
Received May 25, 2020, accepted June 4, 2020, date of publication June 8, 2020, date of current version June 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3000860

Data Modeling With Polynomial Representations
and Autoregressive Time-Series Representations,
and Their Connections
ASOKE K. NANDI , (Fellow, IEEE)
Department of Electronic and Computer Engineering, Brunel University London, Uxbridge UB8 3PH, U.K.

e-mail: asoke.nandi@brunel.ac.uk

ABSTRACT Two of the data modelling techniques - polynomial representation and time-series represen-
tation – are explored in this paper to establish their connections and differences. All theoretical studies are
based on uniformly sampled data in the absence of noise. This paper proves that all data from an underlying
polynomial model of finite degree q can be represented perfectly by an autoregressive time-series model
of order q and a constant term µ as in equation (2). Furthermore, all polynomials of degree q are shown
to give rise to the same set of time-series coefficients of specific forms with the only possible difference
being in the constant term µ. It is also demonstrated that time-series with either non-integer coefficients or
integer coefficients not of the aforementioned specific forms represent polynomials of infinite degree. Six
numerical explorations, with both generated data and real data, including the UK data and US data on the
current Covid-19 incidence, are presented to support the theoretical findings. It is shown that all polynomials
of degree q can be represented by an all-pole filter with q repeated roots (or poles) at z = +1. Theoretically, all
noise-free data representable by a finite order all-pole filter, whether they come from finite degree or infinite
degree polynomials, can be described exactly by a finite order AR time-series; if the values of polynomial
coefficients are not of special interest in any data modelling, one may use time-series representations for
data modelling.

INDEX TERMS Data models, polynomials, autoregressive processes, time-series, signal representation,
Covid-19.

I. INTRODUCTION
Interests in data science have been growing extremely fast
in the twenty-first century. As well as interests from many
different subject areas, data science is being integrated in
diverse range of industries and agencies (e.g., health, trans-
port, energy, government, society, etc.). Strictly, a time-series
refers to a series of data points ordered in time. It is very
common that a time-series represents data points at equally
separated in time. Of course, the analytics that are created
for time-series data can generally be applied to a sequence of
data that are equally separated in space (e.g., images) or some
other domain. There are many types of time-series models,
including autoregressive models.

Although there are many types of time-series models, the
earliest and an alternative way to model data is by polynomial
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regression. Polynomial regression models are generally fitted
with the Least-squares method to obtain estimated values of
the polynomial coefficients. In 1805 Legendre published the
Least-squares method [1] and Gauss published it in 1809 and
later in 1823 [2]. In 1815 Gergonne wrote a paper on ‘‘The
application of the method of least squares to the interpo-
lation of sequences’’ [3]. This is an English translation by
Stigler [4] of the original paper that was written in French.
In the last 120 or so years, polynomial regression contributed
greatly to the development of regression analysis [5]–[7].

Although there are other ways to model data, the focus in
this paper is around polynomial representation and autore-
gressive time-series representation. There has been a lot
of research in time-series data representation [8]–[12]. For
example, the main goal of time-series analysis in econo-
metrics, geophysics, meteorology, quantitative finance, seis-
mology, and statistics is prediction or forecasting [13]–[20].
On the other hand, it is used for signal detection and
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estimation in communication engineering, control engineer-
ing, and signal processing [21]–[28]. It is also used for clus-
tering, classification, and prediction or forecasting in data
mining, machine learning, and pattern recognition [29]–[34].
Mathematical modelling and time-series analysis are funda-
mental to many fields; a couple of very recent examples can
be found in [35], [36].

In polynomial representations, observed data is a function
of time (or some other variable). This function, except for the
case of a constant or a straight line, represents a non-linear
relationship between the time (or some other variable) and the
observed data, even though the parameters are linear. On the
other hand, in autoregressive (AR) time-series representation,
observed data is a linear function of some of the earlier data
and thus the model is linear in both data and parameters.
Although both are used for data modelling, there are some
fundamental differences. Hence, this paper explores many
questions around polynomial and autoregressive representa-
tions with a view to establish their connections and differ-
ences. Two of these questions are:

1) Can all finite degree polynomials be expressed as finite
order time series? If the answer is affirmative, what is the
underlying relationship?

2) Can all finite order autoregressive time-series be repre-
sented as finite order polynomials?

This study is in the context of real-valued and uniformly
sampled noise-free data. The paper presents the following
original results:

1) All polynomials of degree 1 (linear), of degree 2
(quadratic), and of degree 3 (cubic) can be represented
as autoregressive time-series of order 1, order 2, and
order 3, with a constant respectively. This is illustrated
in section II.

2) All polynomials of degree 3 can be represented by
AR time-series with the set of coefficients with the
same values but possibly with a different value for its
constant term. This observation is also true for polyno-
mials of degree 1 and of degree 2. This is presented in
section II.

3) All polynomials of finite degree q can be represented
as AR time-series of order q and a constant. This can
be found in section III.

4) All polynomials of degree q can be represented by
AR time-series with one set of coefficients with the
same values but possibly with a different value for its
constant term. This is demonstrated in section III.

5) The corresponding time-series coefficients are integers
and of specific forms, which are derived in section III.

6) Some numerical explorations from several sources of
both generated data and real data, including some cur-
rent Covid-19 incidence data from the UK and the US,
are presented in section IV.

7) Whilst all finite degree polynomials can be repre-
sented by finite order AR time-series, the converse
is not true. There are infinitely many AR time-series
of finite orders that cannot be represented by finite

order polynomials. Furthermore, all finite order AR
time-series with either non-integer coefficients or inte-
ger coefficients not of the aforementioned specific
forms represent polynomials of infinite degree. This is
shown in section V.

8) Section VI shows that all polynomials of degree q can
be represented by an all-pole filter with q repeated
roots (or poles) at z = +1. Thus, any noise-free data
representable by a finite order all-pole filter, whether
they come from finite degree or infinite degree poly-
nomials, can be described exactly by a finite order AR
time-series.

