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Abstract

Three out of the four leading eye diseases affect the retina, causing irreversible blindness

and various degrees of visual impairment. In the clinic, the effects of these diseases and

other cardiovascular disorders are attributed to structural changes in the retinal structures.

These changes are evaluated using various imaging techniques such as fundus imaging and

optical coherence tomography (OCT). Consequently, the analysis of these images has become

vital for diagnosing various ocular diseases in modern ophthalmology. Many computer-aided

diagnostic (CAD) methods have been proposed to aid with the analysis due to the complexity

of the retinal structures, the tediousness of manual segmentation and variation from different

specialists. Besides, the commercially available systems focus on only a few layers of the

retina, even though recent researches in the field of ophthalmology and neurology show that

each layer might be affected individually. The reasons mentioned earlier urge for efficient

intra-retinal layer segmentation methods. However, image artefacts such as speckle noise and

inhomogeneity in pathological structures remain a challenge, with negative influence on the

performance of segmentation algorithms.

This study investigates methods for image analysis, aiming to develop robust algorithms

for segmenting retinal OCT images. Hence, this thesis presents four methods for extracting

individual layer information from OCT to help with eye screening and management of vari-

ous eye disorders, including glaucoma, diabetic retinopathy, age-related macular degeneration,

among others. Distinctly, the first method is a comprehensive and fully automated method

for annotation of retinal layers in OCT images, which comprises of fuzzy histogram hyper-

bolization for weight reassignment within adjacency matrices and graph-cut (shortest path) to

segment seven (7) layers across eight (8) boundaries of the retina. Second, prior knowledge of

the retinal architecture derived from the gradient information is embedded into the level set

method to segment seven (7) layers of the retina. This method starts by establishing a region

of interest (ROI), and then the refined gradient edges obtained from the ROI are used to ini-

tialise a level set function. Then, the understanding of layer topology is used in constraining

the evolution process towards the actual layer boundaries.
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Further, a third method capable of segmenting nine (9) retinal layers from OCT, that es-

tablishes a specific region of interest, similar to the previous method. Mainly, the method uses

selected components from fuzzy C-Means clustering outcome to initialise a level set function.

The clustering outcome from the initialisation stage is also used to guide the evolution of

boundaries through a combination of Mumford-Shah (MS) selective region competition force

and a Hamilton-Jacobi (HJ) balloon force. The method converges based on a HJ object indica-

tion function influenced by the fuzzy membership to prevent leakage at weak layer boundaries.

Lastly, the fourth method is an efficient and computationally inexpensive method to segment

five (5) retinal layers. The method also starts by establishing a specific ROI. Primarily, the

method transforms the ROI, and then select components belonging to the hyperreflective lay-

ers to build data terms, which are integrated into a graph-cut continuous max-flow algorithm

for optimisation. Promising experimental results were achieved, which demonstrates the tol-

erance and adaptability of the methods to contour variance and pathological inconsistency of

the retinal structures. The use of prior knowledge of the OCT enables the methods to handle

the incompleteness of OCT and reduce the likelihood of wrong segmentation, while the use of

fuzzy image processing techniques aid in handling inhomogeneity.
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Chapter 1

Introduction

Medical images have an irrefutable role in health care by improving the process of diagnosing

and treating a vast number of ailments. Notably, the field of ophthalmology has witnessed a

revolution since the introduction of Optical Coherence Tomography (OCT) [77] imaging, which

continues to make significant impact to date. This continuous impact of OCT is because the

manifestation of major eye diseases is diagnosed and managed through the examination of

retinal structures. Analysing these structures, which are acquired through various imaging

techniques, such as fundus photography1 and OCT, plays a significant role in the clinical

eye examination. Mainly, retinal layer thicknesses provide useful diagnostic information that

have been shown to correlate well with the measures of severity in several diseases, such as

glaucoma, diabetic retinopathy, age-related macular degeneration and other cardiovascular

disorders. Since manual segmentation of these layers is time-consuming and prone to bias,

automatic segmentation methods are critical for full utilisation of the available technology

[96]. For this reason, much research is carried out on retinal layer segmentation to help eye

specialists in diagnosing and preventing the most common causes of vision loss in the developed

world.

Furthermore, each layer might be affected differently by a disease. For example, a particular
1Photographing the back of the eye using specialised fundus cameras consisting of an intricate microscope

attached to a flash enabled camera. The photography enables the visualisation of the retina, optic disk and
macula.
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layer may shrink as a result of neuron loss while another thickens as a result of oedema2. As

such, it will be exemplary to be able to appraise the layer properties individually [53]. Thus,

the urge and promising impact of retinal OCT segmentation methods are high, especially

with the advancements in imaging techniques and the increase of image data availability

to ophthalmologists. To appreciate the value of this research and its potential impact in

monitoring eye diseases, it is important to understand the motivation behind retinal OCT

analysis. Thus, an introduction to retinal layer analysis is provided in section 1.1. Section 1.2

highlights the aim and objectives of the research work, then followed by the contributions in

Section 1.3. Finally, section 1.4 gives an overview of the thesis.

1.1 Retinal Layer Analysis

As stated earlier, it is essential to provide insight into retinal image analysis, to highlight

the necessity of conducting this study. The four leading causes of blindness and visual im-

pairment are cataract, diabetic retinopathy, glaucoma and Age-related Macular Degeneration

(AMD). While cataract affects the front of the eye (clouding of the lens), the remaining three

major eye-related diseases affect the retina and optic nerve head at the back of the eye. A

notable difference between cataract and the other three eye diseases is that cataract is usually

noticed by the patient early enough for adequate treatment, and the damages can be fully cor-

rected with laser surgery successfully. While the early forms of AMD, glaucoma, and diabetic

retinopathy are usually not noticed by the patient and gradually cause substantial damage to

retinal tissues unless diagnosed early [54], which might lead to irreversible blindness. Also, a

recent study shows the relation of the retina to the brain and how each layer is vital in the

monitoring of ocular diseases [142], and occasionally an eye examination reveals a potentially

life-threatening condition [2, 57, 101].

Furthermore, the amount of image generated by retinal imaging tools in ophthalmology

is dramatically increasing, which overwhelms the ability of clinicians to evaluate diseases

accurately. Additionally, manual image analysis by clinicians is time-consuming, cumbersome,
2Fluid retention at the macula due to leaky blood vessels in the eye.
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prone to human error, and the results of the analysis are often dependent on the clinician’s

level of expertise. The main reason behind analysing these images is because early diagnosis

and appropriate supervision of retinal diseases have been shown to prevent or curtail blindness

[2, 20].

Moreover, a clinical non-invasive eye examination involves capturing images of the patient’s

retina with imaging tools, OCT in this case, and then using an automated image analysis

algorithm to evaluate the images. The algorithm extracts retinal layers morphology from the

images which provide vital information about the patient’s eye condition. For example, the

thickness of the central retina is an important marker for diagnosing diabetic macular oedema

(DMO) [118], which is the most severe form of eye disease suffered by patients with diabetes.

