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Abstract

In many applied fields, such as genomics, different types of data are collected on the same system, and
it is not uncommon that some of these datasets are subject to censoring as a result of the measurement
technologies used, such as data generated by polymerase chain reactions and flow cytometer. When the
overall objective is that of network inference, at possibly different levels of a system, information coming
from different sources and/or different steps of the analysis can be integrated into one model with the
use of conditional graphical models. In this paper, we develop a doubly penalized inferential procedure
for a conditional Gaussian graphical model when data can be subject to censoring. The computational
challenges of handling censored data in high dimensionality are met with the development of an efficient
Expectation-Maximization algorithm, based on approximate calculations of the moments of truncated
Gaussian distributions and on a suitably derived two-step procedure alternating graphical lasso with a
novel block-coordinate multivariate lasso approach. We evaluate the performance of this approach on an
extensive simulation study and on gene expression data generated by RT-qPCR technologies, where we
are able to integrate network inference, differential expression detection and data normalization into one
model.

keywords: Censored data, censored graphical lasso, conditional Gaussian graphical models, high-
dimensional setting, sparsity

1 Introduction

Conditional graphical models, also called conditional random fields, were originally introduced in Lafferty
et al. (2001). Formally, let y = (y1, . . . , yp)

> and x = (x1, . . . , xq)
> be p- and q-dimensional random vectors,

respectively, and let G = (V, E) be a graph with vertex set V = {1, . . . , p}, indexing only the entries in y, and
edge set E ⊆ V×V, where (h, k) ∈ E iff there is a directed edge from the vertex h to k in G. An edge is called
undirected if both (h, k) and (k, h) are in E , and the graph G is called undirected if it has only undirected
edges, which is the case that we will consider in this paper. Let z = (x>,y>)> and denote by f(y | x; ξ)
the conditional density function of y given x. We shall say that the set {z, f(y | x; ξ),G} is a conditional
graphical model when f(y | x; ξ) obeys the Markov properties with respect to the graph G. In the case of
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an undirected graph, two given random variables in y, say yh and yk, are conditionally independent given x
and all the remaining random variables in y iff the unordered pair (h, k) does not belong to the edge set E .
The conditional Gaussian graphical model, is a member of the conditional undirected graphical models based
on the assumption that y | x ∼ N(µy|x,Σy|x), where E(y | x) = µy|x and V (y | x) = Σy|x. The inverse
of the covariance matrix Σy|x, denoted by Θy|x, is called precision matrix and its entries have a one-to-one
correspondence with partial correlation coefficients. Like in the unconditional Gaussian graphical model,
Θy|x is the parametric tool relating the topological structure of the undirected graph G to the factorization
of the conditional density of y given x. That is, it is possible to show that the random variables yh and
yk are conditionally independent given x and all the remaining variables in y iff the corresponding partial
correlation coefficient is zero (see for example Lauritzen (1996)). Consequently, the problem of estimating
the edge set of the undirected graph G is equivalent to the problem of finding non-zero entries in Θy|x. This
property, together with recent advances in statistical methods for sparse estimation, has made these methods
particularly appealing for a range of applications, such as genomic and bioinformatics, where different sources
of data are typically collected on the same biological system and integrative approaches are on high demand.
As a motivating example, one can consider the combined analysis of genetic and genomic data by Yin and Li
(2011). In this kind of experiments both gene expression data, modeled by y, and genetic variants, modeled
by x, are measured on the same subjects. Although a direct analysis of the gene expression data alone
can provide some insights into the underlying gene regulation network, such an analysis would ignore the
effect of genetic variants on the gene expression, that is, the fact that high correlation among genes could be
explained by the effects of shared genetic variants. In this cases, it is more informative to study the graph
structure of y conditioned on x.
In order to overcome the inferential problems in a high-dimensional setting, that is when min{p, q} is larger
than the sample size n, penalized methods have recently been proposed in the literature. In particular,
motivated by the biological data analysis mentioned above, Yin and Li (2011) proposed sparse inference for
the conditional Gaussian graphical model defined by:

E(y | x) = β0 + β>x, V (y | x) = Σ, (1)

that is, assuming that x influences the conditional expected value through the (q+1)×p regression coefficient
matrix B = (β0,β

>)> whereas the conditional covariance matrix does not depend on x. Denoting with
Θ = (θhk) the corresponding precision matrix, the density function φ(y | x;B,Θ) can be written as

(2π)−
p
2 |Θ| 12 exp

{
−1

2
(y −B>x)>Θ(y −B>x)

}
, (2)

where, with a little abuse of notation, we let x = (1,x>)>. Given a sample of independent observations, the
authors propose the following extension of the well-known graphical lasso (glasso) estimator (Yuan and Lin,
2007):

{B̂, Θ̂} = arg max
1

n

n∑
i=1

log φ(yi | xi;B,Θ)− λ‖β‖1 − ρ‖Θ‖−1 , (3)

where ‖β‖1 =
∑
h,k |βhk| and ‖Θ‖−1 =

∑
h6=k |θhk|. In this model, the two tuning parameters ρ and λ are

used to control, respectively, the amount of sparsity in B̂ and Θ̂. As elucidated in Yin and Li (2011),
the first penalty function accounts for the biological expectation that each gene has only a few genetic
regulators, i.e., each column of B has only a few non-zero regression coefficients, whereas the second penalty
function accounts for the expectation that the precision matrix Θ is sparse for genetic networks. It is
worth noting that the estimator (3) was independently proposed also in Rothman et al. (2010). However,
in their work the authors focus only on how to efficiently estimate the regression coefficient matrix when
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incorporating the covariance information. Wang (2015), on the other hand, proposes a new algorithm for
fitting the estimator (3). This is based on the idea of decomposing the initial problem into a series of simpler
conditional problems involving, at each step, the conditional log-likelihood function of each yh given all
the remaining variables. The author also studies the asymptotic properties of the estimator for diverging
p and q values. Recently, other works have proposed two-steps procedures for fitting a sparse conditional
Gaussian graphical model. Among these, Li et al. (2012) propose to first use an initial non-sparse estimator
for the conditional variance matrix Σ using the theory of reproducing kernel Hilbert spaces, and then, in
the second step of the procedure, the resulting estimate is used to formulate a glasso-type problem for the
estimation of Θ. In contrast to this, the two-steps procedure proposed in Yin and Li (2013) uses an `1-
penalized multivariate linear regression model with independent errors for estimating the sparse coefficient
regression matrix in the first step, whereas, in the second step the precision matrix is estimated using the
standard glasso estimator. Asymptotic results are obtained assuming that the error term is sub-Gaussian.
A free distribution approach is instead proposed in Cai et al. (2013). In this case, B is first estimated
through a constrained `1 minimization problem not involving the conditional precision matrix, which can
be considered as a multivariate extension of the Danzig selector, and then the precision matrix is estimated
using the method proposed in Cai and Liu (2011). Finally, Chen et al. (2016) propose a two steps procedure
where the scaled lasso is used in each step to select the amount of sparsity. The authors also propose
theoretical results on how to select the optimal values of the two tuning parameters so as to make the entire
procedure tuning free.
Another strand of literature on sparse inference for a conditional Gaussian graphical model is theoretically
founded on the more stringent assumption that x is also normally distributed with E(x) = µx and V (x) =
Σxx. Under this assumption, z ∼ N(µz,Θzz) with expected value and precision matrix partitioned as
follows:

µz =

(
µx
µy

)
and Θzz =

(
Θxx Θxy

Θyx Θyy

)
, (4)

and the conditional density (2) can be reparameterized using the following identities:

β0 = µy + Θ−1
yy Θyxµx, β = −ΘxyΘ−1

yy ,Θ = Θyy.

