
Learning and encoding motor primitives for limb

actions in a brain-like computation approach

Yaoru Sun1, Haibo Shi2,*, and Fang Wang3

1 Laboratory of Cognition & Intelligent Computation, Department of Computer Science, Tongji University, Shanghai, 201800, China.
2 School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, 200433, China.
3 Department of Computer Science, Brunel University, Uxbridge UB8 3PH, United Kingdom
*Corresponding author: Haibo Shi (shihaibo@sufe.edu.cn).
This work was supported by the Grants from the National Natural Science Foundation of China (91748122), and the Shanghai Science and Technology Committee
(17JC1400603).

Abstract—Recent neurophysiological studies discovered the

sparse rotational patterns in the dynamics of neural population

during motor control. In this work, we show that a computational

model guided by the dynamical system theory of motor coding can

successfully generate the similar network behaviors as found in the

electrophysiological studies. The RNN-based model learns the arm

reaching control policy from self-generated movements. Essential

biomechanical and neural properties including multiphasic neural

response and the sparse rotation naturally emerge after training

for the movement control tasks. The temporal dynamics in the

trained network is analyzed to illustrate how the sparse rotational

patterns correlate to the generalization capability of the control

policy. We find that the trial-and-error motor learning, which

naturally brings in the generalization capability, lead to the

existence of low-dimensional manifold in the population dynamics

of the motor network.

Index Terms—Motor learning and encoding, motor primitive,

motor cortex, brain-like computation, arm action.

I. INTRODUCTION

Motor learning and control are of vital importance to the

survival of living organisms. It has been speculated that higher-

order cognition of human brain is embedded in the sensori-

motor coordination during the interaction between humans and

the outside environment [1, 2]. In the past decades, motor

learning for encoding of human actions has received intensive

studies from fields of both neuroscience and engineering (e.g.

robotics and prosthetics) [3, 4]. In particular, the computational

modeling provides a qualitatively representative method for

testifying various hypotheses for motor learning and control.

A. Background

Recent neuroscience findings have suggested the presence of

the dynamical system in the neural population of motor cortices

[17]. The evidence supports that the neural activities can be

explained with the underlying dynamics of neural population

and the motor command can be extracted from the internal

dynamics of the motor network, which is opposite to the

traditional view that the neural activities in the motor cortices

represent the kinetic parameters of the movements (Fig. 1A).

Under dynamical system framework, the movement generation

is ruled by temporal evolution or state trajectories of

combinational activity of neural population (Fig. 1B) [15-20].

The internal dynamics of the motor cortex can be developed

autonomously without the sensory stimulation. It thus can

functionally form a motor primitive in a manner of central

pattern generator (CPG) [21].

Traditional kinematic models [10, 11] have been proposed

for learning and producing of movement trajectories to instruct

the design of optimal control theory [3, 5, 6] and reinforcement

learning [7-9]. These previous models relate the control signal

to the specific task parameters, thus in general they do not have

the power of reusing and generalizing the movements within

the same motor pattern. With movement trajectory changes

from time to time, they have to re-plan each trajectory even

though these trajectories can be categorized to the same action

pattern, in another word, the same motor primitive.

Fig. 1. Two theoretical paradigms for motor generation. A. The representational

framework of motor coding. B. The dynamical system framework of motor

coding.

In this paper, we propose a neural computation model that

incorporates the cortical motor coding mechanisms for robotic

motor control. The model exploits a recurrent neural network

(RNN) equipped with the neural coding mechanism to

implement a transformation from the task information to the

time varying motor commands. By examining the neural

activities in the model network, the dynamical system

hypothesis of neural coding in motor cortices can be verified.

In addition, the activities reconstructed in this model can be

further analyzed to interpret the origin of the dominant features

in the real neural activities.

B. Related work

Previous computational models that take RNN dynamics into

account for motor generation have captured the behaviors of

motor network successfully [29-32]. Studies in [30]

demonstrates that the stability-optimized circuits (SOC) could

be exploited to illustrate the multiphasic responses of individual

neurons in physiological studies. They attributed the

multiphasic activity during motor execution as the transient

dynamics or selective amplification from the perspective of

sensory responses, a feature that was a natural consequence of

SOC. Other studies [31, 32] also showed that a RNN trained to

generate EMG activities, which were directly recorded from

three muscles, displayed both similar activity in both the

individual neuron level and rotational patterns at the population

level.

However, in the previous studies, the muscle activation signal

or end-effector trajectory is required in advance for model

training. The models in [31,32] is trained to output the EMG

signals of individual muscles in the limited conditions. The

low-dimensional structure of internal dynamics is achieved by

introducing an important regularization term that penalizes

unnecessarily complicated state-space trajectories. On contrary,

the motor network in our study is trained with the self-generated

movements. The RNN architecture in our model is adapted in

the manner of trial and error, i.e., the network parameters are

optimized to minimize the control error. So the correlation

between the controlling performance and the network dynamics

can be further investigated.

There have also been similar methods applying the idea of

generating movement trajectory from the goal parameters [34],

among which the dynamical movement primitives (DMP)

method has been extensively used in motor control studies [12-

14]. DMP generates movement trajectories in the manifold of

movement space such that the solution space can be constrained

within a small number of dimensions. The DMP architecture

solves the problem of movement path planning, but leaves the

process of producing the motor actuation unsolved. An

additional controller module should be used to generate the

control commands. This is inconsistent with the neural

mechanism of motor control, where the neural activities in the

primary motor cortex directly drive the muscle activation [3].

Also, in DMP the dynamical system for planning the movement

trajectories is further determined by the evolution of the

canonical variable that represents the phase of the movement by

the first-order decaying dynamics. Therefore, the canonical

variable is updated without the system state [12]. This is not

congruent with the motor coding mechanism where the neural

state is determined by the internal dynamics of the neural

population [15, 16]. More importantly, encoding the motion

trajectories of actions means that a learnt neural coding or

neural activity pattern in motor cortex from one action mode

cannot be re-used for the different trajectories even they can be

actually performed using the same motor primitive.