Also, structural changes in the retinal nerve fibre layer are essential for early diagnosis of

glaucoma and monitoring treatment to prevent visual loss. Despite the evidence that early

diagnosis and timely intervention reduces or prevents blindness, an increasing number of people

with these diseases do not undergo any form of eye exam due to screening associated costs

and the lack of more effective automated methods of diagnosis [122].

Therefore, there is an absolute necessity for reliable computerised techniques to aid in

retinal image analysis. It is expected that these tools will improve the accuracy of results

and reduce the time required for an eye examination. The automated methods can enable the

use of teleophthalmology for screening and evaluating retinal diseases in remote areas globally

[59]. Also, because eye screening and disease management can involve different processes, it is

required that the methods be able to provide meaningful information for a variety of imaging

tests. In brief, the urgency and potential impact of this thesis are high, with ever-increasing

retina image data becoming available to clinicians to analyse.

1.2 Aim and Objectives

Retinal imaging technology has drastically evolved over the last few decades. This evolution

is continuously making the tissues of the retina more visible to the specialists. Although the

retinal tissues are visible on captured images of the retina, manually labelling the retinal layers
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is time-consuming or even impossible. This has hindered the ability of ophthalmologists to

efficiently distinguish minor changes to the retinal tissues, which is vital for diagnosis and

timely intervention to prevent loss of vision.

As a result, many automated methods are proposed to aid ophthalmologists in extracting

meaningful information regarding the diseases from retinal images. However, in applying

these automated methods to actual retinal images, image artefacts pose challenges to the

accurate delineation of the retinal structures. In particular, for OCT image analysis, intensity

inhomogeneity, noise, and algorithmic complexity are the main stumbling blocks yet to be

overcome by the automated retinal segmentation methods.

Consequently, this thesis aims to develop improved methods for robust segmentation of

retinal layers from OCT images. These methods will enable the detection of retinal layer

changes and extraction of useful information, which, in return, allow ophthalmologists to

precisely diagnose diseases, especially in their early stages. The work proposed in this thesis

is no way complete, but it presents the crucial knowledge in segmenting the retinal layers to

enable the extensive use of retinal image analysis tools to everyday work in contemporary

ophthalmology. The objectives of the PhD research can be summarised as follows:

1. Developing fully automated retinal layer segmentation methods: Develop plau-

sible methods for extracting different intra-retinal layers from OCT macular images

without the need for user initialisation, and evaluate performance of the methods using

a dataset collected from Tongren Hospital, Beijing, China.

2. Combining rigorously selected image processing techniques to improve per-

formance of segmentation methods: Thorough selection of image processing tech-

niques by understanding the limitations of each method and handling those limitations

for robust performance.

3. Utilising prior knowledge of the retinal layers to improve segmentation ac-

curacy: Incorporate prior knowledge of the retinal structure into image segmentation

frameworks to better model the segmentation problem.
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4. Improving homogeneity in retinal OCT image: Propose an OCT enhancement

technique to improve the homogeneity within individual layers using a mathematical

image preprocessing technique.

5. Preprocessing OCT images: Establish a specific region of interest (ROI) containing

only useful retinal layer information, by removing all other image background.

1.3 Thesis Contributions

In line with the aim and objectives of this thesis, it presents retinal layer segmentation methods

by rigorously selecting and effectively combining image processing techniques that enable

robust extraction of retinal layers from OCT images. Where appropriate, this study embeds

prior works in image processing to inform the development of novel segmentation methods.

More importantly, the highlights of the critical elements of the combination and what makes

it appropriate for OCT segmentation are provided to guide further research in image analysis.

Prior knowledge of the retinal structure is incorporated into the graph cut and level set

frameworks, to better model the segmentation problems. This improves the fidelity of the

methods while considering the optimisability and time complexity. Embedding prior infor-

mation into segmentation frameworks enables the methods to segment specific target features

solely, which improves the accuracy and reliability of the results.

Furthermore, imaging artefacts such as intensity inhomogeneity and noise adversely affects

the performance of segmentation methods. Hence, fuzzy histogram hyperbolisation is utilised

to significantly suppress noise and handle intensity inhomogeneity to enhance the visibility of

the retinal layers. This technique achieves the main aim of enhancing an image, which is to

preserve image information (edges) without distorting or blurring the image as with the results

seen with some mathematical image preprocessing techniques. The overall process allows for

better segmentation of the target layers. It can also be used beyond OCT image preprocessing,

as noise is prevalent in medical images.

Moreover, an OCT preprocessing technique has been developed to establish a specific ROI

of interest containing the retinal layers solely, which ensures only the actual layer properties
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affect the segmentation processes. This process is particularly useful as the convergence error

rates are based entirely on the true retinal features. The contributions of this thesis can be

summarised as follows:

1. This thesis has presented four innovative methods for reliable segmentation of retinal

layers from OCT images.

2. Based on unique layer characteristics, the methods are designed to deal with inhomo-

geneity and incompleteness of the retinal layers.

3. An ideal OCT enhancement technique has been developed using fuzzy histogram hyper-

bolisation, which improves homogeneity and preserves image features.

4. A preprocessing technique to remove all image background, which promotes accurate

segmentation of targeted layers.

From the contributions described in this thesis, the method to be described in chapter 3 has

won the best student paper award, while the method in chapter 4 was a nominee for the best

student paper award in the BIOIMAGING 2019 conference. As a whole, the research has won

the best mature stage PhD in the Computer Science students PhD symposium held in 2018.

Additionally, the contributions and potential impact of the research has been disseminated

through conventional and social media media, including British Broadcasting Corporation

and TVC News Nigeria to mention a few. Lastly, other online outreach mediums including

Optometry Today, U.k and Punch news Nigeria, among others have published articles about

the research contributions. Utilising these alternate dissemination mediums is to raise people’s

awareness of the prevalent eye diseases, which may improve the success of such technologies

through awareness of the medical implications and research conducted towards curtailing

major eye diseases.

1.4 Thesis Overview

This section provides a brief to each chapter within this thesis to visualise the overall structure.

Each chapter is a full research work independently and taken together these chapters provide
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an evolution of ideas that gradually manifest into a narrative of the use of computer-aided

diagnosis in the current day eye examination. This thesis is composed of seven , and the

remaining six (6) chapters are organised as follows:

• Chapter 2 Revisits the literature to highlight background knowledge that is relevant to

the scope of this research. Specifically, this chapter provides a brief introduction of the

eye anatomy, including the anatomy of the retina. This is followed by a brief discussion

of background and prevalence of the dominant eye diseases, including, glaucoma, age-

related macular degeneration and diabetic retinopathy. Then it discusses the various

imaging techniques used in acquiring images of the retina, and their values in diagnosing

these diseases as a hint of the importance of OCT image segmentation and image analysis

in general. Next, it elaborates on image segmentation algorithms, including methods

utilised in this study. Finally, some major topics and challenges in OCT image analysis

are discussed, which lays a background to serve as rationales for the contributions in the

ensuing chapters of the thesis.