Denoting with φ(y | x;µz,Θxy,Θyy) the reparameterized conditional density function (2), Sohn and Kim
(2012), Wytock and Kolter (2013) and Yuan and Zhang (2014) independently proposed the following penal-
ized estimator of a sparse conditional Gaussian graphical model:

{Θ̂xy, Θ̂yy} = arg max
1

n

n∑
i=1

log φ(yi | xi; µ̂z,Θxy,Θyy)− λ‖Θxy‖1 − ρ‖Θyy‖−1 , (5)

where µ̂z =
∑n
i=1 zi/n. Although estimator (5) is merely based on an alternative parameterization of the

conditional density, it enjoys two important advantages over the estimator (3). Firstly, the partial correlation
coefficients associated to Θxy are the natural parametric tools to infer the conditional independence between
xh and yk given all the remaining variables, whereas a zero regression coefficient, say βhk = 0, only implies
that xh has no effect on the expected value of yk, when the level of the remaining predictors is kept fixed.
Moreover, the stronger the correlation in Θyy is, the more difficult it is to recover the non-zero entries in Θxy

from β, which is why Chiquet et al. (2017) suggest to use the first penalty function to sparsify Θxy instead
of β. Secondly, the log-likelihood function used in definition (5) is jointly convex in {Θxy,Θyy} (Yuan and
Zhang, 2014) and this facilitates both the optimization and theoretical analysis. Although such advantages
can only be viewed in light of the strong distributional assumptions on z, the estimator (5) has gained
significant popularity. For example, Zhang and Kim (2014) uses this estimator to infer genetic networks
under SNP perturbations. More recently, Huang and Chen (2018) propose an extension to model dynamic
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networks influenced by conditioning input variables whereas Huang et al. (2018) propose an extension to
infer multiple conditional Gaussian graphical models with similar structures.
Despite a widespread literature on sparse conditional Gaussian graphical models, there is a large number
of fields in applied research where modern measurement technologies make the use of this graphical model
theoretically unfounded, even when the assumption of a multivariate Gaussian distribution is satisfied. An
example of this is given by Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR), a
popular technology for gene expression profiling (Derveaux et al., 2010). This technique is used to measure
the expression of a set of target genes in a given sample through repeated cycles of sequence-specific DNA
amplification followed by expression measurements. The cycle at which the observed expression first exceeds
a fixed threshold is commonly called the cycle-threshold (McCall et al., 2014). If a target is not expressed,
the threshold is not reached after the maximum number of cycles (limit of detection) and the corresponding
cycle-threshold is undetermined. For this reason, the resulting data are naturally right-censored and specific
methods have been developed to cope with this (Pipelers et al., 2017; McCall et al., 2014) including graphical
modelling approaches for network inference (Augugliaro et al., 2018). In order to take into account the
censoring mechanism as well as the availability of different sources of information on the same system, in
this paper we propose a novel double penalized estimator to infer a sparse conditional Gaussian graphical
model with censored data. The contributions of this paper are three-fold. Firstly, we introduce a suitable
generalization of the notion of conditional Gaussian graphical model for data subject to censoring, secondly
we propose a doubly penalized estimator that accounts for different levels of sparsity of the network of
response variables and of that linking the predictors and the responses, and, finally, we develop an efficient
Expectation-Maximization algorithm for inference, based, on the one hand, on approximate calculations of
the moments of truncated Gaussian distributions and, on the other hand, on a suitably derived two-step
procedure alternating graphical lasso with a novel block-coordinate multivariate lasso approach.
The outline of this paper is as follows. In Section 2 we introduce the notion of conditional censored Gaussian
graphical model and in Section 3 we present our estimator. In this section we also consider the computational
aspects of the proposed approach. The problem of tuning parameter selection is treated in Section 4, whereas
in Section 5 we use an extensive simulation study to compare the behaviour of the proposed estimator with
existing competitors. Finally, in Section 6, we study a real gene expression data generated by RT-qPCR
technologies, where we are able to integrate network inference, differential expression and data normalization
into one model, and in Section 7 we draw some conclusions. All proofs are reported in the Appendix.

2 The conditional censored Gaussian graphical models

In this section we extend the notion of conditional Gaussian graphical models to the case in which the
random variables y and x are subject to specific censoring mechanisms. To this end, let z = (x>,y>)> be a
(partially) latent random vector with joint density function g(z; ξ) and let l = (l1, . . . , lq, lq+1, . . . , lq+p)

> and
u = (u1, . . . , uq, uq+1, . . . , uq+p)

>, with lj < uj for j = 1, . . . , (q + p), be the left and right censoring values,
respectively. Then, zj is observed only if it is inside the closed interval [lj , uj ], otherwise it is censored from
below or above depending on whether zj < lj or zj > uj , respectively. Following Little and Rubin (2002), the
complete specification of the joint distribution of the observed data can be obtained using a discrete random
vector, denoted by R(z; l,u), with support {−1, 0, 1}q+p and encoding the censoring patterns. Formally, the
jth element of R(z; l,u) is defined as R(zj ; lj , uj) = I(zj > uj)− I(zj < lj), where I(·) is the usual indicator
function. To simplify our notation, the realization of the random vector R(z; l,u) is denoted by r. In this
way the index set I = {1, . . . , q + p} can be partitioned into o = {j ∈ I : rj = 0}, c+ = {j ∈ I : rj = +1}
and c− = {j ∈ I : rj = −1}. Furthermore, we shall use the convention that a vector indexed by a set
of indices denotes the corresponding subvector, so, for example, the subvector of observed elements in z is
denoted by zo = (zj)j∈o and, consequently, the observed data is (z>o , r

>)>. With such a notation, the joint
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density function of the observed data is given by

ϕ(zo, r; ξ) =

∫
Dc

g(zo, zc; ξ) dzc I(lo ≤ zo ≤ uo), (6)

where c = c− ∪ c+ and Dc = (−∞, lc−)× (uc+ ,+∞).
Similar to the approach described in the Introduction, the notion of conditional censored Gaussian graph-
ical models, formalized below, arises naturally by combining the density (6) with the assumption that the
conditional distribution y given x is a multivariate Gaussian distribution.

Definition 1 Let z = (x>,y>)> be a random vector whose density function can be factorized as follows:

g(z; ξ) = φ(y | x;µy|x,Θy|x)h(x; δ),

where ξ = {µy|x,Θy|x, δ} denotes the full set of parameters, h(x; δ) denotes the marginal distribution of x
and φ(y | x;µy|x,Θy|x) the conditional distribution of y given x, which is assumed to follow a p-dimensional
Gaussian distribution. Furthermore, let R(z; l,u) be a (q+ p)-dimensional random censoring-data indicator
defined by the censoring vectors l and u. The conditional censored Gaussian graphical model is defined by
the set {z, R(z; l,u), ϕ(zo, r; ξ),G}, where

ϕ(zo, r; ξ) =

∫
Dc

φ(yo,yc | xo,xc;µy|x,Θy|x)× h(xo,xc; δ)dxcdyc (7)

with zo ∈ [lo,uo] and φ(y | x;µy|x,Θy|x) factorizes according to the undirected graph G = {V, E}.

