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Abstract—Recent neurophysiological studies discovered the 

sparse rotational patterns in the dynamics of neural population 

during motor control. In this work, we show that a computational 

model guided by the dynamical system theory of motor coding can 

successfully generate the similar network behaviors as found in the 

electrophysiological studies. The RNN-based model learns the arm 

reaching control policy from self-generated movements. Essential 

biomechanical and neural properties including multiphasic neural 

response and the sparse rotation naturally emerge after training 

for the movement control tasks. The temporal dynamics in the 

trained network is analyzed to illustrate how the sparse rotational 

patterns correlate to the generalization capability of the control 

policy. We find that the trial-and-error motor learning, which 

naturally brings in the generalization capability, lead to the 

existence of low-dimensional manifold in the population dynamics 

of the motor network. 

Index Terms—Motor learning and encoding, motor primitive, 

motor cortex, brain-like computation, arm action. 

I. INTRODUCTION

Motor learning and control are of vital importance to the 

survival of living organisms. It has been speculated that higher-

order cognition of human brain is embedded in the sensori-

motor coordination during the interaction between humans and 

the outside environment [1, 2]. In the past decades, motor 

learning for encoding of human actions has received intensive 

studies from fields of both neuroscience and engineering (e.g. 

robotics and prosthetics) [3, 4]. In particular, the computational 

modeling provides a qualitatively representative method for 

testifying various hypotheses for motor learning and control.  

A. Background

Recent neuroscience findings have suggested the presence of

the dynamical system in the neural population of motor cortices 

[17]. The evidence supports that the neural activities can be 

explained with the underlying dynamics of neural population 

and the motor command can be extracted from the internal 

dynamics of the motor network, which is opposite to the 

traditional view that the neural activities in the motor cortices 

represent the kinetic parameters of the movements (Fig. 1A). 

Under dynamical system framework, the movement generation 

is ruled by temporal evolution or state trajectories of 

combinational activity of neural population (Fig. 1B) [15-20]. 

The internal dynamics of the motor cortex can be developed 

autonomously without the sensory stimulation. It thus can 

functionally form a motor primitive in a manner of central 

pattern generator (CPG) [21]. 

Traditional kinematic models [10, 11] have been proposed 

for learning and producing of movement trajectories to instruct 

the design of optimal control theory [3, 5, 6] and reinforcement 

learning [7-9]. These previous models relate the control signal 

to the specific task parameters, thus in general they do not have 

the power of reusing and generalizing the movements within 

the same motor pattern. With movement trajectory changes 

from time to time, they have to re-plan each trajectory even 

though these trajectories can be categorized to the same action 

pattern, in another word, the same motor primitive. 

Fig. 1. Two theoretical paradigms for motor generation. A. The representational 

framework of motor coding. B. The dynamical system framework of motor 

coding. 

In this paper, we propose a neural computation model that 

incorporates the cortical motor coding mechanisms for robotic 

motor control. The model exploits a recurrent neural network 

(RNN) equipped with the neural coding mechanism to 

implement a transformation from the task information to the 

time varying motor commands. By examining the neural 

activities in the model network, the dynamical system 

hypothesis of neural coding in motor cortices can be verified. 

In addition, the activities reconstructed in this model can be 

further analyzed to interpret the origin of the dominant features 

in the real neural activities. 



B. Related work  

Previous computational models that take RNN dynamics into 

account for motor generation have captured the behaviors of 

motor network successfully [29-32]. Studies in [30] 

demonstrates that the stability-optimized circuits (SOC) could 

be exploited to illustrate the multiphasic responses of individual 

neurons in physiological studies. They attributed the 

multiphasic activity during motor execution as the transient 

dynamics or selective amplification from the perspective of 

sensory responses, a feature that was a natural consequence of 

SOC. Other studies [31, 32] also showed that a RNN trained to 

generate EMG activities, which were directly recorded from 

three muscles, displayed both similar activity in both the 

individual neuron level and rotational patterns at the population 

level. 

However, in the previous studies, the muscle activation signal 

or end-effector trajectory is required in advance for model 

training. The models in [31,32] is trained to output the EMG 

signals of individual muscles in the limited conditions. The 

low-dimensional structure of internal dynamics is achieved by 

introducing an important regularization term that penalizes 

unnecessarily complicated state-space trajectories. On contrary, 

the motor network in our study is trained with the self-generated 

movements. The RNN architecture in our model is adapted in 

the manner of trial and error, i.e., the network parameters are 

optimized to minimize the control error. So the correlation 

between the controlling performance and the network dynamics 

can be further investigated. 

There have also been similar methods applying the idea of 

generating movement trajectory from the goal parameters [34], 

among which the dynamical movement primitives (DMP) 

method has been extensively used in motor control studies [12-

14]. DMP generates movement trajectories in the manifold of 

movement space such that the solution space can be constrained 

within a small number of dimensions. The DMP architecture 

solves the problem of movement path planning, but leaves the 

process of producing the motor actuation unsolved. An 

additional controller module should be used to generate the 

control commands. This is inconsistent with the neural 

mechanism of motor control, where the neural activities in the 

primary motor cortex directly drive the muscle activation [3]. 