Consequently, until now despite of these previous great efforts

devoted to the issue of action learning and control, there has

been still a big gap between the brain’s neural encoding

mechanism of motor learning and the computational models to

address this issue.

C. Contributions of current study

The main contribution of this work can be summarized as

follows. First, we construct a computational model for arm

reaching that incorporates the recently discovered dynamical

system mechanism of motor coding, which learns the control

policy from self-generated movements.

Second, using the recently developed jPCA method [16], the

low-dimensional manifold in the population activity can be

extracted. The learned network exhibits similar features with

that of neurophysiological studies, thus provides computational

evidence for the dynamical system hypothesis of motor coding.

Third, we further identify the relationship between the

control performance and the sparse oscillation in the network

activities. It can be testified that the presence of the sparse

oscillation is correlated with the capacity of the generalization

of the control policy.

Finally, the motor network transforms the spatial information

of the kinematic parameters into the time-varying control

commands, which could be a promising building block for

compound movement control. For example, by switching the

high-order command fed into the motor network, the motor

network can exert compound controlling commands.

Section II introduces the details of the plant dynamics and the

architecture and learning procedure of the controlling network.

The training performance as the biomechanical control is

validated in section III, before the neural activities are

qualitatively compared to the real neural responses in section

IV. The sparse rotation is verified and how it contributes to

motor control generalization is also shown in section IV. A brief

conclusion, significance in related areas of the model and

direction for future work are given in section V. Section VI is

the appendix which mainly depicts the arm model.

Fig. 2. The causal flow of motor behavior from internal units to the arm plant.

II. NETWORK MODEL

The overall architecture of the neuromusculoskeletal model

is depicted in Fig. 2. It models the generation of the arm

movement driven by the neural activities. The arm

biomechanics is further divided into muscular and skeletal

systems. That is, the neural read-out signals drive muscle

actuators, and the muscle contraction in turn causes the joint

torques for the two-link arm motion.

A. Architecture and Learning of the internal network

The internal recurrent neural network serves as a neural

controller, which transforms the sensory input and the

descending higher-order command into the muscle commands.

This internal network corresponds to the cortical circuits of

primary motor cortex (M1) and dorsal premotor areas (PMd)

that have direct control of periphery muscle through the cortico-

spinal projections. Due to the reciprocal connection in the M1

and PMd areas, we choose the RNN architecture to model the

cortical motor circuits. Additionally, RNN allows the internal

circling within the network, which can provide the rich internal

dynamics suitably for temporal processing. This feature

exempts this model from the necessity of external feedback,

which is of little interest because the delay is comparable to the

movement duration [23].

 As shown in Fig. 2, the RNN consists of 100 inter-

connected units which receive the sensory input for the start and

target positions and the mandatory input for velocity. The

command input remains still and neural state converges to a

stimulus-specific state by the end of this stage. When the

command input is withdrawn, the RNN evolves by its own and

projects to 6 output units for 6 muscle activations respectively.

In the movement stage, the real-time sensory and

proprioceptive feedback is absent [22], and only the internal

dynamics of neural population contributes to the control signal.

The command input that describes the target position is

converted to spatial representation, i.e., points on a grid are

activated according to their distance from the goal coordinates.

The activation of internal units 𝑟(𝑡) is ramped by the 𝑡𝑎𝑛ℎ

function:

r(t) = tanh(Wi ∙ [s(t) I]
T +Wr ∙ r(t − 1)) (1)

The recurrent connections are modified based on the error of

motor babblings. Penalty terms and regularities are

incorporated in to prevent the neural and muscle activities from

growing too much, thus the model is optimized while keeping

the recurrent connection and internal activity small. The muscle

activity is read out from the internal network with a sigmoid

function: 𝑢(𝑡) = 𝜎(𝑊𝑜 ∙ 𝑟(𝑡)), where 𝑊𝑜 is the projection

weight, which extracts the output units from internal dynamics.

The sigmoid function ensures the positivity of the muscle

activation. The muscle activations generated in this network are

used to drive the simulated arm model.

The network parameters are tuned to minimize the error

between the target state and the final state resulted from the self-

generated movement (the inverse arrow from the controlled

plant to the network). The input and output weights are fixed

while the recurrent weights are learnt. The cost function is the

error between the target state 𝑋∗(𝑇) and the final state 𝑋(𝑇),

in addition to the penalty terms related to the muscle 𝛼(𝑡) and

neural activities 𝑟(𝑡) (reflecting the energy cost during

movement) :

𝐽𝑐 =
1

2
∑ {𝛿(𝑡 − 𝑇) ∙ (𝑋∗(𝑇) − 𝑋(𝑇))

𝑇
𝑅𝑋(𝑋∗(𝑇) −𝑇

𝑡=1

𝑋(𝑇)) + 𝑙𝑐(𝑅
𝛼(𝛼(𝑡)), 𝑅𝑟(𝑟(𝑡)))} (2)

subject to the forward model of both the network unit activity

and the state update:

[
�̇�
�̇�
𝑢

] = 𝜎([

𝑀𝑋(𝑡)

[𝑊𝑖 𝑊𝑟]

𝑊𝑜

] [

[𝑋(𝑡) 𝛼(𝑡)]𝑇

[𝑟(𝑡) 𝑐(𝑡)]𝑇

𝑟(𝑡)

]) (3)

where 𝐽𝑐 indicates the cost function under 𝑐 -th condition

(goal position, movement duration). Equation (3) gives the

integrated form of the updating of arm state, neural state and the

muscle activation. 𝑀(𝑡) is the linearized approximation of the

plant dynamics f(X(t), u(t)) at moment 𝑡 ,where X(t) and

u(t) are the arm state and muscle input. 𝑊𝑖, 𝑊𝑟, and 𝑊𝑜 is

the input, recurrent and output weights respectively. The overall

cost consists several terms of penalties, where (𝑋∗(𝑇) −

𝑋(𝑇))
𝑇
𝑅𝑋(𝑋∗(𝑇) − 𝑋(𝑇)) measures the postural deviation of

final time point in the intrinsic coordinate frame. 𝑅𝛼 =

(𝛼(𝑡)𝑇𝛼(𝑡)) is the accumulation of muscle activity during the

motion execution, that prevents the growing too much. Similar

penalty goes with the neural activity for generating the muscle

activation signal by incorporating the term 𝑅𝑟 = (𝑟(𝑡)𝑇𝑟(𝑡)).
We adopt Hessian-free optimization (HF) to tackle the

notorious pathological curvature problem in RNN training [24].

