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I. Abstract 

There is an ever-increasing need to develop innovative structural solutions which offer greater 

efficiency and resilience compared with existing technologies.  In construction, both engineers 

and also society as a whole are becoming more intolerant of practices which are considered 

unsustainable such as excessive material usage, short life-spans, high maintenance costs, etc. 

In this context, the research presented in this thesis is focused on a novel and efficient structural 

shape called a concrete filled tubular flange girder (CFTFG) and the principle aim is to gain a 

deep understanding of their behaviour through both numerical and analytical modelling.  

CFTFGs are steel beams in which the top flange plate is replaced with a hollow steel section 

which is then filled with concrete. The concrete in the tube strengthens the compression flange 

of the girder, providing greater torsional stiffness and thereby increasing the lateral-torsional 

buckling (LTB) resistance of the girder, relative to a regular steel beam of similar proportions. 

In heavily loaded applications such as bridges and car parks, CFTFGs can result in time and 

cost savings relative to more traditional sections as much of the fabrication is conducted off-

site with fewer splices and complex connections required on-site.  The concrete filled tubular 

flange can theoretically be any shape and the focus in the current research is on simply 

supported members with either a rectangular or circular top flange, as well as stiffened webs.  

CFTFGs are complex members and their behaviour is governed by several inter-related 

parameters. In order to investigate these, and develop a deeper understanding of the behaviour, 

a nonlinear three-dimensional finite element (FE) model is developed using the ABAQUS 

software and validated using available experimental data from the literature. The validated 

models are then employed to conduct a series of parametric studies to investigate the influence 

of the most salient parameters on the performance. The finite element models consider the 

effects of initial geometric imperfections, as well as other geometrical and material 

nonlinearities, on the response. For comparison purposes, and to observe the effect of the 

concrete infill, the same girders with a bare steel tubular flange section are also studied.   

In addition to the FE model, and with a view to providing designers with convenient guidance, 

simplified analytical expressions for the flexural capacity of CFTFGs are also proposed, and 

the results are compared to those from the FE analyses. It is found that concrete filled members 

exhibit similar buckling shapes to similar sections without the concrete infill but significantly 

greater buckling resistance. This highlights the influence of the concrete infill which increases 

the stiffness of the upper flange, and hence allows the member to carry additional bending 
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moments compared to bare steel sections.  The analytical expressions, which are suitable for 

design, are also shown to be capable of providing an accurate depiction of the bending moment 

capacity. 

In a further development of the work, the ultimate strength of circular CFTFGs under combined 

axial tension and positive (sagging) bending moment is also investigated, as this is a common 

scenario in bridge applications. Current design codes do not explicitly include guidance for the 

design of CFTFGs, which are asymmetric in nature under the combined effects of tension and 

bending. A finite element model has been developed using ABAQUS to study this behaviour. 

Based on the finite element analysis, the moment–axial force interaction relationship is 

presented and a simplified equation is proposed for the design of circular CFTFGs subjected 

to combined bending and tensile axial force. 

The data and analysis presented in this thesis supports the use of concrete filled tubular flange 

girders in appropriate, heavily-loaded, design scenarios. They are shown to provide an efficient 

load-carrying solutions, and can cover large spans without the need for intermediary supports. 

The design expressions proposed are based on a fundamental review of the behaviour and are 

shown to provide an accurate depiction of the capacity of these sections either in bending or 

under combined loading.  
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STFGs Circular steel tubular flange girders (without infilled concrete) 

TFG Tubular flange girder 

THTFGs Triangular hollow tubular flange girders 

RHTFGs Rectangular hollow tubular flange girders 
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1.1 Background 

Steel I-girders (IGs) are very common elements in modern construction and bridge 

engineering, especially for heavily-loaded applications. They are typically obtained by 

welding the two flat-plate flanges and flat web plate together. In bridge applications, the 

height of an I-girder is typically quite large to provide the necessary flexural strength and 

stiffness. However, for global stability, these large heights can be disadvantageous. Their 

behaviour depends on the structural response of the plate elements, which are primarily 

subjected to various loading. Steel design standards (e.g. AISC, 1999) usually define the 

flexural strength of IGs, based on local buckling and lateral–torsional buckling (LTB) 

limit conditions.  Local buckling is generally described as a mode which involves the 

deformation of its individual plates without translating the intersection lines of the 

adjacent plate elements. Local buckling is therefore dependent on the slenderness ratios 

of the flange and web components. On the other hand, a rigid-body lateral translation and 

cross-sectional twist are defining features of LTB, which depends on the unbraced length 

of the member. IG’s which are susceptible to LTB can have significantly reduced moment 

capacities compared with stockier members are girders with more bracing.  

Another common failure mode for IGs is through web distortion (Hassanein and Silvestre, 

2013), as shown in Fig. 1.1a. This mode of failure is usually referred to as lateral–

distortional buckling (LDB) which is due to the concurrent occurrence of (i) high lateral 

displacements and compressed flange rotation, (ii) low lateral displacement of the tension 

flange and (iii) web distortion (i.e. transverse bending). If the I-girder is connected to 

more stiff structural elements such as concrete slabs in composite girders, web distortion 

becomes even more obvious. In this case, it is referred to as restrained-distortional 

buckling (RDB), as shown in Fig. 1.1b. 

In light of these challenges, and to order to improve the twisting strength of beams with 

open sections and decrease their sensitivity to lateral–torsional buckling (LTB), a 

relatively new section has been developed by replacing the flat compression flange with 

a tubular shape (i.e. a hollow flange). The resulting section is called a tubular flange girder 

(TFG), or a hollow tubular flange girder (HTFG). 
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                 (a)                   (b) 

Fig. 1.1 Steel I-girder (a) LDB (positive bending) and (b) RDB (negative bending) 

Fig. 1.2 shows the different types of TFG’s which have been developed in recent years 

for long beams, bridges and other construction applications. One of the main advantages 

of these girders is that they can support high loads in structural applications which cannot 

be supported or would be uneconomical using universal rolled sections or built-up I-

girders. 

 

             (a)                       (b)                   (c) 

Fig. 1.2. Hollow flange girders including (a) triangular hollow flange beam, (b) 

LiteSteel beam and (c) rectangular hollow tubular flange plate girder 

Due to its closed section, beams with a hollow tubular flange (HTFGs) have considerably 

greater local buckling resistance, reduced web slenderness and higher torsional stiffness 

compared with I-shaped girders of a similar weight (Wassef et al., 1997; Hassanein and 

Kharoob, 2010; Kharoob, 2017). They also offer higher shear strength and stiffness but 

remain sensitive to LDB since the minor axis second moment of area of their hollow 

flanges is slightly increased (Hassanein and Kharoob, 2010; Hassanein and Silvestre, 

2013; Hassanein, 2014). However, owing to the relatively thin walls, two typical failure 

modes can occur, namely web distortion and local buckling (Anapayan et al., 2011a; 

Hassanein and Silvestre, 2013). Web distortion takes place when the web is quite slender 
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and can be effectively prevented by using stiffeners along the length (Avery and 

Mahendran, 1997). 

It is clear from the above discussion that HTFGs offer a good alternative to I-shaped 

girders for heavily loaded applications, although there are some challenges also. Some of 

these can be overcome by filling the hollow tube with concrete to form a concrete-filled 

tubular flange girder (CFTFG), as shown in Fig. 1.3. The global stability resulting from 

combining an I-steel girder with a concrete-filled steel tube (CFST) has been shown to be 

significantly enhanced through both experimental tests and finite element analyses (Kim 

and Sause, 2005, 2008; Gao et al., 2014). 

 

         (a)     (b)                (c) 

Fig. 1.3 Girders with concrete filled tubular flanges inlcuding (a) rectangular flange,                                                                                                                                                

(b) circular flange and (c) pentagonal flange 

 

1.2 Concrete behaviour in the tubular flange 

Composite steel–concrete members are structural systems that embrace the respective 

qualities of both constituent materials to create an efficient structural solution. Concrete-

filled steel tubes (CFSTs) are widely used throughout the world in construction and 

transportation structures as columns, beams and bridge application. There has been 

considerable research into CFSTs and they have been shown to offer excellent structural 

performance, including high strength, good ductility, an attractive appearance, excellent 

fire resistance and a large capacity to absorb energy (Hu et al., 2003; Han et al., 2007; 

Giakoumelis and Lam, 2004). In addition, confinement of the concrete core by the steel 

tube improves the strength of the concrete core and shows different behaviour compared 

with the normal unconfined concrete. The steel tube provides confining pressure to the 
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concrete and makes the concrete core under triaxial state of compressive stresses, as 

shown in Fig. 1.4 (Hu et al., 2003). 

This occurs because when the concrete approaches failure, the Poissons ratio of the 

concrete core is greater than that of the steel tube. The concrete effectively restricts any 

local buckling of the steel tube and increases the stability and strength of the member as 

a system whereas the steel tube offers longitudinal and transverse strengthening of the 

concrete. The natural bond between the tube and the core plays a significant role in 

transferring the load from the steel tube to the concrete core. A key hypothesis in using 

CFSTs is that the steel tube and the concrete core work together to resist the applied loads. 

The steel tube also prevents the concrete core from spalling during fire exposure (Hu et 

al., 2005, Hu et al., 2003). In light of the many advantages of CFSTs in construction, the 

addition of a concrete filled tubular flange to a steel girder, creating a concrete filled 

tubular flange girder, CFTFG) is a promising way of extending the capacity and stability 

of steel girders such that they can carry very large loads over long spans. Tubular flange 

girders (TFGs) including hollow (HTFG) and concrete filled (CFTFG) members, are one 

of several innovative steel beam systems which have been suggested in recent years.  

 

Fig. 1.4 Concrete confined by the steel tube subjected to triaxial compressive stresses 

(reproduced from Mollazadeh, 2015) 

 

1.3 Types failure modes  

Buckling is defined as deformation of the plate elements or members subjected to 

compressive stresses. When beams exposed to bending action creates tensile and 

compressive stress on either side of the neutral axis where buckling in the compressive 

stress region is probable to occur. Local buckling, distortional buckling and lateral 

torsional buckling are the cross-sectional instabilities of steel beams. Local buckling takes 

place in short span members, whereas lateral torsional buckling happens in long span 

Concrete core Compressing 

Compressing 

Confining pressure 
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members and distortional buckling mode in intermediate span beams. Fig. 1.5 (a) to (d) 

show the different modes of buckling failure that take place in channel cross-sections. A 

brief summery of each types of failure mode as followes 

1.3.1 Local buckling 

Local buckling involves cross-section distortion, with only rotation occurring at the 

section's internal fold lines. In a flexural member with HTFG cross section, owing to the 

nature of thin plate elements, the top flange (tube) is subject to pure compressive stress 

and is likely to buckle locally. At the same time, the compression portion of the web can 

buckle because of the compressive stress that caused by bending. Fig. 1.5a show the 

pattems of local buckling mode of LiteSteel beam (LSB) cross-section purlins under pure 

bending. On the other hand, CFTFGs do not experience local buckling even at high levels 

of deflection, due to the confinement effect provided by the concrete core. 

1.3.2 Distortional buckling 

Distortional buckling is a failure mode which can be found in the compression and 

flexural members. This type of buckling includes distortion of the cross-section with the 

incidence of rotation and translation at the inner fold lines. For example, distortional 

buckling of flexural components like channel section typically involves rotation of the 

compression flange and lip around the flange-web junction (Fig. 1.5b). This mode is also 

called (flange distortional buckling). The web undertakes flexure at the equivalent half 

wavelength as the flange buckle, and the compression flange can slightly translate to the 

web in a direction normal, even at the identical half-wavelength as the flange and buckling 

web deformations. Distortional buckling may happen at stresses significantly lower than 

yield stress, particularly for steels with high strength (Hancock, 2003). The distortional 

buckling wavelength typically lies between that of local buckling and global buckling. 

1.3.3 Lateral distortional buckling 

Distortional buckling is also called lateral distortional buckling, where the web bends 

transversely and the flanges remain either unrotated or to some degree rotated. Fig. 1.5c 

illustrates lateral distortional buckling of LiteSteel beam (LSB) cross-sections when 

bending and restraining of the stress flanges. 
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1.3.4 Lateral torsional buckling 

Lateral torsional buckling prevents cross section distortion; but the entire cross section is 

translated and rotated. Most of the cross-sections generated are mono-symmetric with 

their shear centre positioned away from their centroid, such as channel sections. A thin-

walled beam's shear centre must be loaded through to achieve flexural deformation 

without twisting. Any eccentricity from the load to this axis can typically cause 

substantial torsional deformations within a thin-walled plate. Usually beams need 

torsional restraints either at intervals or continuously such as long span beams 

demonstrate lateral torsional buckling failure mode. The lateral torsional buckling modes 

of LiteSteel beam (LSB) cross-section is shown m Fig. 1.5d. 

 

 

          Fig. 1.5 Different buckling modes of LiteSteel beam (LSB) cross-section 

 

1.4 Applications 

1.4.1 Hollow tubular flange girder (HTFG) 

The applications of structural HTFG sections cover various  fields of construction due  to  

their  cost  efficiency, flexural capacity, ease of connection, large clear spans and 

availability.  Sometimes,  HTF  sections are used because of the beauty of their shape, to 

express  a lightness or in other cases their geometrical properties determine their use. 

Although in the past, researchers have investigated different types of HTF beams. They 

are increasing in popularity not only because of their light weight and efficiency in 

residential, industrial and commercial buildings, but also because of their beneficial 

characteristics, including torsionally rigid flanges combined with economical fabrication 

processes. The investigations on hollow tubular flange (HTF) members in the past were 

limited to short to medium span applications with a maximum span of 15 m. Since  

increased  torsional  rigidity  of  HTF  members  is  an  essential  and  useful characteristic 

for long span girders subjected to bending, the advanced architectural designs increase 

(a) Local (b) Distortional (c) Lateral distortional (d) Lateral torsional
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the demand of innovative steel HTF members with more favourable properties in design 

of large span applications. In view of long span constructions (Fig. 1.6a) such as bridges. 

The LiteSteel beam (LSB) sections, another example of HTF, which can be used in a 

range of construction such as flexural members, truss members and studs, see Fig. 1.6b-

e. 

 

(a) Pedestrian bridge in Houdan, France (Wardenier et al., 2002) 

 

 

(b) Floor Joists (Keerthan, 2010) (c) Purlins (Anapayan, 2010) 
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(d) Roof Beams(Keerthan, 2010) (e) Floor Bearers (Anapayan, 2010) 

Fig. 1.6 Applications of HTF sections 

1.4.2 Concrete filled tubular flange girder (CFTFG) 

There are a number of recent examples of composite bridges, which comprise concrete-

filled steel tubes, in different structural arrangements. A number of tubular truss bridges 

have also been reported (e.g., Lully viaduct in Switzerland (Schumacher et al., 2001)) and 

also a railway bridge with concrete-filled steel tube girders (Nakamura et al., 2002). 

Concrete filled steel tubular arch bridges have become widely used around the world in 

recent decades due to the inherent advantages such as high load-carrying capacity, 

efficient construction costs and pleasant appearance. As stated before, the concrete 

prevents the steel tube from buckling locally, whereas the steel tube confines the concrete 

to resist tension, bending moment and shear force, which increases the load-carrying 

capacity of the member through the composite structural action of the concrete core and 

the steel tube. Furthermore, during the construction of the bridge, the steel tube can act 

as formwork which saves significant building costs (Wu et al., 2006). Fig. 1.7 presents a 

concrete-filled steel tube arch bridge in China (Zheng and Wang, 2018). In the United 

States, the Lynch Village Bridge was constructed in 2010 and is one of the earliest 

examples of a concrete filled tubular flange girder (CFTFG) being used in a bridge, as 

shown in Fig. 1.8 (NSBA, 2012).  
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(a) 
 

 

(b) 
 

Fig. 1.7 Concrete filled steel tube arch bridge (Zheng and Wang, 2018) including (a) 

Guangxi San’an Yong River Bridge and (b) Hurongxi Expressway Zhijing River 

Bridge 
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Fig. 1.8 Lynch Village Bridge (NSBA, 2012) as an example of composite bridges 

comprising concrete filled tubular flange girders (CFTFGs) 

1.5 Methodology 

CFTFGs are complex members and their behaviour is governed by a number of inter-

related parameters. The analysis of this study is conducted on: 

• Two different cross-sections (circular and rectangular CFTFGs)  

• Finite element models have been developed using ABAQUS 

• Analytical expressions developed suitable for design, based on fundamental 

principles of structural engineering 

1.6 Validation of the numerical modelling 

The study required to assess the accuracy of the response predicted by the FE model. 

Therefore, the model was validated against the test data available. A good agreement is 

achieved between the experimental and finite element modelling results (e.g. circular and 

rectangular CFTFG). The overall behaviour is well depicted and the load values are very 

closely predicted. Therefore, the modelling approach is satisfactory. Using FE results to 

develop design expressions, based on equilibrium in the section, for moment capacity. 

The CCFTFG of FE model is developed under different loading conditions and propose 

the moment–axial force interaction diagram for the design of CFTFGs under combined 

load. 

 

 

 



11 

 

1.7 Aims of the study 

The specific aims of the research are as follows: 

• For these types of girder, a specific flexural design formulae in Eurocode 4 (EN 

1994-1-1, 2004) is not presented.  

• Develop and validate a numerical simulation model for circular and rectangular 

concrete filled tubular flange girders; 

• Study influential parameters (e.g. girder geometry, material strength and initial 

geometric imperfections)  

• Develop analytical expressions which are suitable for design for predicting the 

bending capacity of CFTFGs; 

• The effect that combined axial load and bending moment has on the ultimate 

capacity of CFTFGs has not yet been covered in a comprehensive way either in 

the research literature or in codes of practice.  

• Eurocode 4 (EN1994-1-1, 2004) provides detailed guidance for the design of 

composite columns under combined actions, but do not address the effects of 

combined loading for CFTFGs. 

• Study different loading conditions and propose the moment–axial force 

interaction diagram for the design of CFTFGs under combined load. 

1.8 Objectives of the study 

The specific aims of the research are as follows: 

• The flexural strength of CFTFGs is affected by the contact stresses between the 

steel tube and concrete infill. The contact stresses increase the compressive 

strength of the concrete infill by confinement, and decrease the uniaxial yield 

stress of the steel tube by requiring tensile hoop stresses in the tube. 

• Based on a fundamental assessment of the behaviour, it is important to give 

careful consideration to all factors when designing a CFTFG (e.g. capacity 

requirements, flange depth, web depth, welding needs, etc). 

• The numerical simulations demonstrated that it is important to account for the 

axial force in the design of CFTFGs which are subjected to combined loading. 

• Finally, based on the absence of specific flexural design formulae for the CFTFGs 

in Eurocode 4 (EN 1994-1-1, 2004), a design model providing suitable ultimate 

moment capacity values predictions for CFTFGs is presented.  
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• The final outcome is that CFTFGs provide a viable, efficient and novel solution 

for heavily loaded structural applications. 

 

1.9 Thesis outline 

As well as this introductory chapter, this thesis consists of a further five chapters, as 

follows: 

• Chapter 2 presents a review of the existing information related to this research. 

General information about concrete filled tubular flange girders including their 

development, properties, main advantages, and applications are presented and 

discussed, as well as a thorough review of existing research.  

• Chapter 3 presents a detailed description of the development of the finite element 

model for circular CFTFGs. The numerical simulation model is validated against 

available test data. Thereafter, it is employed for an extensive numerical 

parametric study to investigate the behaviour of circular CFTFGs under bending. 

Also in this chapter, a series of analytical expressions are developed and proposed, 

based on fundamental structural engineering principles, for calculating the 

bending moment capacity. The chapter concludes with a comparison between the 

FE and analytical results. 

• Chapter 4 presents the development of a finite element model for simulating the 

behaviour of circular CFTFGs under combined loading. A detailed discussion is 

presented on the loading and solution method, boundary conditions, failure 

criteria, as well as proposals for an appropriate interaction diagram and analytical 

design equations. 

• Chapter 5 presents a detailed description of the numerical modelling of 

rectangular CFTFGs under bending. The chapter begins with a description of the 

finite element (FE) model which is validated using the test data available in the 

literature. This include boundary condition as well as concrete and steel materials 

information. The validated model is then employed to conduct a parametric study 

to investigate the effect of key parameters and observe how the cross-section 

geometry affects the behaviour of tubular flange girders. Based on the analysis, 

as well as a fundamental assessment of the behaviour, a series of analytical 

expressions which are suitable for design are presented and assessed for predicting 

the bending capacity of rectangular concrete filled tubular flange girders 
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(RCFTFGs). The chapter concludes with a comparison between the FE and 

analytical results. 

• Chapter 6 summarises the main findings of this research study draws conclusions 

on the main contributions made. Also in this chapter, as series of 

recommendations for future research is presented. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 : Literature review 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

2.1 Introduction 

The purpose of this chapter is to background and review of the history and basic 

fundamentals of concrete filled tubular flange girders (CFTFGs). The work and 

achievements of key researchers in the field are presented and their methods, theories and 

findings are reviewed. Research in this field in recent years has increased considerably, 

although the majority of the studies are limited to hollow tubular flange girders (HTFGs) 

with fewer investigations on CFTFGs.  

2.2 Use of CFTFG 

A CFTFG is a steel girder which uses a concrete filled hollow structural section top 

flange. The compression flange (tube) is filled with unreinforced concrete in the 

manufacture shop after girder fabrication. The concrete in the tube strengthens the hollow 

structural top flange of the girder. It is worthy to mentioned that the compressive strength 

of concrete infill contributes to increase the strength of LTB. However, the contribution 

of the concrete infill for CFTFGs with long unbraced lengths is comparatively low in 

comparison with the contribution of the concrete infill for CFTFGs with short and 

intermediate unbraced lengths. Kim and Sause (2005) compared CFTFGs with 

conventional steel I-beams and also steel–concrete composite beams, these type of girders 

offer a number of advantages, including:  

• Providing more strength, stiffness and stability compared with a conventional 

steel I-girder, which uses a similar amount of steel or a hollow flange. This is an 

important benefit under bridge construction conditions before the girders are made 

composite with a concrete deck (i.e. during construction of the concrete deck); 

• The web depth being decreased compared to a steel I-girder of the same total 

depth, which reduces the web slenderness effects; 

• Fewer diaphragms (or cross frames) being required to sustain lateral–torsional 

stability compared with corresponding steel I-girders, which decreases the 

fabrication and erection efforts required in bridge constructions; 

• Increasing the torsional stiffness, thus improving the lateral torsional buckling 

(LTB) resistance of the girder. 
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2.2.1 Manufacturing Process  

The manufacturing process for the CFTFG is identical to that for regular tubular parts. 

The contrast with CFTFG is its special dual weld manufacturing process and its concrete-

filled hollow flanges, both patented by Smorgon Steel Tube Mills. Fig. Fig. 2.1 Shows 

the comparison between single welded tubular sections and dual welds of the LSB.  

 

Fig. 2.1 Weld types including, LSB and standard hollow sections 

 

The fabrication process starts by feeding a large sheet steel roll through a series of 

flattening rollers. The steel is trimmed to the required width, and in a cold forming process 

the edges are coiled over. This is followed by a full penetration butt weld along the steel 

length using a dual electric resistance welding (DERW) method. The section is passed 

through an additional set of rollers that shape and size the section and flanges to its final 

dimensions. The tube is filled with concrete after girder fabrication.  Cleaning and 

painting are then carried out before bundling and stacking. The manufacturing process is 

illustrated in Fig. 2.2.  

CFTFGs can be most useful when accelerated construction is needed. The use of span-

by-span erection and only a few diaphragms increases the speed of erection. This 

arrangement greatly reduces the demands on the negative moment region at the pier. 
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2.2.2 Installation and splice at pier 

In CFTFG bridge, preliminary design (Kim and Sause 2008) suggested the use of simple 

spans for dead load made continuous for the effects of live and superimposed dead load. 

This was done in anticipation that when accelerated construction is needed. Use span-by-

span erection, with just a few diaphragms, increases erection speed. This system 

significantly decreases the demands on a negative moment area at the pier. The design 

approach at the pier location is that as simple spans the CFTFGs resist dead loads from 

CFTFGs and concrete deck. The CFTFGs are then spliced up and made continuous for 

dead and live superimposed loads. In the deck, the longitudinal reinforcing steel was 

designed to withstand the stress forces at the pier resulting from the negative moment of 

bending. The bottom flange resists the forces of compression from negative bending. 

Owing to the size of the deck reinforcement steel to withstand the negative bending 

tension forces, tension stresses in the tube are very low and tube resistant, neglecting the 

infill concrete. In negative bending the advantages sited for the CFTFGs are lost. The 

CTFTGs return to simply acting as a plate girder with no support from the concrete tube 

filled in. 

The bearing stiffeners are placed outside the splice area to serve as contact plates for the 

near-pier end diaphragms. On the other hand, the bearing stiffeners at the end diaphragm 

locations were required for the LTB resistance (Kim and Sause, 2005) . The requirement 

for a hand-hole in the tube was eliminated by specifying high strength steel bolts with the 
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appropriate bolt grip through the whole hollow structural section top flange. A wide 

tolerance in the distance between the girder ends as well as field drilling on one side of 

the splice was defined to account for field conditions which may deviate from calculation. 

In the manufacturing shop the tube was filled with concrete on the shop-drilled side of 

the splice. Greased bolts were put in the holes of the bolts and then removed after cured 

concrete. In the fabrication shop, the tube at the splice's field-drilled region was not filled 

with concrete. This area was grouted in the field after bolting up the splice. It is worthy 

to mention that the tube was filled with concrete in the shop. 

It should be observed that the sole plate on the bearing at the pier was welded to the splice 

plate on the bottom flange. Because of this, the splice bolt spacing at the bottom flange 

meets the specifications of AASHTO sealing. The sealing criteria have been relaxed 

because the splices are well protected against moisture and have a painted weathering 

steel corrosion safety system. 

2.2.3 Constructability-erection  

Post-tensioned deck slabs precast together with CFTFGs form a well-suited framework 

system for accelerated construction. However, in the final design process of the CFTFG 

bridge, further considerations have removed the use of precast deck panels to simplify the 

design, Fig. 2.3 shows the deck panels before and after concrete was cast, respectively.   

Fig. 2.3 Precast concrete deck panels before casting concrete (Kim and Sause, 2005) 
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A conventional reinforced concrete deck with cast-in-place was used. When the 

reinforced concrete deck had been placed, continuity with the bolted splice was created 

at the pier. The external, fascia CFTFGs are subjected to torisonal loading during deck 

installation, unlike the preliminary design utilising precast deck panels. For conventional 

steel plate I-girders, the torsional loading creates major flange lateral bending stresses.  

For this purpose, a thorough erection study was performed to verify the deck placement's 

constructability. 

The substructures were designed in standard fashion. On permanent abutment bearings, 

the girders were erected, and a temporary erection bearing supported by pier brackets. 

Since the girders were set as simple spans, significant rotation was experienced at the 

supports. After the deck was placed, the permanent bearings were reset at the far abutment 

and the girders rotated to their final location. Using an integral abutment at the other end 

of the bridge will remove the need to reset the bearings at that position, The safety 

supports involved of concrete and steel beams as shown in Fig. 2.4.. 

 

Subsequently, the bridge deck was placed in the positive moment regions as a simple span 

bridge, except for the blockout regions at the pier and abutments. A region of blockout 

was given directly over the splice region to allow the girders to splice after the rest of the 

deck cured. At each abutment blockouts were provided because an integral abutment was 

at one end and a concrete diaphragm of full depth was at the other end. However, as the 

girder deflected from its cambered location it technically assumed the form of the grade 

Fig. 2.4 Safety supports (Kim and Sause, 2005) 
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of the profile, the bolt holes on one side of the splice were only sub-punched in the shop 

and then reamed in the field before making the contact to compensate for camber 

inaccuracies. The splice of the girder was then made at the pier, leaving out several rows 

of bolts from the bottom splice plates. The girders were raised with hydraulic jacks placed 

on the brackets of the erection. The temporary bearings were removed, and the CFTFG's 

on the final bearings were brought to rest. All girders were raised at the same time and 

there would be no undue tension in the diaphragms or the wall (Wimer, 2004). 