• Chapter 3 presents a comprehensive and fully automatic method for annotation of retinal

layers in OCT images, which is comprised of fuzzy histogram hyperbolisation for weight

reassignment and graph cut methods to sequentially segment seven layers of the retina

across eight boundaries. The method utilises the normalised vertical image gradient,

and its inverse to represent image features in calculating two adjacency matrices. Be-

cause graph-cut methods depend on the assignment of appropriate weights, the method

reassigns the weights to make edges along retinal boundaries have a low cost, which

allows the method to identify the layer boundaries efficiently. Also, the method draws a

vital point from the concept of perceptual grouping to improve the connectivity of edges

within adjacent matrices, which contributes primarily to the success of the method. Part

of this chapter has been presented at the BIOIMAGING 2018 [34], which has been pub-

lished as an extended manuscript in the Communications in Computer and Information

Science series [35]. Also, part of the chapter has been published as a journal article [36].

• Chapter 4 presents a simultaneous method for segmenting retinal layers in OCT images
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using a level set method. The method starts by establishing a specific region of interest

as a preprocessing step to avoid the influence of background noise during the segmenta-

tion process. In the segmentation phase, prior knowledge of the retinal architecture is

embedded into the level set method to segment seven layers of the retina. Specifically, re-

fined edge information derived from smoothed gradient images is used as an initial curve

for the layers, and the layering topology is used in constraining the evolution forces of

the curves towards the actual layer boundaries. Part of this chapter has been presented

at the BIOIMAGING 2019 [40] and [33]

• Chapter 5 presents a robust method that is inspired by the concept of fuzzy region com-

petition to segment nine layers of the retina. Similar to the method in chapter 4, this

method establishes a specific region of interest. In contrast to chapter 4, this method use

selected components from fuzzy C-Means (FCM) outcome to initialise a level set func-

tion. The clustering outcome is also used to guide the evolution through a combination

of Mumford-Shah (MS) selective region competition force and a Hamilton-Jacobi (HJ)

balloon force. The forces ensure evolution close to actual retinal boundaries. Finally,

the convergence of the method is based on an improved HJ object indication function

influenced by the fuzzy membership to prevent leakages at weak layer boundaries. Part

of this chapter has been published in IEEE CBMS 2019 [39].

• Chapter 6 presents a fully automated method for robust and simultaneous segmentation

of five retinal layers from OCT images. Similar to the methods in chapters 4 and

5, it establishes a specific region of interest, for effective convergence and appropriate

weight calculation. Notably, the method introduces an efficient and computationally

inexpensive method by using fuzzy histogram hyperbolization for image enhancement

technique. It then uses selected components from FCM belonging to the hyper-reflective

layers to build data terms, which are effectively integrated into a continuous max-flow

algorithm for segmentation. Additionally, this chapter contains performance evaluation

of all the methods proposed in chapters 3,4,5 and 6 in segmenting the same five retinal

layers while raising some challenges in comparing segmentation methods in general. This
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chapter also unveils how other works in this thesis have streamlined to transform the

first preliminary study of this research to the latest development. Part of this chapter

has been published in IEEE CBMS 2017 [39], which was later extended to a journal

article published in [38].

• Chapter 7 presents an overview of the contributions of this thesis and how chapters 3 to

6 implement the individual objectives of the PhD project. Lastly, it provides conclud-

ing remarks concerning the proposed methods, including limitations and draws some

potential dimensions for future work.
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Chapter 2

Background

2.1 Introduction

Like most of the current research in computer science, this study brings together different

fields including, image processing, image segmentation, ophthalmology, and data analysis to

mention a few, all of which play essential roles in retinal OCT image analysis. The literature

in each of these fields is vast and impossible to exhaust. Hence, this chapter reviews relevant

works to provide insight into the literature to simplify the perspective from which this thesis

addresses current challenges in retinal layer segmentation.

For easy visualisation of specific contents of this chapter, it is organised as follows. Section

2.2 introduces eye anatomy to understand the importance of vision and the retina. This is

followed by a discussion of the major eye diseases in section 2.3, which is succeeded by a

review of retinal imaging techniques in section 2.4. Section 2.5 discusses image segmentation

algorithms by revisiting critical topics such as interactive and fully automated segmentation,

use of prior knowledge and background of some of the methods used in this thesis. Lastly,

reflections on retinal layer segmentation are reviewed in section 2.6, and then section 2.7

summarises the previous works and outlines the scope of this study.
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Figure 2.1: Schematic diagram of the cross-sectional view of the eye and its major structures (courtesy of
[75]). The retina is the lining (indicated in yellow) at the back of the eye.

2.2 Eye Anatomy

The eye is a complex organ, and although it might be small, yet it provides the most vital

of the five senses according to many people [71]. To be able to diagnose and monitor eye

diseases, it is important to understand its structure and functions [123]. The eye operates

similar to a camera, and Figure 2.1 shows a cross-sectional view of the eye and its significant

structures that must work together to assure clear vision [75]. Distinctly looking at some of

the structures, the sclera is the white part covering most of the eyeball, and It is a strong

tissue that protects the eyeball. The coloured part of the eye, blue in figure 2.1, which can

be brown, green, blue, or a mixture of these colours is called the Iris. The Iris surrounds and

adjusts the size of the pupil to regulate incoming light into the eye. Over the Iris is a clear
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dome referred to as the cornea, which transmits and focuses light onto the lens behind it. The

curve of the cornea can indicate shortsightedness (myopia) or longsightedness (hypermetropia)

as well as other visual impairments. Both myopia and hypermetropia can be easily corrected

using concave and convex corrective laser surgery works, respectively [162]. The pupil is the

black circular opening in the Iris through which light enters the eye.

Lying just behind the pupil and Iris is the lens, which functions similar to the lens of a

camera by focusing light to the back of the eye. At the back of the eye is a lining made of

specialised light-sensing cells collectively called the retina. Due to the relevance of retina in this

study, it is discussed further in the next subsection 2.2.1. The retina contains photoreceptor

cells that convert the incoming light into electrical impulses. The optic nerve transports

these impulses to the brain, while the macula is an extra-sensitive area of the retina that is

responsible for central vision. Last but not least is the choroid, which lies between the retina

and the sclera and ensures oxygen and nourishments get to the retina. It also has a pigment

that absorbs excess light to prevent the blurring of vision [71].

2.2.1 Anatomy of The Retina

The retina serves the same function as a film in a camera. As highlighted earlier, it is a light-

sensitive layer that lines the inner part of the eye. It is composed of two sets of photoreceptor

cells known as rods and cones. It is estimated that the retina contains about 125 million rods

and about 6 to 7 million cones [71]. The rods are responsible for seeing in dim light, while the

cones handle sharp, accurate light and colour.