Also, in DMP the dynamical system for planning the movement 

trajectories is further determined by the evolution of the 

canonical variable that represents the phase of the movement by 

the first-order decaying dynamics. Therefore, the canonical 

variable is updated without the system state [12]. This is not 

congruent with the motor coding mechanism where the neural 

state is determined by the internal dynamics of the neural 

population [15, 16]. More importantly, encoding the motion 

trajectories of actions means that a learnt neural coding or 

neural activity pattern in motor cortex from one action mode 

cannot be re-used for the different trajectories even they can be 

actually performed using the same motor primitive. 

Consequently, until now despite of these previous great efforts 

devoted to the issue of action learning and control, there has 

been still a big gap between the brain’s neural encoding 

mechanism of motor learning and the computational models to 

address this issue. 

C. Contributions of current study 

The main contribution of this work can be summarized as 

follows. First, we construct a computational model for arm 

reaching that incorporates the recently discovered dynamical 

system mechanism of motor coding, which learns the control 

policy from self-generated movements.  

Second, using the recently developed jPCA method [16], the 

low-dimensional manifold in the population activity can be 

extracted. The learned network exhibits similar features with 

that of neurophysiological studies, thus provides computational 

evidence for the dynamical system hypothesis of motor coding. 

Third, we further identify the relationship between the 

control performance and the sparse oscillation in the network 

activities. It can be testified that the presence of the sparse 

oscillation is correlated with the capacity of the generalization 

of the control policy. 

Finally, the motor network transforms the spatial information 

of the kinematic parameters into the time-varying control 

commands, which could be a promising building block for 

compound movement control. For example, by switching the 

high-order command fed into the motor network, the motor 

network can exert compound controlling commands. 

Section II introduces the details of the plant dynamics and the 

architecture and learning procedure of the controlling network. 

The training performance as the biomechanical control is 

validated in section III, before the neural activities are 

qualitatively compared to the real neural responses in section 

IV. The sparse rotation is verified and how it contributes to 

motor control generalization is also shown in section IV. A brief 

conclusion, significance in related areas of the model and 

direction for future work are given in section V. Section VI is 

the appendix which mainly depicts the arm model. 

 
Fig. 2. The causal flow of motor behavior from internal units to the arm plant.  

 

II.  NETWORK MODEL 

The overall architecture of the neuromusculoskeletal model 

is depicted in Fig. 2. It models the generation of the arm 

movement driven by the neural activities. The arm 

biomechanics is further divided into muscular and skeletal 

systems. That is, the neural read-out signals drive muscle 

actuators, and the muscle contraction in turn causes the joint 

torques for the two-link arm motion. 

A. Architecture and Learning of the internal network 

The internal recurrent neural network serves as a neural 

controller, which transforms the sensory input and the 

descending higher-order command into the muscle commands. 



This internal network corresponds to the cortical circuits of 

primary motor cortex (M1) and dorsal premotor areas (PMd) 

that have direct control of periphery muscle through the cortico-

spinal projections. Due to the reciprocal connection in the M1 

and PMd areas, we choose the RNN architecture to model the 

cortical motor circuits. Additionally, RNN allows the internal 

circling within the network, which can provide the rich internal 

dynamics suitably for temporal processing. This feature 

exempts this model from the necessity of external feedback, 

which is of little interest because the delay is comparable to the 

movement duration [23]. 

 As shown in Fig. 2, the RNN consists of 100 inter-

connected units which receive the sensory input for the start and 

target positions and the mandatory input for velocity. The 

command input remains still and neural state converges to a 

stimulus-specific state by the end of this stage. When the 

command input is withdrawn, the RNN evolves by its own and 

projects to 6 output units for 6 muscle activations respectively.  

In the movement stage, the real-time sensory and 

proprioceptive feedback is absent [22], and only the internal 

dynamics of neural population contributes to the control signal. 

The command input that describes the target position is 

converted to spatial representation, i.e., points on a grid are 

activated according to their distance from the goal coordinates.  

The activation of internal units 𝑟(𝑡) is ramped by the 𝑡𝑎𝑛ℎ 

function:  

 

r(t) = tanh(Wi ∙ [s(t) I]
T +Wr ∙ r(t − 1)) (1) 

 

The recurrent connections are modified based on the error of 

motor babblings. Penalty terms and regularities are 

incorporated in to prevent the neural and muscle activities from 

growing too much, thus the model is optimized while keeping 

the recurrent connection and internal activity small. The muscle 

activity is read out from the internal network with a sigmoid 

function: 𝑢(𝑡) = 𝜎(𝑊𝑜 ∙ 𝑟(𝑡)),  where 𝑊𝑜  is the projection 

weight, which extracts the output units from internal dynamics. 

The sigmoid function ensures the positivity of the muscle 

activation. The muscle activations generated in this network are 

used to drive the simulated arm model.  