 Finally, the remaining bolts were placed in the splice of the bottom flange. The anchor 

bolts were swedged and installed in the pier cap and grouted into preformed holes. The 

temporary brackets on erection have been removed. The splice was then grouted to the 

field- drilled side. After that, the blockout regions of the deck were placed. The contractor 

was allowed to build the blockout region at the pier using removable deck shapes to allow 

access from the top of the deck to the work area around the splice. For potential 

replacement of the bearing the temporary sole plates near the pier were left in place. The 

holes in the pier cap were then grouted for the temporary erection braces. 

2.3 Overview of concrete filled steel tubes (CFSTs) 

A composite steel-concrete design can provide an effective structural solution through 

the use of both component materials in order to create a single composite section. The 

high tensile strength and ductility of steel in combination with the excellent strength of 

and robustness of concrete results in an efficient composite cross-section suitable for 

various applications. Because of these credentials, in recent decades the market share of 

composite construction has increased dramatically (Vasdravellis et al., 2012a). 

A variety of composite members provided with a range of different arrangements have 

been devised, including composite beams in which a steel section is attached to a concrete 

slab through shear connectors, and also steel tubes filled with concrete (CFST), which are 

commonly used for beams as well as columns. CFSTs present a widely versatile 

application and is an excellent solution to incorporate into structures. These solutions 

have been used in the design and construction of large buildings and bridges, because of 

their high axial load-bearing capacity and competitive cost/efficiency ratio. 

Fig. 2.5 (a) shows the most widely used cross section shapes in CFST systems, which are 

circular, square and rectangular (Kovac, 2010). Moreover, some researchers have carried 

out studies on the behaviour of elliptical sections (Lam and Testo, 2011; Dai and Lam, 

2010), while others have examined an innovative X section (Chen and Jin, 2010). For 



20 

 

architectural reasons, the round ended rectangular and polygon cross section forms are 

used (Han et al., 2014), as shown in Fig. 2.5 (b). When the concrete filled steel tube is 

exposed to axial compression, a gap occurs between the steel tube and the concrete core 

in the elastic range because Poisson’s ratio for the concrete is smaller than that of the steel 

tube. Beyond the elastic range, the inner concrete dilates (strains transversely) at a 

higher/faster rate than the steel tube, hence making contact between the steel tube and the 

concrete to develop again (Shanmugam and Lakshmi, 2001; Susantha et al., 2001). As 

the axial compressive stress increases further, continued dilation of the concrete core is 

restricted by the steel tube, generating a variable confining pressure in the concrete in the 

transverse direction. This confining pressure effectively increases the compressive 

strength of the concrete core. In a CFST, the concrete is confined by steel tube section, 

which results in increased ductility and strength of the concrete core, compared to 

unconfined concrete (Knowles and Park, 1969; Shanmugam and Lakshmi, 2001; 

Susantha et al., 2001; Kovac, 2010), as shown in Fig. 2.6.  

The ultimate load of a CFST is larger than the sum of loads which can be achieved by 

independent loading of concrete and steel (Susantha et al., 2001). Fig. 2.7 demonstrates 

in a schematic way the failure modes of each part individually a steel tube, a concrete 

core and of a CFST section in compression. In economic terms, a steel tube is used as 

formwork, for this reduces the manpower, time and constructions costs. Generally, 

because of the high confinement offered by the circular tube, the post yield and stiffness 

for the circular sections is greater than that with square and rectangular tubes. The 

confinement in the rectangular and square sections is limited, being located around the 

corners and centre, as the straight parts of these sections are too weak to resist the internal 

pressures, because of the dilation of the concrete core (Shams and Saadeghvaziri, 1997; 

Schneider, 1998; Huang et al., 2002; Hu et al., 2003; Kovac, 2010). Fig. 2.8 demonstrates 

the difference between circular and square sections in the confining effect, where local 

buckling is less likely to take place due to a strong confinement effect in the circular 

section (Hu et al., 2005).  

In order to simulate the behaviour of the confined concrete core, Mander et al. (1988) 

developed a theoretical stress-strain model for confined concrete and implemented it 

using the concrete damage plasticity. To simulate steel behaviour, an elastic-plastic 

response was assumed. Tests revealed that strength development from confinement and 

the slope of the descending branch of the concrete stress-strain curve have a significant 

effect on the flexural strength and ductility of reinforced concrete columns. The 



21 

 

theoretical stress-strain model, as shown in Fig. 2.9, was adopted by Mander et al. (1988). 

Other researchers, such as Ellobody and Young (2006), Ellobody et al. (2006), and Dai 

and Lam (2010) studied the behaviour of circular, square and elliptical concrete filled 

steel tubes. Generally, the numerical models have been successful in predicting the 

compressive behaviour of concrete filled steel tubes with various cross-sectional forms. 

 

(a) The most widely used cross section shapes 

 

(b) Rarely used cross section shapes 

Fig. 2.5 Typical cross section shapes for CFST columns (Han et al., 2014) 
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Fig. 2.6 Confining pressure engaged by the dilation of concrete (Harries and Kharel, 

2003) 

 
 

 

 

 

 

Fig. 2.7 Schematic failure modes of a steel tube, concrete and CFST 
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(a) Partial confinement               (b) Full confinement 

Fig. 2.8 The confinement effect in circular and square sections (De Oliveira et al., 

2009) 

 

 

Fig. 2.9 Mander’s model for confined concrete (Mander et al., 1988) 

 

2.4 Tubular flange girders (TFGs) 

The advances in the technology of structure and construction also led to the improvement 

of the flange tubular girders, with a primary goal of increasing their lateral-torsional 

buckling. A design engineer should ensure that the designed element is safe in various 

possible modes of failure. The earlier studies included theoretical, analytical, and 

experimental research. TFGs for straight as well as curve bridges have been considered, 

including hollow and filled concrete. For straight girder bridges, the great torsional 
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stiffness of a tubular flange girder (TFG) results in considerably larger lateral–torsional 

buckling strength in a comparison with corresponding I-girder. For horizontally curved 

girder bridges, the great torsional stiffness of a TFG results in less total normal stress, 

vertical displacement and cross-sectional rotation compared with corresponding I-girder 

(Sause, 2015). 

2.4.1 Hollow tubular flange girders (HTFGs) 

Since the early 1990s, hollow tubular flange girders (HTFGs) for structures and bridges 

have been developed. The flanged beams of the I-section are not stiff torsionally and 

therefore, web distortion will not be important unless the web is particularly slender or 

when only the tension flange is torsionally restrained. On the other hand, the webs are 

relatively flexible with hollow tubular flanges, hence enabling the effects of web 

distortion to decrease their resistance to flexural-torsional buckling. Based on the 

torsional rigid closed flanges in combination with economical fabrication processes, the 

structural efficiency of these hollow flange sections was the basis for their improvement 

(Dempsey, 1990). These girders were primarily designed to bear high loads that universal-

rolled sections and built-up I-steel girders cannot support or when they are uneconomical.  

The history of the hollow flange beam (HFB) can be traced back to 1965, when O' Connor 

et al. (1965) first demonstrated how the inclusion of several closed cells on I-steel beams 

improved their buckling behaviour considerably (see Fig. 2.10). The enhancement in 

buckling behaviour was primarily due to an increase in torsional rigidity. However, the 

studies did not take into consideration the feasibility of mass scale for practical 

applications of this type of HFB. 

 

Fig. 2.10 Closed-cell section types investigated by O’Connor et al. (1965) 
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2.4.1.1 Triangular hollow tubular flange girders (THTFGs)  

Throughout the 1990s, Palmer Tube Mills Pty Ltd of Australia extended the creativity to 

the mass production of cold-formed, high-strength steel sections with two closed triangle 

hollow flanges, as shown in Fig. 2.11. This product was unique, being the first hollow 

flange section anywhere in the world. The triangle is manufactured from a single strip of 

high strength steel using electric resistance welding. The design efficiency of the hollow 

flange was as a result of the torsionally rigid closed triangular flanges combined with 

economical fabrication processes, which was the basis of the hollow tubular flange 

development (Keerthan, 2010).  

However, only one group of 90 mm THTFGs was capable of being produced and other 

flange widths were not manufactured using the existing equipment. Also, it was found 

that the electric welding process was somewhat expensive for the manufacturers. The use 

of THTFGs would significantly develop the structural efficiency, whereas eliminating or 

delaying several undesirable buckling modes and, as a result, production was 

discontinued in 1997. Fig. 2.10 (a) and (b) show the typical cross-section and an isometric 

view of a THTFG  respectively, while Table 2.1 presents its details. This double-

symmetrical section was used as both compression and flexural members (Anapayan, 

2010). 

Nevertheless, one study has found that the flexural capacity of THTFGs is limited under 

certain restraint, span and loading conditions by the lateral distortional buckling mode of 

failure, as shown in Fig. 2.12 (Anapayan, 2010). Unlike the frequently observed lateral 

torsional buckling of steel beams, the lateral distortional buckling of THTFGs is defined 

by simultaneous lateral deflection, twist and cross-sectional change owing to web 

distortion, as seen in Fig. 2.12. The cross-sectional distortion causes considerable 

reduction in strength and is particularly severe in intermediate spans. Several researchers 

have studied the effect of web stiffeners on the buckling strength. Pi and Trahair (1997a, 

1997b) improved upon pioneering studies into the lateral-distortional buckling of the 

tirangular girder where a simple expression was suggested to explain the effect of web 

distortion on the flexural strength when these members were subjected to uniform 

bending. Nevertheless, their research was limited to analytical studies using assumed 

residual stresses as well as geometric imperfections.  

Avery and Mahendran (1997), using finite-element (FE) analyses of stiffened and 

unstiffened hollow flange beams (HFBs), investigated the effects of various parameters, 
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such as thickness and location of web stiffeners on the lateral-distortional buckling 

behaviour of HFBs. The findings show that the use of transverse web plate stiffeners 

significantly improves the LTB strength of beams. Avery et al. (2000) carried out research 

on the flexural capacity of cold-formed HFBs subjected to pure bending, considering web 

lateral distortional buckling using the finite element method. 

  

(a) Cross-sectional view (b) Isometric view 

Fig. 2.11 Geometry of triangle (HTFs) (Dempsey, 1990) 

 

 

Table 2.1 Geometry of THTFGs (Anapayan, 2010)  
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20090HFB28 11.6 200 90 2.8 8.0 74.0 118 

20090HFB23 9.6 200 90 2.3 8.0 74.0 118 
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                          Universal beam    Hollow flange beam 

Fig. 2.12 Lateral torsional and lateral distortional buckling modes 

Cuong et al. (2016) studied the mono-symmetrical I-beam with a hollow flange, as shown 

in Fig 2.13a, pointing out that its critical moment of lateral torsional buckling is 

considerably greater than for the ordinary I-beam, which has almost similar cross-

sectional dimensions. Welding delta stiffeners in a THTFG between the compression 

flange and the web plates increases their torsional stiffness and the LTB moment 

resistance of the original beam, as shown in Fig. 2.13b. The use of delta stiffeners not 

only improves the global LTB resistance of the beams, but also delays premature local 

buckling of their slender constituent plates (compression flange and web plates) in non-

compact and slender sections (Mohebkhah and Azandarariani, 2015).  

  

                      (a)                (b) 

  

Fig. 2.13 A typical delta hollow flange beam 
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a slender web, as illustrated in Fig. 2.14 (Anapayan, 2010). An LSB has a unique mono-

symmetric shape, which can be potentially used for a wide range of applications, such as 

flexural members in residential, commercial and industrial constructions. Many 

experimental and numerical studies have been conducted on the structural behaviour and 

design of LSBs at Queensland University of Technology in Australia. These studies have 

been aimed at determining the section moment capacities when they are subjected to 

lateral distortional and lateral torsional buckling (Anapayan et al., 2011a), the pure 

moment capacities (Anapayan et al., 2011b; Anapayan and Mahendran, 2012) and finally, 

the shear capacities (Keerthan and Mahendran, 2011; Keerthan et al., 2014). 

 

 

Fig. 2.14 Typical LSBs (Anapayan, 2010) 

This research has considerably enhanced the understanding of the structure behaviour of 

the LSBs, particularly in flexural applications. There has been a focus on hollow flange 

channel members, which have been subject to bending action only, so that they were 

subjected to transverse loads applied at the shear centre, and the torsion of the sections is 

not possible. Because of its mono-symmetric characteristics, the channel section is also 

be subjected to torsion when the transverse loads are applied away from the shear centre. 

Torsion is often ignored, however, because it is commonly considered to be rare and, in 

any case, is seen as being unimportant when it does occur.  

 

2.4.1.3 Rectangular hollow tubular flange girders (RHTFGs) 

The tubular flange girder system that has been suggested and considered as one of the 

most efficient bridge sections. Straight hollow tubular flange girders (HTFGs) with two 

rectangular steel tubes for both the compression and tension flanges have been studied by 
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Dong and Sause (2009a). In this study, the effects of several parameters were investigated 

including geometric imperfections, residual stresses, cross section dimensions, transverse 

web stiffeners, and bending moment distribution on the lateral-torsional buckling flexural 

strength of HTFGs. The results of the FE analysis were used to evaluate the accuracy of 

the formulas for determining the lateral–torsional buckling flexural strength of HTFGs. 

The study also demonstrates that the flexural strength of straight HTFGs with 

intermediate unbraced lengths is significantly affected by the residual stresses. The 

outcomes of the work were used to validate the flexural strength formulas proposed by 

Kim and Sause (2005).  

RHTFGs with a slender web have also been proposed and investigated by Hassanein and 

Kharoob (2010, 2012). In this research, homogenous and hybrid RHTFG shear strengths 

were examined, with hybrid girders being the members, using various web and flange 

materials, as well as probing the buckling behaviour of sections with slender stiffened or 

unstiffened transverse webs. After that, Hassanein (2014) examined the effect of square 

opening sizes on the shear behaviour of RHTFGs. The results of these works (Hassanein, 

2014; El-Khoriby et al., 2016) provided two important results: (1) using the HTFGs rather 

than steel I-girders is a powerful tool that not only improves the shear strength of the 

girders in the tension field, for it also significantly saves weight; and (2) it offers a high 

performance solution for a drop in shear capacity owing to the presence of web openings. 

However, the results of (Hassanein and Kharoob, 2010; Hassanein, 2012) showed that 

the HTFGs were not entirely compliant with the international steel structures codes, 

because of their unique forms. This encouraged Hassanein and Silvestre (2013) to 

examine the lateral–distortional buckling (LDB) of RHTFGs with slender unstiffened 

webs. The results indicated that using HTFGs (without stiffeners) rather than steel I-

girders (with stiffeners) is a very effective tool for improving the flexural strength of the 

girders. It was observed that RHTFGs are still sensitive to lateral-distortional buckling 

even with hollow tubular flanges, although they can resist much greater critical loads than 

conventional steel I-beams. 

Furthermore, a compression hollow tubular flange girder (CHTFG), with one rectangular 

hollow steel tube, has been conducted to investigate the shear strength behaviour by 

Hassanein and Kharoob (2013). The findings of this investigation indicate that the 

CHTFGs provide smaller depths, compared to the HTFGs, which are suitable for 

structures with relatively limited construction depths. As a result, the unacceptably large 

constructionn depths of the HTFGs coulddbe reduced by using the CHTFGs. It is worth 
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pointing out that this benefit (i.e. decreasing the depth of the girder) could be achieved 

without reducing the radius of gyration of the compression flange required for lateral 

stability. Kharoob (2017), used a finite-element (FE) investigation to study lateral 

torsional buckling of simply supported CHTFG subjected to uniform bending. The results 

revealed that using beams with less slender webs for medium-to-long spans optimises the 

girders by decreasing their weight. Moreover, increasing the tubular compression flange 

depth (i.e. increasing the radius of gyration of the compression flange (rT)) leads to an 

increase in the bending moment capacity of the CHTFG. Furthermore, increasing (rT) at 

the same time as decreasing the web depth reduces fabrication costs by decreasing the 

weld lengths used for the connections between the stiffeners and webs. HTFG and 

CHTFG are shown in Fig. 2.15a and 2.15b, respectively. 

  

                       (a)                    (b) 

Fig.  2.15  Definition of symbols of typical girders: (a) HTFG and (b) CHTFG 

 

2.4.2 Concrete filled tubular flange girders (CFTFGs) 

For hollow flange girders, it has been widely observed that beams with a relatively thin 

tube thickness are subjected to local buckling of the compression tubular flange, which 

limits the flexural resistance of the member. To overcome this problem, concrete filled 

tubular flange girders (CFTFGs) have been suggested and studied by several researchers. 

The primary benefits of CFTFGs compared with steel I-girders have been outlined by 

Wassef et al. (1997), which including large local buckling resistance, great torsional 

stiffness, and reduced web slenderness.  

 

2.4.2.1 Rectangular CFTFGs 

Owing to the efficiency of composite construction, and the interesting and promising 

development of hollow tubular flange plate girders, it was a natural progression to 
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consider filling the top hollow tube with concrete to create a concrete-filled tubular flange 

girder (CFTFG). Researchers at Lehigh University in the United States conducted an 

experimental, numerical and analytical study of the cross-section depicted in Fig. 2.16, 

and assessed the influence of boundary conditions and diaphragm (or stiffener) 

arrangement on the structural response (Wimer, 2004). The proposed analytical model 

was based on a transformed section approach and a good agreement was shown with the 

experimental and numerical results. Two 18 m long of rectangular concrete filled tubular 

flange girders (RCFTFGs) with flat and corrugated webs were tested, as depicted in Fig. 

2.16. Wimer (2004) investigated the test specimen for two conditions: (1) RCFTFGs that 

are non-composite with a concrete deck when the lateral-torsional buckling strength 

controls the flexural capacity, and (2) RCFTFGs that are composite with a concrete deck 

when the RCFTFG section flexural strength controls the flexural capacity. The girders 

were scaled down by a 0.45 factor, fabricated and tested to examine their ability to carry 

their design loads. The advantages of experimental and analytical analysis are as follows:  

• Tubular flanges allow for the use of large girder unbraced lengths by improving 

the torsional stiffness of the girder; 

• Corrugated webs generate lighter weight designs compared with unstiffened flat 

webs since the corrugated web is thinner, although the flanges are slightly greater;  

• Because of the increased steel yield stress, hybrid designs produce lighter weight 

designs compared with homogeneous ones. 

Kim and Sause (2008) studied a two-span continuous tubular flange girder demonstration 

bridge. The steel girder consisted of a web and bottom flange conventional plate, with the 

top flange fabricated with a rectangular hollow tube that was then infilled with concrete. 

The results of this study have shown that in terms of construction load conditions, the 

RCFTFGs designed for the demonstration bridge had enough lateral torsional stability, 

even with no interior bracing within the span, with the aim of fabrication and erection 

effort which could be reduced by eliminating diaphragms. Also, it emerged that the 

precast concrete deck can decrease the time required for construction, compared with a 

cast-in-place one, by reducing the time needed to place shapes and reinforcing steel as 

well as eliminating the time required for the concrete to cure.  

In investigations on the shear behaviour of RCFTFGs with a corrugated web, Shao and 

Wang (2016) found from experimental tests that this has greater resistance to buckling, 

because of its high flexural stiffness. Local buckling can be stopped efficiently, if 

appropriate dimensions of corrugated web are designated. Based on the experimental 
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results, it was concluded that RCFTFGs with corrugated webs have both higher load 

carrying capacity and better ductility compared with a steel I-girder. In addition, the 

mechanisms for both a conventional steel I-girder and a RCFTFG with a corrugated web 

were much different when they had a short span and they were subjected primarily to 

shear action. The conventional steel I-girder is much more sensitive to local buckling of 

the web as a result of its high slenderness ratio. In contrast, the RCFTFG with a corrugated 

web behaves much more like a flexural beam, and flexural strength because of yielding 

is normally dominant.  

 

Fig. 2.16 Straight TFGs with a concrete-filled rectangular steel tube compression flange 

(Wimer, 2004) 

 

2.4.2.2 Circular CFTFGs 

Kim and Sause (2005) examined the performance of straight CFTFGs with a circular 

concrete filled tube as the top flange, instead of a rectangle, as illustrated in Fig. 2.17. A 

four girder, simply supported bridge prototype was developed in order to design flexural 

strength formulas for CFTFGs that take LTB and cross-section yielding into 

consideration. These equations have been calibrated to finite element (FE) analysis 

results. The prototype bridge was developed for design criteria in terms of strength, 

stability, service and fatigue.  

Kim and Sause (2005) examined a 0.45-scale test specimen with two straight circular 

CFTFGs. The test specimen of a circular concrete filled tubular flange girder (CCFTFG), 

non-composite with a concrete deck, as shown in Fig. 2.17, was tested for two conditions: 
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(1) construction conditions when flexural capacity is controlled by the LTB strength; and 

(2) service conditions when the flexural strength is controlled by the CFTFGs’ cross-

section. A concrete deck, extra concrete and steel blocks were loaded for the test 

specimen. For the construction conditions, the circular CFTFGs were not braced by the 

concrete deck, however, for the service ones, this was the case. The experimental results 

were compared with those for the FE analysis and indicated that the test specimen's 

behaviour can accurately be estimated by using FE models. Kim and Sause (2005) also 

suggested formulas to predict the lateral-torsional buckling (LTB) strength of CFTFGs.  

Fig 2.18 compares the whole steel girder weight of the composite I-girders, the circular 

CFTFGs composite with a slab deck, and the circular CFTFGs alone without one. In this 

figure, the weight of the total steel is compared to either the web depth (for the I-girders) 

or the web depth plus the tube diameter (for the circular CFTFGs). It should be noted that 

for all the cases unstiffened web is used. It can be seen in this figure that the circular 

CFTFG composites with a slab deck, even when a large diaphragm spacing is used, are 

more than 10% lighter than the composite I-girders. Hence, the circular CFTFGs 

composite with a slab deck have the advantages of decreased steel weight as well as 

reduced fabrication and erection effort (i.e. fewer diaphragms).  

It was also found that the circular CFTFGs composite with a slab deck are lighter in total 

girder steel weight than the circular ones alone, i.e. without a slab deck, i.e. non-

composite. For the circular CFTFGs without a slab deck, however, less construction effort 

is needed, whereas the construction effort required to make the circular CFTFGs 

composite with a slab deck can make their designs less economical. For example, if the 

girders are designed to be the CFTFGs without a slab deck (non-composite), a precast 

deck is easier to install. Moreover, in this case, the girders made of 485 MPa steel have 

an entire girder steel weight 25% more than the total steel weight of the circular CFTFGs 

made of 690 MPa steel (Kim and Sause, 2005).  
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Fig. 2.17 Straight CFTFGs with circular steel tube top flange (Kim and Sause, 2005) 

 

Fig. 2.18 Comparison of I-girders and circular CFTFGs with unstiffened webs (Kim 

and Sause, 2005) 

 

2.4.2.3 Pentagonal CFTFGs 

A new type of CFTFG using a concrete filled pentagonal flange in the girder was 

presented recently by Gao et al. (2014). This cross-section was fabricated by welding an 

extra steel plate onto the compression flange of a steel I-girder, which was then filled with 

concrete, as shown in Fig. 2.19. Gao et al. (2014) studied the flexural behaviour of 

pentagonal CFTFGs using both experimental and numerical investigation. In the analysis, 
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it was assumed that the section geometry is identical to that of a rectangular concrete-

filled flange, but with a larger flange depth to width ratio in order to reduce the tendency 

of local buckling occurring in the web. 

Hassanein (2015) investigated, using a numerical study, the behaviour of pentagonal 

CFTFG specimen of Gao et al. (2014) under shear action. The results of this study 

indicated that a cross-section with the maximum possible inclined depth only is 

advantageous (economical) and should be used. This is because it improves the ultimate-

to-plastic shear ratio of the girder much more than the increase in the cross-sectional area. 

 

 

Fig. 2.19 Pentagonal CFTFG specimen (Gao et al., 2014) 

   

2.5 Curved TFGs 

Curved steel girder highway bridges are usually used at locations where the roadway 

alignment is constrained. The horizontal curvature causes considerable torsion in the 

bridge girder system, which is an essential consideration for the design and thus, the 

behaviour of these bridges is more complicated than that of straight ones. At present, steel 

I-girders or box-girders are used for curved steel bridges. However, there are potential 

issues with each of these systems (Ma, 2014). The steel I-girder has an "open'' section 

with very little torsional resistance. First of all, stability during construction is a major 

challenge. During bridge erection, curved steel I-girders are commonly supported 

temporarily at intermediate places between piers before the girders are attached to 
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permanent cross frames (or diaphragms). Because the torsional stresses and displacements 

can be large, even under self-weight of the girder, owing to the little torsional stiffness of 

the steel I-girder. As a result, temporary shoring may be required to erect a steel I-girder 

bridge framing system. Secondly, both the I-girders and the cross-frames have to be 

designed as main load-carrying members since they work together with girders to resist 

torsion carried by the bridge system. As curved steel I-girders improve substantial 

warping stress caused by their low torsional stiffness, many cross frames can be used to 

reduce the warping stress which may be expensive (Hampe, 2012).  

A box-girder is a "closed'' section with a relatively large torsional resistance and 

insignificant warping stress. Because of the great cross-section width and depth of the 

box-girders, cross-section distortion is an area of concern, which can lead to considerable 

distortional stresses. In order to maintain the box shape and avoid cross-section distortion, 

the brace should be used inside the box. The internal bracing inside a box-girder makes 

box-girder design, construction, and maintenance complex and expensive. Fatigue issues 

are also a concern for box-girders due to the possible cross-section distortion and the 

bracing details (Sennah and Kennedy, 2002). As shown in Fig. 2.20, a box-girder cross 

section can take the shape of a single cell (one box), multiple spine (separate boxes), or 

multicell with a common bottom flange (contiguous cells or cellular shape). 

 

   

Concrete section Composite steel-concrete section Steel section 

(a) Types of single-cell box girders 

   

Concrete section Composite steel-concrete section Steel section 

(b) Types of multiple-spine (multi-box) box girders 

   

Concrete section Composite steel-concrete section Steel section 

(c) Types of multi-cell (cellular) box girders 

Fig. 2.20 Box girder cross sections (Sennah and Kennedy, 2002) 
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An extensive number of analytical and experimental studies have been carried out on both 

curved steel I-girders and box girders. For instance, the nonlinear behaviour of curved 

steel I-girders was studied by Pi et al. (2000). Under vertical loading, a curved I-girder 

improves both the main bending and uniform torsional action, with vertical deflections 

were combined with cross-section rotations. These main activities and deformations 

combine together to produce second-order bending actions about the minor axis. In steel 

I-girders with large initial curvatures, the second order effects are important. Formulas 

for the design of standard curved steel I-girders against combination bending and torsion 

actions were proposed by Pi and Bradford (2001), as shown in Fig. 2.21. The AASHTO 

LRFD Bridge Design Specifications (2004) provide standard design guidelines for curved 

I-girders for highway bridges.  

A curved tubular flange girder (TFG) is an innovative curved steel I-girder for highway 

bridges, which combines the flexural efficient open cross-section of an I-girder with a 

closed tube as the top flange. The TFG has a circular or rectangular tube shape in place 

of the compression plate flanges of steel I-girder, whereas its web is similar to that of a 

conventional I-girder. Due to the torsional stiffness of the tubular flanges, a TFG has 

considerably more torsional stiffness compared with a steel I-girder and is expected to 

have less cross-section distortion than a box-girder (Sause, 2015). 

  

Fig. 2.21 System of curved steel I-girder in Plan (Pi and Bradford, 2001) 

 

Fan (2007) extended the work on single curved girders by Dabrowski (1968) to curved 

TFGs, with either an open or a closed cross-section. Linear elastic theoretical analysis 

methods were developed for single curved TFGs and multiple cross-frame curved TFGs. 