HF is a second-order optimization method. The RNN is first

unfolded through time and then trained with HF. It is intractable

to derive an analytical form of the cost function with respect to

the network parameters (the internal weights). Instead, the

Gauss-Newton matrix is used as an alternative to the Hessian

matrix. The additional benefits are that it can be acquired

numerically and is intrinsically positive semi-definite. The

Gauss-Newton matrix is derived for every batch of 64 samples

and each sample consists of the neural states, dynamics of the

plant arm and their gradients with respect to the learning

parameters at every moment in the reaching movement. For

each batch (64 reaches), the Gauss-Newton matrix is updated

and conjugate gradient (CG) is performed accordingly. During

the CG iteration, the product of the Gauss-Newton matrix and

searching direction vector is obtained via Schraudolph's

technique for fast curvature matrix-vector product [25].

B. Gradients of cost function through trajectory

The Gauss-Newton matrix is acquired from the gradients of

cost function through the motion trajectory, as in Stroeve's

method for nonlinear control [26]. During each reaching, the

kinematic states of the arm plant are updated forwardly to the

final step, and the gradients are derived backwardly.

The arm state 𝑋 = [𝜃1, 𝜃2, �̇�1�̇�2] is the concatenation of

kinematic and muscle activations states, where 𝜃𝑖 is the 𝑖-th

joint angle, 𝜃�̇� is the angular velocity of the 𝑖-th joint. The

gradients of the cost function with respect to network weights

at each moment through the whole motion trajectory are derived

as following:

{

𝜕𝐽

𝜕𝑋(𝑇)
=

𝜕𝑙𝑐(𝑇)

𝜕𝑋(𝑇)
+ (

𝜕𝑅(𝑇)

𝜕𝑋(𝑇)
)
𝑇 𝜕𝐽𝑐(𝑇)

𝜕𝑅(𝑇)

𝜕𝐽

𝜕𝑋(𝑘)
=

𝜕𝑙𝑐(𝑘)

𝜕𝑋(𝑘)
+ (

𝜕𝑅(𝑘)

𝜕𝑋(𝑘)
)
𝑇 𝜕𝑙𝑐(𝑘)

𝜕𝑅(𝑘)
+ (

𝜕𝑋(𝑘+1)

𝜕𝑋(𝑘)
)
𝑇 𝜕𝐽𝑐

𝜕𝑋(𝑘+1)

𝜕𝐽

𝜕𝛼(𝑘)
=

𝜕𝑙𝑐(𝑘)

𝜕𝛼(𝑘)
+ (

𝜕𝑅(𝑘)

𝜕𝛼(𝑘)
)
𝑇 𝜕𝑙𝑐(𝑘)

𝜕𝑅(𝑘)
+ (

𝜕𝑋(𝑘+1)

𝜕𝛼(𝑘)
)
𝑇 𝜕𝐽𝑐

𝜕𝑋(𝑘+1)

 (4)

The elements of matrix 𝜕𝑅(𝑘)/𝜕𝑋(𝑘) and 𝜕𝑅(𝑘)/𝜕𝛼(𝑘)
are the partial derivatives of penalty term with respect to arm

state the muscle activation respectively. The partial derivatives

𝜕𝑋(𝑘 + 1)/𝜕𝑋(𝑘) and 𝜕𝑋(𝑘 + 1)/𝜕𝛼(𝑘) reflect forward

dynamics with the Eular integration method:

{

𝜕𝑋𝑖(𝑘+1)

𝜕𝑋𝑗(𝑘)
= {

1 + ∆𝑡 ∙
𝜕𝑓𝑖(𝑋(𝑘+1),𝛼(𝑘))

𝜕𝑋𝑗(𝑘)
𝑖 = 𝑗

∆𝑡 ∙
𝜕𝑓𝑖(𝑋(𝑘+1),𝛼(𝑘))

𝜕𝑋𝑗(𝑘)
𝑖 ≠ 𝑗

𝜕𝑋𝑖(𝑘+1)

𝜕𝛼𝑗(𝑘)
= ∆𝑡 ∙

𝜕𝑓𝑖(𝑋(𝑘+1),𝛼(𝑘))

𝜕𝛼𝑗(𝑘)

 (5)

Finally the gradient of the cost function with respect to the

network weights can be obtained with:

𝜕𝐽

𝜕𝑊(𝑘)
= (

𝜕𝑢(𝑘)

𝜕𝑊(𝑘)
)
𝑇

(
𝜕𝛼(𝑘)

𝜕𝑢(𝑘)
)
𝑇 𝜕𝐽𝑐

𝜕𝛼(𝑘)
 (6)

III. PERFORMANCE OF MOTOR CONTROL

As shown in Fig. 3, the motor network successfully learns to

generate movements though the internal dynamics. The

controlling commands are optimized to solve the inverse

dynamics problem of the limb control. During training, the

simulated arm is controlled to move its hand to random targets,

and the controller network is modified to reduce the motor error.

The RNN controller learnt by HF has a comparable

performance with the classic trajectory optimization method

such as iterative Linear Quadratic Regulator (iLQR). This is

intuitive since both HF and iLQR are based on the second-order

optimization. An advantage of the HF-learnt RNN controller

over the trajectory optimization-based methods is that it can

generalize the control policy to untrained targets.