The network parameters are tuned to minimize the error 

between the target state and the final state resulted from the self-

generated movement (the inverse arrow from the controlled 

plant to the network). The input and output weights are fixed 

while the recurrent weights are learnt. The cost function is the 

error between the target state 𝑋∗(𝑇) and the final state 𝑋(𝑇), 

in addition to the penalty terms related to the muscle 𝛼(𝑡) and 

neural activities 𝑟(𝑡)  (reflecting the energy cost during 

movement) : 

𝐽𝑐 =
1

2
∑ {𝛿(𝑡 − 𝑇) ∙ (𝑋∗(𝑇) − 𝑋(𝑇))

𝑇
𝑅𝑋(𝑋∗(𝑇) −𝑇

𝑡=1

𝑋(𝑇)) + 𝑙𝑐(𝑅
𝛼(𝛼(𝑡)), 𝑅𝑟(𝑟(𝑡)))}  (2) 

 

subject to the forward model of both the network unit activity 

and the state update: 

 

[
�̇�
�̇�
𝑢

] = 𝜎([

𝑀𝑋(𝑡)

[𝑊𝑖  𝑊𝑟]

𝑊𝑜

] [

[𝑋(𝑡) 𝛼(𝑡)]𝑇

[𝑟(𝑡) 𝑐(𝑡)]𝑇

𝑟(𝑡)

]) (3) 

 

where 𝐽𝑐  indicates the cost function under 𝑐 -th condition 

(goal position, movement duration). Equation (3) gives the 

integrated form of the updating of arm state, neural state and the 

muscle activation. 𝑀(𝑡) is the linearized approximation of the 

plant dynamics f(X(t), u(t))  at moment 𝑡 ,where X(t)  and 

u(t) are the arm state and muscle input. 𝑊𝑖, 𝑊𝑟, and 𝑊𝑜 is 

the input, recurrent and output weights respectively. The overall 

cost consists several terms of penalties, where (𝑋∗(𝑇) −

𝑋(𝑇))
𝑇
𝑅𝑋(𝑋∗(𝑇) − 𝑋(𝑇)) measures the postural deviation of 

final time point in the intrinsic coordinate frame. 𝑅𝛼 =

(𝛼(𝑡)𝑇𝛼(𝑡)) is the accumulation of muscle activity during the 

motion execution, that prevents the growing too much. Similar 

penalty goes with the neural activity for generating the muscle 

activation signal by incorporating the term 𝑅𝑟 = (𝑟(𝑡)𝑇𝑟(𝑡)). 
We adopt Hessian-free optimization (HF) to tackle the 

notorious pathological curvature problem in RNN training [24]. 

HF is a second-order optimization method. The RNN is first 

unfolded through time and then trained with HF. It is intractable 

to derive an analytical form of the cost function with respect to 

the network parameters (the internal weights). Instead, the 

Gauss-Newton matrix is used as an alternative to the Hessian 

matrix. The additional benefits are that it can be acquired 

numerically and is intrinsically positive semi-definite. The 

Gauss-Newton matrix is derived for every batch of 64 samples 

and each sample consists of the neural states, dynamics of the 

plant arm and their gradients with respect to the learning 

parameters at every moment in the reaching movement. For 

each batch (64 reaches), the Gauss-Newton matrix is updated 

and conjugate gradient (CG) is performed accordingly. During 

the CG iteration, the product of the Gauss-Newton matrix and 

searching direction vector is obtained via Schraudolph's 

technique for fast curvature matrix-vector product [25].  

B. Gradients of cost function through trajectory 

The Gauss-Newton matrix is acquired from the gradients of 

cost function through the motion trajectory, as in Stroeve's 

method for nonlinear control [26]. During each reaching, the 

kinematic states of the arm plant are updated forwardly to the 

final step, and the gradients are derived backwardly.  

The arm state 𝑋 = [𝜃1, 𝜃2, �̇�1�̇�2]  is the concatenation of 

kinematic and muscle activations states, where 𝜃𝑖 is the 𝑖-th 

joint angle, 𝜃�̇�  is the angular velocity of the 𝑖-th joint. The 

gradients of the cost function with respect to network weights 

at each moment through the whole motion trajectory are derived 

as following: 

 

{
 
 

 
 

𝜕𝐽

𝜕𝑋(𝑇)
=
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The elements of matrix 𝜕𝑅(𝑘)/𝜕𝑋(𝑘)  and 𝜕𝑅(𝑘)/𝜕𝛼(𝑘) 
are the partial derivatives of penalty term with respect to arm 

state the muscle activation respectively. The partial derivatives 

𝜕𝑋(𝑘 + 1)/𝜕𝑋(𝑘) and 𝜕𝑋(𝑘 + 1)/𝜕𝛼(𝑘)  reflect forward 

dynamics with the Eular integration method:  

 

{
 
 

 
 
𝜕𝑋𝑖(𝑘+1)