A parametric study of the girder curvature was completed on individual curved TFGs and 

curved TFG systems. A parametric study was also carried out on the number of cross-
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frames in curved TFG systems. The behaviour of curved TFG systems was compared 

with that of standard curved steel I-girder systems.  

In order to compare the behaviour of curved TFGs with corresponding curved I-girder 

systems, Fan developed a stress analysis approach and finite element (FE) models. FE 

analysis of a TFG curved bridge framing system (girders and cross-frames) with dead 

loads and also of a TFG curved bridge framing system with a composite concrete deck 

with dead and live loads, were carried out. Curved TFGs have less warping normal stress 

and cross section rotation compared with corresponding curved steel I-girders, 

particularly for individual girders. The cross-frames in a curved TFG system can be 

lighter compared with those in a corresponding curved steel I-girder system, since the 

cross-frame forces are reduced. Both a curved bridge with a composite concrete deck, a 

TFG system and a corresponding steel I-girder system, have similar behaviour. However, 

fewer cross-frames are needed in the curved TFG system compared with the 

corresponding curved steel I-girder system. Dong and Sause (2009a, 2009b) used the 

design criteria from the 2004 AASHTO LRFD Bridge Design Specifications for 

conventional curved steel I-girders to curved TFGs. The FE findings showed that these 

equations can be used for the safe design of curved TFGs for highway bridges.  

 

2.5.1 Individual curved TFGs with two hollow tube flanges 

Curved TFGs with rectangular hollow steel tubes for both flanges were studied by Dong 

and Sause (2010). FE studies were completed on individual girders and simply supported 

three-girder systems of curved hollow TFGs and standard steel I-girders. For comparative 

purposes, the curved hollow TFGs and steel I-girders had similar weight, depth, and 

flange width. The span, L, was kept constant and the radius of curvature, R, was varied 

in order to produce different L/R ratios from 0.1 to 0.45 for studying torsional effects. A 

study of an individual curved hollow TFG was completed in order to determine the effects 

of several parameters, such as cross section distortion, stiffeners, tube diaphragms and 

cross-section dimensions on the load capacity (Dong and Sause, 2010), as shown in Fig. 

2.22. The results indicated that cross-section distortion decreases the load capacity, 

however, the use of stiffeners and diaphragms in the steel tubes mitigate this distortion. 

Furthermore, second-order effects, initial geometric imperfections and residual stresses 

were taken into consideration. The FE analysis results indicate that initial geometric 

imperfections and residual stresses do not have a huge influence on the load capacity. 
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The behaviour of both curved TFG systems and corresponding steel I-girder systems was 

compared by Dong (2008). The research showed that curved TFGs have several 

advantages including: (1) an individual curved TFG improves smaller vertical 

displacement, less warping normal stress owing to the greater torsional rigidity, less total 

normal stress and smaller cross-section rotation when compared with a corresponding 

curved steel I-girder subjected to the same load. (2) an assembled curved TFG system 

improves less interior diaphragm (or cross frame) forces compared with a corresponding 

curved steel I-girder system. The steel I-girder has less principal bending stress, because 

of the slightly higher flexural rigidity. (3) a smaller number of interior diaphragms (or 

cross frames) are required for an assembled curved TFG system than for a corresponding 

curved steel I-girder system. The curved TFG with hollow flanges has a lesser maximum 

whole longitudinal normal stress compared with the conventional I-girder, since the steel 

I-girder has much greater warping normal stress. (4) individual curved TFGs with hollow 

flanges can be carried their own weight across the span without temporary shoring or 

bracing within the span, whereas individual curved steel I-girders would need temporary 

support during erection. The overall cross-section areas as well as dimensions of both 

TFGs and the corresponding steel I-girder were maintained similarly in this work. 

A 1/2-scale individual curved TFG with hollow steel tube flanges and concrete infilled 

ends test specimen was examined by Putnam (2010), as shown in Fig. 2.23. The behaviour 

of the curved TFG subjected to vertical loads was studied and the results revealed that an 

FE model, which was validated using test results, can accurately predict vertical 

displacements, cross-section rotations, typical strains and shear strains away from the 

ends of the curved TFG. A parametric study of the end conditions and the shear strains 

near the ends of the curved TFG was carried out considering internal steel tube 

diaphragms and infilled concrete. The end conditions had an important influence on the 

shear strains, with the values depending on the method of stiffening used, the position of 

the internal diaphragm and the extent to which the infill concrete was extended. 
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Fig. 2.22 FE model of an individual curved TFG with two hollow tube flanges (Dong 

and Sause, 2010) 

 

Fig. 2.23 Curved TFG with hollow steel tube flanges and concrete infilled ends 

(Putnam, 2010) 

 

2.5.2 Curved systems of TFGs with two hollow tube flanges 

FE analyses on three-girder systems of curved TFGs with hollow flanges were conducted 

by Dong and Sause (2010), as illustrated in Fig. 2.24. The schemes were compared with 

curved three I-girder systems. The horizontal curvature, the dimensions of the cross-

section, the number of cross-frames and inclusion of composite action with the concrete 

deck were varied. The minor decrease in load capacity as a result of initial geometric 

imperfections and residual stresses was neglected. The three-girder systems were loaded 
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with a vertical and uniformly distributed load over the span. There were two main loading 

conditions under consideration. During construction of the deck, the first loading 

condition was loading of the girder system alone (without a composite concrete deck). In 

the final constructed condition, the second loading scenario was loading of the girder 

system with a composite deck. The curved TFGs (with hollow flanges) in the three-TFG 

system had a lesser maximum entire normal stress compared with the corresponding steel 

I-girders in the three-I-girder system (Dong and Sause, 2010). Moreover, both three-

girder systems had similar vertical displacements. Within the I-Girder system, the 

maximum cross-frame force was significantly higher than that in the TFG. The three-

girder systems with a composite concrete deck have improved stiffness and load capacity, 

a reduced maximum normal stress, vertical displacement and maximum cross-frame 

force. The load capacity of the TFG system is the same as the load capacity of the I-girder 

system. 

A further study was carried out by Sause (2015) on curved TFGs. The results indicated 

that the curved TFGs, which have great torsional stiffness, have significantly larger load 

carrying capacity than standard straight beams. The advantages of a curved TFG with 

hollow flanges system compared with corresponding curved steel I-girder system were 

summarised by Sause (2015) as follows: 

• Under similar load, the TFGs improve fewer whole normal stress compared with 

corresponding curved steel I-girders. 

• The forces in the cross-frames of the TFG systems are less than in the 

corresponding curved steel I-girder systems and thus, lighter cross-frame 

members can be used for the TFG systems; 

• Smaller numbers of cross-frames are required for the TFG systems; 

• Without any support within the span and without interior cross-frames, the TFG 

systems can carry their own weight (plus the weight of a concrete deck) and may 

therefore not need temporary support for the TFG Systems during the construction 

(before the concrete deck is composite with the girders), which makes bridge 

erection quicker and less costly. 
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Fig. 2.24 FE model of a curved system of TFGs with two hollow tube flanges (Dong 

and Sause, 2010) 

 

2.5.3 Curved TFGs with single hollow tube top flange 

Tests on a large-scale test specimen were required to validate the FE results and design 

criteria equations established by Dong and Sause (2009b). A TFG with only one hollow 

tube as the compression flange was investigated by Ma (2014), being selected rather than 

two tubular hollow flanges for several reasons. Firstly, local deformations of the tension 

hollow tube flange can occur at the bearings owing to the compressive force from the 

reactions. To avoid these deformations, the tube would require an internal steel diaphragm 

or infilled concrete. Secondly, there is the possibility of a greater bending force with a 

flat plate with suitable width and height than a tube with the bottom flange, since the tubes 

are provided at limited depth and width when the girder is composite with a concrete deck 

(in the final constructed condition). Thirdly, the unit cost of steel plates is lower than that 

for steel tubes.  

A 2/3-scale sample specimen was designed, fabricated and erected/assembled with two 

curved hollow TFGs braced with three intermediate diaphragms (Ma, 2014; Putnam, 

2010), as presented in Fig. 2.25. The results showed that FE models are suitable for 

prediction for several parameters, such as vertical displacement, cross section rotation, 

normal strain, and shear strain compared to experimental test results. Ma (2014) 

conducted further studies on curved hollow TFGs and curved hollow TFG systems. FE 

models were developed and examined for additional curved hollow TFG systems. 

Parametrical studies on the erection process of the TFG systems, which included 

installation of the diaphragms or cross-frames, were used for the FE models. 
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Fig. 2.25 Curved TFG with hollow steel tube top flange (Ma, 2014) 

 

2.6 Combined tubular flange with a corrugated web 

Combining the idea of using tubular flanges with corrugated web results in the 

development of beams in which the corrugate web can contribute to the resistance to local 

buckling and the tubular flange is efficient at increasing the global stability of the girders. 

The use of rectangular thin wall tubes as the flanges which are continuously welded to 

the webs. Two kinds of web corrugation profiles are usually used in these beams: one is 

trapezoidal, which is the most commonly used; the other is sinusoidal corrugation, which 

is used sometimes in constructions that have unusual requirements to prevent fatigue 

failure.  

Wang (2003) investigated the behaviours of hollow tubular flanges with a corrugate web 

under different loading conditions through both testing and FE analysis (Fig. 2.26). Steel 

members with trapezoidal corrugated webs and tubular flanges were subjected to shear, 

bending, and axial compression during the test stage. The work involved the testing of 

full scale specimens and nonlinear FE analyses. The results indicated that FE analysis is 

an effective way to predict the failure load and failure mode of the structural members of 

combined corrugated webs with tubular flanges. 

Shao and Wang (2016) conducted a study to examine the shearing behaviour through 

experimental testing of a short girder combined rectangular concrete-filled tubular flange 

with a corrugated web subjected to three-point loading. Based on the experimental results, 

the girder combined rectangular concrete-filled tubular flange with a corrugated web had 
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both higher load carrying capacity and better ductility in comparison with the 

conventional steel I-girder. In 2017, Shao and Wang also studied the static behaviour of 

two specimens of tested girder under concentrated load at mid-span. One of these two 

was a standard I-girder with flat-plate flanges, whilst the other was a rectangular tubular 

flange filled with concrete, a flat-plate flange and a trapezoidal corrugated web. The 

experimental testing results demonstrated that the conventional steel I-girder fails due to 

global buckling, since this is an open section, which has weak resistance to torsion. On 

the other hand, the rectangular concrete-filled tubular flange with trapezoidal corrugated 

web, which has a significantly developed torsional stiffness owing to a closed section at 

the tubular flange, fails through flexural yielding at the mid-span. Moreover, the 

corrugated web can still resist the shear force as a result of its improved bending stiffness. 

El Hadidy et al. (2018) studied large-scale bridge girders with corrugated webs and 

hollow tubular flanges under constant shear loading, with the main aim of examining the 

effect and behaviour of using hollow tubular flanges on the strength of these girders. With 

respect to strength enhancement, the results indicated that using hollow tubular flange 

increases the shear by about 20% (and more by increasing the depth of the flange) 

compared with the girders of flat flanges. The initial stiffness also increased as well. 

 

Fig. 2.26 Hollow tubular flanges with trapezoidal corrugated webs (Wang, 2003) 
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2.7 The finite element method (FE) 

Finite element analysis (FE) is now one of the most famous and widely used techniques 

for simulating and analysing structures. The main objective of this numerical method is 

to divide the structure into small divisions or elements, where each element is defined by 

a particular number of nodes (this process involves modelling a body by dividing it into 

an equivalent system of lesser bodies or units called finite elements). The finite element 

method (FE) is a numerically acceptable solution, which results in a solution system of 

simultaneous algebraic equations instead of requiring analytical solutions (solutions of 

ordinary or differential equations), which because of the complicated geometries, 

loadings, and material properties, are frequently not available.  

The modern development of FE started with the use of (one-dimensional) elements (bars 

and beams) in structural engineering by Hrennikoff in 1941 and McHenry in 1943. In 

1947, Levy improved the flexibility or force method, and in 1953 he proposed that another 

method (the stiffness or displacement method) could be a promising alternative for use in 

analysing statically redundant aircraft structures. His equations, however, were 

cumbersome to solve by hand and thus, became commonly deployed only after the advent 

of high-speed computers. Turner (1956) were the first to introduce the treatment of two-

dimensional elements. They derived stiffness matrices in plane stress for truss elements, 

beam elements, and two-dimensional triangular and rectangular elements. The FE was 

expanded to cover three-dimensional problems only after the improvement of the 

tetrahedral stiffness matrix, which was undertaken by Martin in 1961.  

2.8 Numerical studies of tubular flange girders 

Today, FE has emerged as a powerful analytical tool for structural analysis with the 

development of digital computers and numerical techniques. This has aided engineers in 

modelling several aspects of the phenomenological behaviour encountered in TFGs (Kim 

and Sause, 2005). The effect of confinement, modelling of cracking and crushing, 

behaviour of the materials after cracking and crushing and many other characteristics are 

some of these aspects. Carrying out experimental parametric studies consumes a lot of 

time and results in high research costs. Regarding which, finite element analysis is an 

effect approach for studying the influence of several parameters of structural behaviour 

under different loading conditions. Extensive research has been conducted using the FE 

to study the structural response of hollow and concrete filled TFGs with different tubular 
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flange shapes. The outputs indicate reasonable and expected results in parametric studies 

using the validated models. 

A suitable finite element software code should be used to design the various 

characteristics of the CFTFG for establishing a functional and reliable model, such as the 

interaction between the steel tube and the concrete core, the failure mode and the material 

properties (Hassanein, 2015). In many numerical studies on TFGs, the hollow and 

concrete filled tubes under almost quasi-static and dynamic loading, the software package 

ABAQUS was efficiently used. The findings show that the numerical results are in good 

agreement with the corresponding experimental data. In addition, a numerical study was 

also conducted to simulate flexural behaviour using another software program, ANSYS, 

for beams with pentagonal (CFTFG) subjected to mid-span loading (Gao et al, 2014).  

2.9 Concluding remarks 

This chapter showed effectively how CFTFGs are a viable alternative bridge when 

erected span by span. It has also revealed improved performance of CFTFGs over 

conventional plate girders. As verified during construction, CFTFGs have improved 

strength and stability during steel erection and deck placement. These attributes eliminate 

the need for many diaphragm lines or cross frames required in typical girder plate bridges. 

In addition, the CFTFG enables engineers to use shallower sections at places where depth 

limits are a concern. Erecting CFTFGs as simple spans over obstacles like traffic lanes 

results in much easier and quicker construction of bridges. The steel erection will continue 

faster, with fewer diaphragms. 

It should be noted that although CFTFGs have several indicated advantages over 

conventional steel plate I-girders. Decreasing the web depth (hw) reduces the volume of 

steel in the section as well as the fabrication costs as less welding is required and the 

associated risk of weld distortion is lowered. Constructing the field splices at the piers, 

with the temporary bearings also resulted in a couple of weeks of extra construction time 

which is somewhat offsetting due to less diaphragms and contact plates for manufacturing 

and erecting. 
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3.1 Introduction 

In this chapter, the flexural behaviour of circular concrete filled tubular flange girders 

(CCFTFGs) and circular steel tubular flange girders (STFGs) is examined. These type of 

girders have a similar shape to conventional steel beams, but the top flange plate is 

replaced with a hollow steel section. The tube may be infilled with concrete to create a 

concrete filled tubular flange girder (CFTFG). 

 

3.2  Numerical modelling 

3.2.1 General 

The finite element analysis package ABAQUS 6.14-4 (Simulia, 2011) was employed to 

examine the ultimate moment capacity of simply supported CFTFGs, considering the 

geometrical and material nonlinearities.  The numerical models contained an initial 

geometric imperfection which was generated by means of the first buckling mode shape 

of a perfect beam (i.e. perfectly straight and constant geometry) multiplied by an 

amplitude factor. For this purpose, an elastic eigenvalue buckling analysis was first 

conducted, and then the first buckling mode shape of the beam with an imperfection 

amplitude of L/1000, where L is the beam length, was imported to the nonlinear model 

as the starting geometry. The global imperfection amplitude was taken as L/1000, in 

accordance with the permitted out-of-straightness tolerance in CEN 1090-2 (2008) and 

the AISC (1999), and has been used by other researchers in similar studies [e.g. Hassanein, 

2015; Kim and Sause, 2005]. The global imperfection amplitude was taken as L/1000, 

where L is the column length, in accordance with the permitted out-of-straightness 

tolerance in EN 1090-2. 

The implicit dynamic analysis method in ABAQUS was used to solve the geometrically 

and materially nonlinear problem, where the load was applied incrementally and the 

nonlinear geometry parameter (*NLGEOM, in ABAQUS) was included to allow for 

changes in the geometry under load. This nonlinear dynamic analysis method uses an 

implicit time integration scheme to determine the quasi-static response of the system, 

which was found in the current study to provide the best convergence behaviour owing 

to the high-energy dissipation associated with quasi-static applications during certain 

stages of the loading history. 
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3.2.2 Details of validation model 

The specimen details incorporated in the validation FE model are based on the circular 

tubular flange girder which was examined in the test programme of Wang et al. (2008). 

Accordingly, the cross-section is 0.5 m in height and 4.3 m in length, as shown in Figs. 

3.1 and 3.2. Table 3.1 presents the principal dimensions of the tests, namely Dtube, tt, hw, 

tw, bf, tf, and tstiffener which represent the tube outside diameter, tube thickness, web depth, 

web thickness, width of the bottom flange, thickness of the bottom flange and stiffener 

thickness, respectively. The beam is subjected to two concentrated loads in the vertical 

direction on the top surface and the distance between the loading points is 1 m. There are 

four stiffeners along the beam length, as shown in Fig. 3.2, and each has a thickness of 

12 mm. These are located at the supports and loading points in order to prevent local 

instability of the web at these locations. Simply supported boundary conditions in the 

tests were simulated in the FE model by restraining suitable displacement and rotational 

degrees of freedom at the beam ends. The steel section was made from Q235 steel, and 

the material properties incorporated in the model are presented in Table 3.2 including the 

yield strength fy, ultimate strength fu, Young’s modulus (Es) and Poisson’s ratio (Ding  

al., 2009). Also included in the Table 3.2 are the compressive strength fc and Poisson’s 

ratio of the concrete.  

 

Fig. 3.1 Cross-section of a composite beam with a concrete filled circular tubular 

flange (all units in mm) 
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Fig. 3.2 Schematic of the simply supported beam (all units in mm) 

 

Table 3.1 Dimensions of the CCFTFG cross-section 

Dtube        

(mm) 

tt             

(mm) 

hw             

(mm) 

tw          

(mm) 

bf           

(mm) 

tf             

(mm) 

tstiffener       

(mm) 

219 8 267 6 150 14 12 

 

Table 3.2 Details of the material properties 

Steel (Ding et al., 2009) Concrete (EN 1992-1-1, 2004) 

Yield stress, 

fy           

(N/mm2) 

Ultimate stress, 

fu                     

(N/mm2) 

Young’s 

modulus, Es 

(N/mm2) 

Poisson’s 

ratio 

Compressive cylinder 

strength of concrete, fc 

(MPa) 

Poisson’s 

ratio 

287.9 430.2 195000 0.28 38.6 0.20 

 

 

3.3 Material modelling 

3.3.1 Concrete 

The stress-strain relationship of unconfined concrete is shown in Fig. 3.3, where fc is the 

unconfined ultimate cylinder compressive strength of concrete, ɛc is the corresponding 

strain at fc  which is determined (as a percentage) as given by Eq. (3.1) in accordance with 

Eurocode 2 Part 1-1 (EN 1992-1-1, 2004). 

εc = 0.7(fc)0.31 ≤ 2.8  (3.1) 

When the concrete filled steel tube is exposed to axial compression, a gap occurs between 

the steel tube and the concrete core in the elastic range because Poisson’s ratio for the 

concrete is smaller than that of the steel tube. Beyond the elastic range, the inner concrete 

dilates (strains transversely) at a higher/faster rate than the steel tube, hence making 
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contact between the steel tube and the concrete to develop again. As the axial compressive 

stress increases further, continued dilation of the concrete core is restricted by the steel 

tube, generating a variable confining pressure in the concrete in the transverse direction. 

This confining pressure effectively increases the compressive strength of the concrete 

core. In a CCFTFG, the concrete is confined by the circular steel tube section, which 

results in increased ductility and strength of the concrete core, compared to unconfined 

concrete.  

In the current study, the stress-strain response of confined concrete proposed by Hu et al. 

(2003)  is adopted in the numerical simulations. This approach has been adopted by other 

researchers for the simulation of concrete filled tubular columns which are eccentrically 

loaded, leading to non-uniform confining pressure, as occurs in the current scenario (Lee 

et al., 2011; Ellobody, 2013). Typical uniaxial stress–strain curves of unconfined concrete 

is shown in Fig. 3.3, where fcc and εcc are the uniaxial compressive strength and the 

corresponding strain of confined concrete, respectively. Mander et al. (1988) proposed 

relationships between confined and unconfined concrete strength and strain values, as 

given by Eq. (3.2) and (3.3), respectively. 

fcc = fc + k1fl  (3.2) 

εcc = εc (1 + k2
fl

fc
)  (3.3) 

Values of 4.1 and 20.5 are used for k1 and k2, respectively, based on the study of Richart 

et al. (1928). The term ‘fl’ denotes the confining pressure in the concrete, which is 

determined in the current study based on the empirical relationships presented in Eqs (3.4) 

and (3.5) proposed by Hu et al. (2003).  

 

fl fy⁄ = 0.043646 − 0.000832(Dtube tt⁄ )        for      21.7 ≤ Dtube tt ≤ 47⁄   (3.4) 

fl fy⁄ = 0.006241 − 0.000357(Dtube tt⁄ )        for      47 ≤ Dtube tt ≤ 150⁄   (3.5) 

 

The stress-strain curve of confined concrete, as presented in Fig. 3.3, consists of three 

parts. Initially, it is assumed that the confined concrete responds linearly, obeying 

Hooke’s law, and this continues up to around 40% of compressive strength in the 

ascending branch (EN 1992-1-1, 2004; Goode and Lam, 2011). During this phase of the 

response, the behaviour of confined and unconfined concrete is identical, as shown in Fig. 

3.3. The initial Young's modulus (in GPa) can be estimated with reasonable accuracy 
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from the empirical formulation provided in Eurocode 2 (EN 1992-1-1, 2004) given in Eq. 

(3.6). 

 

Ec = 22 × (fc 10⁄ )0.3    (3.6) 

 

The second part of the stress-strain curve defines the nonlinear behaviour before the 

concrete reaches its maximum strength, starting from the proportional limit (0.4fc) to the 

maximum confined concrete strength fcc. The relationship of concrete stress σc and strain 

ε in this part of the response was proposed by Saenz (1964), and is as described by Eq. 

(3.7)-(3.9)  

 

σc =
Ecε

1+(R+RE−2)(
ε

εcc
)−(2R−1)(

ε

εcc
)

2
+R(

ε

εcc
)

3  (3.7) 

where:  

RE =
Ecεcc

fcc
 and  

R =
RE(Rσ−1)

(Rε−1)2 −
1

Rε
  

(3.8) 

 

(3.9) 

 

where Rε and Rσ were both assumed to be 4.0, in accordance with the recommendations  

by Hu and Schnobrich (1989).  

The third and last part of the curve is the descending branch which begins at the maximum 

confined concrete strength fcc and decreases linearly until a stress of fc,u is reached at a 

corresponding strain of εc,u, which are determined as given in Eqs (3.10) and (3.11), 

respectively. 

fc,u = rk3fcc   (3.10) 

(3.11) 
εc,u = 11εcc  

where the value of the parameter k3 for concrete filled circular steel tubes is calculated 

using Eq. (3.12), based on the recommendations presented  by  Hu et al., (2003).  

 

k3 = 1       for   21.7 ≤ Dtube tt ≤ 40⁄   (3.12) 
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k3 = 0.0000339 (
Dtube

tt
)

2

− 0.010085 (
Dtube

tt
) + 1.3491  for 40 ≤

Dtube tt  ≤ 150⁄   

 

As a result of the experimental studies carried out by Giakoumelis and Lam in 2004, it 

was proposed  by (Ellobody et al., 2006; Ellobody and Young, 2006) that the parameter 

r may be taken as 1.0 for concrete with cube strength of 30 MPa and 0.5 for concrete with 

a cube strength of 100 MPa and linear interpolation can be used for intermediate values.  

 

Fig. 3.3 Typical stress-strain curve of confined and unconfined concrete 

(reproduced from Hu et al., (2003)) 

 

In the ABAQUS FE model, the concrete infill is represented using 8-noded brick elements 

with reduced integration, known as C3D8R in the ABAQUS library. The concrete 

damaged plasticity (CDP) model is employed for modelling the constitutive behaviour of 

the concrete, based on the relationships described before. The model assumes that the 

infilled concrete fails either in compression, through crushing, or tension, through 

cracking. In addition to the compressive and tensile constitutive relationships, a number 

of other parameters are required in the CDP model, including the dilation angle, flow 

potential eccentricity and viscosity parameter which are assigned values of 36˚, 0.1, and 

0, respectively, as used by other researchers (Kmiecik and Kamiński, 2011). The ratio of 

the strength in the biaxial state to the strength in the uniaxial state, fb0/fc, is taken as 1.16 

whilst the ratio of the second stress invariant on the tensile meridian (K) is given a value 

of 0.667 in the present analysis. 

In addition, the compressive damage parameter dc needs to be defined at each inelastic 

strain level. It ranges from zero, for undamaged material, to unity, when the material can 
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no longer sustain any load. The value for dc is found only for the descending branch of 

the stress-strain curve of concrete in compression, as given by Eqs (3.13) and (3.14). 

dc = 0                  when  εc < εcc  (3.13) 

(3.14) dc =
fcc−σc

fcc
         when  εc ≥ εcc  

 

In this study, it was assumed that after the tensile strength of concrete ft at corresponding 

strain of εcr has been reached, the tensile strength decreases linearly to reach zero stress 

at a total tensile strain at the end ɛend of 0.01, as shown in Fig. 3.4. The tensile strength of 

concrete ft, according to Eurocode 2 (EN 1992-1-1, 2004), is taken from Eqs (3.15) and 

(3.16).  

ft = 0.3fc
2/3

                     for   fc ≤ 50 N/mm    (3.15) 

(3.16) ft = 2.12 ln(1 + 0.1fc)    for    fc > 50 N/mm2  

Similar to the simulation of concrete in compression in the CDP model, the tensile 

damage parameter dt, which is valid only in the descending branch of the stress-strain 

curve for concrete in tension, is defined at each increment of cracking strain, as described 

by Eqs (3.17) and (3.18). follows: 

dt = 0                        for        εt < εcr  (3.17) 

(3.18) dt =
ft−σt

ft
                  for        εt ≥ εcr  

 

 

Fig. 3.4 Tensile stress-strain curve for concrete 

3.3.2 Steel 

The steel employed in the tested beam which is used later for validation is Q235 steel 

with nominal yield stress and ultimate tensile stress of 287.9 and 430.2 MPa, respectively 
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(Ding et al., 2009). An idealised tri-linear stress–strain relationship is assumed to model 

the steel material in the FE model, as shown in Fig. 3.5, where fy and εy are the yield stress 

and strain, respectively, εst is the strain at the onset of strain hardening and fu and εu are 

the ultimate tensile stress and strain at ultimate tensile stress, respectively. The key values 

used in the model are presented in Table 3.2. The strain at the onset of strain hardening 

εst and the strain at the ultimate tensile stress εu are taken as 0.025 and 0.2, respectively 

(Ban and Bradford, 2013). The engineering stress–strain (σeng-εeng) curve is converted to 

true stress–strain (σtrue-εtrue) curve for the ABAQUS model using Eqs (3.19) and (3.20), 

respectively.  