Although the proposed definition is general enough to cover a broad class of marginal distributions for
the vector x, in the next section we shall focus on two specific cases. The first one, which we consider
in Section 3.1, is the simplest and is obtained when only the random variable y is subject to a censoring
mechanism. Section 3.3, on the other hand, considers the case in which also the random variable x is
censored but, in this case, as typically done in literature on conditional Gaussian graphical models, we
enforce distributional assumptions and require that x is also Gaussian distributed.

3 Sparse inference on the conditional censored Gaussian graphical
models

3.1 Sparse inference when x is fully observed

As proposed in Yin and Li (2011) and Rothman et al. (2010), we begin by assuming that x influences
the parameters of the conditional distribution of y given x only through a linear model for the conditional
expected values, i.e., model (1). Then, under the assumption that x is not subject to a censoring mechanism,
density (7) can be significantly simplified as it can be rewritten as the product of the marginal density of x
and the conditional density function of the observed response variable yo given x, i.e.:

ϕ(zo, r; ξ) = h(x; δ)

∫
Dc

φ(yo,yc | x;B,Θ)dyc

= h(x; δ)ψ(yo, r | x;B,Θ), (8)

with yo ∈ [lo,uo]. The factorization (8) implies that inference about {B,Θ} and δ can be done separately.
Therefore, since all the relevant information needed to infer the conditional independence structure of y

5



adjusted for x is contained in ψ(yo, r | x;B,Θ), in the following of this section we shall focus only on how
to estimate the matrices B and Θ. Inference about δ can be achieved using, for example, the maximum
likelihood method if the sample size is large enough or a suitable penalized method otherwise.
Suppose that we have a set of n independent observations denoted by (y>ioi , r

>
i ,x

>
i )>, with i = 1, . . . , n and

oi = {j ∈ I : rij = 0}. Then the relevant average observed log-likelihood function is given by

¯̀(B,Θ) =
1

n

n∑
i=1

log

∫
Dci

φ(yioi ,yici | xi;B,Θ)dyici , (9)

where ci = c−i ∪ c
+
i , with c−i = {j ∈ I : rij = −1} and c+i = {j ∈ I : rij = +1}. Under a high-dimensional

setting, that is min{p, q} > n, inference about B and Θ can be carried out only under the assumption
that these matrices have a sparse structure, that is only a few regression coefficients and partial correlation
coefficients are different from zero. Then, similarly to the conditional glasso estimator (3), we propose to
estimate the parameters of a censored conditional Gaussian graphical model by maximizing a new objective
function whereby two specific lasso-type penalty functions are added to the average observed log-likelihood.
The resulting estimator, which we call conditional cglasso, is defined as follows:

{B̂, Θ̂} = arg max ¯̀(B,Θ)− λ
p∑
k=1

θkk‖βk‖1 − ρ‖Θ‖−1 (10)

where βk denotes the kth column of β. Like in the standard conditional graphical lasso estimator, the tuning
parameter λ is used to control the amount of sparsity in the estimated regression coefficient matrix whereas
ρ is devoted to control the sparsity in Θ̂ = (θ̂hk) and, consequently, in the corresponding estimated graph

Ĝ = {V, Ê}, where Ê = {(h, k) : θ̂hk 6= 0}. When ρ is large enough, some θ̂hk are shrunken to zero resulting

in the removal of the corresponding link in Ĝ; on the other hand, when ρ is equal to zero and the sample size
is large enough the estimator Θ̂ coincides with the maximum likelihood estimator of the precision matrix,
which implies a fully connected estimated graph.
A close look at the definition (10) reveals that the penalty function associated to B is different to what
is proposed in the literature (Rothman et al., 2010; Yin and Li, 2011). In particular, we use the diagonal
elements of the concentration matrix to scale the `1-norm of the parameter vectors βk. As we shall see in
the next section, the use of these scaling factors increases significantly the computational efficiency of the
proposed algorithm.

3.2 An efficient Expectation-Maximization algorithm

In order to address the computational burden in the computation of the integral involved in the definition of
the average log-likelihood function (9) and to solve efficiently the maximization problem in definition (10), we
develop an efficient Expectation-Maximization (EM) algorithm (Dempster et al., 1977). The EM algorithm
is based on the idea of repeating two steps until a convergence criterion is met.
The first step, called E-Step, requires the calculation of the conditional expected value of the complete
log-likelihood function using the current estimates. As shown in McLachlan and Krishnan (2008), this step
can be significantly simplified when the complete probability density function is a member of the regular
exponential family since, in this case, the E-Step simply requires the computation of the conditional expected
values of the sufficient statistics. In our model, the E-Step is theoretically founded on the following theorem,
which relates the partial derivatives of the average observed log-likelihood function (9) to the expected
value operator computed with respect to the conditional distribution of yici given {xi,yioi} and truncated
over a specific region. For the sake of simplicity, in the remaining part of this paper, when needed, we let
ϑ = {B,Θ} and we let ϑhk denote a generic parameter.
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Theorem 1 Let E( · | yici ∈ Dci ,xi;ϑ) be the expected value operator computed with respect to the condi-
tional Gaussian distribution of yici given {xi,yioi} and truncated over the region Dci . Then ∂ ¯̀(ϑ)/∂ϑhk is
equal to:

1

n

n∑
i=1

E

(
∂ log φ(yioi ,yici | xi;ϑ)

∂ϑhk

∣∣∣∣ yici ∈ Dci ,xi;ϑ

)
.

Let ϑ̂ be the current estimate of ϑ. Let Ŷ = (ŷi,k), with

ŷi,k =

{
yik if rik = 0

E(yik | yici ∈ Dci ,xi; ϑ̂) otherwise,

representing the current (n×p)-dimensional matrix of the imputed response variables, obtained by replacing
the right and left censoring values by the expected values of the truncated normal distribution. In the same
way, we let Ĉyy = (

∑n
i=1 ŷi,hk) be the (p× p)-dimensional matrix where ŷi,hk is equal to:

yihyik if rih = 0 and rik = 0

yihE(yik | yici ∈ Dci ,xi; ϑ̂) if rih = 0 and rik 6= 0

E(yih | yici ∈ Dci ,xi; ϑ̂)yik if rih 6= 0 and rik = 0

E(yihyik | yici ∈ Dci ,xi; ϑ̂) if rih 6= 0 and rik 6= 0.