After being trained for random reaches confined in the

working space, the model is instructed to conduct the same

center-out reaching tasks as the typical delayed movement

generation tasks in the monkey studies [16]. Important

biomechanical and neural properties of arm reaching

movements have been captured after training. Specifically, it

generates relatively straight hand trajectories and bell-shaped

velocity profiles (Fig. 3A and Fig. 3B). Velocity profiles are

insensitive to the movement amplitude and direction. These

features are in consistency with findings of biomechanical

experiments in literatures [27]. The analysis is conducted in a

250-ms duration of the movement execution. This time period

translates to 25 time steps in the simulation with each time step

accounting to a 10-ms bin in the primate experiments.

Fig. 3. The performance of the arm control in the center-out task. A. Trajectories

of the end effector in the test. D. Velocity profiles of the reaching movements

in different directions.

IV. NEURAL RESPONSES AFTER TRAINING

After the validation of the model for generating movements,

we examined the neural activation of the internal network. For

each control task, the activation of all units is “recorded” for the

analysis. The model qualitatively captures the prominent

features that are found in the neurobiological studies,

specifically, the multiphasic waveforms of individual units, the

collective rotation of population activities, and the low-

dimension structure or the sparseness of the oscillatory patterns

in population dynamics.

A. Neural responses during motor preparation and execution

The activity of motor network is driven by the instruction

inputs, and then evolves on its own to generate the motor

patterns. We refer the two stages as motor preparation and

execution, following the routines in the monkey experiments.

During preparation, the simulated arm is maintained at the

initial posture. The instruction contains the target position of the

reaching movements. The coordinate of the target position is

transformed to the activation map of units on a mesh grid, thus

the input dimension is increased to the number of grid units,

121. By the end of preparatory stage, the population state of the

RNN units converges to certain points in the state space. These

stable states in the preparatory phase are, in turn, the initial

states of dynamical evolution during the execution phase.

Fig. 4. The multiphasic activation of internal units for 32 reaches.

B. Multiphasic activities of individual neurons

The activities of individual unit across all conditions

qualitatively captures the similar dynamics with the waveforms

recorded from the M1 neurons. Neural activation shows the

similar multiphasic responses during autonomous evolution for

different trials in the individual level. The resemblances include

the fork-shaped preparation activities and multiphasic

oscillations during execution. Starting from zero activity, the

activation of individual units exerts divergent trajectories under

the stimulation of static input, before asymptotically achieving

a stable value respectively (Fig. 4). There is a smooth transition

through different orientations, which is crucial to the

generalization capability.

Fig. 5. Rotational trajectories of the internal network for 32 different conditions.

The neural activities during movement execution are projected to the plane of
the strongest pair of jPCs.

C. Multiphasic activities of neuron population

For the population level dynamics, we conduct jPCA on the

neural activities of internal network during movement, which

has found the consistent rotational structure in collective

activities [16] (Fig. 5). The rationale behind this newly

developed method is that the temporal processing can be

embedded in the network dynamic profiles. The state

trajectories in different trials undergo a coherent transformation:

a rotation with the same angular velocity. Different kinematic

parameters correspond to different initial phases and amplitudes.

The neural data recorded from the simulation of the first 6

principle dimensions are prepared for the jPCA analysis, which

can be seen as an approximation of the neural activity data with

a linear dynamical system, under the constraint of rotational

transformation. State rotation is achieved with the skew matrix

in linear algebra, thus the analysis reduces to the estimation of

the elements of the skew matrix. In current model, the

derivative of neural responses �̇�(𝑡) is fitted with a skew matrix

as �̇�(𝑡) = 𝑀𝑠𝑘𝑒𝑤 ∙ 𝑟(𝑡). The transition matrix is constrained to

be skew-symmetric (𝑀𝑠𝑘𝑒𝑤 = −𝑀𝑠𝑘𝑒𝑤
𝑇) so that it only has

imagery eigenvalues, which correspond to rotational

transformation. The search of the dominant state rotation thus

reduces to the estimation of the elements of the skew matrix. In

our result, the rotation captures 52% of the neural variance of

the internal network. The corresponding frequency captured by

the first pair of jPCs is 2.4 Hz (with the first pair of eigenvalues

0.140𝑖and -0.140𝑖). Also, an unconstrained transition matrix

𝑀𝑢𝑛𝑐 is fitted for comparison: 𝑟(𝑡) = 𝑀𝑢𝑛𝑐 ∙ 𝑟(𝑡) . The

similarity between the two transition matrices reflects to what

extend the rotational dynamics has contributed to the variance

of the overall dynamics. Both the skew matrix and the

unconstrained transition matrix are then used to generate the

changes of neural state, and contribute to the “recorded” neural

date (reserved in 6 principle dimensions).

Fig. 6. Eigenvalue analysis of the weight matrix of internal network (left panel)

and state transition matrix derived from the population activity (right panel).

D. Sparseness of the oscillation activities

As discovered in [16], the variance of neural activity can be

accounted by the rotations in first few pairs of jPCs. Only sparse

frequencies, which can be discovered by a few strongest

rotations that contribute to the variance most, are sufficient for

the construction of neural activation (right panel of Fig. 6). We

further examined the eigenvalues of the connectivity matrix and

the linearly fitted unconstrained matrix, to verify the low-

dimensional activity underlying the neural data. The

frequencies of these rotations can be also derived from the

eigenvalues of the weight matrix Wr of the internal network in

Eq. (1), albeit the non-linearity of unit stimulation function

(hyperbolic tangent function). The recurrent weight matrix only

has only a relatively small number of frequencies which are

prominently active, with their real part near zero (left panel of

Fig. 6). The imagery part of the eigenvalues is proportional to

the frequency of the contributing rotation, while the absolute

value of real part implies the decaying rate. The eigenvalues

with real part near zero correspond to the sustaining oscillations.

The eigenvalues of the unconstrained transition matrix are

shown as a comparison with the connectivity matrix in the right

panel of Fig. 6.

The sparse frequency oscillation emerges as the optimal

solution for the robustness of generating the desired patterns. In

other words, a network with delicate and often complicated

dynamics, which also reduces the error and achieves the motor

tasks, would be sensitive to the perturbations of either unit

activity or synaptic strength. The weight adaptation with the

cost gradient naturally causes a modification to previously

existing oscillations. Due to this continuity, the dramatic

change of internal state induced by weight modification during

training can be avoided. From this perspective, simple

oscillations could survive the plasticity changing, thus provides

a strong candidate that can generate locally stable patterns.