II. METHOD — SMALL DEGREE POLYNOMIAL
Given a set of uniformly sampled real-valued data points in
discrete time, these may be represented by a polynomial or
a time-series. A polynomial of degree N in continuous time
can take the following form

y (t) =
N∑
i=0

c (i) t i

For uniformly sampled discrete time, the continuous time, t,
is represented as t = nT , where n is an integer and T is the
sampling period. In this scenario, the above equation can be
rewritten as

y (nT ) =
N∑
i=0

c (i) (nT )i (1)

On the other hand, an autoregressive time-series model of
order q, AR(q), can be written as

y (n) =
q∑
i=1

a (i) y (n− i)+ µ (2)

and may be used to represent the set of uniformly sampled
data points in discrete time.

A. LINEAR POLYNOMIAL
In this subsection, an exploration of data representation by a
linear polynomial and an AR time-series is carried out. For
any linear polynomial, N has the value of 1 in equation (1).
It is easy to show from equation (1) that y (nT )= y (nT−T )+
c (1)T . By removing T from indices, this can be written as
y (n) = y (n− 1)+ c (1)T . Comparing this with equation (2)
for AR(q), it is clear that q = 1, a (1) = 1, and µ = c (1)T .

Therefore, the following can be concluded:
• Every linear polynomial, i.e., of degree 1, can be per-
fectly represented by an AR(1) time-series.

• Every linear polynomial will have the same value of the
coefficient in time-series, i.e., a (1) = 1.

• The constant term in the time-series is given by µ =
c (1)T .

• This implies that every linear polynomial with different
values of c (0) but the same value of c (1) will have the
identical AR(1) representation, i.e., with the same values
of a (1) and µ.
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B. QUADRATIC POLYNOMIAL
In this subsection, an exploration of data representation by
a quadratic polynomial and an AR time-series is carried
out. For any quadratic polynomial, N has the value of 2 in
equation (1). Thus, it follows from equation (1) that

y (nT ) = c (0)+ c (1) (nT )+ c (2) (nT )2 , (3)

y (nT − T ) = c (0)+ c (1) (nT − T )+ c (2) (nT − T )2 ,

(4)

y (nT − 2T ) = c (0)+ c (1) (nT − 2T )

+ c (2) (nT − 2T )2 , (5)

Using equations (3) and (4), one can write

y (nT ) = y (nT − T )+ c (1)T

+ 2c (2) nT 2
− c (2)T 2, (6)

and, using equations (4) and (5), one can write

y (nT − T ) = y (nT − 2T )+ c (1)T

+ 2c (2) nT 2
−3c (2)T 2, (7)

Now, using equations (6) and (7), one finds

y (nT ) = y (nT − T )

+ [y (nT − T )− y (nT − 2T )]+ 2c (2)T 2, (8)

Therefore,

y (nT ) = 2y (nT − T )− y (nT − 2T )+ 2c (2)T 2 (9)

By removing T from indices, equation (9) can be written
as y (n) = 2y (n− 1) − y(n − 2) + 2c (2)T 2. Comparing
this with equation (2) for AR(q), it is clear that q = 2,
a (1) = 2, a (2) = −1, and µ = 2c (2)T 2.
Therefore, the following can be concluded:
• Every quadratic polynomial, i.e., of degree 2, can be
perfectly represented by an AR(2) time-series.

• Every quadratic polynomial will have the same coef-
ficient values in time-series, i.e., a (1) = 2 and
a (2) = −1.

• The constant term in the time-series is given by µ =
2c (2)T 2.

• This implies that every quadratic polynomial with differ-
ent values of c (0) and c (1) but the same value of c (2)
will have the identical AR(2) representation, i.e., with
the same values of a (1) , a (2), and µ.

C. CUBIC POLYNOMIAL
In this subsection, an exploration of data representation by a
cubic polynomial and an AR time-series is carried out. For
any cubic polynomial, N has the value of 3 in equation (1).
Thus, it follows from equation (1) that

y (nT ) = c (0)+ c (1) (nT )

+c (2) (nT )2 + c (3) (nT )3 , (10)

y (nT − T ) = c (0)+ c (1) (nT − T )

+ c (2) (nT−T )2+c (3) (nT − T )3 , (11)

y (nT − 2T ) = c (0)+ c (1) (nT − 2T )

+ c (2) (nT − 2T )2 + c (3) (nT − 2T )3 ,

(12)

y (nT − 3T ) = c (0)+ c (1) (nT − 3T )

+ c (2) (nT − 3T )2 + c (3) (nT − 3T )3 ,

(13)

Using equations (10) and (11), one can obtain

y (nT ) = y (nT − T )+ c (1)T + c (2) 2nT 2

− c (2)T 2
+ c (3) 3n2T 3

− c (3) 3nT 3
+ c (3)T 3,

(14)

and, using equations (11) and (12), one can obtain

y (nT − T ) = y (nT − 2T )+ c (1)T

+ c (2) 2nT 2
− c (2) 3T 2

+ c (3) 3n2T 3

− c (3) 9nT 3
+ c (3) 7T 3, (15)

Now, using equations (14) and (15), one obtains

y (nT )−y (nT − T )= y (nT − T )− y (nT − 2T )

+ 2c (2)T 2
+ 6c (3) nT 3

− 6c (3)T 3,

(16)

Using equations (12) and (13), one can write

y (nT − 2T ) = y (nT − 3T )+ c (1)T + c (2) 2nT 2

− c (2) 5T 2
+ c (3) 3n2T 3

− c (3) 15nT 3
+ 19c (3)T 3, (17)

Now, using equations (15) and (17), one can write

y (nT − T )− y (nT − 2T )

= y (nT − 2T )− y (nT − 3T )+ 2c (2)T 2

+ 6c (3) nT 3
− 12c (3)T 3, (18)

Thus,

y (nT − T )− 2y (nT − 2T )+ y (nT − 3T )

+ 6c (3)T 3
= 2c (2)T 2

+ 6c (3) nT 3
− 6c (3)T 3, (19)

Combining equations (16) and (19), one obtains

y (nT )− y (nT − T ) = y (nT − T )− y (nT − 2T )

+ y (nT − T )− 2y (nT − 2T )

+ y (nT − 3T )+ 6c (3)T 3,

Therefore,

y (nT ) = 3y (nT − T )− 3y (nT − 2T )

+ y (nT − 3T )+ 6c (3)T 3 (20)

By removing T from indices, this can be written as y (n) =
3y (n− 1)− 3y (n− 2)+ y (n− 1)+ 6c (3)T 3. This can be
described by AR(q), provided q = 3, a (1) = 3, a (2) =
−3, a (3) = 1, and µ = 6c (3)T 3.
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TABLE 1. Information for polynomials of different degrees.