With such notation, the E-Step of the proposed algorithm requires the computation of the imputed empirical
conditional covariance matrix:

Ŝy|x(B) = n−1{Ĉyy − ĈyxB −B>Ĉxy +B>CxxB},

where Ĉyx = Ŷ
>

X, Ĉxy = Ĉ>yx, Cxx = X>X and X = (x1, . . . ,xn)> denotes the usual n× (q + 1) design
matrix.
The second step of the EM algorithm, the M-Step, requires the solution of a new maximization problem
obtained by replacing the objective function of definition (10), with the so-called penalized Q-function:

Q(B,Θ) = log det Θ− tr{ΘŜy|x(B)} − λ
p∑
k=1

θkk‖βk‖1 − ρ‖Θ‖−1 . (11)

The problem of maximizing this function is formally equivalent to the problem studied in Rothman et al.
(2010) and Yin and Li (2011). In particular, since for a fixed ϑ̂ the penalized Q-function (11) is a bi-convex
function of B and Θ, its maximization can be obtained by repeating two sub-steps until a convergence
criterion is met. In the first sub-step, given Θ̂, the regression coefficient matrix is estimated by solving the
following sub-problem:

min
B

tr{Θ̂Ŝy|x(B)}+ λ

p∑
k=1

θ̂kk‖βk‖1, (12)

whereas, in the second sub-step, given B̂, the matrix Θ is estimated by solving the sub-problem:

max
Θ�0

log det Θ− tr{ΘŜy|x(B̂)} − ρ‖Θ‖−1 . (13)

Algorithm 1 reports the pseudo-code of the proposed EM algorithm. While problem (13) is a standard graph-
ical lasso problem that can be efficiently solved using, for example, the block-coordinate descent algorithm
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Algorithm 1 Pseudo-code of the proposed EM algorithm

1: Let B̂ and Θ̂ be the initial estimates
2: repeat
3: let ϑ̂ = {B̂, Θ̂}
4: update Ŷ, Ĉyy . E-Step
5: repeat . M-Step
6: B̂ = arg minB tr{Θ̂Ŝy|x(B)}+ λ

∑p
k=1 θ̂kk‖βk‖1

7: Θ̂ = arg maxΘ�0 log det Θ− tr{ΘŜy|x(B̂)} − ρ‖Θ‖−1
8: until convergence criterion is met
9: until convergence criterion is met

proposed in Friedman et al. (2008), problem (12) is similar to what is studied by Rothman et al. (2010) and
Yin and Li (2011) in the case of no censoring. However, instead of solving this problem through a cyclic
coordinate descent algorithm, we propose a more efficient and easy-to-implement block-coordinate descent
algorithm. In particular, the algorithm that we propose in this paper is based on the following result.

Theorem 2 Let Ŝy|x(Bk) be the matrix Ŝy|x(B) seen as function of the k-th column of B, denoted by
Bk, while the remaining columns are held fixed to the current estimates. Then, the following minimization
problem

min
Bk

tr{Θ̂Ŝy|x(Bk)}+ λθ̂kk‖βk‖1,

is equivalent to

min
Bk

1

n
‖Ỹk −XBk‖2 + λ‖βk‖1,

where Ỹk is a vector with ith element ỹi,k = ŷi,k + θ̂−1
kk

∑p
h 6=k θ̂hk{ŷi,h − x>i B̂h}.

Theorem (2) reveals that the maximization of the penalized Q-function (11) with respect to Bk, while
the remaining parameters are held fixed, is equivalent to a standard lasso problem (Tibshirani, 1996) that
can be efficiently solved using the algorithm proposed in Friedman et al. (2010). Algorithm 2 reports
the pseudo-code of the method proposed to solve sub-problem (12), which we call multi-lasso algorithm.
Convergence to a global minimizer follows from the fact that the trace term in sub-problem (12) is a convex
and differentiable function and the penalty function can be decomposed as sum of p convex functions (Tseng,
2001). Furthermore, we underline that the computational efficiency of the proposed multi-lasso algorithm
can be improved using the results given in Witten et al. (2011). In other words, when ρ is large enough,

and after a permutation of the response variables, Θ̂ has a block diagonal structure. Therefore, Theorem 2
implies that B̂ can be computed by running the multi-lasso algorithm in parallel. This insight makes the
proposed algorithm useful for the analysis of data sets where the number of predictors is really large.
Finally, as discussed also in Augugliaro et al. (2018) in the context of an (unconditional) Gaussian graphical

model under censoring, the computational burden needed to compute the mixed moments in Ĉyy can be too
extensive when the estimated precision matrix is dense. For this reason, also in this paper, we propose an
approximate EM algorithm defined by replacing the matrix Ĉyy with the approximation suggested in Guo
et al. (2015). By an extensive simulation study, Augugliaro et al. (2018) shows that such an approximation
works well no a similar problem and for a large range of ρ-values.
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Algorithm 2 Pseudo-code of the proposed multi-lasso algorithm

1: Let Θ̂ be the current estimate of the precision matrix
2: repeat
3: for k = 1 . . . p do
4: compute

ỹi,k = ŷi,k + θ̂−1
kk

p∑
h 6=k

θ̂hk{ŷi,h − x>i B̂h}

5: compute

B̂k = arg min
Bk

1

n
‖Ỹk −XBk‖2 + λ‖βk‖1

6: replace the kth column of the matrix B̂ with B̂k

7: end for
8: until convergence criterion is met

3.3 Extension to the censored x case

Although the estimator proposed in Section 3.1 is developed under the assumption that the random vector
of predictors is fully observed, the approach can be easily extended to the case in which both y and x are
subject to censoring mechanisms. Following the approaches described in the Introduction, in this section we
enforce a distributional assumptions and assume that x is also normally distributed with E(x) = µx and
V (x) = Σxx. Under this assumption, the likelihood function of the observed data set (z>o , r

>)> is formally
equivalent to the likelihood function of the censored Gaussian graphical model proposed in Augugliaro et al.
(2018), i.e.:

ϕ(zo, r;µz,Θzz) =

∫
Dc

φ(zo, zc;µz,Θzz) dzc.

Given a set of n independent observations, we therefore propose to estimate the sub-matrices of Θzz through
the following penalized estimator:

{Θ̂xy, Θ̂yy, Θ̂xx} = arg min
1

n

n∑
i=1

logϕ(zioi , ri;µz,Θzz)− λ‖Θxy‖1 − ρ(‖Θxx‖−1 + Θyy‖−1 ). (14)

Estimator (14) is an extension of the censored glasso estimator of Augugliaro et al. (2018), now specifically
designed to estimate separately the submatrices Θxy,Θyy and Θxx in order to emphasize the different role
that they have in this kind of graphical model. It is worth noting that, differently to the approaches without
censored data, the log-likelihood function used to define the estimator (14) depends on the submatrix Θxx

and therefore this matrix cannot be ignored in the fitting process. More specifically, an accurate estimate of
Θxx is needed in the E-Step to compute the conditional expected values of the sufficient statistics. Finally,
although estimator (14) is defined using the same tuning parameter to control the amount of sparsity in Θxx

and Θyy, the definition can be generalized by using two specific tuning parameters, say ρ1 and ρ2. However,
such a choice would increase significantly the computational burden of selecting the optimal values of these
tuning parameters, making the application of the proposed estimator infeasible in the case of a large dataset.
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4 Tuning parameters selection

The two tuning parameters play a central role in the proposed conditional cglasso estimator (10) since they
are designed to control the complexity of the topological structure of the estimated graph and the effects
of the predictors on the response variables. Standard search strategies proposed in the literature to select
the optimal values of the tuning parameters of any penalized estimator are structured in two steps, each of
which requires specific choices that must be carefully evaluated in order to reduce the computational burden
of the global strategy.
The first step requires the definition of a two dimensional grid, say {λmin, . . . , λmax} × {ρmin, . . . , ρmax},
over which to evaluate the goodness-of-fit of the model. When the sample size is large enough, one can let
λmin and/or ρmin equal to zero, so that the maximum likelihood estimate is one of the points belonging
to the coefficient path. On the other hand, when we are in a high-dimensional setting, one can use two
values small enough to avoid the overfitting of the model. With respect to the largest values of the two
tuning parameters, the next theorem gives both the exact formulas for computing λmax and ρmax and the
corresponding conditional cglasso estimates.