E. Inverse engineering the internal dynamics

In our model, the continuity of neural activities in motor

network across different movements contributes to the

generalization capability. Specifically, the gradients comes

from the randomly generated motor tasks. The task

performance naturally requires the extrapolation of the network

dynamics from the already-trained reaching movements.

Therefore, the effect of generalization capability in this model

can be seen as a regularization.

We conduct an experiment to verify the correlation between

the generalization capability and the sparseness of the neural

oscillation. The results of the comparison between the

generalization performance of the oscillation generators with

sparse and disperse frequencies respectively have confirmed

that sparsity enhances the generalization capability of control

(Fig. 7). The generalization capability is measured by the

difference between root-mean-squared-error of testing and

training (RMSE). For the sparse internal activity, we use the

dominant frequencies found by jPCA, and for the disperse

activity we use oscillation generators with frequencies ranging

from 0.2 to 10 Hz. The oscillation generators are simulated

using the model described in work [28], where rotation matrices

are constructed from polar-decomposed components with

assigned eigenvalues. Because the eigenvalues are arranged in

pairs, the superimposed rotation thus contains 50 frequencies.

Composition of sparse oscillations maintains the continuity of

internal activities across different tasks. On contrary, from

composition of disperse oscillations, only meticulously crafted

control policies can be extracted, which cannot be flexibly

translated to untrained movements.

Fig. 7. Generalization capability of the oscillation generators with sparse and

disperse dynamics. The generalization capability is measured by the
discrepancy between root-mean-squared-error (RMSE) of testing and training.

Despite that the trained RMSE of the oscillation generator with disperse
rhythms has a more dramatic decay than those with sparse frequencies, the latter

one shows lower errors in the test mode.

The regularization for generalization capability on the

network learning plays a key role in the sparsification of the

network dynamics, and thus can be a supportive factor

contributing to the occurrence of low-dimensional manifold in

the high-dimensional population activities of the motor network.

The model is inverse-engineered to verify the computational

influence of the architecture and learning procedure of the

internal network on the simulated arm behavior. We examine

the relationship between the changes of network dynamics and

structure. We test the filtering effect of the network

connectivity on the network activity. A correlation analysis on

the unit responses is conducted when they are stimulated by the

sine waves of various frequencies. This stimulation is

implemented by clamping the activities of some units into sine

waves of the same frequency but different phases, by which

other units in the network are stimulated to generate collective

dynamics. After running this procedure several times over the

same connectivity of the network, each with a different

frequency, the correlations across internal units can be plotted

against the stimulation frequency. As shown by the spectrum

patterns of neural response, the internal network only resonates

to specific frequencies that are most relevant to the output

signals under the trained connectivity. The response shows a

frequency preference given a specific connectivity, suggesting

that the interplay between internal units under the optimized

connectivity generates the most relevant oscillations for the

construction of output signal while filtering out the un-tuned

ones to sustain the rhythmic activity as locally stable dynamics

(Fig. 8)

Fig.8 Frequency spectra for network activities of trained connectivity under

stimulation of different frequencies.

Furthermore, the factors of the learning procedure to achieve

the movement control are also explored. Only a subset of

network weights in the architecture is learnt. One tenth of the

total are modified during each CG iteration. Obviously,

optimization to a specific part of weights can significantly

reduce the computing load. And partially tuning the weights,

can largely reserve the network dynamics, thus will not severely

harm the reaching accuracy. Additionally, adding noise to the

network activity helps to improve the control robustness. The

network activities that are sensitive to the activity noises are

eliminated, while those that are robust to the structural change

are remained. The operation achieves similar effect to the

regulation terms that penalize weight change to result in

dramatic activity change.

The motor network is also trained to eliminate the output

during movement preparation. This is biologically necessary, as

the EMG signal shows that muscles remain inactivated before

movement [16]. Limiting the output ensures that the population

state evolves within the null space of the readout weights [18].

Moreover, the suppression on the output activation is, to some

extent, transformed to the penalty in the internal unit activity,

so that it indirectly poses a stabilizing effect on the network and

strengthens the innately decaying tendency of neural activities.

This is in agreement with [30] in which stabilization during

preparation gives rise to the transient dynamics after the change

of the instruction input.

V. DISCUSSION

A. Conclusion

A computational model proposed in this study, which exploits

the dynamical system theory of motor coding, successfully

reproduced the essential features observed in biological motor

control, including multiphasic activities of neural response and

the rotational structure of population dynamics. The temporal

dynamics in the trained network is analyzed to illustrate how

the sparse rotational dynamics correlates to the generalization

capability of the control policy. We find that the trial and error

learning plays a key role in the occurrence of the low-

dimensional manifold of the network dynamics in the high-

dimensional population activities.

B. Emergence of oscillatory Activities

Oscillatory activities widely exist in the inter-connected

architectures [35]. In this study, it has been shown the rhythmic

patterns are not only a product of recurrent connections, but also

provide a flexible solution to the control policy of multiple tasks.

From this perspective, it is the computational advantage that

makes the oscillations as the “pattern generator” of discrete

movements. Besides, the dynamics of RNNs need to be robust

as it is inevitably exposed to both intrinsic and extrinsic noise.

And neural activities are by default sensitive to perturbation of

the input stimulation, network states and noises. Sparse

rhythmic activities emerge as “locally stable channels” that are

robust against heterogeneous perturbation [36]. This is also

congruent with the studies in pattern recognition field. For

example, the constraint of sparseness improves recognition

accuracy of the deep networks [37,38].