𝜕𝑋𝑗(𝑘)
= {

1 + ∆𝑡 ∙
𝜕𝑓𝑖(𝑋(𝑘+1),𝛼(𝑘))

𝜕𝑋𝑗(𝑘)
𝑖 = 𝑗

∆𝑡 ∙
𝜕𝑓𝑖(𝑋(𝑘+1),𝛼(𝑘))

𝜕𝑋𝑗(𝑘)
𝑖 ≠ 𝑗

𝜕𝑋𝑖(𝑘+1)

𝜕𝛼𝑗(𝑘)
= ∆𝑡 ∙

𝜕𝑓𝑖(𝑋(𝑘+1),𝛼(𝑘))

𝜕𝛼𝑗(𝑘)

 (5) 

 

Finally the gradient of the cost function with respect to the 

network weights can be obtained with: 

 
𝜕𝐽

𝜕𝑊(𝑘)
= (

𝜕𝑢(𝑘)

𝜕𝑊(𝑘)
)
𝑇

(
𝜕𝛼(𝑘)

𝜕𝑢(𝑘)
)
𝑇 𝜕𝐽𝑐

𝜕𝛼(𝑘)
 (6) 

 

III. PERFORMANCE OF MOTOR CONTROL  

As shown in Fig. 3, the motor network successfully learns to 

generate movements though the internal dynamics. The 

controlling commands are optimized to solve the inverse 

dynamics problem of the limb control. During training, the 

simulated arm is controlled to move its hand to random targets, 

and the controller network is modified to reduce the motor error.  

The RNN controller learnt by HF has a comparable 

performance with the classic trajectory optimization method 

such as iterative Linear Quadratic Regulator (iLQR). This is 

intuitive since both HF and iLQR are based on the second-order 

optimization. An advantage of the HF-learnt RNN controller 

over the trajectory optimization-based methods is that it can 

generalize the control policy to untrained targets.  

After being trained for random reaches confined in the 

working space, the model is instructed to conduct the same 

center-out reaching tasks as the typical delayed movement 

generation tasks in the monkey studies [16]. Important 

biomechanical and neural properties of arm reaching 

movements have been captured after training. Specifically, it 

generates relatively straight hand trajectories and bell-shaped 

velocity profiles (Fig. 3A and Fig. 3B). Velocity profiles are 

insensitive to the movement amplitude and direction. These 

features are in consistency with findings of biomechanical 

experiments in literatures [27]. The analysis is conducted in a 

250-ms duration of the movement execution. This time period 

translates to 25 time steps in the simulation with each time step 

accounting to a 10-ms bin in the primate experiments.  

 

Fig. 3. The performance of the arm control in the center-out task. A. Trajectories 

of the end effector in the test. D. Velocity profiles of the reaching movements 

in different directions.  

 

IV. NEURAL RESPONSES AFTER TRAINING 

After the validation of the model for generating movements, 

we examined the neural activation of the internal network. For 

each control task, the activation of all units is “recorded” for the 

analysis. The model qualitatively captures the prominent 

features that are found in the neurobiological studies, 

specifically, the multiphasic waveforms of individual units, the 

collective rotation of population activities, and the low-

dimension structure or the sparseness of the oscillatory patterns 

in population dynamics. 

A. Neural responses during motor preparation and execution 

The activity of motor network is driven by the instruction 

inputs, and then evolves on its own to generate the motor 

patterns. We refer the two stages as motor preparation and 

execution, following the routines in the monkey experiments. 

During preparation, the simulated arm is maintained at the 

initial posture. The instruction contains the target position of the 

reaching movements. The coordinate of the target position is 

transformed to the activation map of units on a mesh grid, thus 

the input dimension is increased to the number of grid units, 

121. By the end of preparatory stage, the population state of the 

RNN units converges to certain points in the state space. These 

stable states in the preparatory phase are, in turn, the initial 

states of dynamical evolution during the execution phase. 

 
Fig. 4. The multiphasic activation of internal units for 32 reaches. 

B. Multiphasic activities of individual neurons 

The activities of individual unit across all conditions 

qualitatively captures the similar dynamics with the waveforms 

recorded from the M1 neurons. Neural activation shows the 

similar multiphasic responses during autonomous evolution for 

different trials in the individual level. The resemblances include 

the fork-shaped preparation activities and multiphasic 

oscillations during execution. Starting from zero activity, the 

activation of individual units exerts divergent trajectories under 

the stimulation of static input, before asymptotically achieving 

a stable value respectively (Fig. 4). There is a smooth transition 



through different orientations, which is crucial to the 

generalization capability.  

 
Fig. 5. Rotational trajectories of the internal network for 32 different conditions. 

The neural activities during movement execution are projected to the plane of 
the strongest pair of jPCs. 

 

C. Multiphasic activities of neuron population 

For the population level dynamics, we conduct jPCA on the 

neural activities of internal network during movement, which 

has found the consistent rotational structure in collective 

activities [16] (Fig. 5). The rationale behind this newly 

developed method is that the temporal processing can be 

embedded in the network dynamic profiles. The state 

trajectories in different trials undergo a coherent transformation: 

a rotation with the same angular velocity. Different kinematic 

parameters correspond to different initial phases and amplitudes. 