Therefore, the following can be concluded:
• Every cubic polynomial, i.e., of degree 3, can be per-
fectly represented by an AR(3) time-series.

• All cubic polynomials will have the same coefficient
values in time-series, i.e., a (1) = 3, a (2) = −3, and
a (3) = 1.

• The constant term in the time-series is given by µ =
6c (3)T 3.

• This implies that every cubic polynomial with different
values of c (0), c (1), and c (2) but the same value of c (3)
will have the identical AR(3) representation, i.e., with
the same values of a (1) , a (2), a (3) , and µ.

The summary of the exposition so far is that all polynomials
of degree 1 (linear), of degree 2 (quadratic), and of degree 3
(cubic) can be perfectly represented as AR time-series of
orders 1, 2, and 3 respectively. Furthermore, for each degree
of polynomials all the time-series coefficients have prede-
fined values and they are specific integers, while the constant
term,µ, has a predefined form that depends on the coefficient
of the leading degree of the polynomial, the degree of the
polynomial, and the sampling period. These and more spe-
cific information can be found in Table 1 above.

III. METHOD — ANY FINITE DEGREE POLYNOMIAL
In section II it has been demonstrated that all polynomi-
als of degree 1 (linear), of degree 2 (quadratic), and of
degree 3 (cubic) can be perfectly represented as autoregres-
sive time-series of orders 1, 2, and 3 respectively. In this
section the exploration is generalised for all polynomials
of every finite degree. In section II it was found that, for
q = 1, 2, and 3, the degree of the polynomial and the
corresponding order of the AR time-series order are identical.
In the following, a discrete-time polynomial of degree q of the
form below is considered

y (nT ) =
q∑
j=0

c (j) (nT )j (21)

in seeking a corresponding autoregressive time-series model
of order q, AR(q).

The time-series in equation (2) can be rewritten as

y (n)− µ =
q∑
i=1

a (i) y (n− i) (22)

Now it is conjectured that

a (i) = (−1)i+1
( q
i

)
(23)

for i = 1, 2, . . . , q. Using this conjecture and equation (21),
the equation (22) can be written as

y (nT )− µ =
q∑
i=1

(−1)i+1
( q
i

) q∑
j=0

c (j) (nT − iT )j (24)

In the above double summation, it is instructive and revealing
to consider different values of j separately.

A. PART I
For the particular case of j = 0, the right-hand side of
equation (24) can be written as

∑q
i=1 (−1)

i+1 (q
i

)
c(0). The

relation 0.154.6 on page 4 of [37], for q ≥ n ≥ 1 and 00 ≡ 1,
can be adapted to

q∑
i=0

(−1)i
( q
i

)
in−1 = 0 (25)

Using this relation, for q ≥ n = 1,
q∑
i=1

(−1)i+1
( q
i

)
=

q∑
i=0

(−1)i+1
( q
i

)
+ 1

= −

q∑
i=0

(−1)i
( q
i

)
+ 1 = 1 (26)

Therefore, for the case of j = 0, the right-hand side of
equation (24) is c (0).

B. PART II
For the case of j = 1, the right-hand side of equation (24) can
be written as∑q

i=1
(−1)i+1

( q
i

)
{c (1) (nT − iT )}

= c (1) nT
∑q

i=1
(−1)i+i

( q
i

)
− c (1)T

∑q

i=1
(−1)i+1

( q
i

)
i (27)

Using equation (25), for q ≥ n > 1, one can write
q∑
i=1

(−1)i+1
( q
i

)
in−1 =

q∑
i=0

(−1)i+1
( q
i

)
in−1

= −

q∑
i=0

(−1)i
( q
i

)
in−1 = 0 (28)

Using equations (26) and (28) in equation (27), it is found
that the right-hand side of equation (24), for the case of j = 1,
is equal to c (1) nT .

C. PART III
Now the case of j = 2 is considered. The right-hand side of
equation (24) can be written as

q∑
i=1

(−1)i+1
( q
i

) {
c (2) (nT − iT )2

}
= c (2) (nT )2

q∑
i=1

(−1)i+i
( q
i

)
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− 2c (2) nT 2
q∑
i=1

(−1)i+1
( q
i

)
i

+ c (2) (−T )2
q∑
i=1

(−1)i+1
( q
i

)
i2

Using equations (26) and (28), in the previous expression for
the right-hand side of equation (24), for the case of j = 2, the
right-hand side is found to be equal to c (2) (nT )2.

Similarly, for each value of j up to j = q − 1, it can
be shown that the right-hand side of equation is equal to
c (j) (nT )j. When j = q − 1, there is a term of the form
c (q− 1) (−T )q−1

∑q
i=1 (−1)

i+1 (q
i

)
iq−1. According to equa-

tion (28), which is valid if the top range of the summation is
either larger than or equal to the power of i plus one, i.e.,
q ≥ (q− 1)+ 1, this term equates to zero.

However, when j = q, there is a term of the form
c (q) (−T )q

∑q
i=1 (−1)

i+1 (q
i

)
iq. For this term, equation (28)

is not valid since the top range of the summation, i.e., q,
is neither larger than nor equal to the power of i plus one, i.e.,
(q+ 1). To deal with the case of j = q, the relation 0.154.4
on page 4 of [37], for n ≥ 0 and 00 ≡ 1, can be adapted to

q∑
i=0

(−1)i
( q
i

)
iq = (−1)q q! (29)

Thus,

q∑
i=1

(−1)i+1
( q
i

)
iq =

q∑
i=0

(−1)i+1
( q
i

)
iq

= −

q∑
i=0

(−1)i
( q
i

)
iq = − (−1)q q!

