entries are zero-mean real Gaussian random vari-
ables and Npix is the (effective) number of metasurface
pixels. This model could be motivated by a treatment
of each metasurface element as an active scattering cen-
ter or “channel” in one of two possible distinct reflecting
states [52], which can be described by a low-rank pertur-
bation of that type [53]. The weighted sum of a Gaussian
Wigner and a Wishart matrix [54] brings about complica-
tions related to the distortion of the Hamiltonian’s eigen-
value PDF. Our findings with this model, summarized in
Ref. [55], show that overall it is not as compatible with
our optimization protocol as is the model that we pre-

sented above. In particular, we saw that using H = H0

or H = H0 + λCC† does not yield the same 〈S〉 (within
reasonable precision), a crucial assumption for the appli-
cability of our two-step optimization procedure.

To summarize, we have introduced a modified RMT
framework to capture system-specific features based on
the measurements of an ensemble of realizations of the
experimental scattering matrix. Our approach, first, op-
timizes the coupling matrix to ensure the correct 〈S〉 is
obtained and, second, adds an appropriately weighted
stirred contribution to the Hamiltonian to adjust the fluc-
tuations of the scattering parameters. We found a good
agreement with the experimentally obtained distribution
of Reff that characterizes our space-to-configuration mul-
tiplexing system. Our modified RMT scheme can also be
applied to other scenarios where an ensemble of realiza-
tions of a chaotic system contains non-universal features,
for instance, in the context of antenna characterization
in stirred reverberation chambers [51, 56].
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For the interested reader, here we provide additional details on the use of an alternative

parametric model with H = H0 + λCC†. This model could be motivated by a treatment

of each metasurface element as an active scattering center or “channel” in one of two possi-

ble distinct reflecting states [1], which can be described by a low-rank perturbation of that

type [2]. However, as summarized in the main text, this model has two important draw-

backs compared to the H = cos(λ)H0 + sin(λ)Hs model used in the main text: (i) it is

significantly more complicated to evaluate, and (ii) its performance in terms of reproducing

the distributions of the experimentally measured scattering parameters and effective ranks

is inferior. Nonetheless, for completeness, we summarize the results that we obtained with

this alternative model in this Supplemental Material.

A. Overview of alternative parametric model

The alternative parametric model that we investigate in this Supplemental Material is

SRMT (E) = IM − iV T 1(
E + iΓa

2

)
IN −

(
H0 + λCC† − i

2
V V T

)V, (S1)

where Iα denotes the α×α identity matrix, H0 is a N ×N matrix drawn from the GOE, Γa

represents the average mode width, V is the N ×M coupling matrix, and C is a N ×Npix

matrix. C is generated in the same way that the coupling matrix V of a traditional RMT

model would be generated for a system with Npix ports with all κi = 1. As in the main

text, we choose N = 250 in sight of the computational cost of optimizing V . Npix is the

(effective) number of independent metasurface pixels and we define the variable β = Npix/N .

The variable λ weights stirred and unstirred component of the Hamiltonian.
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B. Impact of λ and β on the eigenvalue PDF of the Hamiltonian

Since the diagonal entries of C are real and positive, they alter the eigenvalue PDF of

the Hamiltonian H = H0 + λCC†. We begin by plotting the eigenvalue PDF for a range of

different values of λ for four values of β in Fig. S1. The results suggest that the position of

the eigenvalue PDF’s peak does not appear to be impacted by the addition of the stirred

Hamiltonian. However, the maximum value of the eigenvalue PDF is reduced.

We continue to work at E = 0 as in the main text. To counteract the lower value of the

PDF of eigenvalues at E = 0, we consider replacing Γa by Γ′
a = αΓa, where α is the ratio

of the slope of the curve of sorted eigenvalues around zero for H and H0. However, since

we find that accounting for the change in slope or not does not have an appreciable impact

on the final results, we neglect the correction in the following. We choose Npix = 50 in the

following which ensures Npix < N to preserve the GOE shape of the level density near the

origin and Npix � 1 to reflect the fact that we have a multitude of pixels rather than a

single or a few pixels.

FIG. S1. Eigenvalue PDF of Hamiltonian for alternative parametric model with different values of

β = Npix/N and λ.
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C. Optimal value of λ and resulting 〈SRMT 〉

Since the optimization of V is assumed to only dependent on H0 in our two-step opti-

mization procedure, it is the same as for the parametric model discussed in the main text;

therefore, we only discuss the optimization of λ for the alternative parametric model here.

We present in Fig. S2 the counterpart to Fig. 2 from the main text. The optimal value of

λ ≈ 0.06 is comparable to that found with the parametric model in the main text. However,

〈SRMT 〉 does not resemble 〈SEXP 〉 as much as for the parametric model presented in the

main text. In Fig. S2(a), the differences of the magnitude can be spotted by the naked eye

and the magnitude of the difference between 〈SRMT 〉 and 〈SEXP 〉 is an order of magnitude

larger. The alternative model is thus not as suitable for our two-step optimization procedure

(which assumes SRMT
0 = 〈SRMT 〉 is true to very good approximation) as the model from

the main text. In terms of the SDs of the scattering matrix entries shown in Fig. S2(c), no

notable difference from Fig. 2(c) is seen.
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FIG. S2. Counterpart for the alternative parametric model to Fig. 2 from the main text. (a)

Comparison of 〈SEXP 〉, SRMT
0 and 〈SRMT 〉 in terms of magnitude and phase. The magnitude of

the difference of the latter two from 〈SEXP 〉 is also shown. (b) Dependence of εSD on λ considering

all entries, only the diagonal entries or only the off-diagonal entries of the scattering matrix. (c)

SD of SEXP and SRMT and PDF of the SD of the off-diagonal scattering matrix entries.
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FIG. S3. Counterpart for the alternative parametric model to Fig. 3 from the main text. For

the nine different possible choices of receive port (number indicated as inset), we compare the

PDF of Reff(H) extracted from SEXP with that extract from SRMT . For the latter, five different

optimization runs (starting with a different random H0) are shown. A Gaussian fit to the exper-

imental distribution is also shown. Moreover, we show the PDFs for five different ensembles with

traditional RMT as well as for a simple complex Gaussian matrix with i.i.d. entries.

D. Reff(H) distribution

Consequently, in comparison to Fig. 3 in the main text, the distributions of Reff(H)

predicted by the alternative parametric model, displayed in Fig. S3, are visibly in inferior

agreement with the experimentally observed ones. Moreover, the dependence on the specific

optimization run (starting with a different random H0) is seen to be stronger.
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FIG. S4. Counterpart for the alternative parametric model to Fig. 4 from the main text. Dis-

tribution of selected Si,j in the complex plane and corresponding PDFs of Re[Si,j ] and Im[Si,j ].

Experiment and simulation are presented in blue and red, respectively.

E. Si,j distribution

For completeness, we finally provide the counterpart to Fig. 4 from the main text in

Fig. S4. We note that even for scattering matrix entries like S1,4 for which the SD is correctly

captured and which are correctly reproduced by the model discussed in the main text, the

center of the cloud generated by the alternative model is dislocated. This is essentially due

to the inferior match in terms of 〈S〉 already seen in Fig. S2(a).
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