When light is received, these photoreceptor cells convert the light into action potentials,

which are transmitted to the ganglion cells by the bipolar neurons in the intermediate retinal

layers. The optic nerve is formed by the axons of the ganglion cells that eventually exit the eye.

Other cells in the retina that help in the processing of neural signal locally include horizontal

and amacrine cells and interplexiform neurons. Also, support and structure in vision are

additionally provided by neuroglial cells such as Muller cells [140] as illustrated by the light

micrograph of the retina in figure 2.3. The retina is generally considered to have ten cellular

layers [90, 140] as illustrated by the different views in figure 2.2. Taking the Berne et al. [90]
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Figure 2.2: Illustration of ten layers of the retina (courtesy of [90]).
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Figure 2.3: Light micrograph of a vertical section through central human retina (courtesy of [91]).
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ordering, the layers are:

1. The pigment epithelium (RPE): a single layer of pigmented hexagonal cells that

mainly serve to maintain image quality by absorbing the divergent light and preventing

scatter.

2. Photoreceptor layer: the outer part contains the light-sensitive discs and the inner

composed of photoreceptors, which receive light from a particular part of the visual field.

3. The external (or outer) limiting membrane (ELM or OLM): forms intercellular

connections with the photoreceptors, Muller cells and photoreceptors, but not an actual

membrane [53];

4. The outer nuclear layer (ONL): contains cell bodies of rods and cones;

5. The outer plexiform layer (OPL): formed of synapses between the photoreceptors

and retinal horizontal and bipolar cells;

6. The inner nuclear layer (INL): made up of the nuclei, amacrine, bipolar, amacrine,

and Muller cells and in addition to interplexiform neurons and misplaced ganglion cells.

7. The inner plexiform layer (IPL): the synaptic link between the ganglion cells den-

drites and bipolar cells axons.

8. The ganglion cell layer (GCL): comprises mostly of ganglion cell bodies;

9. The retinal nerve fibre layer (NFL): formed mostly of axons of the ganglion cell

axons.

10. The inner limiting membrane (ILM): it is the innermost membrane that separates

the retina from the vitreous cortex.

The names of various cells can be noticed in the description of these retinal layers, which

have specific jobs that help transmit incoming photons into action potentials that the brain’s

cortices process into vision. There are six different types of cells in the retina, which include

[107]:
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1. Rods

2. Cones

3. Retinal Ganglion cells

4. Bipolar cells

5. Horizontal cells

6. Amacrine cells

The number of cells within each layer is unknown, with the exception of rods and cones.

Knowing the number of cells within each layer can allow for other segmentation methods,

e.g. soft segmentation, to be utilised in OCT image segmentation with the aim of better

understanding the changes caused by various diseases. Further details on the cells and their

respective functions can be found in [107].

2.3 Major Retinal Diseases

Four eye diseases have become a threat to the vision of individuals in both developed and

developing countries, i.e. cataract, glaucoma, age-related macular degeneration and diabetic

retinopathy [172]. While cataract is the first cause of blindess and visual impairments, it

affects the lens at the front of the eye; hence, it can be noticed early by the patient and also

it can be reversed through surgery. The surgery for cataract is effective and can reverse the

damage done by the disease. The three other diseases, namely glaucoma, diabetic retinopathy

and age-related macular degeneration, affects the retina and cause gradual damage to the

retina. A simulated view of patients with these diseases is shown in figure 2.4. These three

diseases are discussed further in the next subsections to highlight the clinical motivation for

analysing the retinal layers and why this thesis is motivated by the challenges posed by manual

analysis of retinal layers.
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Figure 2.4: Simulated scenery view as may be perceived by patients with prevalent diseases. (a) Normal view.
(b) View as perceived by patients with wet age-related macular degeneration. (c) View as percieved by

patients with diabetic retinopathy. (d) View as percieved by patient with glaucoma.(courtesy of
[53, 119, 120]).
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2.3.1 Glaucoma

Glaucoma is the second major cause of permanent blindness. Recently, the concept and

definitions of the disease have transformed from a single pathologic entity to a set of disorders

with distinct clinical pictures [154]. These set of disorders damage the eye’s optic nerve, which

may lead to vision loss and or blindness [120]. To begin with, glaucoma does not usually cause

noticeable symptoms. Instead, it develops gradually over time (usually years) and affects the

edges of the peripheral vision at the early stage. Therefore, many people with the disease do

not realise its presence. Consequently, this requires people having blurred vision, or seeing

rainbow-coloured circles around bright lights to engage in routine tests because it is usually

only detected with routine eye tests [74]. There are four main types of glaucoma: primary

open-angle glaucoma, primary angle closure glaucoma, secondary glaucoma, developmental

glaucoma (congenital glaucoma) [74].

Primary open-angle glaucoma - This is the most common type of glaucoma and develops

very slowly [136]. It accounts for at least 90% of all glaucoma cases [47]

Angle-closure glaucoma - This is rare and can occur slowly (chronic) or may develop

rapidly (acute) with a sudden, painful build-up of pressure in the eye. Although less

common, people of Asian origin are more likely to develop this type of glaucoma in

comparison to other ethnic groups [74, 120].

Secondary glaucoma - This occurs as a result of an eye injury or other eye condition.

There are many forms of secondary glaucoma, for example, uveitic glaucoma, which

results from the swelling and inflammation of the middle layer of the eye.

Developmental glaucoma (congenital glaucoma) -This is also a rare but severe type of

glaucoma. It is usually present at birth or develops shortly after birth. An abnormality

of incomplete development of the drainage canals in the eye during the prenatal period

is the leading cause.

Furthermore, glaucoma often affects both eyes, although it may be worse in one. In

England alone, about 480,000 people have chronic open-angle glaucoma. Among people of
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European origin, the ratio of chronic open-angle glaucoma is about 1:50 and 1:10 for people

over 40 and 75 years of age, respectively. Also, people of black-African or black-Caribbean

origin are at higher risk of developing open-angle glaucoma.

The early detection and monitoring of glaucoma have been shown to reduce the risk of

irreversible visual loss by glaucomatous damage [11, 69, 120]. Some common assessments

for glaucoma include tonometry, perimetry, gonioscopy, and ophthalmoscope, among others.

All these examinations manage glaucoma with Intraocular Pressure (IOP) lowering drops or

through surgery in some refractory conditions. However, since the glaucomatous damage

directly affects the structures of the retina, its damage can be assessed through structural

analysis of the retinal tissues in an OCT image. This assessment can be done by direct

measurement of the retinal RNFL thickness, which provides key structural changes of the

RFNL by glaucomatous damage [2]. Further information about glaucoma can be found in

[11, 136].

2.3.2 Age-related Macula Degeneration

Age-related macular degeneration is a progressive chronic disease of the central retina and a

leading cause of vision loss worldwide [102]. This eye condition affects the macula, a small but

critical area located at the centre of the retina and is responsible for clearly seeing fine details.