(30)

Thus, for the case of j = q, the right-hand side of equa-
tion (24) can be written as

q∑
i=1

(−1)i+1
( q
i

) {
c (q) (nT − iT )q

}
= c (q) (nT )q

q∑
i=1

(−1)i+i
( q
i

)
+ . . .+ c (q) (−T )q

×

q∑
i=1

(−1)i+1
( q
i

)
iq

Using equation (26) the first term is c (q) (nT )q. All the terms
in the middle are zero by virtue of equation (28). Using equa-
tion (30) the last term is found to be c (q) (−T )q (− (−1)q q!),
which is equal to −c (q)T q(q!).

Adding all the results for j = 0, 1, . . . , q, one obtains

y (nT )− µ =
q∑
j=0

c (j) (nT )j − c (q)T q (q!)

= y (nT )− c (q)T q (q!)

Thus,

µ = c (q)T q (q!) (31)

Therefore, all noise-free data from uniformly sampled poly-
nomials of finite degree q can be perfectly represented by an
autoregressive time-series model of order q such that

y (n) =
q∑
i=1

a (i) y (n− i)+ µ

where

µ = c (q)T q (q!)

and

a (i) = (−1)i+1
( q
i

)
, for i = 1, 2, . . . , q

IV. EXPERIMENTS
In this section some explorations are carried out for different
types of data sources to illustrate a few themes. In reality,
all real data have uncertainties; therefore, it is important to
study sensitivities to degrees and types of uncertainties. Yet,
in these explorations all generated data are error-free. Here
the objectives are to underpin some theoretical results and
to generate some intuitions from precise data and theoretical
results, and not to get distracted into studying effects of noise
interference. Two applications to real data, the current Covid-
19 data from the UK and the US, are clearly not noise-free but
are offered as real examples.
In the first four of these explorations, N data are generated.

These are then modelled by polynomials as in equation (21)
and time-series as in equation (2). When considering a poly-
nomial of degree p, the first (p+ 1) data are used to evaluate
the (p+1) coefficients of this polynomial. This works as data
are error-free. On the other hand, when considering a time-
series of order q, the first 2q data are used to evaluate the q
coefficients of this time-series.

A. CASE I
Here N data are generated from a polynomial of degree 3,

y (n) = (nT )3 − 2 (nT )2

+ (nT )− 1, for T = 0.2 and n = −17 : 1 : 17.

This is a finite degree polynomial with no steady state. For
each value of the degree p of the polynomial from p =
1, . . . , 9, the first (p+1) data are used to calculate the (p+1)
coefficients of the polynomial. Using these polynomial coef-
ficients, the remaining (N − p− 1) data values are predicted;
these are labelled as yp(n) for n = (p+ 2), . . . ,N . Similarly,
for each value of the time-series order of q from q = 1, . . . , 9,
the first 2q data are used to calculate the q coefficients of the
time-series. Using these coefficients, the remaining (N − 2q)
data values are predicted; these are labelled as yt(n) for n =
(2q+ 1), . . . ,N .

For the same values of (p + 1) and q, (N − p − 1)
data values are predicted for polynomial and (N − 2q) data
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FIGURE 1. Data generated from a polynomial, Figure 1a) shows the RMS
prediction error (polynomial) as a function of (p + 1). Figure 1b) presents
the RMS prediction error (time-series) as a function of q.

values are predicted for time-series representations. To com-
pare prediction errors from polynomial and time-series rep-
resentations fairly, only those predictions, i.e., (N − 2q)
data values, common to both representations are used.
Mean prediction errors are

(∑N
i=2q+1 (yp (i)− y (i))

)
/

(N−2q) and
(∑N

i=2q+1 (yt (i)− y (i))
)
/(N−2q) for polyno-

mial and time-series respectively. Also, the RMS prediction
error (polynomial) is defined as√[(∑N

i=2q+1
(yp (i)− y (i))2

)
/(N − 2q)

]
while the RMS prediction error (time-series) is defined as√[(∑N

i=2q+1
(yt (i)− y (i))2

)
/(N − 2q)

]
The RMS prediction error (polynomial) is depicted in
Figure 1a) as a function of (p + 1), while the RMS predic-
tion error (time-series) is shown in Figure 1b) as a func-
tion of q. The prediction error at (p+ 1) = 4 is (6.6 ∗
10−13 ± 2.7 ∗ 10−12), while the prediction error at q =
4 is

(
7.2 ∗ 10−10 ± 1.6 ∗ 10−9

)
; both are extremely small.

Figure 2a) shows the data versus the time index, while the
Figure 2b) depicts the prediction errors versus the time index
for (p+ 1) = 4 (polynomial in red) and at q = 4 (time-
series in green). The results confirm that these data from a
finite degree polynomial can be equally well described by
both polynomial and time-series representations.

B. CASE II
Here N data are generated from a sine wave

y (n) = sin(2πn/16), for n = −17 : 1 : 17.

This represents an infinite degree polynomial and has no
steady state, but its values are bounded between -1 and +1.

FIGURE 2. Data generated from a polynomial, Figure 2a) depicts the data
versus the time index. Figure 2b) shows the prediction errors versus the
time index for (p + 1) = 4 (polynomial in red) and for q = 4 (time-series in
green).

FIGURE 3. Data generated from a sine wave, Figure 3a) presents the RMS
prediction error (polynomial) as a function of (p + 1). Figure 3b) displays
the RMS prediction error (time-series) as a function of q.

The procedures for calculating the (p + 1) coefficients of
the polynomial and calculating the q coefficients of the AR
time-series are the same as described in Case I earlier. Also,
the procedures for calculating the prediction error (poly-
nomial) and the prediction error (times-series) have been
described earlier in Case I.