C. Serving as motor primitives

With the autonomous dynamics of the internal networks, the

initial state specified by the task information can be transformed

to temporal patterns of motor signals. This spatio-temporal

transformation mechanism can be regarded as the motor

primitives for hierarchical control. In this way, the higher-order

control module only needs to send out the motor goal in terms

of spatial information, leaving the computation of the specific

control sequence to the transformation scheme. The temporal

evolution of the internal network is contained in the setting of

the goal parameters and the initial state [33], in which the initial

information can be unfolded to the time-varying commands

with deep networks. The motor network can be re-used for

different higher commands. Under framework of this study, the

complex movements in turn can be generated when a sequence

of sub-goals are applied to the neural network where the spatio-

temporal motor primitives are accommodated.

D. Future Study

This work has raised some intriguing research directions. First,

considering it takes time for the motor network to converge to

the initial state for movement execution, directly sequencing the

motor primitives would be problematic. Kaufman and

colleagues provided an inspiration to tackle this problem, as

they found the population dynamics evolving within the null

space of the dimension of readout weights [39]. This

mechanism allows concatenating motor primitives with no

intervention between each other. Second, the current model

pertains to model the predictive control (MPC) and controls the

external plant using the given physics equations. However, the

cortical control relies on a neural representation of the internal

model of outside world instead of the precise equations [40].

Hence, it is an appealing line of research to integrate the internal

model into this motor generation mechanism under the

dynamical system framework.

VI. APPENDIX

Musculoskeletal model

The arm plant is actuated by three pairs of muscle groups.

One pair is the biarticular muscle group while the other two

respectively actuate one of the shoulder and elbow joints

(monoarticular shoulder flexors, monoarticular shoulder

extensors, monoarticular elbow flexors, monoarticular elbow

extensors, biarticular flexors and biarticular extensors). Each

pair of muscle groups is a pair of flexor and extensor. The

activation is not directly provided by the network output𝑢, but

obeys a first-order dynamics:

�̇�(𝑘) = 1/𝜏𝑑 ∙ (𝑢(𝑘) − 𝛼(𝑘)) (7)

where 𝛼(𝑘) is the muscle activation level and 𝜏𝑑 = 25𝑚𝑠 is

the first order time constant. Given the muscle activation, the

force exerted is also nonlinearly dependent on muscle length

and contraction speed:

𝐹𝑜𝑟𝑐𝑒(𝑘) = 𝛼(𝑘) ∙ 𝑓(𝑘) ∙ 𝑓(𝑘) (8)

Given the muscle tension and the anatomical configuration,

which is reflected by the moment arm matrix 𝛤, the joint torque

can be calculated by:

𝑇𝑜𝑟𝑞𝑢𝑒(𝑡) = 𝛤 ∙ 𝛼(𝑘) ∙ 𝑓𝑙(𝑙(𝑘)) ∙ 𝑓𝑣(𝑙(𝑘), 𝑣(𝑘)) (9)

The moment arm matrix describes the relationship between

joint torques and muscle forces under certain gestures. The

trivial variations of the moment arms due to gestural change are

ignored for simplification, thus 𝛤 is set to a constant matrix:

 𝛤 = [
2 −2 0 0 1.5 −2
0 0 2 −2 2 −1.5

].

The columns of 𝛤 represent the individual six muscle groups.

The muscle length is fitted using the function of current

deviance from the optimal joint angle 𝜃0 and the optimal

length 𝐿0. The matrix 𝜃0 of size 2 × 6 indicates the optimal

angle of the two joints for each of the six muscle groups.

Similarly, six columns in 𝐿0 indicate the optimal length for

each of six muscles. Same as in the matrix 𝛤 , zero-value

elements in 𝜃0 and 𝐿0 represent the anatomical absence of

the corresponding muscles. For the 𝑖 -th muscle group, the

dependences of current length on the deviance are given as:

𝑙𝑖 = 1 +
𝑇1,𝑖∙(𝜃

0
1,𝑖−𝜃1)

𝐿0𝑖
+

𝑇2,𝑖∙(𝜃
0
2,𝑖−𝜃2)

𝐿0𝑖
 (10)

where,

𝜃0 =
2𝜋

360
[
15.0 5.02 0
0 0 80.86

0 3.9 2.12
109.32 92.96 91.52

]

𝐿0 = [7.32 3.26 6.4 3.26 5.95 4.06]

As the derivative of muscle length 𝑙�̇�, the muscle contraction

velocity can be achieved using a weighted summation of the

joint angle velocity �̇�𝑖, which is also parameterized by moment

arm matrix 𝑇 and the optimal length 𝐿0:

𝑙�̇� =
𝑇1,𝑖∙𝜃1̇

𝐿0𝑖
+

𝑇2,𝑖∙𝜃2̇

𝐿0𝑖
 (11)

The muscle length and velocity are normalized by dividing

𝐿0 and thus they can be taken as the relative length and velocity

with the unit of 𝐿0 and 𝐿0/𝑠 . The nonlinearity terms 𝑓𝑙(𝑙)

and 𝑓𝑣(𝑙(𝑡), 𝑙(̇𝑡)) describe the fascicle force-length

relationship and force-velocity relationship. The 𝑓𝑙(𝑙)
function is approximated as a 2-sided exponential decay of the

deviance of current length from the optimal one to the power of

𝜌 . Differently, the 𝑓𝑣(𝑙(𝑡), 𝑙(̇𝑡)) function depicts a

monotonically decreasing force against velocity:

𝑓𝑙(𝑙) = exp {− (|
𝑙𝑖
𝐵−1

𝜔
|)
𝜌

} (12)

𝑓𝑣(𝑙𝑖 , 𝑙�̇�) = {

𝑉𝑚𝑎𝑥−𝑙�̇�

𝑉𝑚𝑎𝑥+(𝑐𝑉0+𝑐𝑉1𝑙𝑖)𝑙�̇�
𝑙�̇� ≤ 0

𝑏𝑉−(𝑎𝑉0+𝑎𝑉1𝑙𝑖+𝑎𝑉2𝑙𝑖
2)𝑙�̇�

𝑏𝑉+𝑙�̇�
𝑙�̇� > 0

 (13)

where, 𝐵 − 1.55 , 𝜔 = 0.81 , 𝜌 = 2.12 , 𝑉𝑚𝑎𝑥 = −7.39 ,

𝑐𝑉0 = −3.21, 𝑐𝑉1 = 4.17, 𝑏𝑉 = 0.62, 𝑎𝑉0 = −3.12, 𝑎𝑉1 =
4.21, 𝑎𝑉2 = −2.67.