Theorem 3 Let φ(yk;µk, σ
2
k) be the marginal density function of the random variable yk, where E(yk) = µk

and V (yk) = σ2
k. For any index k, define the sets ok = {i : rik = 0}, c−k = {i : rik = −1} and c+k = {i :

rik = +1} and compute the marginal maximum likelihood estimates {µ̂k, σ̂2
k} by maximizing the following

log-likelihood function:

`(µk, σ
2
k) =

∑
i∈ok

log φ(yik;µk, σ
2
k) + |c−k | log

∫ lk

−∞
φ(y;µk, σ

2
k)dy + |c+k | log

∫ +∞

uk

φ(y;µk, σ
2
k)dy.

Then, the estimators B̂ = (β̂0, β̂
>)> and Θ̂ corresponding to the pair (λmax, ρmax) are β̂0 = (µ̂1, . . . , µ̂p)

>,

β̂ = 0 and Θ̂ = diag(σ̂−2
1 , . . . , σ̂−2

p ). Furthermore,

λmax = max
h,k

n−1|
m∑
i=1

xih(ŷi,k − µ̂k)|,

ρmax = ‖Ŝy|x(B̂)‖−∞,

where ‖Ŝy|x(B̂)‖−∞ = maxh 6=k |ŝhk(B̂)| and ŝhk(B̂) denotes the generic entry of Ŝy|x(B̂).

The previous results can be easily extended to the case in which also the predictor vector x is partially
observed. In this case, the largest values of the two tuning parameters of the estimator (14) can be obtained
through a generalization of the results given in Augugliaro et al. (2018). In particular, denoting {µ̂k, σ̂2

k}
the values of the maximization of the following marginal log-likelihood function:

`(µk, σ
2
k) =

∑
i∈ok

log φ(zik;µk, σ
2
k) + |c−k | log

∫ lk

−∞
φ(z;µk, σ

2
k)dz + |c+k | log

∫ +∞

uk

φ(z;µk, σ
2
k)dz,

and by

Ŝzz(µ̂z, Θ̂zz) =

(
Ŝxx(µ̂z, Θ̂zz) Ŝxy(µ̂z, Θ̂zz)

Ŝyx(µ̂z, Θ̂zz) Ŝyy(µ̂z, Θ̂zz)

)
,

the corresponding imputed empirical covariance matrix of z, then

λmax = ‖Ŝxy(µ̂z, Θ̂zz)‖∞,

ρmax = max{‖Ŝxx(µ̂z, Θ̂zz)‖−∞, ‖Ŝyy(µ̂z, Θ̂zz)‖−∞}.
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Once λmax and ρmax are calculated, the entire coefficient path can be computed over a two dimensional
grid {λmin, . . . , λmax} × {ρmin, . . . , ρmax} using the estimate obtained for a given pair (λ, ρ) as warm starts
for fitting the next conditional cglasso model. This strategy is commonly used also in other efficient lasso
algorithms and R packages (Friedman et al., 2010, Friedman et al., 2018). Motivated by our simulation study,
showing the inter-play between the estimation of B and Θ, we suggest the following strategy to compute
the coefficient path: starting with the model fitted at (λmax, ρmax), the other models are fitted reducing ρ
faster than λ, that is, keeping fixed λ we reduce ρ from ρmax to ρmin. When ρ is equal to ρmin, we repeat
the previous procedure using the next λ-value in {λmin, . . . , λmax}. The coefficient path is completed when
we fit the model at (λmin, ρmin).
The second step of a tuning strategy requires the definition of a criterion for evaluating the behaviour of the
fitted models. Different choices are suggested in the literature: Yin and Li (2011), Städler and Bühlmann
(2012) and Li et al. (2012) suggest to use the Bayesian Information Citerion (BIC) whereas Rothman et al.
(2010), Lee and Liu (2012) and Cai et al. (2013) suggest to use cross-validation. In this paper, we propose
to select the optimal values of the two tuning parameters by using the BIC measure, defined as

BIC(λ, ρ) = −2

n∑
i=1

log

∫
Dci

φ(yioi ,yici | xi; B̂, Θ̂)dyici + k(λ, ρ) log n,

where k(λ, ρ) denotes the number of non-zero parameters estimated by the proposed method. Although a
search on the two dimensional grid defined in the first step can be performed to select the pair (λ, ρ) that
minimizes BIC(λ, ρ), the computational burden related to the evaluation of the log-likelihood function can
make this strategy infeasible also for moderate size problems. For this reason, following Ibrahim et al. (2008),
we propose to select the tuning parameters by minimizing the following approximate measure:

BIC(λ, ρ) = −n[log det Θ̂Ê − tr{Θ̂Ê Ŝy|x(B̂Ŝ)}] + k(ρ, λ) log n,

i.e., by substituting the exact log-likelihood function with the Q-function used in the M-Step of the proposed
algorithm, which is easily obtained as a byproduct of the EM algorithm.

5 Simulation studies

The global behavior of the proposed estimator (10), which we call conditional cglasso, is compared with the
conditional MissGlasso (Städler and Bühlmann, 2012), where `1-penalized estimation is performed under the
assumption that unobserved data are missing at random, and with the conditional glasso (3), where missing
data are imputed using the censoring values. The three different methods will be evaluated on the basis of
criteria that measure their performance throughout the entire coefficient path. In this way, on the one hand,
we avoid pitfalls of specific tuning parameter strategies, which may favour one estimator over another, and,
on the other hand, if an estimator is found which is uniformly better than the other estimators across the
entire path, that is for any possible pair (λ, ρ), then such an estimator will be preferable regardless of the
method used to select the tuning parameters.
As in the dataset studied in Section 6, we consider right-censored response variables with uk equal to 50,
for any k = 1, . . . , p. To simulate a sample of size n from a sparse conditional censored Gaussian graphical
model we use the following procedure. First, xi is simulated from a multivariate Gaussian distribution with
zero expected value and covariance matrix obtained using the method implemented in the R package huge