εtrue = ln(1 + εeng)  (3.19) 

σtrue = σeng(1 + εeng)  (3.20) 

 

The top tubular flange, web, bottom flange and stiffeners are all modelled using the four-

noded, three-dimensional shell element with reduced integration (S4R in the ABAQUS 

library). The S4R element has six active degrees of freedom per node, including three 

displacements and three rotations. The reduced integration enables more efficient 

computation without compromising the accuracy of the results. A tie contact is defined 

between the surface of the steel section and the edges of the stiffeners. Following a mesh 

sensitivity study, it has been found that an element size of 30×30 mm provides the best 

combination of accuracy and computational efficiency and therefore is applied to all 

elements in the model. The finite element mesh of a typical specimen is presented in Fig. 

3.6(a). 

 

Fig. 3.5 Stress–strain curve of steel beam (reproduced from Ban and Bradford, 

2013) 

 

 

 

σ 
 

fu  

fy 

E 
 

εy 

 

εst 

 

εu 

 

ε 



  

55 

 

3.4 Support and loading conditions 

The geometry and loading conditions of the beam are symmetrical about the mid-span 

and therefore only half the girder length is modelled. Accordingly, one end section of the 

beam model has simply supported boundary conditions whilst the other end has 

symmetrical boundary conditions, as shown in Fig. 3.6(b), in which ux, uy, uz, θx, θy, and 

θz are the displacements and the rotations about the global x, y and z axes, respectively. 

The y-z plane is considered to be in-plane whilst the x-z and x-y planes are out-of-plane, 

in the current study. At the end of the beam (i.e. at the support), the vertical uy and lateral 

displacements ux of all nodes along the y-axis (i.e., when x = 0), and the twist rotations 

about z and y-axes (θz and θy) are restrained against movement and therefore assigned 

values equal to zero. At the middle of the beam, the longitudinal displacements uz and 

rotations about the x and y-axes (θx and θy) are also restrained against all movement. The 

loading is applied to the top surface of the beam in displacement control through two 

concentrated loads along the full length or one loading point when half the span is 

considered.  
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(b) 

Fig. 3.6 FE model for the CCFTFG, including (a) finite element mesh and (b) 

support and loading conditions 

3.5 Validation of the load-displacement response 

To assess the accuracy of the load-displacement response generated by the FE model, the 

test conducted by Wang et al. (2008) was simulated as described in previous sections. 

This is the only test which has been done on concrete filled tubular flange girders with a 

circular top flange, to date, in the public domain. The load-displacement response of the 

CCFTFG from both the FE model and the experimental programme is presented in Fig. 

3.7. From Fig. 3.7, it is clear that the FE model is capable of providing a good 

representation of the general response and also offers an excellent prediction of the 

ultimate load and moment of the CCFTFG. Residual stresses are not incorporated in the 

FE model as it has been shown that they can be neglected for short unbraced members 

which are less than 20 m in length (Dong and Sause, 2009a).  

In terms of the general behaviour, and with reference to Fig. 3.7, it can be observed that 

the response predicted by the FE model is divided into four phases. Firstly, below a load 

of around 400 kN, there is a linear relationship between load and displacement in the 

elastic phase, and the response is very well predicted by the model in this range. Secondly, 

when the load reaches 500-600 kN, the behaviour becomes nonlinear. With the expansion 

of the yielded region from the bottom flange to the middle of the steel section, the flexural 

rigidity decreases and the stress redistributes. In this elastic-plastic stage, there are some 

disparities between the experimental and numerical curves and the model somewhat over-

predicts the capacity of the beam. This difference is likely to be due to a combination of 

factors which affect deformations, such as the idealisation of the material nonlinearity in 

Solid elements for 

infilled concrete 

(C3D8R) 

Shell elements for steel 
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the FE model as well as the likelihood of initial imperfections in the real structure. In the 

third phase, when loading exceeds 600 kN, the displacement increases rapidly as 

plasticity spreads in the middle region of the beam. Finally, in the fourth phase when the 

load reaches around 728 kN, the response plateaus as the displacement continues to 

increase with very little change in the load. The failure mode observed in both the FE 

model and the experiment, is a combination of steel yielding and torsional buckling. 

Overall, the simulated load-deformation curves reflect the experimental behaviour very 

well. Although there is only one experiment available for validation which is not ideal, it 

is concluded that the FE model is capable of predicting the behaviour and strength of that 

member and is suitable for conducting further parametric studies on CCFTFGs under 

bending. 

 

Fig. 3.7 Load versus deflection relationship from the FE analysis and experimental results 

 

 

3.6    Use a proper stress-strain curve of steel in validation 

Both a multi-linear (trilinear) and a bilinear stress-strain curves are  studied in the analysis 

of CCFTFG model.  The typical stress-strain curves are illustrated in Fig. 3.8, including 

(a) multi-linear (trilinear) curve and (b) bilinear curve. The results of FE model are very 

similar and are capable of providing a strong overall response representation with an 

excellent prediction of the CCFTFG's ultimate load and moment, as shown in Fig. 3.9 . 

Therefore, it is not deemed necessary to model the steel in the more complicated way 

(multi-linear) for the rectangle CFTFG, see chapter 5. 
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(a) (b) 

Multi-linear (trilinear) curve Bilinear curve 

Fig. 3.8 Different stress-strain curve of steel beam 

 

 

Fig. 3.9 Load versus deflection relationship using different stress-strain curve of steel beam 

 

 

3.7 Analytical model for flexural strength 

In this section, a series of analytical expressions for predicting the bending capacity of 

circular CFTFGs are developed which can be used both for analysis and design of these 

members. The approach is based on plastic theory in which the position of the plastic 

neutral axis and the plastic bending moment capacity can be identified by applying the 

equilibrium of internal forces equations to the cross-section. An equivalent rectangular 

and triangular stress block is assumed for the concrete (as shown in Fig. 3.10 and 
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discussed hereafter) and the steel is assumed to behave in an elastic-perfectly plastic 

manner. The confining effect provided by the steel tube on the concrete infill is considered 

in the analytical model.  

3.7.1 Location of the plastic neutral axis 

In order to determine the bending capacity of the section, it is first necessary to determine 

the location of the plastic neutral axis (PNA). Two cases are considered in this study. 

Case 1 assumes that the PNA is in the web of the steel section, as shown in Fig. 3.10, 

while Case 2 assumes that the PNA is in the tubular flange, as demonstrated in Fig. 3.11. 

With reference to these figures, and in order to determine the exact location of the PNA, 

the following assumptions are adopted: 

• If the PNA is within the concrete filled portion of the section, it is assumed the 

concrete below the plastic neutral axis does not contribute to the tension capacity. 

• By assuming x0=0 and y0=y1-R, the coordinate (x0, y0) is the centre of the circular 

tube, where R is the outer radius of the steel tube. 

• The term y2, which is the vertical height of the triangular stress block is 

determined by interpolating the strain distribution across the cross-section, given 

by: 

 
εcc

y1−tt
=

εy

y2
 →  y2 =

εy

εcc
(y1 − tt). 

• In the triangular stress block, where the steel is behaving in an elastic manner (i.e. 

fs = εsE, where fs and εs are the stress and strain in the steel section, respectively, 

and E is the elastic modulus) interpolation can be applied to establish that, at any 

location y in this region, the stress in the steel is determined as: 

fs =
yfy

y2
. 

As shown in Figs. 3.10 and 3.11, y1 is the distance from the top of the cross section to the 

PNA. For Case 1, y1 > Dtube (where Dtube is the outer diameter of the steel tube), and 

therefore the PNA is within the steel web. On the other hand, for Case 2, y1 < Dtube, and 

the PNA is within the concrete filled tube infilled concrete. Both cases are considered 

hereafter. 

Case 1: PNA in the web of the steel section (y1 > Dtube) 

In the compression zone, the forces can be divided into three regions, as shown in Fig. 

3.10, represented by Fc1, which is the maximum compressive force in the concrete infill, 

Fc2, which is the compressive force in the steel tube and Fc3, which is the compressive 
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force in the compressive region of the web. Each of these forces can be determined using 

Eqs. 3.21-3.23, respectively, where σc is the stress in the confined concrete obtained using 

Eq. 3.7 and r is the inner radius of the steel tube: 

Fc1 = 2 ∫ √r2 − (y − y0)2y1−tt

y1−Dtube+tt
× σc dy  (3.21) 

Fc2 = 2 [∫ √R2 − (y − y0)2y1−tt

y2
− √r2 − (y − y0)2 × fydy +

∫ √R2 − (y − y0)2y1

y1−tt
× fydy + ∫ √R2 − (y − y0)2y2

y1−Dtube+tt
−

√r2 − (y − y0)2 × fsdy + ∫ √R2 − (y − y0)2 × fsdy
y1−Dtube+tt

y1−Dtube
]  

(3.22) 

Fc3 =
1

2
tw(y1 − Dtube) ×

fy(y1−Dtube)

y2
   (3.23) 

In the tension zone, below the PNA, the total force in the web in tension, Ft1, is determined 

as: 

Ft1 =
1

2
twy2fy + tw × (h − y1 − y2 − tf) × fy  (3.24) 

On the other hand, the tensile force in the bottom flange is calculated as: 

Ft2 = bftffy   (3.25) 

 

 

Fig. 3.10 Distributions of strain and stress for Case 1, where the PNA is in the web 

of the steel section (y1 > Dtube) 
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Case 2: PNA is in the tubular flange (y1 < Dtube) 

In this case, the total compressive force comprises two components, namely, Fc1, which 

is the force in the infilled concrete above the PNA and Fc2, which is force in the steel tube 

above the PNA.  These are determined from Eqs. 3.26 and 3.27, respectively: 

Fc1 = 2 ∫ √r2 − (y − y0)2y1−tt

0
× σc dy  (3.26) 

Fc2 = 2 × [∫ √R2 − (y − y0)2y1−tt

y2
− √r2 − (y − y0)2 × fydy +

∫ √R2 − (y − y0)2y1

y1−tt
× fydy + ∫ √R2 − (y − y0)2y2

0
− √r2 − (y − y0)2 ×

fsdy ]         

(3.27) 

Below the PNA, there are three components to the total tensile force in the section. As 

can be seen in Fig. 3.11, y1 bisects the steel tube, and the tensile force in the steel tube 

below the PNA (Ft1) is calculated as: 

Ft1 = 2 × [∫ √R2 − (y − y0)20

−(Dtube−tt−y1)
− √r2 − (y − y0)2 × fsdy +

∫ √R2 − (y − y0)2−(Dtube−tt−y1)

−(Dtube−y1)
× fsdy]   

(3.28) 

Eq. 3.29 is used to calculate the tensile force for both the triangular and rectangular plastic 

stress distribution block areas of the steel web, below the PNA, as illustrated in Fig. 3.11: 

Ft2 = ∫ tw × fsdy +
y1−Dtube

−y2
(h − y1 − y2 − tf) × tw × fy   (3.29) 

Finally, the tensile force in the bottom flange is:  

Ft3 = bftffy  (3.30) 

For both Case 1 and Case 2, Fci  (i=1, 2, 3,…, etc.) is any compressive force which exists 

above the PNA and Fti (i=1, 2, 3,…, etc.) is any tensile force which exists below the PNA. 

C and T are the total compression and tension forces in the CCFTFG, determined from: 

C = ∑ Fci and (3.31) 

T = ∑ Fti  (3.32) 

In order to maintain equilibrium, the total compressive force (C) must equal the total 

tensile force (T) in the cross-section.  
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Fig. 3.11 Distributions of strain and stress for Case 2, where the PNA is in the 

tubular flange section (y1 < Dtube) 

3.7.2 Ultimate moment capacity 

For both cases described in the previous section, the ultimate bending capacity (Mu) for 

a CCFTFG can be derived based on equilibrium of internal forces in the cross-section, as 

given in Eq. (3.33): 

Mu =  ∑ Mci + ∑ Mti     (i=1, 2, 3… etc)  (3.33) 

The moment generated by the compressive and tensile forces (Mc and Mt, respectively) 

are found using Eqs. 3.34 and 3.35 for Case 1: 

Mc = 2 × [∫ √r2 − (y − y0)2y1−tt

y1−Dtube+tt
× σc × ydy +

∫ √R2 − (y − y0)2y1−tt

y2
− √r2 − (y − y0)2 × fy × ydy +

∫ √R2 − (y − y0)2y1

y1−tt
× fy × ydy + ∫ √R2 − (y − y0)2y2

y1−Dtube+tt
−

√r2 − (y − y0)2 × fs × ydy + ∫ √R2 − (y − y0)2 × fs × ydy
y1−Dtube+tt

y1−Dtube
]  

(3.34) 

Mt =
1

2
twy2fy ×

2

3
y2 + tw × (h − y1 − y2 − tf) × fy ×

(h−y1−y2−tf)

2
+

bftffy × (h − y1 −
tf

2
)  

(3.35) 

For Case 2, Eqs. 3.36 and 3.37 represent the moments above (Mc) and below (Mt) the 
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Mc = 2 × [∫ √r2 − (y − y0)2y1−tt

0
× σc × ydy + ∫ √R2 − (y − y0)2y1−tt

y2
−

√r2 − (y − y0)2 × fy × ydy + ∫ √R2 − (y − y0)2y1

y1−tt
× fy × ydy +

∫ √R2 − (y − y0)2y2

0
− √r2 − (y − y0)2 × fs × ydy]  

(3.36) 

Mt = 2 × [∫ √R2 − (y − y0)20

−(Dtube−tt−y1)
− √r2 − (y − y0)2 × fsydy +

∫ √R2 − (y − y0)2−(Dtube−tt−y1)

−(Dtube−y1)
× fs × ydy] + ∫ tw × fs ×

y1−Dtube

−y2

ydy + (h − y1 − y2 − tf) × tw × fy × ((h − y1 − y2 − tf)  

(3.37) 

The flow chart of the procedure for calculating the position of the plastic neutral axis and 

the bending moment capacity for case 1 as well as case 2 is shown in Fig. 3.12a and b, 

respectively. In order to check the validity of the proposed theoretical equations, Table 

3.3 presents a comparison between the calculated ultimate moment capacity (Mu,Calc) and 

both the experimental value (Mu,Exp) (Wang et al., 2008) and the FE prediction using the 

model described previously (Mu,FE).  For this beam, the PNA is found to be in the tubular 

part of the section and therefore the Case 2 formulations are used. The results show that 

the term y1, which is the distance from the top of the steel beam to the PNA, is equal to 

155.9 mm. It is clear from the table that the analytical expressions provide a good 

prediction of the moment capacity for this CCFTFG. The comparison of Mu,FE and Mu,Calc 

yields a ratio of 0.992. 

 

 

Table 3.3 Comparisons of numerical, experimental and analytical ultimate strengths 

Specimen 
Mu,Exp            

(kNm) 

Mu,FE           

(kNm) 

PNA 

location, y1             

(mm) 

Mu,Calc           

(kNm) 

Mu,FE/

Mu,Calc 

CCFTFG 537.0 540.2 155.9 544.6 0.992 
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(b) 

 

Fig. 3.12 Flow chart of the solution procedure for (a) case 1, y1> Df, (b) case 2, y1< Df 

 

 

 

 

 

 

y1
0 = y1  

STEP 4:                                                               

Calculate integration equation of Fc1, 

Fc2, Ft1, Ft2, Ft3 from Eqs. 3.26-3.30                                          

Calculate C and T from Eqs. 3.31-

3.32, C=T to find y1               

STEP 1: Set an initial value of y1 (in this study, 

the initial value is taken y1>0                                                  

Input Dtube, bf, tt, h, tw, tf, fy, Es, fc, εc, Rε, Rσ            

εy =fy/Es 

STEP 2:  Calculate fcc from Eq. 3.2                                                             

Calculate εcc from Eq. 3.3         

Calculate Ec from Eq. 3.6                      

Calculate RE from Eq. 3.8            

Calculate R from Eq. 3.9         

Calculate σc from Eq. 3.7              

STEP 3:                                        

Input  y2 = εy × (y1 − tt) εcc⁄   

Input R=D/2, Input r=R-tt            

Input y0=y1-R 

STEP 5: if|y1 − y1
0| < err, where err 

is the prescribe error bound 

(err=0.01 in this study)                                                       

If no 

Return 

to 

STEP 3 

If yes 

STEP 6: y1
0 is the position of PNA 

within the tubular flange section                     

Calculate Mu from Eq. 3.33 



  

66 

 

3.8 Parametric study 

As previously stated, the experimental data available for CCFTFGs is limited to a single 

test (Wang et al., 2008), mainly owing to the expense associated with large-scale 

experiments as well as the novelty of these types of structural section. Therefore, a 

detailed analysis of the behaviour and performance criteria requires the use of numerical 

and/or analytical tools. In this section, the finite element model and analytical approach 

previously described are employed to investigate the ultimate behaviour of CCFTFGs and 

the influence of the most salient parameters on their performance.  

A number of parameters are investigated in the parametric study including geometrical 

and material details. In addition, FE models for steel tubular flange girders (STFGs) are 

generated in order to study the influence of the concrete infill on the behaviour. For 

CCFTFGs, buckling takes place in the lateral-torsional mode as the web becomes 

stiffened transversally at the mid-span location, causing lateral buckling to dominate, 

rather than the web distortions; Fig. 3.13 shows the buckling mode of the tested girders. 

A total of 88 different arrangements are considered in this study, as presented in Tables 

3.4-3.7. For clarity, in the current section, the results are presented in two general 

categories: (i) members with different tube diameters (Table 3.4 and 3.5 for CCFTFGs 

and STFGs, respectively) and (ii) beams with various tube thicknesses (Table 3.6 for 

CFTFGs and Table 3.7 for STFGs). In all cases, the webs of the girders are transversally 

stiffened with double-sided flat plate stiffeners which are 12 mm in thickness and located 

at the support and loading locations. The distance between the two intermediate stiffeners 

in the girder (a) is 1500 mm. All modelled beams had a length of 4300 mm. All specimens 

listed in Tables 3.4 and 3.6 contain concrete infill with a compressive strength of 38.6 

MPa. In addition, combined yielding and torsional buckling is the failure mode for all 

models. This type of failure is common for these types of girders (Hassanein, 2015; Kim 

and Sause, 2005). 

In the specimens listed in Tables 3.4 and 3.5, models with five different tube diameters 

(Dtube = 180, 200, 210, 219 and 300 mm) are considered. For each model, two web heights 

(hw = 267 and 500 mm), giving two different panel aspect ratios (a/hw = 5.62 and 3) and 

two flange thicknesses (tf = 14 and 28 mm) are considered. The tube and web thicknesses 

are kept fixed at 8 mm and 6 mm, respectively.  

In the specimens listed in Tables 3.6 and 3.7, models with three different tube thicknesses 

(tt = 5, 8 and 10 mm) are considered. For each model, two different web heights (hw = 
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267 and 500 mm) and two different web thicknesses (tw = 6 and 10 mm), giving two 

different panel aspect ratios (a/hw = 5.62 and 3) and four different web slenderness values 

(𝜆̅𝑤 or hw/tw = 44.5, 26.7, 83.3 and 50), and two flange thicknesses (tf = 14 and 28 mm) 

are considered. The tube diameter is kept fixed at 219 mm.  

The ultimate moments determined using the FE model Mu,FE and the analytical 

expressions Mu,Calc  are presented in Tables 3.4-3.7, together with the location of PNA 

measured from the top of the section (y1). The results generally show that each pair of 

CFTFGs and STFGs (i.e. identical properties apart from the inclusion of concrete) has 

similar buckling shapes but the buckling load of the CCFTFGs is higher than that of the 

corresponding STFGs. For example, the buckling loads of GR13 and GR33, which are a 

CFTFG and STFG, respectively, are 540.2 kNm and 391.2 kNm. This equates to a 

38% increase in capacity due to the presence of concrete in the tube, which 

increases the strength and stiffness of the upper flange and hence allows the concrete 

filled section to carry additional loads. 

On the other hand, as expected, girders with a relatively small web panel aspect ratio 

demonstrate significantly greater ultimate moment capacities compared with members 

with higher a/hw ratios. From Tables 3.4 and 3.5, it is seen that the ultimate moment of 

GR15 is 842.5 kNm while for GR35 it is 650.8 kNm. These girders are identical to GR13 

and GR33 previously discussed except that GR15 and GR35 have a web panel aspect 

ratio of 3 whereas GR13 and GR33 have an equivalent value of 5.62. The ultimate 

moment capacity is 56% greater for GR15 relative to GR13 whereas the same increase is 

66% for GR35 compared with GR33. This demonstrates that irrespective of the presence 

of concrete, the aspect ratio of the web panel is highly influential to the load-bearing 

capacity of the girder. 

In the following sub-sections, the load-deflection and failure behaviour of both CCFTFGs 

and STFGs with different key parameters are presented and discussed in detail. Typically, 

each parameter is varied in isolation while the others are kept constant in order to study 

the effect of this term. 
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Fig. 3.13 View of the finite element model in both the deformed and undeformed 

shapes 

 

Table 3.4 Details of CCFTFGs with different tube diameters 

CCFTFG 

Group 
Specimen 

Geometric details 

Mu,FE 

(kNm) 

Mu,Calc 

(kNm) 

PNA 

location, 

y1     

(mm) 

Mu,FE/ 

Mu,Calc 
L      

(mm) 

Dtube 

(mm) 

hw      

(mm) 
a/hw 

tf           

(mm) 

G1 

GR1 

4300 

180 

267 5.62 
14 439.7 454.3 137.1 0.968 

GR2 28 650.5 667.2 152.4 0.975 

GR3 
500 3 

14 744.0 758.4 146.7 0.981 

GR4 28 1010.8 1023.7 166.3 0.987 

G2 

GR5 

200 

267 5.62 
14 482.1 494.6 146.8 0.975 

GR6 28 703.1 717.2 160.9 0.980 

GR7 
500 3 

14 793.5 805.4 155.8 0.985 

GR8 28 1062.9 1073.5 172.6 0.990 

G3 

GR9 

210 

267 5.62 
14 504.1 513.6 151.6 0.981 

GR10 28 729.9 738.1 165.2 0.989 

GR11 
500 3 

14 818.8 824.5 160.4 0.993 

GR12 28 1089.5 1094.9 176.3 0.995 

G4 

GR13 

219 

267 5.62 
14 540.2 544.6 155.9 0.992 

GR14 28 754.9 760.3 169.2 0.993 

GR15 
500 3 

14 842.5 845.9 164.4 0.996 

GR16 28 1117.1 1121.2 179.7 0.996 

G5 

GR17 

300 

267 5.62 
14 730.3 735.8 189.7 0.992 

GR18 28 1002.4 1008.7 202.2 0.994 

GR19 
500 3 

14 1079.3 1082.4 197.8 0.997 

GR20 28 1366.0 1363.7 211.4 0.999 

a:distance between two intermediate transversally stiffeners  

 

 

Deformed shape 

Undeformed 

shape 
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Table 3.5 Details of STFGs with different tube diameters 

STFG 

Group 
Specimen 

Geometric details 

Mu,FE 

(kNm) 

Mu,Calc 

(kNm) 

PNA 

location, 

y1     

(mm) 

Mu,FE/ 

Mu,Calc L      

(mm) 

Dtube 

(mm) 

hw      

(mm) 
a/hw 

tf           

(mm) 

G6 

GR21 

4300 

180 

267 5.62 
14 342.9 357.7 157.6 0.959 

GR22 28 490.1 505.3 303.3 0.970 

GR23 
500 3 

14 615.9 629.4 244.8 0.979 

GR24 28 806.4 815.5 419.8 0.989 

G7 

GR25 

200 

267 5.62 
14 348.4 361.1 151.8 0.965 

GR26 28 499.4 513.0 281.4 0.973 

GR27 
500 3 

14 613.3 625.7 222.9 0.980 

GR28 28 833.0 840.8 397.9 0.991 

G8 

GR29 

210 

267 5.62 
14 379.5 392.2 146.8 0.968 

GR30 28 548.9 562.7 270.3 0.976 

GR31 
500 3 

14 633.1 645.2 211.9 0.981 

GR32 28 875.2 882.6 386.8 0.992 

G9 

GR33 

219 

267 5.62 
14 391.2 400.8 140.0 0.976 

GR34 28 569.0 580.7 260.6 0.980 

GR35 
500 3 

14 650.8 663.4 202.1 0.981 

GR36 28 905.8 911.1 377.1 0.994 

G10 

GR37 

300 

267 5.62 
14 492.8 498.8 114.8 0.988 

GR38 28 665.9 672.2 171.9 0.991 

GR39 
500 3 

14 756.2 760.5 142.7 0.994 

GR40 28 1173.5 1175.4 288.4 0.998 
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Table 3.6 Details of CCFTFGs with different tube thicknesses 

CCFTFG 

Group 
Specimen 

Geometric details 

Mu,FE 

(kNm) 

MuCalc 

(kNm) 

PNA 

location, 

y1     

(mm) 

Mu,FE/

Mu,Calc 
L      

(mm) 

Dtube 

(mm) 

hw           

(mm) 
a/hw hw /tw 

Dtube

/tt 

tf        

(mm) 

G11 

GR41 

4300 219 

267 5.62 

44.5 

43.8 
14 463.2 477.3 154.2 0.970 

GR42 28 691.3 707.7 183.5 0.977 

GR43 
27.4 

14 540.2 544.6 155.9 0.992 

GR44 28 754.9 760.3 169.2 0.993 

GR45 
21.9 

14 557.2 560.7 157.6 0.994 

GR46 28 789.9 793.7 167.8 0.995 

G12 

GR47 

26.7 

43.8 
14 538.1 552.7 167.8 0.974 

GR48 28 754.2 769.3 197.5 0.980 

GR49 
27.4 

14 599.8 603.2 164.2 0.994 

GR50 28 824.0 828.9 178.0 0.994 

GR51 
21.9 

14 634.7 638.3 164.3 0.994 

GR52 28 859.8 863.4 174.9 0.996 

G13 

GR53 

500 3 

83.3 

43.8 
14 786.4 800.8 172.7 0.982 

GR54 28 1058.3 1069.3 209.8 0.990 

GR55 
27.4 

14 842.5 845.9 164.4 0.996 

GR56 28 1117.1 1121.2 179.7 0.996 

GR57 
21.9 

14 874.3 878.7 164.2 0.995 

GR58 28 1152.8 1157.3 175.6 0.996 

G14 

GR59 

50 

43.8 
14 968.7 985.2 201.5 0.983 

GR60 28 1300.3 1312.6 274.1 0.991 

GR61 
27.4 

14 1035.3 1039.0 179.7 0.996 

GR62 28 1377.2 1381.1 197.8 0.997 

GR63 
21.9 

14 1069.4 1074.5 176.2 0.995 

GR64 28 1413.2 1417.7 189.2 0.997 
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Table 3.7 Details of STFGs with different tube thicknesses 

STFG 

Group 
Specimen 

Geometric details 

Mu,FE 

(kNm) 

Mu,Calc 

(kNm) 

PNA 

location, 

y1 (mm) 

Mu,FE/ 

Mu,Calc 
L 

(mm) 

Dtube 

(mm) 

hw      

(mm) 
a/hw 

hw 

/tw 
Dtube/tt 

tf           

(mm) 

G15 

GR65 

4300 219 

267 5.62 

44.5 

43.8 
14 292.9 306.9 247.4 0.954 

GR66 28 308.9 322 422.4 0.959 

GR67 
27.4 

14 391.2 400.8 140 0.976 

GR68 28 569.0 580.7 260.6 0.980 

GR69 
21.9 

14 435.1 444.9 107.6 0.978 

GR70 28 604.9 613.6 155.3 0.986 

G16 

GR71 

26.7 

43.8 
14 301.4 310.1 289.4 0.972 

GR72 28 314.2 322.9 394.4 0.973 

GR73 
27.4 

14 431.1 443.6 192.7 0.972 

GR74 28 557.9 572.1 297.4 0.975 

GR75 
21.9 

14 480.8 488.2 129.1 0.985 

GR76 28 643.1 648.9 234.2 0.991 

G17 

GR77 

500 3 

83.3 

43.8 
14 334.9 343.4 363.7 0.976 

GR78 28 396.1 404.9 538.9 0.978 

GR79 
27.4 

14 650.8 663.4 202.1 0.981 

GR80 28 905.8 911.1 377.1 0.994 

GR81 
21.9 

14 718.6 726.9 116.8 0.988 

GR82 28 946.4 952.6 271.4 0.994 

G18 

GR83 

50 

43.8 
14 360.3 368 405.9 0.979 

GR84 28 428.2 436.3 510.7 0.981 

GR85 
27.4 

14 722.3 735.6 308.9 0.982 

GR86 28 942.7 954.6 413.8 0.988 

GR87 
21.9 

14 840.3 848.6 245.6 0.990 

GR88 28 1029.9 1034.8 350.7 0.995 

 

 

 

 

 

 

 

 

 

 

 



  

72 

 

3.8.1 Effect of specimen geometry   

In this section, the effect of a number of the most salient individual geometric properties 

such as tube diameter (Dtube), tube thickness (tt) and tension flange thickness (tf) are 

studied. Firstly, the influence of the diameter of the tubular flange (Dtube) is investigated 

by varying this dimension between 180 and 300 mm, while the thickness of the tube 

remains fixed at 8 mm. The moment-deflection results are presented in Fig. 3.14 for (a) 

CCFTFGs and (b) STFGs, and it is evident that in both cases, increasing the diameter of 

the tubular flange raises the ultimate flexural strength of the girder. This is more 

significant for the concrete filled members compared with the bare steel sections owing 

to the increased strength and stiffness resulting from the concrete infill. There is some 

difference in the general shape of the curves presented in Fig. 3.14 with the concrete filled 

members showing a more rounded moment-deflection response with no softening whilst 

the STFGs demonstrate a descending branch after the peak moment has been reached, 

particularly for GR37. This is attributed to the fact that the concrete filled members do 

not experience local buckling even at high levels of deflection, due to the confinement 

effect provided by the concrete core. It is noteworthy that all of the sections in the current 

study were examined for local buckling using the requirement described in the AASHTO 

design specifications (1998), and given as: 

Dtube

tt
≤ 2.8√

E𝑠

fy
  (3.38) 

Eq. 3.38 was originally developed based on an unfilled tube although the AASHTO 

specification recommends using the expression for concrete filled tubes also.  