The 2-link revolute model of the primate arm has been

elaborately described in the literature. Here we adopt the

physics formulations given by Todorov [41, 42]. Driven by the

joint torque, the plant generates angular accelerations subject to

the following equation:

𝑀(𝜃)�̈� + 𝐶(𝜃, �̇�) + 𝐵�̈� = 𝑡𝑜𝑟𝑞𝑢𝑒 (14)

where �̈� is the angular acceleration, 𝑀(𝜃) ∈ 𝑅2×2 is a

positive definitesymmetric inertia matrix, 𝐶(𝜃, �̇�) ∈ 𝑅2 is a

vector reflecting the centripetal and Coriolis forces, 𝐵 ∈ 𝑅2×2

is the joint friction matrix with respect to the angular velocities,

and 𝑡𝑜𝑟𝑞𝑢𝑒 ∈ 𝑅2 is the joint torque. Parameters for these

terms are given in the following equations:

𝑀(𝜃) = [
𝑎1 + 2𝑎2cos𝜃2 𝑎3 + 𝑎2𝑐𝑜𝑠𝜃2
𝑎3 + 𝑎2cos𝜃2 𝑎3

]

C = [
−θ̇2(2θ̇1 + θ̇2)

θ̇1
] a2sinθ2

𝐵 = [
𝑏11 𝑏12
𝑏21 𝑏22

]

𝑎1 = 𝐼1 + 𝐼2 +𝑚2𝑙1
2

𝑎2 = 𝑚2𝑙1𝑠2

𝑎3 = 𝐼2 (15)

where, 𝑏11 = 𝑏22 = 0.05 , 𝑏12 = 𝑏21 = 0.025 , 𝑚𝑖 is the

mass of the 𝑖-th segment (1.4Kg, 1.0Kg), 𝑙𝑖 is the length of 𝑖-
thsegment (33 cm, 30 cm), 𝑠𝑖 is the distance from the joint to

the mass center of 𝑖-th link (11 cm, 16 cm), and 𝐼𝑖 is the

moment of inertia (0.025 Kgm2, 0.045 Kgm2).

The forward dynamics, therefore, can be derived as:

�̈� = 𝑀(𝜃)−1(𝑡𝑜𝑟𝑞𝑢𝑒 − 𝐶(𝜃, �̇�) − 𝐵�̇�) (16)

The arm state is then updated with the first-order Euler's

integration:

𝑋(𝑘 + 1) = 𝑋(𝑘) + 1/𝜏 ∙ 𝑓(𝑋(𝑘), 𝑡𝑜𝑟𝑞𝑢𝑒(𝑘))

𝑓 = [

𝑀(𝜃)−1(𝑡𝑜𝑟𝑞𝑢𝑒 − 𝐶(𝜃, �̇�) − 𝐵�̇�)

�̇�1
�̇�2

] (17)

where, 𝑀(𝜃) is the inertia matrix approximated under certain

gesture, τ is the time constant, 𝑡𝑜𝑟𝑞𝑢𝑒(𝑘) is the controlling

policy to the arm joints, and f(X(k), u(k)) is the resulting non-

linear function of state and torque signal that updates the

immediate state of the plant.

REFERENCES

 [1] M. R. Gover, "The embodied mind: cognitive science and

human experience (Book)," Mind, vol. Culture, pp. 295-299,

1996.

 [2] V. Gallese and G. Lakoff, "The brain's concepts: The role

of the sensory-motor system in reason and language," Cognitive

Neuropsychology, vol. 22, pp. 455-79, 2005.

 [3] E. Todorov, "Direct cortical control of muscle activation in

voluntary arm movements: a model." Nature Neuroscience, vol.

3, pp. 391-8, 2000.
 [4] K. C. Ames, S. I. Ryu and K. V. Shenoy, "Neural dynamics

of reaching following incorrect or absent motor preparation,"

Neuron, vol. 81, pp. 438-451, 2014.
 [5] E. Todorov and M. I. Jordan, "Optimal feedback control as

a theory of motor coordination.," Nature Neuroscience, vol. 5,

pp. 1226-1235, 2002.
 [6] T. M. Tuan, P. Soueres, M. Taix, and E. Guigon, "A

principled approach to biological motor control for generating

humanoid robot reaching movements," in IEEE Ras & Embs

International Conference on Biomedical Robotics and

Biomechatronics, 2009, pp. 783-788.
 [7] J. Morimoto and K. Doya, "Acquisition of stand-up

behavior by a real robot using hierarchical reinforcement

learning," in Seventeenth International Conference on Machine

Learning, 2000, pp. 623-630.
 [8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y.

Tassa, D. Silver, and D. Wierstra, "Continuous control with

deep reinforcement learning," Computer Science, vol. 8, p.

A187, 2015.
 [9] J. Morimoto and K. Doya, "Reinforcement learning of

dynamic motor sequence: learning to stand up," in Ieee/rsj

International Conference on Intelligent Robots and Systems,

1998. Proceedings, 1998, pp. 1721-1726 vol.3.
[10] M. L. Latash, J. P. Scholz and G. Schöner, "Toward a new

theory of motor synergies," Motor Control, vol. 11, pp. 276-308,

2007.
[11] F. Alnajjar, T. Wojtara, H. Kimura, and S. Shimoda,

"Muscle synergy space: learning model to create an optimal

muscle synergy," Front Comput Neurosci, vol. 7, p. 136, 2013.
[12] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S.

Schaal, "Dynamical movement primitives: Learning attractor

models for motor behaviors," Neural Computation, vol. 25, pp.

328-373, 2013.
[13] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, "Learning

movement primitives," in Robotics Research, The Eleventh

International Symposium, ISRR, October 19-22, 2003, Siena,

Italy, 2003, pp. 561-572.
[14] R. Lioutikov, G. Neumann, G. Maeda, and J. Peters,

"Learning movement primitive libraries through probabilistic

segmentation," International Journal of Robotics Research, vol.