(Zhao et al., 2015); more specifically, we simulate a random structure where the probability that a pair of
nodes has an edge is equal to 0.2.
Then, the right-censored response vector yi is simulated in analogy with the right-censored multivariate linear
regression models. Firstly, we simulate the p-dimensional random vector of errors εi from a multivariate
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Gaussian distribution with zero expected value and concentration matrix Θ. The diagonal entries are fixed
to 1 while the non-zero partial correlation coefficients θh(h+j), with h = 1, 6, 11, . . . , p and j = 1, . . . , 4, are
sampled from a uniform distribution on the interval [0.30, 0.35]. In terms of graph theory what we have is a
set of stars, i.e., complete bipartite graphs with only one internal vertex and four leaves. A similar setting for
simulating the sparse concentration matrix was used in Li et al. (2012). Then, for each k ∈ V, we randomly
draw the set Sk ⊂ {1, . . . , q}, with |Sk| = 2; the corresponding regression coefficients βhk, with h ∈ Sk, are
sampled from a uniform distribution on the interval [0.3, 0.7]. We use the intercepts β0k to fix the probability
of right-censoring. More specifically, β0k is chosen in such a way that π =

∑n
i=1 Pr{yik ≥ uk}/n is equal to

0.4 for the first K response variables whereas it is equal to 10−6 for the remaining response variables. In
our study, K is used to evaluate the effect of the number of censored response variables on the behaviour of
the considered estimators. Finally, the censored response vector is obtained by the model yi = B>xi + εi
and treating each yik greater than uk as a right censored value. We perform a simulation study, where the
sample size is fixed to 100 and the quantities p, q and K are used to define the different scenarios under which
evaluate the competing estimators. We let p, q ∈ {50, 200}, so that we can consider both a low-dimensional
setting, when p and q are equals to 50, and different high-dimensional settings. Finally, we let K = c p, with
c ∈ {0.2, 0.4}.
As explained earlier, our aim is the evaluation of the entire coefficient path of each competitor. To this end,
in order to study the coefficient path for Θ̂, we first control the amount of shrinkage on B by keeping fixed
the ratio λ/λmax and then, for this fixed λ value, the path for Θ̂ is computed across a decreasing sequence
of ten evenly spaced ρ-values, from ρmax to ρmin = 0.1× ρmax. The resulting path is evaluated both in term
of network recovery and parameter estimation. For the first aspect, we use the precision-recall curve which
shows the relationship between the quantities:

Precision =
number of θ̂hk 6= 0 and θhk 6= 0

number of θ̂hk 6= 0
,

Recall =
number of θ̂hk 6= 0 and θhk 6= 0

number of θhk 6= 0
.

An estimator is defined globally preferable in terms of sparse recovery when its precision-recall curve is
always over the other curves. To simplify our comparison, we summarize the precision-recall curve by using
the area under the curve (AUC). The second aspect is evaluated in terms of mean squared error, defined as

MSE(Θ̂) = E(‖Θ̂−Θ‖2F ),

where ‖ · ‖2F denotes the squared Frobenius norm. An estimator is defined globally preferable in terms of

mean square error when its MSE(Θ̂) path, obtained across ρ values, is below that of the other paths. In

order to summarize a given MSE(Θ̂) path, we use the minimum mean squared error attained along the path,

which we denote by minρ MSE(Θ̂). Finally, in order to study the effects of the amount of shrinkage applied
on B on the different measures, we repeat the procedure across four possible values for the ratio λ/λmax,
i.e., λ/λmax ∈ {1.00, 0.75, 0.50, 0.25}, whereby the first value corresponds to the case where the predictors

are not included in the model. The comparison of the B̂ paths for the different estimators is done using
the same strategy but inverting the role of Θ̂ with B̂ and ρ with λ. The tables reporting the full results of
our study, based on 50 replicates, can be found in the Supplementary Materials. Below, we summarize the
results in a number of ways.
Firstly, we evaluate the network recovery ability of the considered estimators. As an example, Figure 1
shows the precision-recall curves of the scenarios with p and q equal to 50 and ratios ρ/ρmax fixed to
0.25 (Figure 1(a)) and λ/λmax fixed to 0.25 (Figure 1(b)). These figures unveil two important features of
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(a) Precision-Recall Curves for B̂ with ρ/ρmax = 0.25
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(b) Precision-Recall Curves for Θ̂ with λ/λmax = 0.25

Figure 1: Precision-recall curves of the scenarios with p and q equal 50
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the proposed estimator. Firstly, the conditional cglasso estimator behaves better than its competitors in
terms of network recovery, since, for each level of recall, it has a higher level of precision. This aspect is
more pronounced in the estimation of Θ. Secondly, whereas the proposed estimator is rather robust to the
number of censored response variables, the results of the two competitors depend strongly on the probability
of censoring. In particular, conditional glasso and mglasso respond to an increase in the number of censored
values with a reduction in terms of both precision and recall. Also in this case, the effect seems to be more
pronounced for the estimation of Θ than that of B.
In order to compare the results of the low-dimensional case with the setting in which both p and q exceed
the sample size and, at the same time, in order to study the effects of an estimator, say Θ̂, onto the path of
the other estimator, say B̂, Figure 2 shows the average AUCs as the ratios ρ/ρmax and λ/λmax are varying.

More specifically, Figure 2(a) shows the average AUC of the precision-recall curve of B̂ as the amount of

sparsity in Θ̂ is reduced, that is, as the ratio ρ/ρmax goes from 1 to 0. In the same way, Figure 2(b) shows the

average AUC for Θ̂ as the shrinkage on B̂ is reduced, which is controlled through λ/λmax. Several comments
arise looking at these figures. Firstly, the initial observations coming from the analysis of Figure 1 are
confirmed also in the other scenarios, that is, the proposed method is preferable in terms of network recovery
and is more robust to an increase in the probability of censoring. As expected, an increase in the number
of variables causes a uniform loss of performance across all the methods considered. However, also in the
more challenging setting, the conditional cglasso maintains its global superiority in recovering the sparsity
structure of the matrices B and Θ. More interesting is the analysis of the crossing effects between the two
estimators. Figure 2(a) suggests that the network recovery property of the three estimators of B is only

weakly depending on the level of shrinkage on Θ̂ since all three methods show only a slight increase in the
AUC as ρ/ρmax is reduced. This result is not surprising and was initially observed in Rothman et al. (2010)
and used, by the authors, to develop an approximate method to estimate the regression coefficient matrix.
Such an idea was followed also by other authors, such as Yin and Li (2013) and Cai et al. (2013). Different
from the previous conclusions, Figure 2(b) shows that the performance of the three methods in the network

recovery associated to Θ̂ strongly depends on the ratio λ/λmax. This can be explained by observing that a

reduction in the amount of sparsity of B̂ causes an improvement in the matrix Ŝy|x(B̂) which is translated
in a better estimate of the concentration matrix and therefore an increase in the ability of network recovery.
Finally, we compare the three methods in terms of mean squared error. A quick look at Figures 3 and 4
suggests that the main conclusions, previously obtained for the network recovery case, are valid also when
we study mean squared errors. Figure 3 shows the average MSEs for the scenario with p and q equal to 50
and ratios ρ/ρmax and λ/λmax both fixed to 0.25. We can clearly see that the proposed conditional cglasso
is globally preferred and the gap among the three methods is amplified as the probability of right censoring
increases. Furthermore, also in terms of MSE, the proposed method is more robust to the percentage of
censored values. In Figure 4 we use the minimum value of the mean squared error attained along the path to
study the crossing effects among the estimators. Again, the proposed method shows a better performance,
despite a global increase in MSE across all methods when we consider the high-dimensional setting.
Although our conclusions come from the analysis of the two extreme settings for p and q, the full tables
reported in the Supplementary Materials show that our method is preferable also in the intermediate settings,
that is, when only one of p and q exceeds the sample size. This is true both in terms of AUC and MSE.