AMD is a leading cause of visual impairment and blindness in adults aged 50 and over [49].

A patient with AMD loses the ability to see fine details, either close or distant. This affects

only the central, and the peripheral (side) vision usually remains normal. For example, when

people with AMD look at a clock, they can see the clock’s outline but cannot tell what time

it is; similarly, they gradually lose the ability to recognise people’s faces [72].

The symptoms of AMD are the blurring of central vision, blind spots in the central field

of vision and straight lines appear distorted or blurred. The symptoms and the deterioration

of the retina occur more quickly in patients with wet AMD. Even though it remains unclear

what causes AMD, age, diet, smoking, and family history are known to contribute. In the US

only, over 11 million people live with AMD. AMD is the cause of vision loss to 54% of all blind

people in America [49], and the risk of the AMD increases from 2% for adults ages (50-59)
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to 30% for those over 75 of ages [121]. The cost of this chronic ocular disease is estimated at

US343 billion globally, and its severity can reduce the possibility of employment by 61% and

salary by over 39% [2]. There are two forms of AMD, which we briefly discuss in the following:

Dry AMD: refers to the early stage of AMD, and about 75% of patients have this form

of AMD [72]. This is a form of AMD characterized by atrophy of the retinal pigment

epithelium underlying the sensory retina, leading to the deterioration of the retina at

the macula region. The dry AMD is the chronic and the slowly progressive form usually.

A few among the patients with this disease progress to have late AMD.

Wet AMD: Also known as exudative AMD is the most typical type of late MAD representing

the least cases of AMD but accounts for 90% of legal blindness. This form of AMD is

characterised by ingrowth of abnormal blood vessels underneath the retina and at the

final stages discoid fibrosis in the central part of the macula [4].In most cases of severe wet

AMD, the patient is still able to see through the periphery of the retina. The late AMD

caused by the thinning of the retina known as geographic atrophy can cause blindness

through the loss of macular tissue without any bleeding of unhealthy blood vessels [72].

If Wet AMD is diagnosed too late and or left untreated, it rapidly progresses to cause

major visual loss [54].

Furthermore, although dry AMD is by far the most common form, the wet type is responsible

for most of severe visual impairment or blindness in AMD victims [181]. Both forms of AMD

can be detected through a dilated eye exam, visual acuity test, and fundoscopy. While the dry

AMD can be slowed through some dietary supplements [2], severe progress of wet AMD can

be halted with intravitreal injections of anti-vascular (anti-VEGF) growth medicines [102].

2.3.3 Diabetic Retinopathy

Diabetes is a prolonged metabolic disease whereby blood sugar levels rise because the body

produces a small inadequate amount of insulin, or the cells are unable to respond appropriately

to it. In recent times, diabetes affects 387 million people globally, with an expected increase

of 205 million by 2035, according to the International Diabetes Federation [63]. There are two
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types of diabetes. In the first category, Type 1 diabetes, the immune system attacks the cells

that produce insulin [7, 66]. Type 1 diabetes usually develops in children and young adults.

Victims of this category need insulin injections daily to manage blood glucose levels, or the

probability of death is high. The second category, Type 2 diabetes, accounts for 90% of cases

[114]. The pancreas is unable to produce sufficient insulin to regulate blood glucose levels,

or the body’s cells are unable to react to it appropriately. Type 2 diabetes can occur at any

age, but often, it is attributed to obesity. Because 8 out of 10 people who have had diabetes

for 10 years or more have diabetic retinopathy [73], it is a significant concern for people with

diabetes.

Moreover, diabetic retinopathy, i.e. damage to the retina, is a side effect of diabetes that

gradually leads to blindness. In the first 2 decades of the disease, a vast majority of patients

with Type 1 Diabetes and 60% of patients with Type 2 diabetes develop diabetic retinopathy

[73]. The main symptoms of diabetic retinopathy are recurring blurred vision, double vision,

difficulty reading, redness of the eye, shadows or veils across the field of vision and pain [114].

Excess blood-glucose as a result of diabetes cause damages to the blood vessels in the eye.

This leads to two types of diabetic retinopathy, which are elaborated below [73]:

Diabetic macular oedema (DMO): In this type of DR, fluid leaks out from the damaged

blood vessels into the back of the eye and accumulates in the macula. Eventually, this

fluid causes the macula to swell, leading to blurred central vision, which affects patients

ability to read or drive, but the vision to the side usually remains normal.

Proliferative diabetic retinopathy (PDR): In this type of DR, the retina is starved

of blood due to the retinal blood vessels closing, which causes abnormal and highly

vulnerable blood vessels to enlarge on the retinal surface. This leads to irreversible

vision loss as a result of bleeding into the eye, retinal detachment, and retinal scarring.

Regular eye checks are necessary for all people with diabetes so that early signs of diabetic

retinopathy can be detected to allow timely intervention. DMO might be treated with laser

photocoagulation, which involves placing tiny laser burns in the area of retinal leakage, which

slows the leakage of fluid and reduces the fluid in the eye. Although this process can help
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stop vision from getting worse, it may not substantially improve vision for some patients.

Other treatments are available and have been shown to benefit patients with DMO, includ-

ing injections of anti-VEGF drugs such as bevacizumab and ranibizumab [73]. There is no

direct cure for diabetic retinopathy, but laser surgery can reduce further damage, primarily

if carried out before the retina is severely damaged. Also for PDR, surgical removal of the

vitreous gel (vitrectomy) and anti- Vascular endothelial growth factor (VEGF) inactions or

anti-inflammatory medications are effective in shrinking the new weakened blood vessels in

the later proliferative stage.

The three eye diseases discussed above are usually managed by a combination of early

diagnosis, medication, surgical treatment, and close follow-up [54]. More importantly, they

are prevented through early diagnosis by non-invasive techniques [89, 101], as they cause

irreversible blindness. These non-invasive techniques involve acquiring the images of the retina,

and that is the discussion of the next subsection.

2.4 Retinal Imaging Techniques

The three eye diseases, i.e. glaucoma, age-related macular degeneration and diabetic retinopa-

thy, mentioned in the previous section, are usually managed with a combination of early

diagnosis, medical and surgical treatment, and close follow-up. There are various imaging

modalities of the retina, including Magnetic Resonance Imaging (MRI) ultrasound, fundus

photography, and optical coherence tomography (OCT). These imaging techniques allow the

acquisition of anatomical structures of the retina in high resolution, with varying speed, reso-

lution, strengths and weaknesses.

The field of ophthalmology was profoundly restructured in 1851 by Hermann von Helmholtz

with the discovery of the ophthalmoscope because for the first time detailed diagnosis of the

interior of the eye was made possible. Though ultrasound (stereo) biomicroscopy (UBM) can

result in a subjective assessment of thickness differences of retinal structures, it is only with

the emergence of scanning laser polarimetry, confocal Scanning laser ophthalmoscopy (SLO)

and especially OCT, that objective measurements of the retinal structures thicknesses are now
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clinically achievable [28]. More importantly, the evidence is now available that these objective

measures are clinically relevant. We discuss two of the most relevant and essential imaging

techniques below.