The neural data recorded from the simulation of the first 6 

principle dimensions are prepared for the jPCA analysis, which 

can be seen as an approximation of the neural activity data with 

a linear dynamical system, under the constraint of rotational 

transformation. State rotation is achieved with the skew matrix 

in linear algebra, thus the analysis reduces to the estimation of 

the elements of the skew matrix. In current model, the 

derivative of neural responses �̇�(𝑡) is fitted with a skew matrix 

as �̇�(𝑡) = 𝑀𝑠𝑘𝑒𝑤 ∙ 𝑟(𝑡). The transition matrix is constrained to 

be skew-symmetric (𝑀𝑠𝑘𝑒𝑤 = −𝑀𝑠𝑘𝑒𝑤
𝑇 ) so that it only has 

imagery eigenvalues, which correspond to rotational 

transformation. The search of the dominant state rotation thus 

reduces to the estimation of the elements of the skew matrix. In 

our result, the rotation captures 52% of the neural variance of 

the internal network. The corresponding frequency captured by 

the first pair of jPCs is 2.4 Hz (with the first pair of eigenvalues 

0.140𝑖and -0.140𝑖). Also, an unconstrained transition matrix 

𝑀𝑢𝑛𝑐  is fitted for comparison: 𝑟(𝑡) = 𝑀𝑢𝑛𝑐 ∙ 𝑟(𝑡) . The 

similarity between the two transition matrices reflects to what 

extend the rotational dynamics has contributed to the variance 

of the overall dynamics. Both the skew matrix and the 

unconstrained transition matrix are then used to generate the 

changes of neural state, and contribute to the “recorded” neural 

date (reserved in 6 principle dimensions). 

 

Fig. 6. Eigenvalue analysis of the weight matrix of internal network (left panel) 

and state transition matrix derived from the population activity (right panel).  

 

D. Sparseness of the oscillation activities 

As discovered in [16], the variance of neural activity can be 

accounted by the rotations in first few pairs of jPCs. Only sparse 

frequencies, which can be discovered by a few strongest 

rotations that contribute to the variance most, are sufficient for 

the construction of neural activation (right panel of Fig. 6). We 

further examined the eigenvalues of the connectivity matrix and 

the linearly fitted unconstrained matrix, to verify the low-

dimensional activity underlying the neural data. The 

frequencies of these rotations can be also derived from the 

eigenvalues of the weight matrix Wr of the internal network in 

Eq. (1), albeit the non-linearity of unit stimulation function 

(hyperbolic tangent function). The recurrent weight matrix only 

has only a relatively small number of frequencies which are 

prominently active, with their real part near zero (left panel of 

Fig. 6). The imagery part of the eigenvalues is proportional to 

the frequency of the contributing rotation, while the absolute 

value of real part implies the decaying rate. The eigenvalues 

with real part near zero correspond to the sustaining oscillations. 

The eigenvalues of the unconstrained transition matrix are 

shown as a comparison with the connectivity matrix in the right 

panel of Fig. 6. 

The sparse frequency oscillation emerges as the optimal 

solution for the robustness of generating the desired patterns. In 

other words, a network with delicate and often complicated 

dynamics, which also reduces the error and achieves the motor 

tasks, would be sensitive to the perturbations of either unit 

activity or synaptic strength. The weight adaptation with the 

cost gradient naturally causes a modification to previously 

existing oscillations. Due to this continuity, the dramatic 

change of internal state induced by weight modification during 

training can be avoided. From this perspective, simple 

oscillations could survive the plasticity changing, thus provides 

a strong candidate that can generate locally stable patterns. 

E. Inverse engineering the internal dynamics 

In our model, the continuity of neural activities in motor 

network across different movements contributes to the 

generalization capability. Specifically, the gradients comes 

from the randomly generated motor tasks. The task 

performance naturally requires the extrapolation of the network 

dynamics from the already-trained reaching movements. 

Therefore, the effect of generalization capability in this model 

can be seen as a regularization. 

We conduct an experiment to verify the correlation between 

the generalization capability and the sparseness of the neural 

oscillation. The results of the comparison between the 

generalization performance of the oscillation generators with 

sparse and disperse frequencies respectively have confirmed 

that sparsity enhances the generalization capability of control 

(Fig. 7). The generalization capability is measured by the 

difference between root-mean-squared-error of testing and 

training (RMSE). For the sparse internal activity, we use the 

dominant frequencies found by jPCA, and for the disperse 

activity we use oscillation generators with frequencies ranging 

from 0.2 to 10 Hz. The oscillation generators are simulated 



using the model described in work [28], where rotation matrices 

are constructed from polar-decomposed components with 

assigned eigenvalues. Because the eigenvalues are arranged in 

pairs, the superimposed rotation thus contains 50 frequencies. 