Fig. 3.15 presents the moment-deflection responses for (a) CCFTFGs and (b) STFGs with 

different Dtube/tt ratios and it is observed that decreasing the tube diameter to thickness 

ratio, by either reducing Dtube or increasing tt, has the effect of increasing the moment 

capacity of the girders for both concrete filled and bare steel members. For the STFGs, 

this is expected as a lower Dtube/tt ratio corresponds to a stockier compression flange, 

which is less susceptible to local buckling, and does not limit the cross-section flexural 

resistance of the compression flange. This effect is less prominent for the CCFTFGs, as 

the confinement effect offered by the concrete infill has a greater effect in improving the 

local buckling resistance of the compression flange tube of all Dtube/tt ratios. The ratio 

limits depend on the AASHTO design specifications (1998), as given in Eq. 3.38. 
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(a)  

 

 

 

 

 

 

 

 

 

 

 

(b)  

Fig. 3.14 Ultimate moment versus deflection responses for (a) CCFTFGs (b) 

STFGs with different tube diameters 
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GR17 (Dtube=300mm) 
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 (a) 

 

(b) 

Fig. 3.15 Ultimate moment versus deflection responses of (a) CCFTFGs (b) STFGs 

with different Dtube/tt ratios 

In order to investigate the effect of plate thickness in the tension region of the cross-

section on the behaviour, two different thicknesses of the bottom flange tf are studied. 

The moment-deflection curves presented in Fig. 3.16 verify that, as expected, increasing 

the tensile flange thickness raises the ultimate moment capacity of the section. From a 

cost perspective (both materials and fabrication), it is important to consider whether the 

increased volume of steel required in GR64 compared to GR63, for example, is translated 

into improved moment capacity. These two beams have an ultimate moment capacity of 

around 1413.2 kNm and 1069.4 kNm, respectively, and a gross cross-sectional area (steel 

only) of 11901 and 9801 mm2, respectively. Therefore, a 21% increase in steel volume 

can result in a 32% improvement in bending moment capacity, for the same stiffener 

GR47 (Dtube/tt) = 43.8 

GR49 (Dtube/tt) =27.4 

GR51 (Dtube/tt) =21.9 

GR71 (Dtube/tt) =43.8 

GR73 (Dtube/tt) =27.4 

GR75 (Dtube/tt) =21.9 
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arrangement. This effect is again examined in this section taking into account the web 

depth (hw), which is a key parameter to consider in the design of plate girders. Clearly, 

decreasing the web depth (hw) reduces the volume of steel in the section as well as the 

fabrication costs as less welding is required and the associated risk of weld distortion is 

lowered. However, it also reduces the bending moment capacity.  Therefore, this 

discussion highlights the importance of a careful consideration of all factors (capacity 

requirements, flange depth, web depth, welding needs, etc.) when designing a CCFTFG. 

 

(a) 

 

(b) 

Fig. 3.16 Ultimate moment versus deflection responses for (a) CCFTFGs (b) 

STFGs with different bottom flange thicknesses 
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3.8.2 Effect of web panel aspect ratio 

As previously observed in Tables 3.4-3.7, decreasing the aspect ratio of the web panels 

(a/hw) for the same girder geometries leads to an increase in the ultimate moment capacity 

of the tubular flange girders. The ultimate moment-deflection curves for GR13 and GR15 

are presented in Fig. 3.17 to illustrate the difference in their general behaviour. After the 

linear elastic stage, and until reaching the full strength of the girders, the girder with the 

higher web panel aspect ratio reaches the inelastic stress stage at a lower deflection 

relative to GR15 and also achieves a significantly higher moment capacity. This is 

attributed to the fact that GR13 (with the lower a/hw ratio of these two beams) possesses 

a larger buckling resistance and also greater web stiffness, compared with GR15.  

Fig. 3.18 presents the variation of Mu,FE/Mu,Calc  for different subgroups of CCFTFGs and 

STFGs. Each subgroup represents girders with the same length and tube diameter, but 

other parameters such as hw, tf and a/hw are varied. The results indicate the accuracy of 

the analytical expressions in predicting the ultimate moment as, in all cases, the 

Mu,FE/Mu,Calc  ratio is between 0.95 and 1.0. Moreover, the figures show that Mu,FE and 

Mu,Calc consistently become closer for members with a relatively large tube diameter and 

also a lower a/hw ratio thus indicating the analytical expressions are most accurate in these 

cases. On the other hand, it can be seen that for both CFTFGs and STFGs, increasing the 

bottom flange thickness tf results in the Mu,FE/Mu,Calc  ratio becoming closer to unity for 

all girders, irrespective of the web panel aspect ratio.  

 

Fig. 3.17 Ultimate moment versus deflection for GR13 and GR15 with difference 

web panel aspect ratios 
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(a) 

 

 

 

 

 

 

 

 

     

(b) 

Fig. 3.18 The relationship between aspect ratio of the web panel (a/hw) and the 

Mu,FE/Mu,Calc ratio for (a) CCFTFGs (b) STFGs 
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3.8.3 Effect of web plate slenderness 

The effect of the web plate slenderness, that is the hw/tw ratio, is discussed herein. Fig. 

3.19 displays the ultimate moment versus deflection response for (a) CCFTFGs and (b) 

STFGs, for different web slenderness values. From the figures, together with the data 

presented in Tables 3.6 and 3.7, it is observed that increasing the web thickness (thereby 

reducing the hw/tw ratio) increases the moment capacity of the CCFTFGs and STFGs, as 

expected, owing to the increased stiffness of the web plate. This is more pronounced in 

the concrete filled members (Fig. 3.19(a)) compared with the bare steel flange girders 

(Fig. 3.19(b)). For example, the ultimate moment of GR55 (hw/tw=83.3) is 842.5 kNm 

whereas the same value for GR61, which is identical apart from the thickness of the web 

plate (hw/tw=50), is 1035.3 kNm. Thus, the increase in web thickness and hence reduction 

in web plate slenderness for concrete filled members, results in an improved moment 

capacity of almost 23%. The variation in web thickness from 6 mm to 10 mm increases 

the cross-sectional area of the section by around 17% (6404 mm2 for GR55 to 7472 mm2 

for GR 61).  

On the other hand, the same values for GR79 and GR85, which are identical to GR55 and 

GR61 apart from the absence of a concrete infill, are 650.8 and 722.3 kN, respectively, 

which represents an increase of only 11% for the same variation in web thickness, 

although the increase in steel volume remains at 17%. For the bare steel sections, although 

having a thicker web does increase the moment capacity of the section, this is limited to 

an 11% improvement as failure is likely to be affected by buckling in the top flange before 

any more capacity can be achieved. However, for the concrete filled members, buckling 

is extremely unlikely in the top flange owing to the stiffness provided by the concrete 

core, and therefore the increase in web thickness results in a much more significant 

improvement in the moment capacity.  This illustrates the effect of the concrete infill in 

terms of overall behaviour and the stiffness provided can be more favourable even than 

increasing the amount of steel in the section.  
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(a) 

 

(b) 

Fig. 3.19 Ultimate moment versus deflection responses of (a) CCFTFGs (b) STFGs 

with different web plate slenderness’ (hw/tw) 

   

3.8.4 Concrete compressive strength 

The effect of concrete compressive strength on the response is investigated herein by 

considering different fc values ranging from 20 to 70 MPa for specimen GR13, as 

presented in Table 3.8. The ultimate moment-displacement responses for these members 

are shown in Fig. 3.20. It can be seen that the value of fc has a very slight effect on the 

capacity of the CCFTFGs, which could be ignored. As expected, the moment capacity 
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increases with greater concrete strengths and the PNA is located at a higher position in 

the cross-section. From the figure, it is observed that the concrete strength does not have 

a strong effect on the member rigidity during the elastic stage, where behaviour is 

controlled by the stiffness rather than strength. From the ratio of Mu,FE to Mu,Calc, as 

presented in Table 3.8, it is clear that the analytical model provides a more accurate 

prediction of the moment capacity for relatively low values of fc, which is expected owing 

to the diminished contribution made be the concrete in this case. Overall, it can be 

concluded that the increased strength of the CCFTFGs compared to that of the STFGs is 

attributed to the availability of a rigid medium in the upper flange rather than the concrete 

strength, within the range examined herein. Accordingly, it is not necessary to include the 

compressive strength of the infill concrete in the design strength of the CCFTFGs.  

 

Fig. 3.20 Influence of concrete strength on the behaviour of CCFTFGs 

   

3.8.5 Steel strength 

Fig. 3.21 presents the moment-displacement curves for the GR13 CCFTFG but with 

different yield strengths of steel fy. The details are also presented in Table 3.8, where it is 

seen that fy was varied between 235 to 690 N/mm2. Fig. 3.21 illustrates that the ultimate 

bending capacity is proportional to the yield strength of steel, as expected. Also, the steel 

strength makes almost no contribution to the stiffness of the member in the elastic stage, 

which is again expected as the Young’s modulus value remains constant. The influence 
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of steel strength on the Mu,FE/Mu,Calc ratio is also provided in Table 3.8 and it can be seen 

that the members with higher steel strength also give greater Mu,FE/Mu,Calc ratios, thus 

indicating that the analytical model captures the behaviour of these members particularly 

well. 

 

Fig. 3.21 Vertical deflection at mid-span section with different yielding strength of 

steel 

 

Table 3.8 Influence of fc and fy on the capacity of CCFTFG GR13 

 

 

 

 

 

fc         

(MPa) 

fy        

(N/mm2) 

Mu,FE   

(kNm) 

Mu,Calc 

(kNm) 

PNA 

location 

(mm) 

Mu,FE/Mu,Calc 

20 287.9 525.5 526.0 168.8 0.999 

30 287.9 536.5 539.8 161.2 0.993 

38.6 287.9 540.2 544.6 155.9 0.992 

40 287.9 545.8 550.9 155.1 0.990 

50 287.9 553.1 562.7 150.1 0.983 

60 287.9 558.2 569.1 145.9 0.981 

70 287.9 561.8 575.6 142.3 0.976 

38.6 235 433.7 442.7 154.1 0.978 

38.6 355 631.4 638.0 157.6 0.988 

38.6 460 799.3 803.1 159.7 0.995 

38.6 690 1161.1 1162.4 162.4 0.998 

235 N/mm2 steel 

460 N/mm2 steel 

355 N/mm2 steel 

690 N/mm2 steel 
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3.9 Concluding remarks 

In order to investigate the influence of bridge design parameters such as the size of the 

tube diameter (Dtube), the ratio of the tube diameter to thickness (Dtube/tt), the thickness of 

the bottom flange (tf), the web plate slenderness (hw/tw), the aspect ratio of the web panel 

(a/hw) and also the material strengths. Ultimate moment versus vertical deflection curves 

and failure modes were obtained from the analyses. Based on this parametric study, the 

following conclusions can be made: 

• The fundamental structural behaviour of CCFTFGs, including the bending 

moment capacity, plastic neutral axis location (PNA), and yield moment can be 

accurately estimated using plastic theory of cross-section analyses. 

• The lateral displacements of the girders under applied vertical loading are affected 

by the initial imperfection shapes of both the compression and tension flanges. 

• Each pair of CCFTFGs and STFGs with identical properties apart from the 

presence of concrete were found to have similar buckling shapes with the buckling 

load of the CFTFGs being higher than that of the corresponding STFGs. This 

highlights the influence of the infill concrete which increases the stiffness of the 

upper flange, and hence allows the section to carry additional ultimate moment 

capacity compared to the STFGs. 

• In terms of the geometrical details, it was shown that increasing the bottom flange 

depth (tf) is advantageous in terms of moment capacity achieved and also the 

material costs. This is because the increase in moment capacity achieved is 

disproportionately large, compared with the increase in the cross-sectional area.  

• The concrete compressive strength (fc) was shown to have almost no effect on the 

strength and behaviour of CCFTFGs. Hence, the improved strength of CCFTFGs 

compared to that of equivalent STFGs is attributed to the availability of a rigid 

concrete medium in the tubular flange. On the other hand, the yield strength of the 

steel does contribute to the ultimate bending capacity of the girders.  
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4.1 Introduction 

Beams in structural frames can often be exposed to combined actions, e.g. continuous or 

semi-continuous structures, where members are under either positive (sagging) or 

negative (hogging) bending moments in combination with axial forces. The most efficient 

use of the materials’ strengths occurs when the beam is subjected to positive bending at 

the mid-span. In this chapter, a finite element (FE) model is described which has been 

developed using the ABAQUS (Simulia, 2011) software, similar to that described in 

Chapter 3.  

4.2 Research significance and methodology 

Large steel beams or girders can be subjected to significant loads and bending moments 

in practice and failure typically occurs when the applied moment at the critical section 

exceeds its flexural capacity. Thus, in conventional design, it is important to ensure that 

the flexural limit state is satisfied before checking other limit states, by examining the 

flexural capacity and lateral-torsional buckling resistance and also considering the 

propagation of plastic hinges. For very heavily loaded sections, one of the key causes of 

premature failure is lateral-torsional buckling, which may occur if the unbraced length of 

the girder exceeds a given threshold, causing the compression flange to become unstable 

and buckle laterally prior to reaching the maximum flexural strength. It is desirable to 

prevent this mode of failure as much as practicably possible and, towards this end, a 

number of different solutions are available for conventional I-shaped steel girders such 

as reducing the unbraced length or increasing the flange dimensions. A more recent 

proposal is to replace the flat compression flange with a hollow tubular flange, which 

may or may not be filled with concrete to provide additional lateral rigidity (Hassanein 

and Kharoob, 2013; Hassanein and Silvestre, 2013; Kim and Sause, 2005; Gao et al., 

2014). 

A concrete-filled tubular flange girder (CFTFG) offers excellent structural characteristics 

including high strength and stiffness as well as ductility. Fewer stiffeners and diaphragms 

are needed for CFTFGs to maintain lateral–torsional stability compared to similar I-

shaped steel girders, which reduces the fabrication and erection effort required, and also 

increases the load-carrying capacity (Kim and Sause, 2008). There has been a significant 

increase in research in this area in recent years, although most of the studies have been 

limited to hollow tubular flange girders (HTFGs) with fewer investigations into concrete 

filled members.  
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Previous studies have investigated the bending resistance of circular CFTFGs and a series 

of analytical expressions for predicting the location of the plastic neutral axis (PNA) and 

the ultimate bending capacity (Mu) were proposed (Al-Dujele et al., 2018; Al-Dujele and 

Cashell, 2019). However, the behaviour of CFTFGs under combined loading has not been 

previously considered. This is a scenario which occurs frequently in practice such as in 

continuous or semi-continuous members or, in extreme cases, if a support is removed and 

the beams are required to withstand high tensile loads to avoid progressive collapse. Full-

scale experiments of large circular CFTFGs are extremely challenging and expensive to 

conduct and therefore a finite element model is developed to investigate the behaviour 

and is described in the following section.  

 

4.3 Development of the numerical model 

A finite element (FE) model has been developed using the commercial software package 

ABAQUS, which is capable of achieving numerical convergence for complex structural 

systems such as circular CFTFGs despite the geometric and material nonlinearities of the 

behaviour. This model is a further advancement of the previous version which was 

employed to assess CCFTFGs under bending (Al-Dujele et al.,2018) and validated 

against available test data (Wang et al., 2008).   

As stated previously, there is no experimental data available in the literature for 

CCFTFGs under combined loading. Therefore, the FE model is developed and validated 

in two stages. First, the traditional composite beam shown in Fig. 4.1 which was subjected 

to combine bending moments and axial tension in tests conducted and discussed by 

Vasdravellis et al. (2012a), is analysed to validate the simulation of combined loading 

conditions. The loading conditions in this study are identical to those under investigation 

in the current study. Secondly, the modelling of CCFTFGs is validated using the tests 

completed by Wang et al. (2008) which examined simply supported members under 

bending only.  
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Fig. 4.1 Composite beam cross-section and plan view of slab reinforcement and shear 

stud layout (all dimensions in mm) 

 

4.3.1 Combined loading 

 In this sub-section, two of the test specimens examined by Vasdravellis et al. (2012a), 

which focussed on the behaviour of composite beams under combined bending and axial 

tension, are employed to validate the numerical approach for these loading conditions. 

This test programme included four other tests under different loading conditions which 

are not relevant to the current work. As shown in the schematic presented in Fig. 4.1 and 

the data given in Table 4.1, the two composite beams were 600 mm in width and 

comprised a concrete slab which was 120 mm in depth. The slab was connected to the 

steel section using shear studs which were 19 mm in diameter and 100 mm in length and 

welded along the centre single line of the top flange of the steel beam. The compressive 

strength of the concrete was 25 MPa. The results from these experiments are presented in 

Table 4.2, including the axial and vertical applied loads and the combined bending 

moment achieved. The following sections provide a detailed description of the geometry 

of the model, element types, materials and the solution method. 
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Table 4.1 Specimen details (Vasdravellis et al., 2012a)  

Details Specimens CB1 and CB2 

Slab size 4500×600×120 mm 

Longitudinal reinforcement 4N12×4450 mm 

Transversal reinforcement 550 mm N12 at 400 

Shear connectors 19 mm headed studs, 100 mm pre-welded length 

Number of studs per beam 12 at 400 mm centres  

 

Table 4.2 Experimental load values, comparison experimental and FE combined 

bending moment for the tested specimens 

Specimen 

Experimental values (Vasdravellis et al., 2012a)  FE values 

Axial load, N 

(kN) 

Vertical load, Pv 

(kN) 

Combined 

bending moment, 

MExp (kNm) 

Combined 

bending moment, 

MFE (kNm) 

CB1 −760.5 (51%)* 337 180 185 

CB2 −1400 (93%)* 48 47 50 

            * Percentage of experimental axial force to ultimate axial capacity of beam. 

 

4.3.1.1 Concrete behaviour 

The concrete slab is represented using the concrete damaged plasticity (CDP) model, 

available in the ABAQUS library. This approach offers general analysing capabilities for 

concrete structures under static, dynamic, monotonic or cyclical loading using the 

algorithm of damaged plasticity. The material behaviour is defined in terms of the elastic, 

plastic, compressive and tensile characteristics and assumes that the concrete will either 

fail in compression, through crushing, or tension by cracking. In the present study, the 

Poisson's ratio and density of concrete are taken as 0.2 and 2400 kg/m2, respectively. A 

number of other parameters, including the dilation angle, flow potential eccentricity and 

viscosity parameter are required in the CDP model, in addition to the compressive and 

tensile relationships, and these are assigned values of 36˚, 0.1, and 0, respectively, as used 

by other researchers for similar work (e.g. Kmiecik and Kamiński, 2011). 

In the current analysis, the ratio of the strength in the biaxial state to the strength in the 

uniaxial state, fb0/fc, is taken as 1.16 while the ratio of the second stress invariant on the 

tensile meridian (K) is given as 0.667. The concrete in compression and tension is 

represented by the models indicated in Eurocode 2 (EN 1992-1-1, 2004), as shown in Fig. 

4.2. Accordingly, the compression relationship stress-strain for the concrete (i.e. the σc–

εc relationship) in compression is given as: 

σc = (
k∝−∝2

1+(k−2)∝
) fc,           0 ≤ εc ≤ εcu1 

        (4.1) 
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In this expression, σc is the compressive stress, ɛcu1 is the ultimate compressive strain and 

fc is compressive strength of concrete. The parameters k and α are given by Eqs. (4.2) and 

(4.3), respectively, in which ɛc1 is the strain at the peak stress and Ec is the elastic modulus 

for concrete: 

∝=
εc

εc1
                                                                  (4.2) 

k = 1.05Ec

εc1

fc
                                                            (4.3) 

 

In Eq. (4.3), ɛc1 (as a percentage) is determined as: 

εc1 = 0.7(fc)0.31 ≤ 2.8                                                            (4.4) 

 

The ultimate compressive strain (ɛcu1), as a percentage, is given by: 

εcu1 = 2.8 + 27[(98 − fc)/100]4     for fc ≥ 50 N/mm2, otherwise 3.5     (4.5) 

 

In addition, at each level of the inelastic stress, the damaged compressive parameter (dc) 

must be defined. It varies from zero, for undamaged material, to unit when the material is 

unable to withstand a load anymore. The value for dc is obtained only as follows for the 

descending branch of the compression concrete stress- strain curve, as follows: 

dc =
fc−σc

fc
                when  εc ≥ εc1                                                            (4.6) 

Tension stiffening refers to the phenomenon that, even after a cracking, concrete carries 

on some tensile load, although the tensile strength decreases gradually as the tensile strain 

increases. In this analysis the interaction between the steel reinforcement and the 

surrounding cement (i.e. bonding) is effectively simulated. In current study, the tensile 

strength is assumed to decrease linearly to reach zero stress at a strain of 0.01 once the 

tensile strength of concrete is achieved. Other researchers have used this value (Ban and 

Bradford, 2013) and allows the analysis to work without any significant number 

difficulties and without compromising the results ' accuracy. The tensile strength of 

concrete ft is taken from Eqs (4.7) and (4.8) in accordance with Eurocode 2 (EN 1992-1-

1, 2004). 
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ft = 0.3fc
2/3

                     for   fc ≤ 50 N/mm      (4.7) 

  (4.8) ft = 2.12 ln(1 + 0.1fc)    for    fc > 50 N/mm2  

Like the simulation of concrete in compression in the CDP model, the tensile damage 

parameter dt is defined at each increment of cracking strain, as outlined by Eqs (4.9) and 

(4.10). The parameter dt is valid only in the descending branch of the stress-strain curve 

for concrete in tension. 

dt = 0                        for        εt < εcr    (4.9) 

(4.10) dt =
ft−σt

ft
              for        εt ≥ εcr  

 

4.3.1.2 Steel 

A multilinear stress-strain relationship is modelling the steel beam in the composite 

member, as shown in Fig. 4.3. This relation is defined using the Young's modulus (E), 

yield stress (fy), yield strain (εy), strain at the onset of hardening (εst), ultimate stress (fu) 

and corresponding ultimate strain (εu). The Young's modulus used for the steel was 200 

GPa and the yield stress value of 547 was used for the reinforcement. For the steel beam, 

the yield stress with values 352 and 387 Mpa were used for flange and web, respectively. 

The ultimate tensile stress of 529, 537, and 641 were used for flange, web and 

reinforcement, respectively (Vasdravellis et al., 2012a). In order to consider the effects 

of the decreased section during the tensile test, the stress-train curves included in the FE 

model are converted into true stress-strain relationships. ABAQUS needs the true stress–

strain (σtrue-εtrue) response which is calculated from the engineering stress-strain (σeng-εeng) 

relationship as follows: 

εtrue = ln(1 + εeng)    (4.11) 

σtrue = σeng(1 + εeng)    (4.12) 



89 

 

 

Fig. 4.2 Stress-strain relationship for concrete in compression and tension used for 

structural analysis, as given in Eurocode 2 (EN 1992-1-1, 2004) 

 

Fig. 4.3 Stress–strain curve of steel beam (reproduced from Ban and Bradford, 2013) 

 

4.3.2 Geometry and element types 

In this context, an experimental data point (Vasdravellis et al., 2012a) is used for 

modelling a three-dimensional FE composite beam with 4500 mm length. The steel beam 

section as well as the stiffeners are modelled using reduced integration shell element, 

namely the S4R element in ABAQUS (Simulia, 2011). The reduced integration allows 

for more efficient computation without compromising results ' accuracy. This element is 

widely used for construction purposes because as shown in Fig. 4.4 it is suitable for thin 

and thick shells. In ABAQUS software, the steel reinforcement in the concrete slab is 

modelled using the rebar layer which is defined by the cross-sectional area of the steel 

reinforcement, the spacing of the bars as well as the position of the centroid of the 

reinforcing bars within the depths of the slab and the direction of the bars in the concrete 
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slab. The concrete slabs are modelled using eight-node solid elements with reduced 

integration, named C3D8R, while the steel reinforcement is modelled as two-node three-

dimensional linear truss elements (namely T3D2 in the ABAQUS library) which are 

embedded in the slab elements. To represent this variable slab thickness with solid 

elements are used.  

 

Fig. 4.4 Finite element mesh of the composite beam with solid concrete slab  
 

 

4.3.3 Modelling of the shear connectors 

The shear studs have to be modelled using the ABAQUS library Cartesian connector 

element as other researchers report (e.g. Kmiecik and Kamiński, 2011; Kwon et al., 2010). 

These elements connect the node in the flange of the beam with a coincident node in the 

slab at the connector position. In shear as well as in axial directions the nonlinear 

behaviour of the connector element is defined. Connector failure is governed by the 

relative element displacements exceeding a limited slip capacity defined by the user (Δu). 

The shear connectors ' load-slip relationship is modelled according to the relationship 

presented by Ollgaard et al., (1971), given as: 

Q = Qu(1 − e−0.71∆)2 5⁄     (4.13) 

 

where Q is the shear force on the shear stud, Qu is the ultimate capacity of the shear stud 

and Δ is the slip in millimetres (see Fig. 4.5). The formula of analysis in Eq. (4.13) are 

based on the pushout test results performed for the purposes of obtaining the shear 

connector load-slip curve embedded in a solid concrete slab.  

Solid concrete slabs 

Steel beam 
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Fig. 4.5 Load-slip relationship of shear connectors 
 

 

4.3.4 Boundary and loading conditions 

In the composite beams, the same loading process as for the experimental beam was 

applied to simultaneous axial tension and positive bending. Loads are generally applied 

through concentrated point loads in the model. Simply supported with concentrated point 

vertical load (Pv) applied at mid-span, operated in displacement-control, in locations 

along the member which are defined by the user while the tensile load is applied at a 

reference point in the centre of gravity of the end rigid body steel beam. The contact 

position is defined as being the boundary between the bottom of the slab and the top 

surface of the steel beam. A hard friction contact is defined as the property of the contact. 

Eurocode 4 (EN1994-1-1, 2004) recommends the value 0.5 for the coefficient of friction 

between steel and concrete in composite members for steel sections without painting; 

however, the more conservative value 0.4 is assumed. Between the surface of the steel 

section and the edges of the stiffeners a tie contact is defined. In each direction, the 

element size of the numerical model is 20 mm.  