2.4.1 Fundus Photography (FP)

Fundus photography is an imaging technique that uses a specially designed camera to capture

high-resolution colour images of the retina [138]. The fundus camera is set up with a low

power microscope which provides a magnified view of the retina. Fundus images provide a

2-D representative image of the 3-D retina by using reflected light. The average width of the

camera view ranges from 30 to 50 degrees, and the entire imaging process takes approximately

5 to 10 minutes [143]. The first fundus image was drawn by a Dutch ophthalmologist Van

Trigt in 1853 [160] as shown in Figure 2.5. Fundus photography was invented in the 1920s and

has been used widely since the 1960’s [60], and remains one of the most widely used imaging

tools in clinics.

Ophthalmologists use fundus images to diagnose various diseases that affect the eye, such

as diabetic retinopathy and retinopathy of prematurity. Moreover, Nonmydriatic fundus pho-

tography (FP) has been a suboptimal tool for detecting age-related macular degeneration

(AMD) changes [146]. Moreover, FP images are instrumental in diagnosing various diseases

to support nonintrusive diagnosis in modern ophthalmology. This is because the morphology

of the blood vessel and the optic disk are important indicators for eye diseases and other termi-

nal illnesses, including hypertension [57, 144]. Additionally, fundus images are used to detect

medical symptoms, such as haemorrhages exudates, cotton wool spots, and pigmentation.

2.4.2 Optical Coherence Tomography

Optical Coherence Tomography (OCT) imaging, also known as ultrasonography with light, is

an emerging non-invasive optical imaging modality in biomedical optics and medicine. Since

the introduction of OCT by Huang et al. in 1991 by [77], it has become increasingly used in the

diagnosis and management of a variety of ocular diseases such as glaucoma, diabetic macular

oedema, and age-related macular degeneration. It also allows the acquisition of morphologic
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Figure 2.5: First human fundus photograph by Van Trigt in 1853 (courtesy of [160]).
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Figure 2.6: OCT scanner system schematic [95].From Left to right: A-scan. Backscattered intensity along the
axial direction is measured and formed a single depth profile; B-scan. The OCT beam is measured in
transverse direction; Volumetric image. Multiple B-scans are acquired and formed into a 3D volumetric

image, respectively.

(anatomic) high-resolution cross-sectional views of the retina. From Left to right, figure 2.6

shows the type of information acquired using OCT:

Axial (A)-scan: An image obtained along the depth direction of the retina.

Brightness (B)-scan: The OCT beam is estimated in the transverse direction to form a

2D image.

3D-scan: A collection of B-scans in parallel.

The valuable information provided by the technology which enables quantitative thickness

measurements of retinal structures is used in the identification of various disease states, de-

termination of the cause of decreased vision and monitoring treatment. About a decade ago,

all commercial systems were time-domain (TD) systems figure 2.7 (a). Now spectral-domain

figure 2.7 (b), a type of OCT, which enables the acquisition of substantially more data, are

also available. These two main types of OCT are briefly discussed in the next few subsections.
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Figure 2.7: Example OCT scanner systems. (a) Stratus OCT-3 (time-domain system by Carl Zeiss Meditec,
Inc., Dublin, CA). (b) Cirrus (spectral-domain system by Carl Zeiss Meditec, Inc., Dublin, CA). (courtesy of

[53] with permission).

2.4.2.1 Time-Domain Optical Coherence Tomography (TD-OCT)

The Time domain Optical coherence tomography (TD-OCT) technique is commonly compared

to the ultrasound due to the similarity of the two techniques. TD-OCT has around 10µm axial

resolution, which is much higher than that of ultrasound at around 150µm. Generally, TD-

OCT uses a backscattered echo time delay and light intensity levels to create a cross-sectional

image. Also, TD-OCT is the earlier version of OCT. It uses a super-luminescent diode to direct

low coherence light into the eye. The light beam is split into two parts by a beam splitter.

One of the beams is directed into the eye and is reflected from the different layers of the retina,

while a reference mirror reflects the other reference beam. As a result, a cross-sectional image

or a B-scan, with a resolution of approximately 8-10 µm is captured by sequentially obtaining

a series of A-scans [137]. A schematic illustration of the interferometry setup of TD-OCT is

shown in figure 2.8. A typical TD-OCT image from a commercial scanner has a dimension of

6 × 128 × 1024 pixels [53], although improvements have been made to the imaging technique.

The two retinal regions routinely scanned are the macula and the peripapillary region (near

the optic disc). Acquiring six linear radial scans in a “spoke pattern” centred at the fovea

is one of the standard scanning protocol for acquiring macular scans (e.g., the Fast Macular

protocol on the Stratus OCT-3). On the other hand, it is common to use several circular

scans to acquire images surrounding the optic disc [53]. The Stratus OCT (Carl Zeiss Meditec
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Figure 2.8: Schematic illustration of interferometry set-up in TD-OCT [147].

Inc., Dublin, CA, USA) figure 2.7 (a) is one of the most widely used TD-OCT devices in

clinical applications, and it captures 400 A-scans per second with an axial resolution of 10 µm.

TDOCT remains relevant in clinical practice. Clinics with SD-OCT device usually continue

to use their TDOCT systems. The qualitative information and quantitative measurements of

thickness changes over time obtained from TDOCT are reliable, which allows the provision of

quality care for the majority of conditions regularly encountered by ophthalmologists [80].

2.4.2.2 Spectral-Domain Optical Coherence Tomography (SD-OCT)

Spectral Domain Optical Coherence Tomography (SD-OCT) is also referred to as the Fourier

Domain OCT (FD-OCT) as its concept is based on fast Fourier transformation. It allows all

reflections of light from the different retinal layers to be measured simultaneously, and the

interference signal is a function of their wavelength. This eliminates the need for a moving

reference mirror. The first retinal images with SD-OCT were reported in 2002, which became

commercially available in 2006. The SD-OCT systems are approximately 40 to 110 times
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Figure 2.9: Schematic illustration of interferometry set-up in SD-OCT [147].

faster than TD-OCT systems [147] with an acquisition speed of about 25,000 A-scans per

second having an axial image resolution of ≈ 5 to 7µm [80, 137]. Recent SD-OCT scanners

can acquire up to 100,000 A-scans per second with an axial resolution of ≈ 3 to 5µm, a number

which can increase to 250,000 A-scans per second with an axial resolution of 5 to 10µm [109].