6 The role of miRNA in multiple myeloma

MicroRNAs (miRNAs) are endogenous small non-coding RNAs, approximately 22 nucleotides in length,
that play a regulatory role in gene expression by mediating mRNA cleavage or translation expression (Cilek
et al., 2017). Several studies have shown that a deregulation of the miRNAs can cause a disruption in the
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Figure 2: Paths of the average AUCs as the ratios ρ/ρmax and λ/λmax are varying
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Figure 3: Paths of the mean square error for the scenario with p and q equal to 50

gene regulation mechanisms of the cell and that this might even lead to cancerous phenotypes. Furthermore,
recent studies have also shown that miRNA networks have synergistic roles in the regulation of pathological
conditions. If two miRNAs interact with each other in a network, they are more likely to regulate pathways
and target genes which have similar functions in the same disease (Cilek et al., 2017).
Among these studies, Gutiérrez et al. (2010) investigated the expression level of a set of miRNAs, measured
by RT-qPCR technology on a sample of patients with multiple myeloma. Multiple Myeloma (MM) is
a malignant plasma cell disorder that accounts for approximately 10% of all hematologic cancers (Kyle
and Rajkumar, 2008). In the study by Gutiérrez et al. (2010), patients were selected to represent the
most relevant recurrent genetic abnormalities in MM. In particular, Table 1 reports the distribution of the
cytogenetic abnormalities in the n = 64 experimental cases available. For each sample, the dataset contains
the measured cycle-threshold for p = 141 miRNAs. As discussed in the Introduction, RT-qPCR data are

Table 1: Cytogenetic characteristics of the 64 patients for which miRNA expression data is generated.

Cytogenetic Abnormalities No. of Cases

Normal Plasma 5
t(4;14) 17

t(11; 14) 11
t(14;16) 4

RB Deletion 14
Normal FISH 13

Abbreviations: FISH, fluorescence in situ hybridization
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Figure 4: Paths of the MSEs as the ratios ρ/ρmax and λ/λmax are varying
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Figure 5: Proportion of right-censored data versus the mean of cycle-threshold (upper limit of detection is
fixed to 50 cycles).

typically right-censored and, in this study, the upper limit of detection was fixed to 50 cycles.
We start our analysis by looking at the relationship between the proportion of censored data and the observed
mean cycle-threshold per protein. Figure 5 shows that the proportion of censored data is an increasing
function of the mean cycle-threshold, suggesting that the assumption of missing-at-random is not suitable
for this dataset. Furthermore, some miRNAs have a very high proportion of censoring, clearly highlighting
the need to take the censoring mechanism into account in order to conduct a valid statistical analysis.
Using the approach proposed in this paper, we extend the study conducted in Gutiérrez et al. (2010), by
integrating different steps of the analysis into one. In particular, we propose a model that performs differential
expression, data normalization and network inference in a single step, so that, on the one hand, modelling
uncertainty can be fully accounted for, and, on the other hand, dependencies between miRNAs that can be
explained by shared factors can be identified. To this end, let yi be the vector of cycle-thresholds measured
on the i-th case, zi the expression level of 15 endogenous internal reference genes, called housekeeping and
typically used in the normalization of RT-qPCR data (Pipelers et al., 2017; Cui et al., 2015), and fi the
factor encoding the genetic abnormalities. By introducing a latent variable y?i , with yi = min(y?i , 50), we
consider the model:

E(y?i | xi) = β0 + β>1 zi + β>2 fi,

E(y?i | xi) = Σy?i |xi

where xi = (z>i ,f
>
i )> is a vector of q = 20 predictors. This model takes into account simultaneously of the

normalization step, via the term β>1 zi, the effects coming from the different cytogenetic features, via the
term β>2 fi, as well as the dependencies between miRNAs, via the covariance matrix Σy?i |xi

whose inverse
gives the conditional independence network.
Following the procedure described in Section 4, we select the optimal values of the two tuning parameters and
we identify 90 non-zero regression coefficients and 246 non-zero partial correlation coefficients. Figure 6(a)
shows the differentially expressed genes identified by the analysis when taking Normal Plasma as the reference
category. Among these, miR-204 is known to have a central role in multiple myeloma pathogenesis, as
reported for example by Gutiérrez et al. (2010) and Misiewicz-Krzeminska et al. (2013). On the other hand

18



Seckinger et al. (2015) elucidate the regulatory role of miR-135a in the t(4;14) translocation, whereas the
role of miR-133b in the t(14;16) translocation is discussed in Lionetti et al. (2009). In addition to data
normalization and differential expression, which are commonly considered in this type of studies, the model
proposed in this paper is also able to infer the underlying network of interactions between miRNAs, once
all the other controlling factors are taken into account. Figure 6(b) shows the inferred network for the
differentially expressed genes only, highlighting once more a central role for miR-204 and identifying a set of
connections, which could be further investigated in terms of shared pathways and target genes.

7 Conclusions

In this paper we have proposed a new approach to infer a sparse conditional Gaussian graphical model when
data are subject to censoring. The proposed estimator, called conditional cglasso, is obtained by combining
the idea of conditional glasso (Yin and Li, 2011) with the censored glasso (Augugliaro et al., 2018). The
computational problem of estimating the regression coefficient matrix and conditional independence graph
of sparse conditional censored Gaussian graphical model is solved by developing a suitable EM-algorithm.
The proposed algorithm is computational efficient, thanks to fast approximations of the moments of truncate
Gaussian distributions at the E-step, and a two-step procedure at the M-step, which alternates graphical
lasso with a novel block-coordinate descent multivariate lasso approach. The computational efficiency of the
proposed approach makes it feasible for high-dimension settings. An extensive simulation study showed that
the proposed estimator overcomes the existing estimators both in terms of regression coefficients estimation
and of network recovery. The proposed estimator will be implemented in the R package cglasso, freely
available at https://CRAN.R-project.org/package=cglasso.
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Appendix

Proof of Theorem 1

Before delving into technical details, we remember that the conditional distribution of yi = (yioi ,yici) given
xi can be factorized as the product of two Gaussian distributions:

φ(yioi ,yici | xi;ϑ) = φ(yici | yioi ,xi;ϑ1)φ(yioi |,xi;ϑ2). (15)

Let

¯̀(ϑ) =
1

n

n∑
i=1

log

∫
Dci

φ(yioi ,yici | xi;ϑ)dyici ,

be the average observed log-likelihood function, then

∂ ¯̀(ϑ)

∂ϑhk
=

1

n

n∑
i=1

∫
Dci

∂φ(yioi ,yici | xi;ϑ)/∂ϑhk dyici∫
Dci

φ(yioi ,yici | xi;ϑ) dyici

=
1

n

n∑
i=1

∫
Dci

∂ log φ(yioi ,yici | xi;ϑ)

∂ϑhk
× φ(yioi ,yici | xi;ϑ)∫

Dci
φ(yioi ,yici | xi;ϑ) dyici

dyici .
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Figure 6: Multiple Myeloma dataset: (a) estimated regression coefficients of the differentially expressed
miRNAs; (b): network of the differential expressed miRNAs.
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Using factorization (15), the previous expression can be simplified in the following way:

∂ ¯̀(ϑ)

∂ϑhk
=

1

n

n∑
i=1

∫
Dci

∂ log φ(yioi ,yici | xi;ϑ)

∂ϑhk
× φ(yici | yioi ,xi;ϑ1)∫

Dci
φ(yici | yioi ,xi;ϑ1)

dyici .