4.3.5 Solution method 

The ABAQUS software provides a range of structural problem solution strategies. An 

implicate time integration scheme is used by the implicit dynamic solution to calculate 

the dynamic or quasi-static transitional response of a system. It can be used in quasi-static 

applications through introducing an inertia effect, which regularizes unstable behaviour 
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in analyses when the primary focus is a final static response (Simulia, 2011). The resulting 

moment is calculated taking into account the equilibrium of the external forces acting on 

the beam. In order to calculate the final bending moment the following equation was used: 

M =
PvL

4
+ Ne 

  (4.14) 

 

where Pv is the vertical force applied at the centre of the beam, N is the horizontal force 

applied at reference point, and e is the eccentricity between the location of the horizontal 

load (N) and the plastic neutral axis of the composite beam. 

 

4.3.6 Validation of the finite element model 

The FE model described in the previous section has been validated using available test 

data (Vasdravellis et al., 2012a). Of this test programme, the test specimen was made 

using steel beam with solid concrete slab and full details on this test programme is 

available in publication. It is noteworthy that stiffeners were used in the tested beam at 

the support and loading positions. The ultimate values of positive combined bending 

moment versus the corresponding axial tension loads for ABAQUS model are plotted in 

the interaction diagram of Fig. 4.6. From FE results and the available experimental data 

points it is observed that the combined moment capacity of the simulated composite 

beams is in good agreement with the corresponding experimental value. Moreover, the 

failure modes observed experimentally are well predicted by the FE model including 

specimens failed by failure of the shear connectors. It is noteworthy that the FE model 

captures the overall combined moment capacity and failure mode of the test specimen 

with reasonable accuracy, see Table 4.2. 
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Fig. 4.6 Comparison between bending moment-axial force interaction diagram 

resulting from the experimental and the FE model 

 

 

4.4 FE modelling of CCFTFGs 

Regarding the good agreement validation result of traditional composite beam, circular 

concrete filled tubular flange girders (CCFTFGs) are validated herein with the testing 

carried out by Wang et al. (2008), which examined only bending.  Accordingly, the 

simulated girder is 0.5 m in height and 4.3 m in length, as shown in Fig. 4.7, and is 

subjected to two concentrated loads (P) in the vertical direction. It is made using Q235 

steel and the concrete infill has a compressive strength of 38.6 MPa. The load is applied 

incrementally and the nonlinear geometry parameter (*NLGEOM, in the ABAQUS 

library) is included to allow for changes in the geometry under load. The distance between 

the loading points is 1 m. There are four stiffeners across the span, including one at each 

of the supports and also at the two loading points, to prevent local instability of the web 

at these locations. The steel beam and stiffeners are both modelled using the four-noded, 

three-dimensional shell element with reduced integration (S4R in the ABAQUS library) 

whereas the concrete infill is represented using 8-noded brick elements with reduced 

integration, known as C3D8R solid element in the ABAQUS library. The reduced 

integration enables more efficient computation without compromising the accuracy of the 

results. A tie contact is defined between the surface of the steel section and the edges of 

the stiffeners. Following a mesh sensitivity study, it has been found that an element size 

of 30×30 mm provides the best combination of accuracy and computational efficiency 
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and therefore is applied to all elements in the model. A briefly description of CCFTFGs 

modelling can be found in chapter 3 section 3.2. 

 

Fig. 4.7 Schematic of the simply supported beam (all units in mm) 
 

 

4.5 Support and loading conditions 

For the validation study, simply supported boundary conditions are considered as was the 

case in the experiments that are being used for validation (Wang et al., 2008).  The 

geometry and loading conditions are symmetrical about the mid-span and therefore only 

half the girder length is explicitly modelled, and appropriate boundary conditions are 

applied at the plane of symmetry. Accordingly, simply supported boundary conditions 

are applied to the end of the girder whilst the other end has symmetrical boundary 

conditions, as shown in Fig. 4.8, in which ux, uy, uz, φx, φy, and φz are the displacements 

and the rotations about the global x, y and z axes, respectively. The y-z plane is considered 

to be in-plane whilst the x-z and x-y planes are out-of-plane. At the end of the beam (i.e. 

at the support), the vertical (uy) and lateral displacements (ux) of all nodes along the y-

axis (i.e., when x = 0), and the twist rotations about z and y-axes (φz and φy) are restrained 

against movement and therefore assigned values equal to zero. In addition, the end of the 

beam is modelled as a rigid body and the whole depth of the cross-section is subjected to 

identical tensile stresses. The tensile load is applied at a reference point which is selected 

in the current work to coincide with the centre of gravity of the steel section.  At the mid-

span of the girder, the longitudinal displacements (uz) and rotations about the x- and y-

axes (φx and φy) are also restrained against all movement. The vertical load is applied on 

the top of the member as an imposed displacement through two concentrated loads along 

the full length of the beam or one loading point when half the span is considered.  
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Fig. 4.8 Support and loading conditions of FE model for the circular CFTFG 

 

4.6 Failure criteria 

In order to determine when the circular CFTFG has failed, a number of failure criteria 

have been defined and these are closely monitored during simulation. The possible failure 

modes of a CCFTFG subjected to positive bending and axial tension are as follows: 

• Local buckling: a tubular flange should not buckle locally before yielding in 

compression. Therefore, the local buckling requirement provided by the 

AASHTO design specifications (1998) for circular tube compression members 

has been checked for all specimens examined in this study, in accordance to:  

 
Dtube

tt
≤ 2.8√

E𝑠

fy
  (4.15) 

Eq. 4.15 was originally developed based on an unfilled tube although the 

AASHTO specification recommends using the expression for concrete-filled 

tubes also.  

• Excessive yielding of the steel beam: the spread of yielding from the bottom 

surface of the girder, at the mid-span. A tensile yielding strain (εs) of 0.2 is 

employed in the current study as the limiting acceptable value. This failure mode 

is clearly dependent on the level of vertical and axial loading that is applied.  

• Deflection limit: the maximum level of mid-span deflection that can be tolerated 

in the girder, depending on the application. Here, it is suggested that the maximum 

Tensile load at the 

reference point                                         

End-section 

Simple support ux=0,uy=0,φy=0, φz=0 

Rigid body at the end Displacement-control loading 
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acceptable limit of allowable deflection is L/120, where L is the member length, 

in accordance with AISC standard (2005). 

4.7 Solution method 

The implicit dynamic analysis method in ABAQUS with adaptive stabilisation is 

employed to simulate the nonlinear response of the CCFTFG. Finite element analysis 

with concrete elements in tension may result in convergence problems. In order to avoid 

these, the discontinuous analysis option is also employed in the general solution control 

options of the programme. The applied moment acting on the girder comprises two 

components, (1) the direct moment due to the applied vertical load, and (2) the second-

order moment created by the eccentricity of the applied axial load relative to the plastic 

centroid of the section. Thus, the moment equilibrium equation is given as: 

M = Pa + Ne                                                                                                                (4.16) 

where P is the vertical force applied on the beam, a is the distance between the simple 

support and the vertical force, N is the horizontal axial force applied placed through a 

reference point in the steel web, and e is the eccentricity between the location of the axial 

load and the plastic neutral axis (PNA) of the circular CFTFG.  

4.8 Validation of the FE model 

There are no available test results for circular CFTFGs under combined loading 

conditions available in the literature. Therefore, the model is validated using the only 

available test results which focussed on the behaviour of CCFTFGs under pure bending 

conditions (Wang et al., 2008).  The load-displacement response of the CFTFG from both 

the FE model and the experimental programme is presented in Fig. 3.7, see chapter 3 

section 3.5. It is clear that the FE model is capable of providing a good representation of 

the general response and also offers an excellent prediction of the ultimate load of the 

circular CFTFG. The failure mode observed in both the FE model and the experiment, is 

a combination of steel yielding and torsional buckling. Overall, the simulated load-

deformation curves reflect the experimental behaviour very well and it is concluded that 

the FE model is capable of predicting the behaviour and strength of that member well and 

is suitable for conducting further parametric studies on CCFTFGs under positive bending 

and axial tension. 
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4.9 Behaviour of CCFTFGs under combined loading 

4.9.1 General 

In this section, the FE model is used to study the interaction of bending moment and axial 

tension for circular CFTFGs with different properties. In order to specify a reliable 

moment-axial force (M–N) interaction diagram, a parametric study is conducted using a 

series of beams with different material and geometric design parameters. The beams 

studied are all 4300 mm in length (L) and are transversally stiffened with double-sided 

flat plate stiffeners which are 12 mm in thickness (tstiffener) and located at the support and 

loading locations. A total of 44 different arrangements are considered in this study, as 

presented in Tables 4.3 and 4.4. For clarity, in the current section, the results are presented 

in two general categories: (i) members with different tube diameters (Dtube) (Table 4.3) 

and (ii) beams with various tube (tt) and web thicknesses (tw) (Table 4.4). All specimens 

contain concrete infill with a compressive strength of 38.6 MPa. 

In the specimens listed in Table 4.3, models with five different tube diameters (Dtube = 

180, 200, 210, 219 and 300 mm) are considered. For each model, two web heights (hw = 

267 and 500 mm) and two flange thicknesses (tf = 14 and 28 mm) are investigated. The 

tube and web thicknesses are fixed at 8 mm and 6 mm, respectively. For the specimens 

listed in Table 4.4, models with three different tube thicknesses (tt = 5, 8 and 10 mm) are 

considered and for each model, two different web heights (hw = 267 and 500 mm), two 

different web thicknesses (tw = 6 and 10 mm) and two flange thicknesses (tf = 14 and 28 

mm) are studied. The tube diameter is fixed at 219 mm for all of the cases in Table 4.4. 

All of the beams included in the parametric study are subjected to positive (sagging) 

bending through the application of vertical loads in combination with axial tension. The 

vertical loads (P) are kept constant whilst various levels of axial tension are applied, 

ranging from 10% to 80% of the ultimate axial strength (Nu) of the steel section. This is 

a similar approach to that taken by other researchers (e.g. Vasdravellis et al., 2012a, 

2012b, 2015)).  

For illustration, Fig. 4.9(a) shows the various responses for the beam GR1, as defined in 

Table 4.3, in terms of vertical load versus deflection for each of the applied axial load 

levels. Fig. 4.9(b) presents the Von Mises stress contour illustrating the progression of 

yielding in the steel beam in the elastic range. For this beam, yielding first occurs in the 

bottom flange when the applied axials loads and bending moments are 231 kN and 455.6 

kNm, respectively, as shown in Fig. 4.9(b). The responses presented in Fig. 4.9(a) show 
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that at a particular load level, the beams with a greater degree of axial load applied 

demonstrate a relatively stiffer behaviour compared with beams with lower axial loads 

applied. The analysis continues until one of the failure criteria described in Section 4.6 is 

satisfied or the ultimate load level is reached. The data in this figure clearly demonstrates 

that increasing levels of axial load have the effect of reducing the capacity of the girder 

to carry vertical loads.  

The axial capacities of the CCFTFGs examined herein are presented in Tables 4.3 and 

4.4 and these values are defined with reasonable accuracy as the axial capacity of the steel 

section (Nu), which is the sum of the tensile strengths of the loaded steel areas: 

Nu = AS fy                                                                                                                                                (4.17) 

where As and fy are the cross-sectional area and yield strength of the steel, respectively. 

Also included in the tables are the ultimate moment of the girders (Mu) which is defined 

later, as well as 40% of Nu (N40) for each girder with the corresponding moment which 

acted on the member in that condition (M40).  This is to facilitate analysis of the results 

later in this chapter. 
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(a) 

 

 
(b) 

 

Fig. 4.9 (a) Load–deflection responses for CFTFG GR1 with various levels of axial 

tension and (b) the progression of yielding in the elastic range for the steel beam for 

beam GR1 at an axial load equal to 231 kN and a simultaneously applied bending 

moment of 455.6 kNm 
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Table 4.3 Details and FE ultimate of both axial load and bending moment of CCFTFGs 

 

CCFTFG 

Group 
Specimen 

Geometric details 

Nu (kN) 

Mu (Al-

dujele et 

al., 2018) 

(kNm) 

N40 (kN) 
M40,FE 

(kNm) 

(
𝐌𝟒𝟎,𝐅𝐄

𝐌𝐮
)

% 

M40,des 

(kNm) L 

(mm) 

Dtube 

(mm) 

hw 

(mm) 

 

tf 

(mm) 

G1 

 

GR1 

4300 

180 

267 
14 -2310.5 454.3 -924.2 378.9 83.4 345.3 

GR2 28 -2915.3 667.2 -1166.1 587.7 88.0 507.1 

GR3 
500 

14 -2713.1 758.4 -1085.2 572.9 75.5 576.4 

GR4 28 -3317.9 1023.7 -1327.1 833.1 81.3 778.0 

G2 

 

GR5 

200 

267 
14 -2455.2 494.6 -982.0 400.3 80.9 376.0 

GR6 28 -3060.0 717.2 -1224.0 620.9 86.6 545.1 

GR7 
500 

14 -2857.8 805.4 -1143.1 588.5 73.0 612.1 

GR8 28 -3462.6 1073.5 -1385.0 840.2 78.2 815.9 

G3 

 

GR9 

210 

267 
14 -2527.6 513.6 -1011.0 408.4 79.5 390.4 

GR10 28 -3132.4 738.1 -1252.9 630.3 85.3 561.0 

GR11 
500 

14 -2930.2 824.5 -1172.0 593.4 71.9 626.6 

GR12 28 -3534.9 1094.9 -1413.9 851.8 77.7 832.2 

G4 

 

GR13 

219 

267 
14 -2592.7 544.6 -1037.0 425.6 78.1 414.0 

GR14 28 -3197.5 760.3 -1278.9 640.8 84.2 577.8 

GR15 
500 

14 -2995.3 845.9 -1198.1 598.1 70.7 642.0 

GR16 28 -3600.1 1121.2 -1440.0 860.6 76.8 852.1 

G5 

 

GR17 

300 

267 
14 -3178.7 735.8 -1271.4 505.3 68.6 559.2 

GR18 28 -3783.5 1008.7 -1513.3 714.4 70.8 766.6 

GR19 
500 

14 -3581.3 1082.4 -1432.5 720.5 66.5 822.0 

GR20 28 -4186.1 1363.7 -1674.4 925.2 67.8 1036.4 
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Table 4.4 Details and FE ultimate of both axial load and bending moment of CCFTFGs 

CCFTFG 

Group 
Specimen 

Geometric details 

Nu (kN) 

Mu (Al-

dujele et 

al., 2018) 

(kNm) 

N40 (kN) 
M40,FE 

(kNm) 

(
𝐌𝟒𝟎,𝐅𝐄

𝐌𝐮
)

% 

M40,des 

(kNm) L 

(mm) 

Dtube 

(mm) 

hw 

(mm) 

tw 

(mm) 

tt 

(mm) 

tf 

(mm) 

G6 

 

GR21 

4300 219 

267 

6 

5 
14 -2033.8 477.3 -813.5 413.4 86.6 362.8 

GR22 28 -2638.6 707.7 -1055.4 619.1 87.5 538.0 

GR23 
8 

14 -2592.7 544.6 -1037.1 425.6 78.1 414.0 

GR24 28 -3197.5 760.3 -1278.9 640.8 84.2 577.8 

GR25 
10 

14 -2956.2 560.7 -1182.5 390.1 69.5 426.2 

GR26 28 -3561.0 793.7 -1424.4 603.1 75.9 603.2 

G7 

 

GR27 

10 

5 
14 -2341.4 552.7 -936.6 474.4 85.8 420.1 

GR28 28 -2946.2 769.3 -1178.5 666.9 86.6 584.7 

GR29 
8 

14 -2900.3 603.2 -1160.1 488.7 81.0 458.5 

GR30 28 -3505.1 828.9 -1402.0 766.9 92.5 630.0 

GR31 
10 

14 -3263.8 638.3 -1305.5 479.7 75.1 485.1 

GR32 28 -3868.6 863.4 -1547.4 800.1 92.6 656.2 

G8 

 

GR33 

500 

6 

5 
14 -2436.4 800.8 -974.6 591.7 73.8 608.6 

GR34 28 -3041.2 1069.3 -1216.5 840.2 78.5 812.7 

GR35 
8 

14 -2995.3 845.9 -1198.1 598.1 70.7 642.9 

GR36 28 -3600.1 1121.2 -1440.0 867.6 77.3 852.1 

GR37 
10 

14 -3358.8 878.7 -1343.5 608.0 69.2 667.8 

GR38 28 -3963.6 1157.3 -1585.5 874.4 75.6 879.6 

G9 

 

GR39 

10 

5 
14 -3012.4 985.2 -1205.0 819.3 83.2 748.7 

GR40 28 -3617.2 1312.6 -1446.9 1191.6 90.7 997.6 

GR41 
8 

14 -3571.3 1039.0 -1428.5 881.2 84.8 789.6 

GR42 28 -4176.1 1381.1 -1670.4 1207.0 87.3 1049.6 

GR43 
10 

14 -3934.8 1074.5 -1573.9 888.9 82.7 816.6 

GR44 28 -4539.6 1417.7 -1815.9 1222.5 86.2 1077.5 
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4.9.2 Interaction curves 

The moment-axial load interaction curves generated from the parametric study are 

presented in Figs. 4.10-4.14.  In general, all of the CCFTFGs behaved well and there was 

no sudden collapse of any structural component during the simulations. A general 

conclusion is that the interaction diagram for all beams follows a similar pattern and the 

moment capacity of each is reduced with an increase in axial tensile force acting in the 

steel beam section. Fig. 4.10(a)-(d) presents the moment versus axial load interaction 

diagrams obtained from the ABAQUS model for girders with different tube diameters 

(Dtube) (as given in Table 4.3). For ease of visualisation and analysis, the results are 

grouped into four different images. Girders with a web height (hw) of 267 mm and 

different tube sizes (Dtube) are plotted in Figs. 4.10(a) and (b) for flange thicknesses of 14 

and 28 mm, respectively, whilst the equivalent images for members with a web height of 

500 mm are presented in Figs. 4.10(c) and (d). With reference to these figures, the 

following observations are made: 

• Firstly, Fig. 4.10(a) shows that for a given level of applied axial load (40% of the 

ultimate axial strength, for example, as presented in Table 4.3 and 4.4, N40), the 

reduction in bending moment carried by each girder is 83.4%, 80.9%, 79.5%, 

78.1% and 68.6% for GR1, GR5, GR9, GR13 and GR17, respectively, compared 

with their ultimate moment capacity, Mu (i.e. the moment that can be achieved 

when no axial load is applied).  Similarly, these values from Fig. 4.10(b) are 

88.0%, 86.6%, 85.3%, 84.2% and 70.8% for GR2, GR6, GR10, GR14 and GR18, 

respectively; from Fig. 4.10(c) are 75.5, 73.0, 71.9, 70.7 and 66.5 for GR3, GR7, 

GR11, GR15 and GR19, respectively, and;  (iii) from Fig. 4.10(d) are 81.3, 78.2, 

77.7, 76.8 and 67.8 for GR4, GR8, GR12, GR16 and GR20, respectively. This can 

be seen by referring to the M40,FE/Mu ratios presented in Table 4.3.  

• It is clear that the circular concrete filled tubular flange girders (CCFTFGs) with 

a relatively small tubular flange (Dtube) experience a greater reduction in their 

moment-carrying capability as a result of increasing the applied axial compared 

with member with a larger diameter top tube (in Fig. 4.10(a), for example, GR1 

has the smallest tubular flange, followed by GR5, GR9, GR13 and GR17, 

respectively). This is attributed to the concrete contribution being less significant 

for the sections with a relatively small diameter tubular flange.  

• CCFTFGs with relatively thin bottom flanges (tf) experience a more significant 

reduction in moment-carrying capability, relative to their ultimate moment 
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capacity, when axial tension is also applied to the section (e.g. GR1 compared 

with GR2 or GR5 compared with GR6, etc.). The reduction in bending moment 

carried by each girder is 83.4% and 88.0% for GR1 and GR2, respectively, 

compared with their ultimate moment capacity, Mu (i.e. the value that can be 

achieved when no axial load is applied). As the amount of axial load introduced 

in the steel beam increases, the moment resistance decreases considerably, as 

shown in the percentage ratio values presented in Table 4.3. 

• The influence of web height is examined by comparing GR1 in Fig. 4.10(a) and 

GR3 in Fig. 4.10(c) which have identical properties apart from hw which is 267 

and 500 mm, respectively.  The reduction in moment for GR1, relative to its 

moment capacity without any axial load, is just 83.4% whereas the equivalent 

value for GR3 is about 75.5%. The same observation can be made by comparing 

the other interaction curves in Fig. 4.10(a) and (c), and indeed Fig. 4.10(b) and (d) 

when hw=267 mm and tf=28 mm. 

• The effect of thickness of the tube (tt) and web (tw) on the response is observed by 

comparing the data in Table 4.4. A relative increase in tube thickness leads to a 

reduction of the of the moment carrying capacity. For instance, as can be seen in 

the M40,FE/Mu ratios given in Table 4.4, the moment capacity is reduced by 86.0%, 

84.2% and 75.9% for GR22, GR24 and GR26, respectively at 40% of ultimate 

axial load. On the other hand, the M40,FE/Mu ratios increase when the web 

thickness increases. As can be seen in the Table 4.4, the moment is reduced by 

73.8% and 83.2% for GR33 and GR39, respectively.  

From the interaction diagrams and the data presented in Tables 4.3 and 4.4 it can be 

concluded that the flexural capacity of circular CFTFGs under combined tension and 

bending moments is not affected when the level of the axial force is relatively low (i.e. 

around 20% of Nu). Nevertheless, a general conclusion is that the moment capacity is 

reduced with the presence of applied axial tensile force acting on the steel section. 
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(c) (d) 

Fig. 4.10 Moment–axial force interaction diagram for CCFTFGs 
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(c) 

Fig. 4.11 Moment–axial force interaction diagram for the group G6 

 

  

(a) (b) 

 

(c) 

Fig. 4.12 Moment–axial force interaction diagram for the group G7 

 
 

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 200 400 600 800

N
 (

k
N

)

M (kNm)

GR25

GR26

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 200 400 600 800 1000

N
 (

k
N

)

M (kNm)

GR27

GR28

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 200 400 600 800 1000

N
 (

k
N

)

M (kNm)

GR29

GR30

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 200 400 600 800 1000

N
 (

k
N

)

M (kNm)

GR31

GR32



106 

 

  

(a) (b) 

 
(c) 

Fig. 4.13 Moment–axial force interaction diagram for the group G8 

 
 

 
 

(a) (b) 

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 200 400 600 800 1000 1200

N
 (

k
N

)

M (kNm)

GR37
GR38

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 300 600 900 1200 1500

N
 (

k
N

)

M (kNm)

GR39

GR40

-3000

-2500

-2000

-1500

-1000

-500

0

0 400 800 1200

N
 (

k
N

)

M (kNm)

GR33

GR34

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 500 1000 1500

N
 (

k
N

)

M (kNm)

G…
G…

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

0 300 600 900 1200 1500

N
 (

k
N

)

M (kNm)

GR41

GR42



107 

 

 

(c) 

Fig. 4.14 Moment–axial force interaction diagram for the group G9 
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the data from the parametric study, it is proposed that for the design of CCFTFGs 

subjected to combined axial load and bending moment, the following interaction 

expression should be satisfied: 

N = Nu                       for   M ≤ 0.4Mu                                                                                                      

M

Mu
+ 0.6

N

Nu
≤ 1.0    for   M > 0.4Mu                                                (4.18) 

This proposed design expression is the same for all beams included in the current study 

and is presented in Fig. 4.15, denoted as ‘Design’. According to Eq. 4.18, the moment 

capacity of a CCFTFG reduces linearly from 100% of the ultimate value when there is no 

axial load present to around 40% of Mu when the axial load applied equals Nu. It is 

noteworthy however, that in practice it is very rare for a beam to be subjected to tensile 

axial forces greater than the 30 to 40% of its axial capacity (Vasdravellis et al., 2012a; 

Kirkland, 2014). Nevertheless, this study has considered the full range of axial force 

possibilities in order to complete the interaction diagram and gain a complete 

understanding of the behaviour of CCFTFGs under combined loading.  

Tables 4.3 and 4.4 present a comparison between the bending strength predicted by the 

FEM (M40,FEM) and the design moment capacity (M40,des) calculated by Eq. 4.18 for a 

selection of girders, as well as the associated error.  A positive value for the error indicates 

an unconservative prediction. The results are not presented for all girders in the study for 

brevity but similar analaysis has been completed for all of the CCFTFGs presented in 

Tables 4.3 and 4.4. Based on the images presented in Fig. 4.15 and the data in Tables 4.3 

and 4.4, it is clear that the proposed equation provides a conservative estimation of the 

interaction behaviour of the majority of CCFTFGs. The error is small when the level of 

axial load is relatively low (i.e. up to and including 60% of the axial capacity, which is 

the most realistic scenario for CCFTFGs under combined loading) and becomes slightly 

greater as the axial load increases to 80% of Nu.  
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Fig. 4.15 Results from the parametric study and proposed design equation  
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Table 4.5 Details and FE strengths of GR13 used to investigate the effect of fy 

Beam 
fy 

(N/mm2) 
Nu (kN) 

Mu (Al-

dujele et al., 

2018) (kNm) 

N40 

(kN) 

M40,FE 

(kNm) 
(

𝐌𝟒𝟎,𝐅𝐄

𝐌𝐮
)% 

M40,des 

(kNm) 

GR13 

235 -2115.6 442.7 -846.2 290.5 65.6 336.5 

355 -3195.8 637.9 -1278.3 462.5 72.5 484.9 

460 -4141.1 803.0 -1656.4 623.3 77.6 610.4 

690 -6211.6 1162.4 -2484.6 934.4 80.4 883.4 
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Fig. 4.16 Model GR13 (a) Moment–axial force interaction diagram with different 

yielding strength of steel (b) Proposed design equation for CCFTFGs under 

combined action with different yielding strength of steel 
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4.12 Concluding remarks 

The main conclusion is that the moment capacity of a CCFTFG is reduced under the 

presence of an axial tensile force acting in the steel beam section but this is not a major 

issue within the realistic range of applied axial loads (up to 50% of Nu). In addition, the 

analysis demonstrates that the axial tensile force that the CCFTFG section can sustain is 

limited and the design axial tensile resistance should be taken equal to the plastic axial 

capacity of the steel beam alone. Based on the numerical results presented herein the 

following conclusions are drawn: 

• Extremely large deflections and vertical loads are achieved when axial tension is 

introduced due to the ductile nature and large tensile strength of the steel beam.  

• The bending moment capacity of a CCFTFG deteriorates under the simultaneous 

action of a relatively high axial tensile force with bending moments. However, the 

reduction is less or even negligible under a low to moderate axial force in most 

practical cases.  

• The numerical simulations demonstrated that it is important to account for the 

axial force in the design of CFTFGs which are subjected to combined loading. 

• An increase in tube thickness or bottom flange thickness leads to an increase in 

the reduction ratio of applied moment relative to Mu. 

• The finite element analysis has confirmed the interaction curve shape for beams 

for a broad range of steel sections with varying geometric and material properties.  
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5.1 Introduction 

The current chapter builds on the research in the previous chapters and studies the 

response of rectangular concrete filled tubular flange girders (RCFTFGs) and steel 

rectangular flange girders (SRFGs). As in earlier work, a finite element model is 

developed using the ABAQUS software to facilitate the study. The most influential 

parameters are examined, and design expressions are proposed, based on the outcomes of 

the study. This chapter proceeds with a detailed description of the FE model.  

 

5.2  Finite element (FE) model 

A finite element (FE) model has been developed using the ABAQUS software (Simulia, 

2011) to simulate the behaviour of RCFTFG’s in bending, and includes the material and 

geometric nonlinearities present in the response.  The model has been developed and 

validated based on the experiments conducted by Muteb and Ali (2016). This programme 

included four simply supported specimens, two of which had concrete in the tubular 

flange (RCFTFG1 and RCFTFG2) and two which were left hollow (SRFG1 and SRFG2). 