The RMS prediction error (polynomial) is depicted in
Figure 3a) as a function of (p+ 1), while the RMS prediction
error (time-series) is shown in Figure 3b) as a function of
q. The error at (p+ 1) = 1 is (6.9 ± 3.8), while the error
at q = 2 is

(
2.5 ∗ 10−18 ± 1.4 ∗ 10−15

)
. Also, the error at

(p+ 1) = 6 is (422 ± 614), while the error at q = 2 is(
1.3 ∗ 10−16 ± 1.4 ∗ 10−15

)
. Figure 4a) shows the data ver-

sus the time index, while the Figure 4b) depicts the prediction
errors versus the time index for (p+ 1) = 1 (polynomial in
red) and at q = 2 (time-series in green). The results confirm
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FIGURE 4. Data generated from a sine wave, Figure 4a) shows the data
versus the time index. Figure 4b) depicts the prediction errors versus the
time index for (p + 1) = 1 (polynomial in red) and for q = 2 (time-series in
green).

that these data from a sine wave are extremely well described
by a time-series representation of only order 2; there is a
theoretical reason for this (see section V for an explanation).
Also, this time series representation is far better than any
finite degree polynomial representation.

C. CASE III
Here N data are generated from a non-polynomial

y (n)=1− 2n−3n (n− 1)+(0.5)n , for n=−17 : 1 : 17.

This represents an infinite degree polynomial and has no
steady state. The procedures for calculating the (p + 1)
coefficients of the polynomial and calculating the q coeffi-
cients of the time-series are the same as described in Case I
earlier. Also, the procedures for calculating the prediction
error (polynomial) and the prediction error (times-series)
have been described earlier in Case I.

The RMS prediction error (polynomial) is depicted in
Figure 5a) as a function of (p + 1), while the RMS predic-
tion error (time-series) is shown in Figure 5b) as a func-
tion of q. The prediction error at (p+ 1) = 3 is (6.6 ∗
106 ± 4.9 ∗ 106), while the prediction error at q = 4
is
(
−1.2 ∗ 10−8 ± 8.7 ∗ 10−8

)
. Also, the prediction error at

(p+ 1) = 5 is (7.3 ∗ 107 ± 8.9 ∗ 107), while the prediction
error at q = 4 is

(
−1.2 ∗ 10−8 ± 8.7 ∗ 10−8

)
. Figure 6a)

shows the data versus the time index, while the Figure 6b)
depicts the prediction errors versus the time index for
(p+ 1) = 5 (polynomial in red) and at q = 4 (time-series
in green). Thus, these data from a non-polynomial are sig-
nificantly better described by a time-series representation of
only order 4; the theoretical reason can be found in section V.
Also, RMS (time-series) is many orders of magnitude smaller
than RMS (any finite degree polynomial).

FIGURE 5. Data generated from a non-polynomial, Figure 5a) presents
the RMS prediction error (polynomial) as a function of (p + 1). Figure 5b)
displays the RMS prediction error (time-series) as a function of q.

FIGURE 6. Data generated from a non-polynomial, Figure 6a) shows the
data versus the time index. Figure 6b) depicts the prediction errors versus
the time index for (p + 1) = 5 (polynomial in red) and for q = 4
(time-series in green).

D. CASE IV
Here N data are generated from an inverse polynomial

y (n) = 1/(1+ 0.2n), for n = 0 : 1 : 34.

This represents an infinite degree polynomial. It has neither
a finite degree polynomial representation nor a finite order
time-series representation. The procedures for calculating the
(p + 1) coefficients of the polynomial and calculating the
q coefficients of the time-series are the same as described
in Case I earlier. Also, the procedures for calculating the
prediction error (polynomial) and the prediction error (times-
series) have been described earlier in Case I.

The RMS prediction error (polynomial) is depicted in
Figure 7a) as a function of (p+ 1), while the RMS prediction
error (time-series) is shown in Figure 7b) as a function of q.
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FIGURE 7. Data generated from an inverse polynomial, Figure 7a) displays
the RMS prediction error (polynomial) as a function of (p + 1). Figure 7b)
presents the RMS prediction error (time-series) as a function of q.

FIGURE 8. Data generated from an inverse polynomial, Figure 8a) shows
the data versus the time index. Figure 8b) depicts the prediction errors
versus the time index for (p + 1) = 3 (polynomial in red) and for q = 3
(time-series in green).

The prediction error at (p+ 1) = 3 is (8.2 ± 6.7), while the
prediction error at q = 3 is (−4.7∗10−4±1.7∗10−4). Also,
the prediction error at (p+ 1) = 7 is (476 ± 617), while the
prediction error at q = 7 is (−1.1 ∗ 10−7 ± 9.5 ∗ 10−8).
Figure 8a) shows the data versus the time index, while the
Figure 8b) depicts the prediction errors versus the time index
for (p+ 1) = 3 (polynomial in red) and at q = 3 (time-
series in green). Results confirm that these data from an
inverse polynomial are significantly better described by an
AR time-series representation than a finite degree polynomial
representation by several orders of magnitude in RMS.

E. CASE V
This is an example of using real data from a current global
Covid-19 epidemic as it is unfolding. The dataset represents
cumulative daily confirmed cases of Covid-19 infections

in the UK. This dataset is publicly available [38]. On 01
April 2020 there were 61 data (i.e., N = 61) covering the
period from 31 January 2020 to 31 March 2020. Thus y(n)
for n = 1 : 1 : 61 represents the cumulative daily confirmed
cases of Covid-19 infections in the UK.