Composition of sparse oscillations maintains the continuity of 

internal activities across different tasks. On contrary, from 

composition of disperse oscillations, only meticulously crafted 

control policies can be extracted, which cannot be flexibly 

translated to untrained movements.  

 
Fig. 7. Generalization capability of the oscillation generators with sparse and 

disperse dynamics. The generalization capability is measured by the 
discrepancy between root-mean-squared-error (RMSE) of testing and training. 

Despite that the trained RMSE of the oscillation generator with disperse 
rhythms has a more dramatic decay than those with sparse frequencies, the latter 

one shows lower errors in the test mode. 

 

The regularization for generalization capability on the 

network learning plays a key role in the sparsification of the 

network dynamics, and thus can be a supportive factor 

contributing to the occurrence of low-dimensional manifold in 

the high-dimensional population activities of the motor network. 

The model is inverse-engineered to verify the computational 

influence of the architecture and learning procedure of the 

internal network on the simulated arm behavior. We examine 

the relationship between the changes of network dynamics and 

structure. We test the filtering effect of the network 

connectivity on the network activity. A correlation analysis on 

the unit responses is conducted when they are stimulated by the 

sine waves of various frequencies. This stimulation is 

implemented by clamping the activities of some units into sine 

waves of the same frequency but different phases, by which 

other units in the network are stimulated to generate collective 

dynamics. After running this procedure several times over the 

same connectivity of the network, each with a different 

frequency, the correlations across internal units can be plotted 

against the stimulation frequency. As shown by the spectrum 

patterns of neural response, the internal network only resonates 

to specific frequencies that are most relevant to the output 

signals under the trained connectivity. The response shows a 

frequency preference given a specific connectivity, suggesting 

that the interplay between internal units under the optimized 

connectivity generates the most relevant oscillations for the 

construction of output signal while filtering out the un-tuned 

ones to sustain the rhythmic activity as locally stable dynamics 

(Fig. 8) 

 
Fig.8 Frequency spectra for network activities of trained connectivity under 

stimulation of different frequencies.  

 

Furthermore, the factors of the learning procedure to achieve 

the movement control are also explored. Only a subset of 

network weights in the architecture is learnt. One tenth of the 

total are modified during each CG iteration. Obviously, 

optimization to a specific part of weights can significantly 

reduce the computing load. And partially tuning the weights, 

can largely reserve the network dynamics, thus will not severely 

harm the reaching accuracy. Additionally, adding noise to the 

network activity helps to improve the control robustness. The 

network activities that are sensitive to the activity noises are 

eliminated, while those that are robust to the structural change 

are remained. The operation achieves similar effect to the 

regulation terms that penalize weight change to result in 

dramatic activity change. 

The motor network is also trained to eliminate the output 

during movement preparation. This is biologically necessary, as 

the EMG signal shows that muscles remain inactivated before 

movement [16]. Limiting the output ensures that the population 

state evolves within the null space of the readout weights [18]. 

Moreover, the suppression on the output activation is, to some 

extent, transformed to the penalty in the internal unit activity, 

so that it indirectly poses a stabilizing effect on the network and 

strengthens the innately decaying tendency of neural activities. 

This is in agreement with [30] in which stabilization during 

preparation gives rise to the transient dynamics after the change 

of the instruction input. 

V. DISCUSSION 

A. Conclusion 

A computational model proposed in this study, which exploits 

the dynamical system theory of motor coding, successfully 

reproduced the essential features observed in biological motor 

control, including multiphasic activities of neural response and 

the rotational structure of population dynamics. The temporal 

dynamics in the trained network is analyzed to illustrate how 

the sparse rotational dynamics correlates to the generalization 

capability of the control policy. We find that the trial and error 

learning plays a key role in the occurrence of the low-



dimensional manifold of the network dynamics in the high-

dimensional population activities. 

B. Emergence of oscillatory Activities 

Oscillatory activities widely exist in the inter-connected 

architectures [35]. In this study, it has been shown the rhythmic 

patterns are not only a product of recurrent connections, but also 

provide a flexible solution to the control policy of multiple tasks. 

From this perspective, it is the computational advantage that 

makes the oscillations as the “pattern generator” of discrete 

movements. Besides, the dynamics of RNNs need to be robust 

as it is inevitably exposed to both intrinsic and extrinsic noise. 

And neural activities are by default sensitive to perturbation of 

the input stimulation, network states and noises. Sparse 

rhythmic activities emerge as “locally stable channels” that are 

robust against heterogeneous perturbation [36]. This is also 

congruent with the studies in pattern recognition field. For 

example, the constraint of sparseness improves recognition 

accuracy of the deep networks [37,38].  