Furthermore, although SD-OCT is fundamentally similar to TD-OCT, it has some sig-

nificant variations. One of the main differences is that the reference mirror in SD-OCT is

in a fixed position, unlike reference mirror adjustment in TD-OCT that is not efficient and

limits both the speed and sensitivity of the scans. In SD-OCT specifically, the system acquires

A-scans with a fixed reference path by measuring the spectral response of the interferometer

[44]. It detects the interference between the sample and reference beams as a spectrum, and

the interference pattern is split into its frequency components. Then all of these components

are simultaneously detected via a charge-coupled device (CCD) camera. This CCD camera

is sensitive to various frequencies. A schematic illustration of the interferometry setup of

SD-OCT is shown is figure 2.9.
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The enormous advantages of the SD-OCT imaging modalities are becoming apparent

through research and experience, including faster image acquisition and improved resolution,

which benefits both physicians and the patients [80]. Artefact from ocular movements has

reduced significantly due to the improvements. The SD-OCT also overcome the TD-OCT

in its ability to form better 3D maps of the retina and optic nerve [137]. However, it is

noteworthy that image artefacts are present in all of the imaging modalities, which leads to

misrepresentation of retinal structure thickness [80].

The ophthalmoscope and later the fundus camera remained the primary methods of oc-

ular examination into the 1960s, while they are still standard tools with effectiveness and

in use today, they are not without limitations, and both require trained users to operate

and make diagnoses [31]. OCT is a relatively new technique that has dramatically advanced

the understanding, diagnosis and management of ocular diseases. The introduction of spec-

tral domain instruments has improved acquisition speeds and allows capturing high-resolution

three-dimensional images of the retina. It can provide quantitative measurements of retinal

structures with a high degree of reproducibility [137].

Moreover, fundus photography (FP) is like Google Earth, allowing the view of the wider

picture, while OCT is like Google Street View, allowing the view of the fascinating and useful

detail Gibson2015. OCT may have applications in other neurodegenerative conditions. Several

groups have demonstrated RNFL thinning in Alzheimer’s disease patients when compared

with age-matched controls [137]. These changes occur early during the disease and correlate

with the severity of cognitive impairment. Also, a significant reduction in inferotemporal

peripapillary RNFL thickness in Parkinson’s disease was demonstrated when compared with

age-matched controls [79].

In summary, there are many imaging techniques to capture the anatomical details of the

retina, which makes it possible to diagnose eye diseases and other ailments. However, due to

difficulty, time and effort required, and in some cases impossibility of manual retinal image

analysis, there is the need for computer-aided segmentation [55, 93, 149]. Also, although

fundus is still widely used, this thesis focuses on analysing OCT images as they provide more

details of the retina and enable the early diagnosis of the prevalent eye diseases.
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2.5 Image Segmentation

The importance of image segmentation in technology cannot be overemphasised as it plays a

crucial role in many medical imaging applications, by automating or facilitating the delineation

of anatomical structures and other regions of interest [132]. Segmentation is a division of

Computer Vision under Artificial intelligence that draws its principles from the concept of

perceptual grouping. The concept of perceptual grouping dates back to nearly a century ago

when it was proposed by Wertheimer [171], (first proposed in 1923 and this copy was made

available online by [61]). This concept pointed out the importance of perceptual grouping

and organisation in vision and mentioned several vital factors that influence the action, such

as similarity, proximity, and good continuation of light level, which lead to visual grouping.

The factors brought up by Wertheimer play a vital role in applications of vision [150]. We

value these points because Computer Vision tends to map the function of the human brain.

Therefore, like the majority of system or process automation, its main principles are derived

and governed by the real-life situation. This makes the use of prior knowledge inevitable in

image analysis techniques.

Segmentation is an image analysis technique, which in simple terms could mean a technique

for partitioning or grouping an image into multiple regions with similar characteristics for

better comprehension, organisation and visualisation. In computer science, there are basically

three sets of operations that can be performed on a digital (binary, coloured, grayscale) image,

i.e. Image Processing; Image Analysis; and Computer Vision [10]. While authors in [31]

groups the operations into four based on function or usage, although this classification gives

only subsections of the main classes considering that analysis and manipulation could fit into

one class as analysis Operations in the main classification.

Starting with image processing, it is also called and usually used as a preprocessing step,

and there are various techniques of performing such. It is a low-level operation carried out on

images, with the primary goal of setting the image to a particular state and ready for further

usage. Operations under this category include; image enhancement; noise removal; image

restoration to mention a few. Image Analysis is the next in the hierarchy going from low to
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Figure 2.10: Classification and interdependence between digital image operations.

higher level operations. It has to do with obtaining/identification of features on the image,

image segmentation, registration, and matching all fall under this category. The highest level

and main goal of image processing is Computer Vision, aimed at extraction and visualisation

of analysed features.

Notably, each category is independent. However, there is a partial dependency going from

high to low operations, where lower operation serves as a preprocessing step for the higher

in all cases. Hence image segmentation is sometimes (although confusing) also been referred

to as a “preprocessing” technique [31, 177] if the problem at hand falls in Computer Vision

category. Segmentation is also the most critical among the image processing techniques, and

also the most challenging as it is considerably easier to quantify the performance of Computer

Vision algorithms at recognition than at segmentation [110]. Figure 2.10 shows a summary of

the classification and the direction of dependency among the various operations that can be

performed on a digital image.

Consequently, mapping the dependence illustrated above (figure 2.10 to a real-life situation,

it appears similar. For example, assuming a stormy or night scene (as it is not clear and poses
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obstruction) is almost the same as an image corrupted by noise. This scenery usually requires

some measures to be taken to clear the view or adapt to the situation, possibly by the use of

glasses or night vision goggles. Accordingly, these measures in imaging terms are referred to

as image processing techniques. Moving to segmentation, it is the most critical because that

is where the decision of identifying boundary or grouping the scene in view into regions takes

place. This grouping is done by identifying the boundaries of objects using the concept of

perceptual grouping.

Furthermore, in some cases, knowledge about the scene or field of view assists in correctly

grouping the scene and knowing where to navigate. This prior knowledge of the scene is similar

to prior knowledge of the data that improves the performance of segmentation algorithms.

Finally, Computer Vision has to do with classification and visualisation. If the boundaries

have not been appropriately identified, it is apparent that the classification or recognition of

the object will be unsuccessful as well. It is also to be noted that for image processing there is

no universal approach for performing such, as strongly emphasised in literature and proven by

experimental results to date, the technique that works on one set of data might fail on another

(which leads to the discussion of the knowledge used in developing algorithms in chapter 2).

Moreover, segmentation is about similarities and differences, continuity or discontinuity, as

thus a point of classification from this higher (perceptual) perspective is relevant, thereby

reducing the time taken to choose a technique for the problem at hand. As there is no

universal algorithm for segmentation, narrowing down the options into a sub-category could

enhance the efficiency and computational time for segmenting an image. The problem of

segmenting two boundaries (i.e. background and foreground) is a minor and straight forward

problem; most of the current researches are focused on multiple regions or objects. The low-

level segmentation algorithms can handle the two region problem easily and faster, except it

is to be noted they are susceptible to noise.