Of these 61 data, the first 50 data are used for estimating the
free parameters and the last 11 data are used for forecasting.
For a polynomial of the degree p, the first 50 data are used to
estimate the (p+ 1) coefficients of the polynomial using the
Moore-Penrose inverse. By adopting the equation (21), the
first 50 data can be described the matrix equation Y = ACp,
where

Y = [y (1) y (2) . . . y (50)]T

Cp = [c (0) c (1) . . . c (p)]T

A = [11 . . . 1; 12 . . . 2p; . . . ; 150 . . . 50p]

Thus, Y is a column vector of size 50 × 1, C is a column
vector of size (p+ 1)x1, and A is a matrix of size 50x(p+ 1).
Now,

Cp =
(
ATA

)−1
ATY (32)

Using these estimated polynomial coefficients from the equa-
tion (32), all 61 data are calculated using

Yp = BCp (33)

where B is a matrix of size 61x(p + 1) and B =

[11 . . . 1; 12 . . . 2p; . . . ; 161 . . . 61p], while Yp is a column
vector of size 61 × 1 and Yp = [yp (1) yp (2) . . . yp (61)]T .
Of course, [yp (1) yp (2) . . . yp (50)]T came from the regres-
sion but [yp (51) yp (52) . . . yp (61)]T are polynomial predic-
tions for [y (51) y (52) . . . y (61)]T .

Similarly, for a time-series of order q, the first 50 data are
used to estimate the q coefficients of the time-series. Each
of these data values depends on the coefficients and earlier
data values. As all data values are error prone, the Total Least
Squares, which takes account of errors in both the depen-
dent and independent variables, is more appropriate than the
ordinary Least Squares, which takes account of only errors
in dependent variables and not in the independent variables.
Using the q estimated coefficients, all 61 data are calcu-
lated, which are labelled as YT = [yt (1) yt (2) . . . yt (61)]T .
Of course, out of these 61 values, [yt (1) yt (2) . . . yt (50)]T

came from the regression and [yt (51) yt (52) . . . yt (61)]T are
time-series predictions for [y (51) y (52) . . . y (61)]T .

It is not known a priori whether the data can be represented
by a finite degree polynomial or a finite order time-series.
The RMS error at (p+ 1) = 5 is 5142, while the RMS error
at q = 2 is 539. Clearly, the time-series representation is
much more accurate. Also, the RMS error at (p+ 1) = 6 is
1711, much smaller than at lower p values, but it is still much
larger than the one from the time-series representation. Figure
9a) depicts all 61 data values (y) in blue, all 61 calculated
values (yp) in red according to polynomial representation at
(p+ 1) = 6 [the first 50 values are from the fit and the
last 11 values are predictions], as well as all 61 calculated
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FIGURE 9. Daily confirmed cases of Covid-19 infections in the UK,
covering the period from 31 January 2020 to 31 March 2020, Figure 9a)
depicts all 61 data values (y) in blue, all 61 calculated values (yp) in red
according to polynomial representation at (p + 1) = 6 [the first 50 values
are from the fit and the last 11 values are predictions], as well as
all 61 calculated values (yt) in green according to autoregressive
time-series representation of order 2 [the first 50 values are from the fit
and the last 11 values are predictions]. Figure 9b) presents the
last 11 data values (y) in blue, the 11 predicted values (yp) in red
according to polynomial representation at (p + 1) = 6, as well as
the 11 predicted values (yt) in green according to autoregressive
time-series representation of order 2.

FIGURE 10. Cumulative daily confirmed cases of Covid-19 infections in
the UK, covering the period from 31 January 2020 to 31 March 2020,
Figure 10 plots data values (y) at n = 2, 3, . . . , 40 in blue, the
corresponding fitted values (yp) in red according to polynomial
representation at (p + 1) = 6, as well as the corresponding fitted values
(yt) in green according to autoregressive time-series representation of
order 2.

values (yt) in green according to autoregressive time-series
representation of order 2 [the first 50 values are from the fit
and the last 11 values are predictions]. To get a closer look
at the predictions, Figure 9b) depicts the last 11 data values
(y) in blue, the 11 predicted values (yp) in red according
to polynomial representation at (p+ 1) = 6, as well as
the 11 predicted values (yt) in green according to autoregres-
sive time-series representation of order 2.

To get a better idea of the fit (and not the predictions)
Figure 10 plots data values (y) at n = 2, 3, . . . , 40 in
blue, the corresponding fitted values (yp) in red according
to polynomial representation at (p+ 1) = 6, as well as
the corresponding fitted values (yt) in green according to
autoregressive time-series representation of order 2.

It is clear that the polynomial representation picks up the
trend of the later data values, but it completely fails for the
first half of the data values. On the other hand, this autore-
gressive time-series of order 2 picks up the trend over the
whole range of the data values. The results confirm that the
UKCovid-19 data are significantly better described by an AR
time-series of order 2 (less RMS error) than a finite degree
polynomial of degree 5 (and others).

F. CASE VI
This is another example of using real data. The dataset rep-
resents cumulative daily confirmed cases of Covid-19 infec-
tions in the US. This dataset is publicly available [39]. On 04
April 2020 there were 25 data (i.e., N = 25) covering the
period from 10 March 2020 to 03 April 2020. Thus y(n) for
n = 1 : 1 : 25 represents the cumulative daily confirmed
cases of Covid-19 infections in the US.

Of these 25 data, the first 15 data are used for estimating
the free parameters and the last 10 data are used for fore-
casting. For a polynomial of the degree p, the first 15 data
are used to estimate the (p + 1) coefficients of the poly-
nomial using the Moore-Penrose inverse in much the same
way as for Case V above. Using these estimated polynomial
coefficients, all 25 data are calculated in a similar manner
to Case V. The YP is a column vector of size 25 × 1 and
YP = [yp (1) yp (2) . . . yp (25)]T . [yp (1) yp (2) . . . yp (15)]T

came from the regression but [yp (16) yp (17) . . . yp (25)]T

are polynomial predictions for [y (16) y (17) . . . y (25)]T .
Similarly, for a time-series of order q, the first 15 data are

used to estimate the q coefficients of the time-series. Each
of these data values depends on the coefficients and earlier
data values. As all data values are error prone, the Total Least
Squares, which takes account of errors in both the depen-
dent and independent variables, is more appropriate than the
ordinary Least Squares, which takes account of only errors
in dependent variables and not in the independent variables.
Using the q estimated coefficients, all 25 data are calculated,
i.e., YT = [yt (1) yt (2) . . . yt (25)]T . Of course, out of these
25 values, [yt (1) yt (2) . . . yt (15)]T came from the regression
and [yt (16) yt (17) . . . yt (25)]T are time-series predictions
for [y (16) y (17) . . . y (25)]T .