C. Serving as motor primitives 

With the autonomous dynamics of the internal networks, the 

initial state specified by the task information can be transformed 

to temporal patterns of motor signals. This spatio-temporal 

transformation mechanism can be regarded as the motor 

primitives for hierarchical control. In this way, the higher-order 

control module only needs to send out the motor goal in terms 

of spatial information, leaving the computation of the specific 

control sequence to the transformation scheme. The temporal 

evolution of the internal network is contained in the setting of 

the goal parameters and the initial state [33], in which the initial 

information can be unfolded to the time-varying commands 

with deep networks. The motor network can be re-used for 

different higher commands. Under framework of this study, the 

complex movements in turn can be generated when a sequence 

of sub-goals are applied to the neural network where the spatio-

temporal motor primitives are accommodated. 

D. Future Study 

This work has raised some intriguing research directions. First, 

considering it takes time for the motor network to converge to 

the initial state for movement execution, directly sequencing the 

motor primitives would be problematic. Kaufman and 

colleagues provided an inspiration to tackle this problem, as 

they found the population dynamics evolving within the null 

space of the dimension of readout weights [39]. This 

mechanism allows concatenating motor primitives with no 

intervention between each other. Second, the current model 

pertains to model the predictive control (MPC) and controls the 

external plant using the given physics equations. However, the 

cortical control relies on a neural representation of the internal 

model of outside world instead of the precise equations [40]. 

Hence, it is an appealing line of research to integrate the internal 

model into this motor generation mechanism under the 

dynamical system framework. 

VI. APPENDIX 

Musculoskeletal model 

The arm plant is actuated by three pairs of muscle groups. 

One pair is the biarticular muscle group while the other two 

respectively actuate one of the shoulder and elbow joints 

(monoarticular shoulder flexors, monoarticular shoulder 

extensors, monoarticular elbow flexors, monoarticular elbow 

extensors, biarticular flexors and biarticular extensors). Each 

pair of muscle groups is a pair of flexor and extensor. The 

activation is not directly provided by the network output𝑢, but 

obeys a first-order dynamics: 

 

�̇�(𝑘) = 1/𝜏𝑑 ∙ (𝑢(𝑘) − 𝛼(𝑘)) (7) 

 

where 𝛼(𝑘) is the muscle activation level and 𝜏𝑑 = 25𝑚𝑠 is 

the first order time constant. Given the muscle activation, the 

force exerted is also nonlinearly dependent on muscle length 

and contraction speed:  

 

𝐹𝑜𝑟𝑐𝑒(𝑘) = 𝛼(𝑘) ∙ 𝑓(𝑘) ∙ 𝑓(𝑘) (8) 

 

Given the muscle tension and the anatomical configuration, 

which is reflected by the moment arm matrix 𝛤, the joint torque 

can be calculated by: 

 

𝑇𝑜𝑟𝑞𝑢𝑒(𝑡) =  𝛤 ∙ 𝛼(𝑘) ∙ 𝑓𝑙(𝑙(𝑘)) ∙ 𝑓𝑣(𝑙(𝑘), 𝑣(𝑘)) (9) 

 

The moment arm matrix describes the relationship between 

joint torques and muscle forces under certain gestures. The 

trivial variations of the moment arms due to gestural change are 

ignored for simplification, thus 𝛤 is set to a constant matrix: 

 

 𝛤 = [
2 −2 0 0 1.5 −2
0 0 2 −2 2 −1.5

]. 

 

The columns of 𝛤 represent the individual six muscle groups. 

The muscle length is fitted using the function of current 

deviance from the optimal joint angle 𝜃0  and the optimal 

length 𝐿0. The matrix 𝜃0 of size 2 × 6 indicates the optimal 

angle of the two joints for each of the six muscle groups. 

Similarly, six columns in 𝐿0  indicate the optimal length for 

each of six muscles. Same as in the matrix 𝛤 , zero-value 

elements in 𝜃0  and 𝐿0  represent the anatomical absence of 

the corresponding muscles. For the 𝑖 -th muscle group, the 

dependences of current length on the deviance are given as:  

   

𝑙𝑖 = 1 +
𝑇1,𝑖∙(𝜃

0
1,𝑖−𝜃1)

𝐿0𝑖
+

𝑇2,𝑖∙(𝜃
0
2,𝑖−𝜃2)

𝐿0𝑖
 (10) 

 

where, 

 

𝜃0 =
2𝜋

360
[
15.0 5.02 0
0 0 80.86

0 3.9 2.12
109.32 92.96 91.52

] 

𝐿0 = [7.32 3.26 6.4 3.26 5.95 4.06] 
 

As the derivative of muscle length 𝑙�̇�, the muscle contraction 

velocity can be achieved using a weighted summation of the 

joint angle velocity �̇�𝑖, which is also parameterized by moment 

arm matrix 𝑇 and the optimal length 𝐿0: 

 



𝑙�̇� =
𝑇1,𝑖∙𝜃1̇

𝐿0𝑖
+

𝑇2,𝑖∙𝜃2̇

𝐿0𝑖
 (11) 

 