The key dimensions of the test specimens are presented in Table 5.1 and also in shown in 

Fig. 5.1, including BTf, Df, tt, hw, tw, BBf, tf, and tstiffener which represent the width, depth 

and thickness of the tube, the web depth and thickness, and the width and thickness of the 

bottom flange, respectively. Two different tubular flange depths were examined (40 mm 

and 20 mm) whilst all specimens had the same flange width (80 mm), cross-sectional 

height (0.17 m) and overall length (2.02 m). The beams were subjected to two 

concentrated loads in the vertical direction and the distance between the loading points 

was 0.64 m. There were six stiffeners along the length of the beam and each was 2.85 mm 

in thickness. These were located at the supports and loading points to prevent local 

instability of the web at these locations. Simply supported boundary conditions are 

simulated in the FE model by restraining suitable displacement and rotational degrees of 

freedom at the beam ends, replicating the experimental arrangement. Furthermore, 

bearing plates with dimensions 90×80×10 mm are included under each point load to 

prevent any local buckling in the steel section. The material properties incorporated in the 

model are presented in Table 5.2 including the yield strength (fy), ultimate strength (fu), 

Young's modulus (Es) and Poisson's ratio of the steel as well as the compressive strength 

(fc) and Poisson's ratio of the concrete (Muteb and Ali, 2016). 
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                                             (a)                        (b) 

Fig. 5.1 Schematic of the concrete filled rectangular flange girder and cross-section 

(all units in mm) 

Table 5.1 Dimensions of the RCFTFG cross-section 

Specimen 
BTf        

(mm) 

Df        

(mm) 

tt             

(mm) 

hw             

(mm) 

tw          

(mm) 

BBf        

(mm) 

tf             

(mm) 

tstiffener       

(mm) 

Pu,Exp  

(kN) 

Pu,FE  

(kN) 

Pu,FE/ 

Pu,Exp 

RCFTFG1 80 20 2.85 147.15 2.85 80 2.85 2.85 73.5 74.2 1.010 

RCFTFG2 80 40 2.85 127.15 2.85 80 2.85 2.85 71.0 71.4 1.006 

SRFG1 80 20 2.85 147.15 2.85 80 2.85 2.85 61.1 61.4 1.005 

SRFG2 80 40 2.85 127.15 2.85 80 2.85 2.85 58.0 59.7 1.029 

 

Table 5.2 Details of the material properties (Muteb and Ali, 2016) 

Steel  Concrete  

fy           

(N/mm2) 

fu                     

(N/mm2) 
Es (N/mm2) 

Poisson's 

ratio 
fc (MPa) 

Poisson's 

ratio 

236.8 377.2 200000 0.3 42.5 0.2 

 

5.3 Material modelling 

5.3.1 Steel 

 The stress-strain response of the structural steel is modelled as a bilinear, elastic-linear 

strain hardening relationship (Muteb and Ali, 2016), as shown in Fig. 5.2, where fy and 

εst are the yield stress and strain at the onset of strain hardening, and fu and εu are the 

ultimate tensile stress and strain at ultimate tensile stress, respectively. As given in Table 

5.2, Young's modulus (Es) and Poisson's ratio are 200×103 N/mm2 and 0.3, respectively, 

whilst the yield and ultimate strength values for the flanges, web and stiffeners are 

236.8 N/mm2 and 377.2 N/mm2, respectively. The strain at the onset of strain hardening 
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(εst) and the strain at the ultimate tensile stress (εu) are taken as 0.025 and 0.2, respectively 

(Ban and Bradford, 2013). The engineering stress–strain (σeng-εeng) curve is converted to 

true stress–strain (σtrue-εtrue) curve for the ABAQUS model using Eqs (5.1) and (5.2): 

εtrue = ln(1 +εeng) (5.1) 

σtrue =σeng(1 +εeng) (5.2) 

 

 

Fig. 5.2 Bilinear stress–strain curve adopted for steel elements 

 

The steel section is represented using four-noded, three-dimensional shell elements with 

reduced integration (called S4R in the ABAQUS library (Simulia, 2011)), as presented in 

Fig. 5.3. Simpsons rule with seven integration points is used through the element 

thickness to determine the response through the section. The S4R element has six active 

degrees of freedom per node, including three displacements and three rotations. A tie 

contact is defined between the surface of the steel section and the edges of the stiffeners. 

Following a mesh sensitivity study, it was determined that an element size of 10×10 mm 

provides the best combination of accuracy and computational efficiency and therefore is 

applied to all elements in the model.  

E 
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fy 

fu 

 

εst 
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Fig. 5.3 Finite element mesh for a typical RCFTFG 

 

 

5.3.2 Concrete 

The concrete in the tubular flange acts mainly in compression although may be subjected 

to some degree of transverse loading also, as will be discussed later. Hence, the material 

relationship for confined concrete in rectangular CFST columns (Liang, 2009), as shown 

in Fig. 5.4, is used. The stress-strain response can be divided into ascending (O-A), 

constant (A-B), linearly descending (B-C) and constant (C-D) sections. The compressive 

stress for the ascending part O-A is calculated based on the equations given by Mander 

et al. (1988): 

σc =
fccλ(εc εcc⁄ )

λ− 1 + (εc εcc⁄ )λ
 

(5.3) 

λ =
Ec

Ec − (fcc εcc⁄ )
 

(5.4) 

εcc =εc [1 + 5 (
fcc

fc
− 1)] 

(5.5) 

where σc is the compressive stress, fcc is the effective compressive strength of confined 

concrete, εc is the compressive concrete strain, εcc is the strain at fcc and Ec is the Young's 
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modulus of concrete which is given by the empirical formulation provided in Eurocode 2 

(EN 1992-1-1, 2004) and given in Eq. (5.6): 

Ec = 22 × (fc 10⁄ )0.3 (5.6) 

In this expression, fc is the unconfined cylinder compressive strength of the concrete and 

ɛc is the corresponding strain which is determined in accordance with Eurocode 2 Part 1-

1 (EN 1992-1-1, 2004), as: 

εc = 0.7(fc)0.31 ≤ 2.8 (5.7) 

When the concrete filled steel tube is exposed to axial compression, a gap occurs between 

the steel tube and the concrete core in the elastic range because the Poisson's ratio for 

concrete is less than that of steel. Beyond the elastic range, the inner concrete dilates 

(strains transversely) at a higher or faster rate than the steel tube, and contact develops 

again between the steel tube and the concrete. As the axial compressive stress increases 

further, continued dilation of the concrete core is restricted by the steel tube, generating 

a variable confining pressure in the concrete in the transverse direction. This confining 

pressure effectively increases the compressive strength of the concrete core. In a 

RCFTFG, the concrete is confined by the rectangular steel tube section, which results in 

increased ductility and strength of the concrete core, compared to unconfined concrete. 

In the current study, the effective compressive strength of confined concrete (fcc) is 

influenced mainly by the tube size, the quality of concrete and the loading rates. Hence, 

the value of fcc is taken as γc×fc, where γc is the strength reduction factor proposed by 

Liang (2009) and expressed as: 

γc = 1.85Dc
−0.135    (0.85 ≤γc ≤ 1.0) (5.8) 

 

where Dc is taken as the larger of BTf − 2tt and Df − 2tt for a rectangular cross-section.  

The other regions of the stress–strain curve (i.e. A-B, B-C and C-D in Fig. 5.4) for 

confined concrete are defined by the following equations given by Liang (2009): 

σc = {

fccf̀cc + 100(0.015 − εc)( f̀cc −βcf̀cc) for     εcc < εc ≤ 0.005

βcfcc + 100(0.015 − εc)(fcc −βcfcc) for 0.005 < εc ≤ 0.015

βcfcc + 100(0.015 − εc)( f̀cc −βcf̀cc) for εc > 0.015                

 (5.9) 

In these expressions, βc is a constant which accounts for the confinement effect on the 

concrete ductility and depends on the width-to-thickness ratio (Bs/tt) of the concrete filled 
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rectangular flange. Bs is taken as the larger of BTf and Df for the rectangular flange cross-

section. Based on the experimental results presented by Tomii and Sakino (1979), βc is 

proposed by Liang (2009) to be taken as: 

βc = {
 1.0    

1.5
0.5

− (1 48⁄ )(Bs tt⁄ ) 
for Bs/tt ≤ 24 

                     for 24 < Bs/tt ≤ 48   (5.10) 

for Bs/tt > 48                                             

The softening behaviour of concrete in the post-yield stage is determined by the βc 

parameter and the concrete strain (εcu). The values of βc determined using Eq. (5.10) 

account for the effect of the Bs/tt ratio of the steel tube on the softening of the concrete.  

 

Fig. 5.4 Stress–strain curve for the confined concrete in RCFTFGs 

 

The concrete infill is represented using 8-noded solid elements with reduced integration, 

known as C3D8R in the ABAQUS library, as shown in Fig. 5.3. The concrete damaged 

plasticity (CDP) model is employed to describe the constitutive behaviour of the material. 

To represent the inelastic behaviour, the CDP model uses the concept of isotropic 

damaged elasticity, in combination with isotropic tensile and compressive plasticity. It is 

assumed that the uniaxial tensile and compressive behaviours are characterized by 

damaged plasticity. The plasticity parameters required by the CDP model are the dilation 

angle, eccentricity, ratio of the strength in the triaxial state to that in the uniaxial state and 

the K parameter and these are taken as 36°, 0.1, 1.16 and 0.667, respectively, in the current 

work (Kmiecik and Kamiński, 2011). 

In addition, the compressive damage parameter dc needs to be defined at each inelastic 

strain level. It ranges from zero, for undamaged material, to unity, when the material can 
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no longer sustain any load. The value for dc is found only for the descending branch of 

the stress-strain curve of concrete in compression, as given by Eqs (5.11) and (5.12): 

dc = 0                        when  εc <εcc (5.11) 

dc =
fcc −σc

fcc
         when  εc ≥εcc (5.12) 

The tensile strength of concrete ft is taken as 4.5 MPa (Muteb and Ali, 2016), similar to 

the simulation of concrete in compression in the CDP model, and the tensile damage 

parameter dt, which is valid only in the descending branch of the stress-strain curve for 

concrete in tension, is defined at each increment of cracking strain, as described by Eqs 

(5.13) and (5.14): 

dt = 0                           for        εt <εcr (5.13) 

dt =
ft −σt

ft
              for        εt ≥εcr (5.14) 

5.4 Boundary conditions, load application and solution procedure 

Simply supported boundary conditions are implemented both in-plane and out-of-plane 

at the beam ends in the finite element model. For in-plane displacements, the vertical 

translations of both end sections and the longitudinal movement of one end section are 

restrained, but the rotations of both end sections about the major axis are unrestrained. 

On the other hand, out-of-plane, the lateral displacements and twist rotations of both end 

sections are restrained, but rotation about the minor axis and the warping displacements 

are unrestrained at both end sections. Owing to symmetry of the geometry and loading 

conditions about the mid-span, only half the girder is modelled in ABAQUS. Therefore, 

one end section of the model has simply supported boundary conditions and the other end 

section, representing the mid-span, has symmetrical boundary conditions. The boundary 

conditions used for the half-length FE models are shown in Fig. 5.5, in which ux, uy, uz, 

θx, θy, and θz are the displacements and the rotations about the global x, y and z axes, 

respectively. The y-z plane is considered to be in-plane whereas the x-z and x-y planes 

are out-of-plane.   

The implicit dynamic analysis method is employed to simulate the response, accounting 

for the geometric and material nonlinearities. The load is applied incrementally and the 

nonlinear geometry parameter (NLGEOM) is included for the large displacement 

analysis. This nonlinear dynamic analysis method uses an implicit time integration 



120 

 

scheme to calculate the transient dynamic or quasi-static response of a system, which is 

found in the current study to provide the best convergence behaviour owing to the high 

energy dissipation associated with quasi-static applications during certain stages of the 

loading history. Table 5.3 presents the rotation (θ) and displacement (u) constraints along 

the length of the girders. In this table, the symbol ● represents that measure being 

restrained against movement whilst ○ symbolises unrestrained. At the end of the beam 

(i.e. at the support), the vertical and lateral displacements (uy and ux, respectively) of all 

nodes along the y-axis (i.e., when x = 0), and the twist rotations about z and y-axes (θz 

and θy) are restrained against movement and therefore assigned values equal to zero. At 

the middle of the beam, the longitudinal displacements uz and rotations about the x and 

y-axes (θx and θy) are also restrained against all movement. The loading is applied to the 

top surface of the beam in displacement control through two concentrated loads along the 

full length or one loading point when half the span is considered. 

 

Fig. 5.5 Loading and boundary conditions in the FE model 

 

Table 5.3 Boundary conditions of a typical RCFTFG 

Boundary condition ux uy uz θx θy θz 

Simply support at ends ● ●   ○ ○      ● ● 

Symmetry at mid span ○ ○   ● ●      ● ○ 

 

 

 

Symmetry boundary 
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Displacement-control loading 
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5.5 Initial imperfections and residual stresses 

Geometric imperfections are typical in steel structures and are often introduced during 

production, fabrication and handling. They can be quite influential to the overall 

performance and are therefore included in the FE model, as shown in Fig. 5.6. The initial 

imperfection, obtained as the first eigenmode during an elastic buckling eigenvalue 

analysis, is added to the initially perfect geometry in terms of shape and amplitude. The 

imperfection has an amplitude of L/1000, where L is the member length, in accordance 

with the permitted out-of-straightness tolerance in EN 1090-2 (2008). For a RCFTFG, 

buckling takes place in a lateral-torsional mode as the web becomes stiffened 

transversally at the mid-span, causing lateral buckling to control rather than the web 

distortions, as shown in Fig. 5.6. On the other hand, residual stresses are not included in 

the current analysis in order to minimise complexity in the model, based on the findings 

in similar studies (Dong and Sause, 2009a). 

 

Fig. 5.6 First positive eigenmode used as the imperfection shape in the analysis of the 

RCFTFGs 

 

5.6 Validation of the FE model 

The accuracy of the FE model is assessed by analysing four different test specimens 

available in the literature (Muteb and Ali, 2016) and comparing the published results with 

those obtained from the FE model. The load-displacement response for both the concrete 

filled and the hollow rectangular flange girders are presented in Fig. 5.7. The ultimate 

load obtained from the FE analysis (Pu,FE) is presented together with the corresponding 

test value (Pu,Exp) in Table 5.1, which also includes the ratio of Pu,FE to Pu,Exp. From Fig. 

5.7, it can be seen that a good agreement is achieved between the experimental and finite 

element modelling results. The overall behaviour is well depicted and the load values are 

very closely predicted. Accordingly, it is concluded that the ABAQUS model is capable 

Deformed shape 

Undeformed shape 
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of capturing the behaviour well for RCFTFGs in bending, and is employed to conduct 

more detailed parametric and validation studies, later in this chapter.  

 
(a) 

 
(b) 

Fig. 5.7 Load versus deflection relationship from the FE analysis and experimental 

results including (a) RCFTFGs (b) SRFGs 

 

 

 

5.7 Analytical design method 

In this section, an analytical procedure for estimating the flexural strength of RCFTFGs 

is presented, based a fundamental assessment of the structural behaviour. Theoretical 

equations are derived based on plastic theory, in which the location of the plastic neutral 
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axis (PNA) and the flexural strength can be determined by applying the equilibrium of 

internal forces in the member.  The model adopts equivalent stress blocks to represent the 

stress distribution in the steel and concrete and the confining effect provided by the steel 

tube to the concrete infill is also considered. The accuracy of the approach is examined 

by comparing the predictions of the equations with the FE results.  

Two different cases are presented, depending on the location of the plastic neutral axis 

(PNA). Case 1 assumes that the PNA is in the web of the steel section while Case 2 

assumes that the PNA is in the tubular flange. In order to determine the exact location of 

the PNA, the following assumptions are adopted: 

• The term y2, which is the vertical height of the triangular stress block is 

determined by interpolating the strain distribution across the cross-section, given 

by: 

εcc

y1 − tt
=

εy

y2
 →  y2 =

εy

εcc

(y1 − tt) 
 

• In the triangular stress block, where the steel is behaving in an elastic manner (i.e. 

fs = εsEs, where fs and εs are the stress and strain in the steel section, respectively, 

and Es is the elastic modulus), interpolation can be applied to establish that, at any 

location y in this region, the stress in the steel is determined as: 

fs =
yfy

y2
  

In this expression, y1 is the distance from the top of the cross section to the PNA. For 

Case 1, y1 > Df (where Df is the depth of the steel tube), and therefore the PNA is within 

the steel web. On the other hand, for Case 2, y1 < Df, and the PNA is within the concrete 

filled tube. The plastic moment for these two cases can be determined as described 

hereafter. 

Case 1: PNA is in the web section (y1 > Df) 

Fig. 5.8 presents the strain and stress distributions through the cross-section for Case 1, 

where the PNA is in the web of the steel section (y1 > Df). The internal axial force for 

each component of the section can be computed as shown in Table 5.4. The location of 

the PNA (y1) for this case can be determined by applying the equilibrium of axial force 

condition, expressed in Eq. 5.15: 

Cc + C1tf + C2tf + Cw = T1w + T2w + TLf (5.15) 
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The ultimate moment (Mu) of the CFRFG section can then be calculated according to Eq. 

5.16: 

Mu = (Cc + C1tf + C2tf) × y + Cw ×
2

3
(y1 − Df) + T1w ×

2

3
y2 + T2w ×

(h−y1−y2−tw)

2
+ TLf × (h − y1 −

tf

2
)                                                                                     (5.16)                                                                                                           

The flow chart of the procedure for calculating the position of the plastic neutral axis and 

the bending moment capacity is shown in Fig. 5.9. 

Table 5.4 Internal force components in case the PNA exists at the web 

Internal axial force component Force equation 

Compression force at infilled concrete (Cc) ∫ (BTf − 2tt)

y1−tt

y1−Df+tt

× σ𝑐dy 

Compression force at tubular flange (C1tf) 2 ∫ tt

y1−tt

y2

× fydy + ∫ BTf

y1

y1−tt

× fydy 

Compression force at tubular flange (C2tf) 2 ∫ tt

y2

y1−Df+tt

× fsdy + ∫ BTf × fsdy

y1−Df+tt

y1−Df

 

Compression force at web above PNA (Cw) 
1

2
tw × (y1 − Df) ×

fy(y1 − Df)

y2
 

Tension force at web below PNA (T1w) 
1

2
× tw × y2 × fy 

Tension force at web below PNA (T2w) tw × (h − y1 − y2 − tf) × fy 

Tension force at lower flange (TLf) BBf × tf × fy 

 

 

Fig. 5.8 Distributions of strain and stress for Case 1, where the PNA exists in the web 

of the steel section (y1 > Df) 
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Fig. 5.9 Flow chart of the solution procedure case 1, y1> Df 

 

 

 

y1
0 = y1  
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from Eq. 5.4                                     

Calculate εcc from Eq. 5.3            
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STEP 3:                                             

Input  y2 = εy × (y1 − tt) εcc⁄  

STEP 5: if|y1 − y1
0| < err, where err is 

the prescribe error bound (err=0.01 in 

this study)                                                       

If no 
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STEP 3 

 

If yes 

STEP 6: y1
0 is the position of PNA 

within the steel web                     

Calculate Mu from Eq. 5.16 
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Case 2: PNA is in the tubular rectangular flange section (y1< Df) 

The internal axial force for each component of the section can be computed using the 

expressions presented in Table 5.5. The strain and stress distributions for Case 2 are given 

in Fig. 5.10, where it is shown that the PNA is in the tubular flange section (y1 < Df). It is 

assumed that the concrete below the PNA does not contribute to the tension capacity. The 

location of the PNA for this case can be determined from the equilibrium of axial forces, 

given as:  

Cc + C1tf + C2tf = Ttf + T1w + T2w + TLf (5.17) 

Then, the ultimate moment (Mu) of the CFRFG section can be calculated as: 

Mu = (Cc + C1tf + C2tf + Ttf + T1w) × y + T2w × ((h − y1 − y2 − tf)/2 +

 (y2)) + TLf × (tf 2⁄ + (h − y1 − y2 − tf) + (y2))                                                

(5.18)                                                                  

As before, Fig. 5.11 presents the different steps for calculating the position of PNA and 

the ultimate moment capacity. 

In the equations presented in Tables 5.4 and 5.5, C1tf and C2tf represent the rectangular 

and triangular stress blocks for the compressive forces in the tubular flange, respectively. 

T1w and T2w denote the triangular and rectangular stress blocks for the tensile forces in 

the steel web below PNA, respectively, and σc is the stress in the confined concrete 

obtained using Eq. 5.3 earlier in this chapter. 

The analytical model has been applied to the four test beams (Muteb and Ali, 2016) used 

before for the FE model validation, and the results are presented in Table 5.6. The ultimate 

moment capacity predicted using the analytical approach is denoted as Mu,Calc whilst the 

corresponding value from the ABAQUS model and experimental test is Mu,FE and Mu,Exp, 

respectively. There are some disparities between the experimental and numerical moment 

and the model somewhat over-predicts the capacity of the beam. This difference is likely 

to be due to a combination of factors which affect deformations, such as the idealisation 

of the material nonlinearity in the FE model, hardening of the steel in experimental test 

and as well as the likelihood of initial imperfections in the real structure. In term of 

analytical moment,  the PNA is found to be in the web of the steel section for all of these 

beams and the formulations for Case 1 are therefore used. The results show that this depth 

of the PNA from the top of the steel sections is 37.1 and 49.4 mm for RCFTFG1 and 

RCFTFG2, respectively. On the other hand, for the similar members without concrete 



127 

 

infill, y1 is 66.7 mm and 71.8 mm for SRFG1 and SRFG2, respectively. It is clear from 

the results in the table, particularly, the Mu,FE to Mu,Calc ratio,  that the analytical approach 

provides a good prediction of the moment capacity for these beams, particularly for the 

concrete filled specimens.  In this case, there is only 6% difference between the FE 

predictions and the capacities predicted by the simplified analytical approach.    

Table 5.5 Internal force components in case the PNA exists at the tubular rectangular 

flange 

Internal axial force component Force equation 

Compression force at infilled concrete (Cc) ∫ (BTf − 2tt)

y1−tt

0

× σc dy 

Compression force at tubular flange above 

PNA (C1tf) 
∫ BTf

y1

y1−tt

× fydy + 2 ∫ tt

y1−tt

y2

× fydy 

Compression force at tubular flange above 

PNA (C2tf) 
2 ∫ tt

y2

0

× fsdy 

Tension force at tubular flange below PNA 

(Ttf) 
2 ∫ tt

0

−(Df−tt−y1)

× fsdy + ∫ BTf

−(Df−tt−y1)

−(Df−y1)

× fsdy 

Tension force at web below PNA (T1w) ∫ tw × fsdy

y1−Df

−y2

 

Tension force at web below PNA (T2w) (h − y1 − y2 − tw) × tw × fy 

Tension force at lower flange (TLf) BBf × tf × fy 

 

Fig. 5.10 Distributions of strain and stress for Case 2, where the PNA exists in the 

tubular flange section (y1 < Df) 
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Fig. 5.11 Flow chart of the solution procedure case 2, y1< Df 
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If no 

Return to 

STEP 4 

 

If yes 

STEP 7: y1
0 is the position of PNA 

within the steel web                     

Calculate Mu from Eq. 5.18 
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Table 5.6 Comparisons of experimental, numerical and analytical ultimate strengths 

Specimen 
Mu,Exp 

(kNm) 

Mu,FE 

(kNm) 

Mu,Calc 

(kNm) 

y1 

(mm) 

Mu,FE/

Mu,Calc 

CFRFG1 23.5 18.7 19.9 37.1 0.94 

CFRFG2 22.7 20.1 20.8 49.4 0.96 

SRFG1 19.6 15.0 16.9 66.7 0.89 

SRFG2 18.6 16.4 17.3 71.8 0.95 

 

5.8 Parametric study 

In this section, the validated FE model and simplified analytical approach are employed 

to conduct a parametric study to assess the influence of several salient properties on the 

flexural behaviour of RCFTFGs. The parameters studied are presented in Tables 5.7-5.10 

and include various geometric properties such as tube thickness, depth and width as well 

as the thickness and depth of the web and the tension flange width and thickness. For ease 

of visualisation, the results are presented in two general categories. Firstly, as shown in 

Tables 5.7 and 5.8, members with different rectangular tube dimensions (Df = 20, 22.3, 

40 or 42.3 mm), web height (hw taken as either 127, 147 or 250 mm), width of the bottom 

flange (BBf = 80 or 120 mm), thickness of the steel section (tbeam = 2.85 or 4 mm) and 

cross-sectional aspect ratios (a/hw= 5.0, 4.4 or 2.6) are presented for both  RCFTFGs 

(Table 5.7) and identical members without the concrete infill, i.e. SRFGs (Table 5.8). In 

this study, two different width-to-depth ratios (BTf/Df =2 or 4) are studied. Tables 5.9 and 

5.10 present the other parameters varied in the study, with the main focus being on the 

influence of steel section thickness of the various individual plate components (tt, tw and 

tf), for RCFTFGs and SRFGs respectively.  

In all cases, the webs of the girders are reinforced with double-sided flat plate stiffeners, 

which are 2.85 mm in thickness, and located at the support and loading points. The 

distance between the two intermediate stiffeners, as shown in Fig. 5.1, is 640 mm. All 

beams are 2020 mm in length. The specimens listed in Tables 5.7 and 5.9 are filled with 

concrete which has a compressive strength of 42.5 MPa. It is noteworthy that when 

studying the effect of steel section thickness (which is varied between 2.85 and 4 mm in 

this study), the area of concrete remains constant at either 2548.5 mm2 or 1062.5 mm2 for 

(Df =20 or 40 mm), respectively. It is noted that during the FE simulation as well as 

experimental programme (Muteb and Ali, 2016), the failure mode for all specimens 
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considered is high levels of deflection, i.e. serviceability failure. The members with no 

concrete also exhibit a local buckling of the compression flange.  Accordingly, in the 

current study, an allowable deflection limit of span/250 is considered as given in National 

Annex of Eurocode 3 (NA of BS EN 1993-1-1, 2005). In addition, all of the sections in 

the current study were examined for local buckling using the tube slenderness limit 

provided by the AASHTO LRFD specifications (1999) for rectangular tubular 

compression members, given in Eq. 5.19: 

BTf

tt
≤ 1.7√

E𝑠

fy
 (5.19) 

This expression was originally developed for unfilled tubes, although the AASHTO 

specification now recommends using this check for filled concrete tubes also. 

The ultimate moments determined using the FE model (Mu,FE) and the analytical 

expressions (Mu,Calc) are shown in Tables 5.7-5.10 together with the location of the PNA 

measured from the top of the section (y1). Each pair of RCFTFGs and SRFGs had similar 

buckling forms, but the buckling resistance of the concrete filled members is higher than 

the corresponding SRFGs. For example, with reference to Tables 5.7 and 5.8, Mu,FE is 

higher for GR1 (18.7 kNm) than GR17 (15.0 kNm) which are identical apart from the 

presence of the concrete infill in GR1. This corresponds to a 25% increase in capacity 

due to the presence of concrete in the tube, which increases the strength and rigidity of 

the upper flange and therefore allows additional loads to be carried by the concrete filled 

section. The load deflection and failure behaviour of both RCFTFGs and SRFGs with 

different key parameters are described and discussed in detail in the following sub-

sections.  