It is not known a priori whether the data can be represented
by a finite degree polynomial or a finite order time-series.
The RMS error at (p+ 1) = 4 is 15272, while the RMS
error at q = 3 is 6533. Figure 11a) depicts the 25 data
values (y) in blue, 25 calculated values (yp) in red according to
polynomial representation at (p+ 1) = 4 [the first 15 values
are from the fit and the last 10 values are predictions], as well
as 25 calculated values (yt) in green according to autoregres-
sive time-series representation of order 2 [the first 15 values
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FIGURE 11. Cumulative daily confirmed cases of Covid-19 infections in
the US, covering the period from 10 March 2020 to 03 April 2020,
Figure 11a) depicts the 25 data values (y) in blue, 25 calculated values
(yp) in red according to polynomial representation at (p + 1) = 4 [the
first 15 values are from the fit and the last 10 values are predictions],
as well as 25 calculated values (yt) in green according to autoregressive
time-series representation of order 2 [the first 15 values are from the fit
and the last 10 values are predictions]. To get a closer look at the
predictions, Figure 11b) shows the last 10 data values (y) in blue,
the 10 predicted values (yp) in red from polynomial representation at
(p + 1) = 4, as well as the 10 predicted values (yt) in green from
autoregressive time-series representation of order 3.

FIGURE 12. Daily confirmed cases of Covid-19 infections in the US,
covering the period from 10 March 2020 to 03 April 2020, Figure 12a) and
Figure 12b) are for (p + 1) = 5; otherwise, they can be similarly described
as in Figure 11, except for a different value of (p + 1).

are from the fit and the last 10 values are predictions].
To get a closer look at the predictions, Figure 11b) shows the
last 10 data values (y) in blue, the 10 predicted values (yp) in
red according to polynomial representation at (p+ 1) = 4,
as well as the 10 predicted values (yt) in green according
to autoregressive time-series representation of order 3. RMS
errors increase for other choices of (p+ 1) values. Clearly,
the time-series representation is much more accurate.

Looking for better results with a higher degree of polyno-
mial, the RMS error at (p+ 1) = 5 is found to be 34692,
which is significantly larger than the value from time-series
representation at q = 2. Figure 12a) and Figure 12b) for
(p+ 1) = 5 can be similarly described as Figure 11 for
(p+ 1) = 4. The results confirm that these US Covid-19
data are significantly better described by an AR time-series
of order 3 than a finite degree polynomial of degree 3 (and
others).

Table 2 provides a summary of these six cases. Data
from a polynomial of finite degree can be represented
equally well by a finite degree polynomial as well as a
finite order time-series with specific integer coefficients,
while data from other sources are represented significantly
better by time-series representations. In many cases, finite
order time-series can theoretically represent data from infi-
nite order polynomials extremely well. Therefore, whenever
the knowledge of the polynomial coefficients is not neces-
sary in an application, one may choose to use time-series
representation.

V. TIME-SERIES WITH OTHER COEFFICIENTS
It has been demonstrated in sections II and III that all data
from polynomials of finite degree q can be perfectly rep-
resented by a time-series of order q, if µ is not zero. The
coefficients of such time-series are always integers of a spec-
ified form. Below are demonstrated what time-series with
other forms of coefficients (either non-integers or integers of
different forms) represent.

The equation (2) is called non-homogeneous if µ in equa-
tion (2) is not zero [40], [41]. Then equation (2) can be
combined with its equivalent form

y (n− 1) =
q∑
i=1

a (i) y (n− 1− i)+ µ (34)

to obtain (by replacing µ)

y (n) =
q+1∑
i=1

(a (i)− a (i− 1)) y (n− i) (35)

with a (0) ≡ −1 and a (q+ 1) ≡ 0. This is a homogeneous
equation. The corresponding characteristics polynomial has
(q+ 1) roots, i.e., z (1) , z (2) , . . . , z (q+ 1). When these
roots are distinct,

y (n) = b (1) z (1)n + b (2) z (2)n + . . .

+b (q+ 1) z (q)n (36)

On the other hand, when there are repeated roots, the
solution is different. For only two repeated roots, e.g.,
z (1) = z (2) = z,

y (n)=b (1) zn+b (2) nzn+b (3) z (3)n+. . .+b (q+1) z (q)n

(37)

Each of these two solutions in equations (36) and (37)
describes polynomials of infinite degrees. Hence, finite
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TABLE 2. Summary of six cases.

order time-series with other forms of coefficients (either
non-integers or integers of different forms) represent poly-
nomials of infinite degrees.

A. EXAMPLE I
In case II above, N data were generated from a sine wave

y (n) = sin(2πn/16), for n = −17 : 1 : 17.

Fitting y (n) = a (1) y (n− 1)+a (2) y(n−2) to the first 4 data
values, it was found that a (1) = 1.8478 and a (2) =
−1.000. These give rise to the characteristic polynomial
of z2 − 1.8478z + 1 = 0. The two roots are given by
z (1) = 0.9239 + 0.d3827j and z (2) = 0.9239 − 0.3827j.
As these two roots are distinct, the solution is given by y (n) =
b (1) z (1)n + b (2) z (2)n. Since y (0) = 0, b (1) = −b (2).
Also, since y (4) = 1, b (1) = −0.5j. So,

y (n) = −0.5j (0.9239+0.3827j)n+0.5j (0.9239−0.3827j)n

= − 0.5j
(
exp

(
2π
16

))
+ 0.5j

(
exp

(
−
2π
16

))n
= sin(2πn/16)

This demonstrates how a time-series of order 2 can represent
perfectly this sine wave which is a polynomial of infinite
degree.

B. EXAMPLE II
Here N data are generated from a non-polynomial

y (n)=1−2n−3n (n− 1)+ (0.5)n , for n=−17 : 1 : 17.