36, pp. 879-894, 2017.

[15] M. S. A. Graziano, "New insights into motor cortex,"

Neuron, vol. 71, p. 387, 2011.
[16] M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J.

D. Foster, P. Nuyujukian, S. I. Ryu, and K. V. Shenoy, "Neural

population dynamics during reaching," Nature, vol. 487, pp.

51-6, 2012.
[17] R. Yuste, J. N. Maclean, J. Smith, and A. Lansner, "The

cortex as a central pattern generator," Nature Reviews

Neuroscience, vol. 6, pp. 477-83, 2005.
[18] K. V. Shenoy, M. Sahani and M. M. Churchland, "Cortical

control of arm movements: a dynamical systems perspective,"

Annual Review of Neuroscience, vol. 36, pp. 337-359, 2013.
[19] P. Cisek, "Preparatory activity in premotor and motor

cortex reflects the speed of the upcoming reach," Journal of

Neurophysiology, vol. 96, p. 3130, 2006.
[20] C. Capaday, V. C. Van, C. Ethier, J. Ferkinghoff-Borg, and

D. Weber, "Neural mechanism of activity spread in the cat

motor cortex and its relation to the intrinsic connectivity,"

Journal of Physiology, vol. 589, pp. 2515-28, 2011.
[21] M. V. Sanchez-Vives and D. A. Mccormick, "Cellular and

network mechanisms of rhythmic recurrent activity in

neocortex," Nature Neuroscience, vol. 3, p. 1027, 2000.
[22] A. Karniel and G. F. Inbar, "A model for learning human

reaching-movements," in Engineering in Medicine and Biology

Society, 1996. Bridging Disciplines for Biomedicine.

Proceedings of the International Conference of the IEEE, 1997,

pp. 619-620 vol.2.
[23] J. A. Pruszynski, M. Omrani and S. H. Scott, "Goal-

dependent modulation of fast feedback responses in primary

motor cortex.," Journal of Neuroscience, vol. 34, pp. 4608-

4617, 2014.
[24] J. Martens and I. Sutskever, "Learning recurrent neural

networks with hessian-free optimization," in International

Conference on International Conference on Machine Learning,

2011, pp. 1033-1040.
[25] N. N. Schraudolph, "Fast curvature matrix-vector products

for second-order gradient descent," Neural Computation, vol.

14, pp. 1723-1738, 2002.
[26] S. Stroeve, "Neuromuscular control model of the arm

including feedback and feedforward components," Acta

Psychologica, vol. 100, pp. 117-131, 1998.
[27] T. P. Lillicrap and S. H. Scott, "Preference distributions of

primary motor cortex neurons reflect control solutions

optimized for limb biomechanics.," Neuron, vol. 77, pp. 168-

179, 2013.
[28] S. Nemati, S. W. Linderman and Z. Chen, "A probabilistic

modeling approach for uncovering neural population rotational

dynamics," Working Paper, vol. 39, p. 123, 2014.
[29] H. Shi, Y. Sun, G. Li and J. Li, “Dynamical Motor Control

Learned with Deep Deterministic Policy Gradient",

Computational Intelligence and Neuroscience, 2018:8535429,

2018.
[30] Hennequin, Guillaume, Vogels, T. Nbsp, Gerstner, and

Wulfram, "Optimal control of transient dynamics in balanced

networks supports generation of complex movements," Neuron,

vol. 82, pp. 1394-406, 2014.
[31] D. Sussillo and O. Barak, Opening the black box: Low-

dimensional dynamics in high-dimensional recurrent neural

networks: MIT Press, 2013.
[32] D. Sussillo, M. M. Churchland, M. T. Kaufman, and K. V.

Shenoy, "A neural network that finds a naturalistic solution for

the production of muscle activity," Nature Neuroscience, vol.

18, pp. 1025-1033, 2015.
[33] M. Berniker and K. P. Kording, "Deep networks for motor

control functions," Frontiers in Computational Neuroscience,

vol. 9, p. 32-32, 2015.
[34] W. B. Chen, C. H. Xiong and S. G. Yue, "On configuration

trajectory formation in spatiotemporal profile for reproducing

human dand reaching movement," IEEE Transactions on

Cybernetics, vol. 46, pp. 804-816, 2016.
[35] S. Degallier and A. Ijspeert, "Modeling discrete and

rhythmic movements through motor primitives: a review,"

Biological Cybernetics, vol. 103, pp. 319-338, 2010.
[36] R. Laje and D. V. Buonomano, "Robust timing and motor

patterns by taming chaos in recurrent neural networks," Nature

Neuroscience, vol. 16, p. 925, 2013.
[37] N. Zeng, H. Zhang, B. Song, W. Liu, Y. Li, and A. Dobaie,

“Facial expression recognition via learning deep sparse

autoencoders”, Neurocomputing, 2018: pp. 643-649, 2018.

[38] N. Zeng, Z. Wang, H. Zhang, W. Liu, and F. E. Alsaadi,

“Deep Belief Networks for Quantitative Analysis of a Gold

Immunochromatographic Strip”, Cognitive Computation, 8(4):

pp. 684-692, 2016.

[39] M. T. Kaufman, M. M. Churchland, S. I. Ryu, and K. V.

Shenoy, "Cortical activity in the null space: permitting

preparation without movement," Nature Neuroscience, vol. 17,

pp. 440-8, 2014.
[40] M. Kawato, "Internal models for motor control and

trajectory planning.," Current Opinion in Neurobiology, vol. 9,

pp. 718-727, 1999.
[41] E. Todorov and W. Li, "Optimal control methods suitable

for biomechanical systems," in Engineering in Medicine and

Biology Society, 2003. Proceedings of the International

Conference of the IEEE, 2003, pp. 1758-1761 Vol.2.
[42] E. Todorov, "On the role of primary motor cortex in arm

movement control," Progress in Motor Control III, pp. 125--

166, 2003.