The muscle length and velocity are normalized by dividing 

𝐿0 and thus they can be taken as the relative length and velocity 

with the unit of 𝐿0  and 𝐿0/𝑠 . The nonlinearity terms 𝑓𝑙(𝑙) 

and 𝑓𝑣(𝑙(𝑡), 𝑙(̇𝑡))  describe the fascicle force-length 

relationship and force-velocity relationship. The 𝑓𝑙(𝑙) 
function is approximated as a 2-sided exponential decay of the 

deviance of current length from the optimal one to the power of 

𝜌 . Differently, the 𝑓𝑣(𝑙(𝑡), 𝑙(̇𝑡))  function depicts a 

monotonically decreasing force against velocity:  

  

𝑓𝑙(𝑙) = exp {− (|
𝑙𝑖
𝐵−1

𝜔
|)
𝜌

} (12) 

 

𝑓𝑣(𝑙𝑖 , 𝑙�̇�) = {

𝑉𝑚𝑎𝑥−𝑙�̇�

𝑉𝑚𝑎𝑥+(𝑐𝑉0+𝑐𝑉1𝑙𝑖)𝑙�̇�
𝑙�̇� ≤ 0

𝑏𝑉−(𝑎𝑉0+𝑎𝑉1𝑙𝑖+𝑎𝑉2𝑙𝑖
2)𝑙�̇�

𝑏𝑉+𝑙�̇�
𝑙�̇� > 0

 (13) 

 

where, 𝐵 − 1.55 , 𝜔 = 0.81 , 𝜌 = 2.12 , 𝑉𝑚𝑎𝑥 = −7.39 , 

𝑐𝑉0 = −3.21, 𝑐𝑉1 = 4.17, 𝑏𝑉 = 0.62, 𝑎𝑉0 = −3.12, 𝑎𝑉1 =
4.21, 𝑎𝑉2 = −2.67. 

The 2-link revolute model of the primate arm has been 

elaborately described in the literature. Here we adopt the 

physics formulations given by Todorov [41, 42]. Driven by the 

joint torque, the plant generates angular accelerations subject to 

the following equation: 

 

𝑀(𝜃)�̈� + 𝐶(𝜃, �̇�) + 𝐵�̈� = 𝑡𝑜𝑟𝑞𝑢𝑒 (14) 

 

where �̈�  is the angular acceleration, 𝑀(𝜃) ∈ 𝑅2×2  is a 

positive definitesymmetric inertia matrix, 𝐶(𝜃, �̇�) ∈ 𝑅2  is a 

vector reflecting the centripetal and Coriolis forces, 𝐵 ∈ 𝑅2×2 

is the joint friction matrix with respect to the angular velocities, 

and 𝑡𝑜𝑟𝑞𝑢𝑒 ∈ 𝑅2  is the joint torque. Parameters for these 

terms are given in the following equations:  

  

𝑀(𝜃) = [
𝑎1 + 2𝑎2cos𝜃2 𝑎3 + 𝑎2𝑐𝑜𝑠𝜃2
𝑎3 + 𝑎2cos𝜃2 𝑎3

] 

C = [
−θ̇2(2θ̇1 + θ̇2)

θ̇1
] a2sinθ2 

𝐵 = [
𝑏11 𝑏12
𝑏21 𝑏22

] 

𝑎1 = 𝐼1 + 𝐼2 +𝑚2𝑙1
2 

𝑎2 = 𝑚2𝑙1𝑠2 

𝑎3 = 𝐼2 (15) 

 

where, 𝑏11 = 𝑏22 = 0.05 , 𝑏12 = 𝑏21 = 0.025 , 𝑚𝑖  is the 

mass of the 𝑖-th segment (1.4Kg, 1.0Kg), 𝑙𝑖 is the length of 𝑖-
thsegment (33 cm, 30 cm), 𝑠𝑖 is the distance from the joint to 

the mass center of 𝑖-th link (11 cm, 16 cm), and 𝐼𝑖  is the 

moment of inertia (0.025 Kgm2, 0.045 Kgm2). 

The forward dynamics, therefore, can be derived as: 

 

�̈� = 𝑀(𝜃)−1(𝑡𝑜𝑟𝑞𝑢𝑒 − 𝐶(𝜃, �̇�) − 𝐵�̇�) (16) 

 

The arm state is then updated with the first-order Euler's 

integration:  

 

𝑋(𝑘 + 1) = 𝑋(𝑘) + 1/𝜏 ∙ 𝑓(𝑋(𝑘), 𝑡𝑜𝑟𝑞𝑢𝑒(𝑘)) 

𝑓 = [

𝑀(𝜃)−1(𝑡𝑜𝑟𝑞𝑢𝑒 − 𝐶(𝜃, �̇�) − 𝐵�̇�)

�̇�1
�̇�2

] (17) 

 

where, 𝑀(𝜃) is the inertia matrix approximated under certain 

gesture, τ is the time constant, 𝑡𝑜𝑟𝑞𝑢𝑒(𝑘) is the controlling 

policy to the arm joints, and f(X(k), u(k)) is the resulting non-

linear function of state and torque signal that updates the 

immediate state of the plant. 
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