Fitting y (n) = a (1) y (n− 1) + a (2) y (n− 2) + a (3) ∗
y (n− 3) + a (4) y(n − 4) to the first 8 data values, it is
found that a (1) = 3.5, a (2) = −4.5, a (3) = 2.5, and
a (4) = −0.5. These give rise to the characteristic polynomial
of z4−3.5z3+4.5z2−2.5z+0.5 = 0. The four roots are given

by z (1) = z (2) = z (3) = 1 = z and z (4) = 0.5. As these
are three repeated roots, the solution is given by y (n) =
(b (1)+ b (2) n+ b (3) n (n− 1)) (+1)n+b (4) (0.5)n. Using
the first 8 data values, it can be shown that b (1) = 1, b (2) =
−2, b (3) = −3, and b (4) = 1. Therefore, y (n) = 1− 2n−
3n (n− 1)+ (0.5)n.
This is yet another example of how a finite order

time-series (in this case of order 4) can represent perfectly
this polynomial of infinite degree.

VI. ALL-POLE FILTERS AND POLYNOMIALS
In this section a connection between polynomials and all-pole
filters is demonstrated.

A. POLYNOMIALS AND ALL-POLE FILTERS
It is well known that AR time-series models can be realised
with all-pole filters. It has already been proven in Section III
that all polynomials of finite degree of q can be represented
by AR time-series of order q (as in equation (2)). Using
z-transform, equation (2) can be written as

Y (z) = µ/(1−
q∑
i=1

a (i) z−i)

and it has been proven in Section III that

a (i) = (−1)i+1
( q
i

)
for i = 1, 2, . . . , q. So, the denominator polynomial can now
be written as

1−
q∑
i=1

(−1)i+1
( q
i

)
z−i

1+
q∑
i=1

(−1)i
( q
i

)
z−i =

(
1− z−1

)q
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Therefore, all polynomials of finite degree q map onto z = 1
on the z-plane by its q repeated roots.

B. OTHER ROOTS ON THE UNIT CIRCLE
All roots on the unit circle away from z = −1 and z = 1 are
complex. For a real-valued time-series, complex roots come
in complex conjugate pairs. Consider just one such pair for
illustration, i.e.,
z (1) = e−jθ and z (2) = e+jθ . Thus, y (n) = b (1) z (1)n +

b (2) z (2)n = b (1) e−jθn + b (2) e+jθn. Since y (n) is real-
valued, either b (1) = b(2) ≡ b and y (n) = 2b cos (θn),
or b (1) = −b (2) ≡ −b/j and y (n) = 2b sin (θn). Therefore,
each pair of complex conjugates roots represent either a
cosine or a sine, which can be described by an AR time-series
of order 2 instead of a polynomial of infinite degree. The
corresponding time-series coefficients are a (1) = 2 cos (θ)
and a (2) = −1.

C. OTHER COMPLEX CONJUGATE ROOTS NOT ON THE
UNIT CIRCLE
Again, for a real-valued time-series, complex roots come in
complex conjugate pairs, consider just one pair for illustra-
tion, i.e., z (1) = βe−jθ and z (2) = βe+jθ , with 0 <

β < 1. In this case, y (n) = b (1) z (1)n + b (2) z (2)n =
b (1) βne−jθn+b (2) βne+jθn. Since y (n) is real-valued, either
b (1) = b(2) ≡ b and y (n) = 2bβn cos (θn), or b (1) =
b (2) ≡ −b/j and y (n) = 2bβn sin (θn). Therefore, each
pair of complex conjugates roots represent either a damped
cosine or a damped sine, which can be described by an
AR time-series of order 2 instead of a polynomial of infi-
nite degree. The corresponding time-series coefficients are
a (1) = 2βcos (θ) and a (2) = −β2.

D. REAL ROOTS BETWEEN -1 AND +1
Let −1 < z (1) , z (2) , z(3) < 1 be the three distinct roots
of the denominator polynomial. Then y (n) = b (1) z (1)n +
b (2) z (2)n + b (3) z (3)n. This can be described by an AR
time-series of order 3 rather than a polynomial of infinite
degree.

On the other hand if −1 < z (1) , z (2) , z(3) < 1 be
the three repeated roots of the denominator polynomial, i.e.,
z (1) = z (2) = z(3) ≡ z. In that case y (n) = zn[b (1) +
b (2) n + b (3) n (n− 1)]. This is another example of a finite
order AR time-series representing data that requires a poly-
nomial of infinite degree.

The two lessons are:
1) All polynomials of degree q can be represented by an

all-pole filter with q repeated roots (or poles) at z = +1.
2) Data representable by finite order all-pole filters,

whether they are from finite degree or infinite degree
polynomials, can be described by a finite order AR
time-series.

VII. CONCLUSION
Two of the data modelling techniques are polynomial repre-
sentation and time-series representation. In this paper, all the-
oretical studies to explore their connections and differences

have been based on uniformly sampled data in the absence
of errors. It has been proven that all data from an underlying
polynomial model of finite degree q as in equation (21) can
be represented perfectly by either a polynomial of degree q or
an autoregressive time-series of order q and a constant term.
Also, it has been proven that all polynomials of degree q can
be described by the same set of time-series coefficients with
the only possible difference being in the constant termµ as in
equation (2). These time-series coefficients are integers of a
specific form. It was also demonstrated that time-series with
either non-integer coefficients or integer coefficients of not
the specific form represent polynomials of infinite degree.
Explorations, in four cases with generated data and in two
cases with real data, demonstrated that, while finite degree
polynomial and finite order time-series representations are
equally good for data following finite degree polynomial
forms, finite order autoregressive time-series representations
offer significant advantages in modelling data from other
sources. All polynomials of degree q can be represented by
an all-pole filter with q repeated roots (or poles) at z = +1.
Theoretically, all data representable by a finite order all-
pole filter, whether they come from finite degree or infinite
degree polynomials, can be described by a finite order AR
time-series. If the values of polynomial coefficients are not
necessary in an application, one may choose to use finite
order time-series representations as they are more general
than finite degree polynomial representations.
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