Since φ(yici | yioi ,xi;ϑ1)/
∫
Dci

φ(yici | yioi ,xi;ϑ1) is the density function of the conditional distribution of

yici given {xi,yioi}, which is a Gaussian distribution truncated over Dci , we have that ∂ ¯̀(ϑ)/∂ϑhk is equal
to:

1

n

n∑
i=1

E

(
∂ log φ(yioi ,yici | xi;ϑ)

∂ϑhk
| yici ∈ Dci ,xi;ϑ

)
.

This complete the proof.

Proof of Theorem 2

We start the proof by noting that

tr{Θ̂Ŝy|x(B)} =
1

n
tr{Θ̂(Ĉyy − ĈyxB −B>Ĉxy +B>CxxB)}

=
1

n
tr{Θ̂(Ŷ

>
Ŷ − ĈyxB −B>Ĉxy +B>CxxB)}+

1

n
tr{Θ̂(Ĉyy − Ŷ

>
Ŷ)}

=
1

n
tr{Θ̂(Ŷ −XB)>(Ŷ −XB)}+

1

n
tr{Θ̂(Ĉyy − Ŷ

>
Ŷ)}. (16)

Now, suppose that we are interested in fitting the kth column of the regression coefficient matrix while the
remaining columns are held fixed to the current estimate, then we can define the following partition B =(
Bk B̂\k

)
, where B̂\k denotes the matrix of the current estimates. Furthermore, let R\k = Ŷ\k−X\kB̂\k

denote the matrix of the current residuals. With such notation we have

(Ŷ −XB)>(Ŷ −XB) =

(
‖Ŷk −XBk‖2 (Ŷk −XBk)>R\k

R>\k(Ŷk −XBk) R>\kR\k

)
,

Θ̂ =

(
θ̂kk Θ̂k\k

Θ̂\kk Θ̂\k\k

)
,

then, using the identity (16), the trace term in the following minimization problem

min
Bk

tr{Θ̂Ŝy|x(Bk)}+ λθ̂kk‖βk‖1, (17)

can be written as follows

tr{Θ̂Ŝy|x(Bk)} =
θ̂kk
n
{‖Ŷk −XBk‖2 + 2(Ŷk −XBk)>V̂k}+

1

n
tr{Θ̂\k\kR>\kR\k}+

1

n
tr{Θ̂(Ĉyy − Ŷ

>
Ŷ)}

=
θ̂kk
n
‖Ŷk + V̂k −XBk‖2 + C,

where

V̂k =θ̂−1
kk R\kΘ̂\kk

C =n−1[tr{Θ̂\k\kR>\kR\k}+ tr{Θ̂(Ĉyy − Ŷ
>

Ŷ)} − θ̂kk‖V̂k‖2]
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are constant terms with respect to Bk. Finally, letting Ỹk = Ŷk + V̂k, it is easy to see that minimization
problem (17) is equivalent to

min
Bk

1

n
‖Ỹk −XBk‖2 + λ‖βk‖1.

This complete the proof.

Proof of Theorem 3

The proof is divided in two steps; first, assuming known the pair (λmax, ρmax), we explain how to compute the
corresponding conditional cglasso estimators then, analyzing the Karush-Kuhn-Tucker (KKT) conditions,
we derive the exact fomulae to compute the maximum value of the two tuning parameters.
Suppose that λmax and ρmax are known then B̂ = (β̂0, β̂

>)> and Θ̂ are maximally penalized, that is β̂ = 0

and θ̂hk = 0 for any h 6= k. In this case, since the remaining parameters are unpenalized they can be
estimated by simply maximizing the following average observed log-likelihood function:

1

n

p∑
k=1

{∑
i∈ok

log φ(yik;µk, σ
2
k)+ + |c−k | log

∫ lk

−∞
φ(y;µk, σ

2
k)dy + |c+k | log

∫ +∞

uk

φ(y;µk, σ
2
k)dy

}
,

where β̂0 = (µ̂1, . . . , µ̂k)> and Θ̂ = diag(σ̂−2
1 , . . . , σ̂−2

p ). Since the previous average log-likelihood function
is defined through the sum of p marginal log-likelihood functions, the pair {µ̂k, σ̂2

k} is merely the solution of
the following maximization problem:

max
µk,σ2

k

∑
i∈ok

log φ(yik;µk, σ
2
k) + |c−k | log

∫ lk

−∞
φ(y;µk, σ

2
k)dy + |c+k | log

∫ +∞

uk

φ(y;µk, σ
2
k)dy.

In order to compute λmax and ρmax, first we derive the KKT conditions characterizing the solution of the
following maximization problem

max ¯̀(B,Θ)− λ
p∑
k=1

θkk‖βk‖1 − ρ‖Θ‖−1 .

In what follows, we shall use the convention that a column of a matrix is denoted indexing the matrix with
the corresponding index; for example, Xk denotes the kth column of the matrix X. Furthermore, the generic
entry of the matrix Ŝy|x(B̂) is denoted by ŝhk(B̂).
By straightforward algebra and using the results given in Theorem 1, for a given pair (λ, ρ) the KKT
conditions can be written in matrix form as:

1

n

p∑
l=1

θ̂klX
>
h (Ŷl −XB̂l)− λθ̂kkν(β̂hk) = 0,

σ̂2
hk − ŝhk(B̂)− ρν(θ̂hk) = 0,

where, in general, ν(ϑ̂hk) denotes the subgradient of the absolute value function at ϑ̂hk, that is, ν(ϑ̂hk) =

sign(ϑ̂hk) if and only if ϑ̂hk 6= 0 otherwise |ν(ϑ̂hk)| ≤ 1. Remembering that at (λmax, ρmax) we that β0 = µ̂,

β̂ = 0 and Θ̂ = diag(σ̂−2
1 , . . . , σ̂−2

p ), the previous conditions can be simplified as follows:

1

n

m∑
i=1

xih(ŷi,k − µ̂k) = λmaxν(β̂hk),

ŝhk(B̂) = −ρmaxν(θ̂hk).
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Finally, taking the absolute value of both sides of the previous equations and remembering that |ν(ϑ̂hk)| ≤ 1
we have

1

n
|
m∑
i=1

xih(ŷi,k − µ̂k)| = λmax|ν(β̂hk)| ≤ λmax,

|ŝhk(B̂)| = ρmax|ν(θ̂hk)| ≤ ρmax,

from which it follows immediately that

λmax = max
h,k

n−1|
m∑
i=1

xih(ŷi,k − µ̂k)|

ρmax =‖Ŝy|x(B̂)‖−∞,

where ‖Ŝy|x(B̂)‖−∞ = maxh6=k |ŝhk(B̂)|.
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