 

 

 

 

 

 

 

 

 

 



132 

 

Table 5.7 Details of RCFTFG with different tubular flange depth 
 

 

RCFTFG 

Group 
Specimen 

Geometric details 

Mu,FE 

(kNm) 

Mu,Calc 

(kNm) 

PNA 

location, 

y1     

(mm) 

Mu,FE/ 

Mu,Calc 

As 

(mm2) tbeam Df BTf BBf hw a/hw 
BTf/

Df 

G1 

GR1 2.85 20 80 

80 

147 4.4 

4 

18.7 19.9 37.1 0.94 1185.0 

GR2 4 22.3 82.3 26.8 27.6 38.5 0.97 1681.4 

GR3 2.85 20 80 
250 2.6 

37.7 39.5 74.4 0.95 1478.0 

GR4 4 22.3 82.3 53.1 54.5 74.8 0.97 2092.8 

G2 

GR5 2.85 20 80 

120 

147 4.4 
22.9 23.8 49.3 0.96 1299.0 

GR6 4 22.3 82.3 32.7 33.9 50.4 0.96 1841.4 

GR7 2.85 20 80 
250 2.6 

43.2 44.6 92.8 0.97 1592.0 

GR8 4 22.3 82.3 60.4 61.4 93.1 0.98 2252.8 

G3 

GR9 2.85 40 80 

80 

127 5.0 

2 

20.1 20.8 49.4 0.96 1242.0 

GR10 4 42.3 82.3 28.3 29.2 50.9 0.97 1761.4 

GR11 2.85 40 80 
250 2.6 

43.1 44.8 87.0 0.96 1592.0 

GR12 4 42.3 82.3 57.3 58.9 89.2 0.97 2252.8 

G4 

GR13 2.85 40 80 

120 

127 5.0 
23.9 25.0 59.5 0.96 1355.5 

GR14 4 42.3 82.3 33.6 35.1 60.7 0.96 1921.4 

GR15 2.85 40 80 
250 2.6 

49.5 50.4 102.5 0.98 1706.0 

GR16 4 42.3 82.3 66.2 67.0 103.1 0.99 2412.8 

 

 



133 

 

  

Table 5.8 Details of SRFG with different tubular flange depth 
 

 

SRFG 

Group 
Specimen 

Geometric details 
Mu,FE 

(kNm) 

Mu,Calc 

(kNm) 

PNA 

location, 

y1     

(mm) 

Mu,FE/ 

Mu,Calc 

As 

(mm2) tbeam Df BTf BBf hw a/hw 
BTf/

Df 

G5 

GR17 2.85 20 80 

80 

147 4.4 

4 

15.0 16.9 66.7 0.89 1185.0 

GR18 4 22.3 82.3 22.4 24.7 67.6 0.91 1681.4 

GR19 2.85 20 80 
250 2.6 

32.9 35.1 92.5 0.94 1478.0 

GR20 4 22.3 82.3 47.3 49.4 93.4 0.96 2092.8 

G6 

GR21 2.85 20 80 

120 

147 4.4 
18.4 19.6 76.3 0.94 1299.0 

GR22 4 22.3 82.3 27.5 29.2 77.9 0.94 1841.4 

GR23 2.85 20 80 
250 2.6 

37.9 40.0 102.7 0.95 1592.0 

GR24 4 22.3 82.3 52.8 55.1 103.6 0.96 2252.8 

G7 

GR25 2.85 40 80 

80 

127 5.0 

2 

16.4 17.3 71.8 0.95 1242.0 

GR26 4 42.3 82.3 23.3 24.3 72.9 0.96 1761.4 

GR27 2.85 40 80 
250 2.6 

36.0 36.9 102.5 0.97 1592.0 

GR28 4 42.3 82.3 52.2 53.2 103.8 0.98 2252.8 

G8 

GR29 2.85 40 80 

120 

127 5.0 
19.6 19.8 81.4 0.98 1355.5 

GR30 4 42.3 82.3 27.8 28.0 82.3 0.99 1921.4 

GR31 2.85 40 80 
250 2.6 

41.7 42.1 110.7 0.99 1706.0 

GR32 4 42.3 82.3 58.9 59.2 113.9 0.99 2412.8 
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Table 5.9 Details of RCFTFG with different thicknesses 

RCFTFG 

Group 
Specimen 

Geometric details 
Mu,FE 

(kNm) 

Mu,Calc 

(kNm) 

PNA, 

y1     

(mm) 

Mu,FE/ 

Mu,Calc 

As 

(mm2) 
tt 

mm 

tw 

mm 

tf 

mm 

Df 

mm 

BTf 

mm 

BBf 

mm 

hw 

(mm)  

G9 

GR33 4 2.85 2.85 22.3 82.3 

80 147 

19.7 20.3 26.1 0.97 1420.2 

GR34 2.85 4 2.85 20 80 21.8 22.2 48.2 0.98 1354.0 

GR35 2.85 2.85 4 20 80 22.1 22.4 46.7 0.98 1277.0 

G10 

GR36 4 2.85 2.85 22.3 82.3 

120 147 

23.9 24.8 31.4 0.96 1534.2 

GR37 2.85 4 2.85 20 80 25.7 26.5 59.3 0.97 1468.1 

GR38 2.85 2.85 4 20 80 27.4 28.1 68.1 0.97 1437.0 

G11 

GR39 4 2.85 2.85 22.3 82.3 

80 250 

39.9 40.8 44.2 0.97 1713.3 

GR40 2.85 4 2.85 20 80 44.6 45.7 92.6 0.98 1765.5 

GR41 2.85 2.85 4 20 80 46.7 47.5 89.2 0.98 1570.0 

|G12 

GR42 4 2.85 2.85 22.3 82.3 

120 250 

45.7 46.9 56.0 0.97 1827.3 

GR43 2.85 4 2.85 20 80 49.6 50.7 106.3 0.97 1879.5 

GR44 2.85 2.85 4 20 80 52.3 52.9 116.7 0.98 1730.0 

G13 

GR45 4 2.85 2.85 42.3 82.3 

80 127 

21.8 23.3 38.8 0.93 1523.2 

GR46 2.85 4 2.85 40 80 22.7 23.9 58.3 0.95 1388.1 

GR47 2.85 2.85 4 40 80 23.3 24.4 57.4 0.95 1334.0 

G14 

GR48 4 2.85 2.85 42.3 82.3 

120 127 

25.9 26.8 45.3 0.97 1637.2 

GR49 2.85 4 2.85 40 80 26.6 27.2 67.8 0.97 1502.1 

GR50 2.85 2.85 4 40 80 28.8 29.3 74.3 0.98 1494.0 

G15 

GR51 4 2.85 2.85 42.3 82.3 

80 250 

44.4 46.8 60.5 0.95 1873.3 

GR52 2.85 4 2.85 40 80 51.0 53.6 105.6 0.95 1879.5 

GR53 2.85 2.85 4 40 80 54.4 55.6 99.3 0.98 1684.0 

|G16 

GR54 4 2.85 2.85 42.3 82.3 

120 250 

50.1 52.9 70.3 0.95 1987.3 

GR55 2.85 4 2.85 40 80 57.3 59.7 118.2 0.96 1993.5 

GR56 2.85 2.85 4 40 80 60.2 62.8 123.5 0.96 1844.0 
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Table 5.10 Details of SRFG with different thicknesses 
 

SRFG 

Group 
Specimen 

Geometric details 
Mu,FE 

(kNm) 

Mu,Calc 

(kNm) 

PNA, 

y1     

(mm) 

Mu,FE/ 

Mu,Calc 

As 

(mm2) tt 

mm 

tw 

mm 

tf 

mm 

Df 

mm 

BTf 

mm 

BBf 

mm 

hw 

(mm) 

G17 

GR57 4 2.85 2.85 22.3 82.3 

80 147 

18.2 18.9 51.6 0.96 1420.2 

GR58 2.85 4 2.85 20 80 18.4 18.9 54.8 0.97 1354.1 

GR59 2.85 2.85 4 20 80 19.0 19.6 55.4 0.97 1277.0 

G18 

GR60 4 2.85 2.85 22.3 82.3 

120 147 

22.8 23.6 58.7 0.97 1534.2 

GR61 2.85 4 2.85 20 80 21.3 21.9 69.1 0.97 1468.1 

GR62 2.85 2.85 4 20 80 23.4 23.8 83.5 0.98 1437.0 

G19 

GR63 4 2.85 2.85 22.3 82.3 

80 250 

37.4 38.1 51.7 0.98 1713.3 

GR64 2.85 4 2.85 20 80 37.2 37.4 106.3 0.99 1765.5 

GR65 2.85 2.85 4 20 80 36.3 36.3 106.8 0.99 1570.0 

G20 

GR66 4 2.85 2.85 22.3 82.3 

120 250 

43.1 45.8 71.7 0.94 1827.3 

GR67 2.85 4 2.85 20 80 40.4 41.7 120.6 0.97 1879.5 

GR68 2.85 2.85 4 20 80 40.7 42.0 134.9 0.97 1730.0 

G21 

GR69 4 2.85 2.85 42.3 82.3 

80 127 

17.6 18.7 58.1 0.94 1523.2 

GR70 2.85 4 2.85 40 80 18.4 19.4 50.6 0.95 1388.1 

GR71 2.85 2.85 4 40 80 19.2 19.7 45.4 0.97 1334.0 

G22 

GR72 4 2.85 2.85 42.3 82.3 

120 127 

22.7 23.9 65.2 0.95 1637.2 

GR73 2.85 4 2.85 40 80 21.3 22.2 64.8 0.96 1502.1 

GR74 2.85 2.85 4 40 80 23.1 23.5 73.5 0.98 1494.0 

G23 

GR75 4 2.85 2.85 42.3 82.3 

80 250 

40.6 42.3 43.7 0.96 1873.3 

GR76 2.85 4 2.85 40 80 41.3 41.9 112.1 0.98 1879.5 

GR77 2.85 2.85 4 40 80 40.2 40.6 106.8 0.99 1684.0 
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SRFG 

Group 
pecimen 

Geometric details 
Mu,FE 

(kNm) 

Mu,Calc 

(kNm) 

PNA, 

y1     

(mm) 

Mu,FE/ 

Mu,Calc 

As 

(mm2) tt 

mm 

tw 

mm 

tf 

mm 

Df 

mm 

BTf 

mm 

BBf 

mm 

hw 

(mm) 

G24 

GR78 4 2.85 2.85 42.3 82.3 

120 250 

46.8 48.8 63.7 0.96 1987.3 

GR79 2.85 4 2.85 40 80 44.9 45.9 126.3 0.98 1993.5 

GR80 2.85 2.85 4 40 80 45.2 46.0 134.9 0.98 1844.0 
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5.8.1 Geometry of the tubular flange 

The effect of a number of the most salient individual geometric properties such as 

rectangular tube depth (Df), width (BTf) and thickness (tt) are studied herein. Two different 

width-to-depth ratios (BTf/Df) for the compression infilled concrete tubular flange are 

assessed. With reference to Fig. 5.12, the results indicate that reducing the aspect ratio of 

the flange has the effect of increasing the flexural capacity of the RCFTFGs. The data in 

Tables 5.7 and 5.8 shows that the ultimate moment for GR8 (BTf/Df =4) is 60.4 kNm 

while the same value for GR16 (BTf/Df =2) is 66.2 kNm. Similarly, the ultimate moment 

for GR24 (SFRG with BTf/Df =4) is 52.8 kNm while Mu,FE for GR32 (BTf/Df =2) is 58.9 

kNm. This demonstrates that the contribution to the overall flexural strength that is made 

by the tubular flange increases as the BTf/Df ratio decreases.   

The moment-deflection responses for (a) RCFTFGs and (b) SRFGs are shown in Fig. 

5.12 and it is clear that decreasing the BTf/Df ratio increases the ultimate flexural strength 

of the girder. The initial stiffness of the moment-deflection response is greater for 

members with a relatively lower BTf/Df ratio. On the other hand, since increasing the 

flange depth (Df) leads to an increase in the RCFTFG’s entire cross-sectional area, it is 

important to assess the additional flexural strength of the girder which can be obtained. 

The rectangular tubular flange depth variation from 20 mm to 40 mm increases the cross-

sectional steel area by around 8% (i.e. the total area for GR3 is 1478 mm2 whereas it is 

1592 mm2 for GR11). These two beams have an ultimate moment capacity of around 37.7 

kNm and 43.1 kNm for GR3 and GR11, respectively. Therefore, an 8% increase in the 

volume of steel can lead to a 15% increase in the bending moment capacity.  

Two different tube thicknesses (tt) are examined in this study, i.e. 2.85 mm and 4 mm. A 

general conclusion is that increasing the thickness of the steel tube increases the ultimate 

moment for RCFTFGs and SRFGs, as expected. For example, the ultimate moments are 

20.1 and 21.8 kNm for GR9 (tt=2.85 mm) and GR45 (tt=4 mm), respectively. This 

improves the strength and stiffness of the compression flange and allows a 9% increase 

in capacity. The results show an improvement in moment when increase the steel 

thickness of the tube with constant area of concrete. In addition, Tables (5.7-5.10) present 

the variation of Mu,FE/Mu,Calc  for different groups of RCFTFGs and SRFGs. The values 

indicate the accuracy of the analytical expressions in predicting the ultimate moment as, 

in all cases, the Mu,FE/Mu,Calc  ratio is between 0.89 and 0.99. 
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(a)  
 

(b)  

Fig. 5.12 Ultimate moment versus deflection responses for (a) RCFTFGs (b) SRFGs 

with different width-to-depth ratios (BTf/Df) 

 

5.8.2 Geometry of the steel web 

Firstly, the effect of the aspect ratio of the girder web panel (a/hw) is examined. As 

previously noted in Tables 5.7 and 5.8, a reduction of the aspect ratio of the web panels 

for the girders with otherwise identical geometries leads to an increase in the ultimate 

moment capacity of the member. Fig. 5.13 shows the ultimate moment-deflection curves 

for both types of girder and highlights the differences in their general behaviour. After 

the linear elastic stage and until the full strength of the girders is reached, the girder with 

the higher web panel aspect ratio (GR6) reaches the inelastic stress stage at a lower 

deflection relative to GR8 and also achieves a considerably higher flexural capacity. After 
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that point, the response plateaus as the displacement continues to increase with very little 

change in the flexural capacity. It is shown that the initial stiffness of the response in the 

elastic range is greater for the members with a relatively lower aspect ratio.  

In order to illustrate the general behaviour of SRFGs, without a concrete infill, the 

moment-deflection curves of GR22 and GR24 are plotted in Figs. 5.13(b). These are 

identical to GR6 and GR8 mentioned above apart from having a hollow top flange. 

Generally, the behaviour of GR22 and GR24 are quite similar to GR6 and GR8, although 

the capacities are lower as expected. It is noteworthy that the capacity decreases more 

rapidly for the hollow members compared with the CFRFGs after the peak moment has 

been reached. In addition, it is shown that for members with a relatively high aspect ratio 

(i.e. GR6 and GR22), their ultimate bending moments are 32.7 and 27.5 kNm, 

respectively, representing a difference of 16%.   On the other hand, the same values for 

GR8 and GR24 are 60.4 and 52.8 kNm, giving a difference of 12%. This show that the 

influence of the concrete infill is more pronounced for beams with a larger aspect ratio 

(i.e. GR6 and GR22).  

With reference to the data presented in Tables 5.7 and 5.9, it can be seen that increasing 

the web thickness leads to an improvement of the flexural strength. This is evidenced by 

comparing GR1 (tw=2.85 mm) with GR34 (tw=4 mm), for example. These two beams 

have an ultimate moment capacity of around 18.7 kNm and 21.8 kNm, respectively, and 

a gross cross-sectional area (steel only) of 1185 and 1354 mm2, respectively. Therefore, 

a 14% increase in steel volume results in a 17% improvement in bending moment 

capacity, for the same stiffener arrangement.  

Similarly, it is observed in the data presented in Tables 5.7-5.10 that an increase in the 

web height (hw) leads to a greater increase in the moment capacity of the RCFTFGs and 

SRFGs, as expected. For RCFTFGs, the ultimate moment of GR1 (hw=147 mm) is 18.7 

kNm, for example, whereas Mu,FE for GR3 (hw=250 mm) is 37.7 kNm. The effect of web 

height is further studied in Fig. 5.14 for two specimens with a web height of either 127 or 

250 mm. It is observed that the initial stiffness of the curves is greater when hw is 

relatively higher. Clearly, decreasing the web depth (hw) reduces the volume of steel in 

the section as well as the fabrication costs as less welding is required and the associated 

risk of weld distortion is lowered. However, it also reduces the bending moment capacity.  

Therefore, this discussion highlights the importance of a careful consideration of all 
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factors (capacity requirements, flange depth, web depth, welding needs, etc.) when 

designing these types of members.  

 

 

(a) 
 

(b) 

Fig. 5.13 Ultimate moment versus deflection responses for (a) RCFTFGs (b) SRFGs 

with difference web panel aspect ratios 
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(a)  
 

(b) 

Fig. 5.14 Ultimate moment versus deflection responses for (a) RCFTFGs (b) SRFGs 

with difference web height 

 
 

5.8.3 Geometry of the bottom flange 

The effect that the width of the bottom flange (BBf) has on the structural behaviour of the 

RCFTFGs and SRFGs is observed in Fig. 5.15(a) and (b), respectively. Two different 

flange widths have been studied, namely 80 and 120 mm. It is clearly shown in the figures 

that a wider tension flange results in a greater second moment of area for the section and 

therefore increases the ultimate flexural strength. Accordingly, and as expected, the 

flexural capacity of both RCFTFGs and SRFGs increases for greater tension flange 

widths (BBf). As demonstrated in Fig. 5.15, and also the data in Tables 5.7 and 5.9, the 
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bottom flange width of 80 mm, to GR13 and GR29, which were identical except having 

a bottom flange width of 120 mm, is 19% and 20%, respectively, although the increase 

in steel area is only 9% (the total steel area in GR9 and GR25 was 1242 mm2 whereas the 

same value for GR13 and GR29 is 1355.5mm2).  

 

(a) 
 

(b) 

Fig. 5.15 Ultimate moment versus deflection responses for (a) RCFTFGs (b) SRFGs 

with difference tensile flange width 

 

The influence of bottom flange thickness (tf) on the capacity of the section is also 
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area by 9%, results in an improved moment capacity of almost 21% and 18% for 

RCFTFGs and SRFGs, respectively. It is worth noting that the design of the cross-

sectional properties must be carefully considered in terms of optimum thickness and 

width, relative to the required moment capacity, in order to provide an efficient and 

economical design both in terms of material and fabrication costs. 

5.8.4 Concrete strength 

In this section, the effect of concrete compressive strength on the response is considered 

by varying compressive strength values (fc) between 20 and 80 N/mm2 for the GR9 

specimen presented in Table 5.11 (this girder is selected randomly for illustration 

purposes only). The data in the table shows that the fc value has a relatively insignificant 

effect, which can be considered negligible, on the strength of the RCFTFGs. The ultimate 

moment-vertical deflection responses for these members are shown in Fig. 5.16. During 

the elastic phase, the concrete strength has no notable effect on the member rigidity. As 

expected, with greater concrete strengths, the moment capacity increases although it is 

quite marginal, and the PNA is located at a higher position in the cross-section. From the 

ratio of Mu,FE to Mu,Calc, as presented in Table 5.11, it is evident that due to the reduced 

contribution of the concrete, the analytical model provides a more accurate prediction of 

the moment capacity for relatively low values of fc. In general it can be concluded that 

the increase in capacity of the RCFTFGs compared with that of the SRFGs is attributed 

to the presence of a rigid medium in the upper flange, rather than directly from the 

concrete strength, in the range considered herein. Therefore, it is not necessary to directly 

include the concrete compressive strength in the design strength of RCFTFGs. 

 

Fig. 5.16 Influence of concrete strength on the behaviour of RCFTFGs 
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Table 5.11 Influence of fc and fy on the capacity of model GR9 

fc 

(MPa) 

fy        

(N/mm2) 

Mu,FE   

(kNm) 

Mu,Calc 

(kNm) 

PNA 

location 

(mm) 

Mu,FE/

Mu,Calc 

20 236.8 19.1 19.4 50.3 0.98 

30 236.8 19.5 20.1 49.9 0.97 

40 236.8 19.8 20.6 49.5 0.96 

42.5 236.8 20.1 20.8 49.4 0.96 

50 236.8 20.2 21.5 49.1 0.94 

60 236.8 20.4 21.9 48.8 0.93 

70 236.8 20.5 22.3 48.5 0.92 

80 236.8 20.7 22.7 48.0 0.91 

42.5 235 19.2 20.3 47.8 0.95 

42.5 236.8 20.1 20.8 49.4 0.96 

42.5 355 28.8 29.7 54.6 0.97 

42.5 460 36.5 37.1 58.8 0.98 

42.5 690 53.1 53.6 67.9 0.99 

42.5 960 71.1 71.5 80.3 0.99 

 

 

5.8.5 Steel strength 

It influence of the yield strength of the steel section (fy) on the overall behaviour is 

assessed by varying this value between 235 and 960 N/mm2 and the moment-deflection 

results are presented in Fig. 5.17 and Table 5.11. As before, the specimen GR9 is used 

for illustrative purposes. The results demonstrate that the ultimate bending capacity is 

proportional to the yield strength of steel, as expected. Moreover, the steel grade does not 

influence the early stages of the response, when stiffness of the member is more critical, 

as Young’s modulus remains constant. From Table 5.11, it is clear that members with 

higher steel strength also have higher Mu,FE/Mu,Calc ratios, which indicates that the 

behaviour of these members are particularly well captured by the analytical model. 
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Fig. 5.17 Vertical deflection at mid-span beam with different yielding strength of 

steel 

 

 

5.9 Concluding remarks 

Both the numerical and the analytical models are employed in this chapter to conduct a 
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variables studied include the geometry of the different components (i.e. the compression 
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strengths. The results also are compared with steel rectangular flange girders (SRFGs) 

which do not have the concrete infill to thoroughly investigate the difference in flexural 

behaviour between both types of girder. Based on the investigation, the following 

concluding remarks are presented: 

• The analysis of the results indicate that reducing the aspect ratio of the tubular 

flange (BTf/Df) increases the flexural strength of the girders. 

• The flexural strengths predicted using the simplified analytical expressions show 

that the capacity of both RCFTFGs and SRFGs is accurate and slightly 

conservative. 

• It has been shown clearly that a decrease in the aspect ratio of the web panel (a/hw) 

results in an increase in the bending strength of the girders. Such an increase is 

greater for RCFTFGs compared with SRFGs. It can also be concluded that it is 

more significant and beneficial to increase the depth of the infilled tubular flange 
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(Df) rather than decreasing the web panel aspect ratio (a/hw) for girders that are 

formed from a relatively small top flange depth. Hence, design engineers should 

firstly work on checking the RCFTFGs formed from compression tubular flanges 

with relatively smaller width-to-depth ratios (BTf/Df) and relatively big web panel 

aspect ratios (a/hw) before considering larger flanges with relatively smaller aspect 

ratios (a/hw). 

• Finally, it is clear from the analysis presented in this paper that concrete filled 

tubular flange girders are a promising cross-section for heavily-loaded structural 

applications, providing both efficiency in terms of material usage and 

effectiveness in carrying large forces and moments. 
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6.1 Introduction 

Two different cross-sections are studied, including circular and rectangular CFTFGs. 

These are complex members and their behaviour is governed by a number of inter-related 

parameters. The finite element models have been developed using the ABAQUS software 

and consider the effects of initial geometric imperfections, as well as other geometrical 

and material nonlinearities, on the response. In addition, the model has been further 

advanced to investigate the influence of combined loading on the overall response. 

Different combinations of tension and bending moment are studied, and the ultimate 

capacities and failure modes are identified and discussed. In this chapter, the key findings 

and conclusions from this thesis, as well as recommendations for further research 

following on from this work, are presented. 

6.2 Conclusions from this work 

Firstly, the thesis presented a detailed investigation in the behaviour of circular concrete 

filled tubular flange girders (CCFTFGs) under bending. A finite element model was 

developed using the ABAQUS software, version 6.14-4 (Simulia, 2011) to study the 

response and also the relative influence of the most salient parameters.  

Secondly, the thesis presents the results of an extensive numerical investigation that is 

carried out to study the effects of axial tension applied in combination with sagging 

moment’s for circular concrete filled tubular flange girders (CCFTFGs). A finite element 

model has been developed in order to investigate the combined effects. The model is then 

extended to account for the application of axial tension to the members and the resulting 

interaction diagrams are presented.  

Thirdly, the flexural behaviour of concrete filled rectangular flange girders (RCFTFGs) 

is presented and assessed. Two different analysis techniques are developed including a 

numerical finite element model, developed in ABAQUS (Simulia, 2011), and also an 

analytical method based on the material and geometrical properties, using a plastic 

analysis approach. Based on the result of this study, the following conclusions can be 

made: 

• In view of the absence of any suitable design expression in Eurocode 4 (EN 1994-

1-1, 2004), the analytical design model which is developed in this paper provides 

appropriate predictions for the capacity of circle and rectangle CFTFGs under 
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bending. The model is based on a fundamental behavioural assessment which 

reveals the relative influence of material and geometric parameters. 

• Both infilled concrete and hollow girders had similar buckling shapes, with the 

infilled concrete girders achieving greater buckling loads than those of the 

corresponding hollow section. This emphasizes the influence of the concrete infill 

which increases the stiffness of the upper flange and thus makes it possible for the 

web to carry greater moments, compared with hollow girder. 

• The three-dimensional nonlinear finite element model can be used as a tool for 

the assessment of the nonlinear behaviour and the ultimate failure modes of 

CCFTFGs under combined positive bending and axial tension. 

• A simplified design approach based on a linear moment–axial tension relationship 

is proposed for use in practice for the design of CCFTFGs. 

• The reduction in moment compared with the ultimate moment (i.e. MFE/Mu) 

increases with a relative increase in tube size and web height. 

• The moment capacity of a CCFTFG is reduced under the presence of an axial 

tensile force acting in the steel beam section but this is not a major issue within 

the realistic range of applied axial loads (up to 50% of Nu).  

6.3 Responding to the research objectives 

The objectives for this research project were set out in Chapter 1.   Following the work 

which has been described herein, the following responses to these conclusions are made: 

• Using cross-sectional analyses, the fundamental structural behaviour of CFTFGs, 

including plastic neutral axis position, yield moment, and cross-section flexural 

strength can be accurately calculated. 

• The detailed structural behaviour of CFTFGs, including the flexural strength 

under the combined effects of positive bending and axial tension and the moment-

axial load interaction curves, can be accurately estimated using the FE models. 

• The advantages of CFTFGs are clear and their usage has increased in buildings 

and bridges as a result, particularly for heavily loaded applications, and this will 

be further aided through the design guidance provided in this work. 

• The design recommendations presented in this thesis are shown to be conservative 

for the flexural design of CFTFGs. 

• For CFTFGs, an increase in the bottom flange thickness is advantageous in terms 

of the moment capacity and also the material costs. This is because the increase 
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in moment capacity achieved is disproportionately large, compared with the 

increase in the cross-sectional area.   

6.4 Recommendations for future work 

Based on the work conducted in this thesis, a number of areas which would benefit from 

more research in the future have been identified.  These are summarised hereafter:  

• Study the influinial parameters of multiple girders systems are required to fully 

investigate the behaviour of CFTFGs bridge systems. 

• Girders with a concrete deck are required to study CFTFGs behaviour under 

different loading conditions. 

• This research focused on CFTFGs for simple supported beam. Similar studies of 

CFTFGs for continuous span and curved CFTFGs bridges are needed. 

• For CFTFGs composite and non-composite with deck, a complete welding 

procedure should be established to splicing the tubes as needed. 

• In the FE parametric study, residual stresses are not included in the steel. 

Therefore, a FE parametric study of the flexural strength of CFTFGs considering 

the residual stresses in the steel should be conducted. The results of this study 

should be compared with the design flexural strength formulas proposed in this 

thesis. 

• The effects of axial tension applied in combination with sagging moment’s for 

concrete filled tubular flange girders (CFTFGs) is not investigated experimentally 

in this research. Therefore, it is recommended that laboratory experiments be 

conducted to investigate the combination of bending and tensile axial force of 

circular and rectangular CFTFGs. The recommended experiments should use test 

specimens with a simply supported beam and stiffened webs.  
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