Image segmentation algorithms also referred to as segmentation algorithms or techniques

are step by step ways or procedures of grouping or clustering an image into various regions

with similar characteristics [50, 65, 177]. Haralick [65] raised some of the issues on what the

representation of a good segmentation algorithm should entail, which includes the following.
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1. Uniformity and homogeneity concerning grayscale or texture. 2. Region interiors should

be simple and without many small holes. 3. Adjacent regions of segmentation should have

significantly different values to the characteristic on which they are uniform. 4. Boundaries

of each segment should be simple, not ragged, and must be spatially accurate.

Segmentation algorithms are broadly categorised into three [10, 50] based on the level

of information at which they operate (i.e. Pixel-based methods; edge Based Methods; and

Region-Based Methods), and into five as in [177]. The basic idea and some views on the

low-level methods are given below, with more emphases on the medium and high (edge and

region) methods, respectively. More emphasis is given to these two as most of the current

researches are based on these methods. Hence they present more opportunities for further

research.

We briefly revisit these three categories of image segmentation methods to highlight some

of the useful concepts we have taken from the mechanisms of these methods that were relevant

to this thesis. Additionally, this overview will also lay emphasis on how some of the previous

methods were based on the idea of similarity and differences, i.e. perceptual grouping, which

is among the primary basis of this research.

2.5.1 Pixel Based Methods

The low-level segmentation methods or techniques are called the pixel or threshold based

methods or data clustering algorithms [50, 169]; they are relatively automatic by nature.

In these techniques, one inserts the image and let the algorithm perform the computation

(segmentation/analysis) based on a threshold set by the user. These algorithms are simple

and straight forward in implementation, with almost no opening for users to discontinue or

manipulate once it starts. Some slight exceptions might be the threshold that the user could

set or the number of clusters in the case of clustering algorithms. K-means or fuzzy C-means

(FCM) [87] algorithms may require a bit more knowledge of the data.

A significant difference between the methods is that K-means provides a specific result

with the number of clusters and centroids produced, whereas C-means gives a probabilistic

result. For clear bimodal (binary images) these techniques can be considered the best, as
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they are strictly binary, keeping in mind the result of segmentation itself is binary (i.e. the

foreground or the background). However, they are susceptible to noise and could only be

handy with images that have apparent differences in intensity or gradient between the object

and the background. Some techniques like binary masking and labelling are also used as

additional constraints or final constraints step in higher methods of segmentation, and also

useful in obtaining the ROI.

Consequently, in our methods, we have utilised the Fuzzy C-Means as it only offers proba-

bility. Additionally, that is why the gradient information utilised in controlling the outcomes

of the Fuzzy C-means in chapters 5 and 6 is essential.

2.5.2 Edge Based Methods

As one of our approaches the higher level methods, the automation gets slightly more difficult

due to the constraints to be set and the idea behind the techniques. Edge detection is an image

segmentation technique based on the detection of discontinuity. An edge or boundary is the

place where there is a more or less sharp change in image property [50]. The active contour

started with the use of deformable models for image segmentation [85] while [128] introduced

the level set Level-sets and it was made accessible for computer vision and image analysis by

[108]. Level set methods are based on PDE, and image segmentation as a whole is an issue of

differentiation, as thus there is some logical agreement between the two. The introduction of

the PDE idea to segment images might have been highly influenced by knowledge of the data

or image in place.

2.5.3 REGION BASED METHODS

2.5.3.1 Region Growing

The seeded region growing algorithm, proposed by [3] is a simple and computationally in-

expensive technique for interactive segmentation of images in which the relevant regions are

characterised by coherent pixels based on some predefined patterns (e.g. intensity and colour

etc.) [112][10]. Region growing takes advantage of an important fact that the pixels close
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together to have comparable grayscale values.

The main idea of this approach consists in the observation that the pixels belonging to

one element of the object can possess similar properties. It does not have any statistical,

optimisation or probabilistic mathematical foundation. With no inclusion of the global picture

and suffers from other limitations. However, it has gained popularity due to its speed and

simplicity of implementation. The primary drawback of the region growing approach is that

it requires manual interaction to obtain the seed point [132].

This understanding of region growing has influenced our study because mainly it capitalises

on the idea of differences across regions and similarity within each region. Further studies will

consider region growing techniques due to the understanding of the retinal architecture, as the

layering topology can be used to prevent leaks in the method.

2.5.3.2 Region Split and Merge

The split method for segmentation begins with the entire image as the initial segment. Then

it successively splits each current segment into parts if the segment is not homogeneous suf-

ficiently. Homogeneity can be easily established by determining if the difference between the

largest and smallest grayscale intensities is small enough. Robertson [141] first suggested al-

gorithms of this type and one of the disadvantages of the region merging processes is their

inherently sequential nature [86]. The regions produced depend on the order in which regions

merge. Almost all the region extraction algorithms use local information profoundly. There is

no simple way to incorporate global information into the model unless by rigorously restricting

the collection of images we are dealing with. All of the region extraction techniques iteratively

process the pictures and usually involve a high expenditure in computation time and memory.

2.5.4 Incorporation Prior knowledge for Objective Image Segmentation

This section provides insight into the use of prior knowledge in improving the performance of

image segmentation algorithms. It also raises some challenges associated with incorporating

the prior knowledge into these algorithms.
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2.5.4.1 Prior Knowledge

The use of prior knowledge enables the full automation of algorithms, to characterise the

desired object and obtain beneficial results. For example, Stephanie et al. [27] were able

to fully automate the segmentation of retinal layers by adding two columns to either side of

the image. This automation is from the understanding that retinal layers span the image

vertically, and that minimum cut approaches prefer minimum weighted paths. Also, Liu et al.

[103] were able to constrain the level set method to preserve the layering topology in OCT,

based on the understanding that retinal layers do not fall on one another.

There are many forms of prior information, including appearance prior, boundary informa-

tion, shape models and topology, to mention a few. Appearance is one of the essential visual

cues to differentiate various structures in an image, which is portrayed by studying the dis-

tribution of different features such as intensity values, colour, and texture within each object

[125]. In OCT, some image traits worth considering in this direction were raised in [54], which

highlights even though the thickness is an essential property of retinal layers, other properties

may be useful as well. For example, the thickness values of each layer and (or) group of lay-

ers, and the average and variance of individual layer normalised intensity. Also, Haralick [65]

highlighted computing variety of other traditional texture-based properties, including variance

and the co-occurrence matrix feature, might be useful.

2.5.4.2 Interactive and Automatic Segmentation Techniques

Incorporating user input into a segmentation is instinctive and easy [125]. However, for most

images, it is quite challenging to use completely automated segmentation approaches. Most

notably, in the case of natural images and images with an unclear region of interest, such as

OCT, it requires a high level of accuracy to accomplish, and interactive segmentation might

be inevitable [177]. In contrast, interactive segmentation is very different from automatic

segmentation to warrant a distinct approach to its evaluation. The most crucial difference

between automatic and interactive segmentation algorithms is, of course, that interactive

segmentation algorithms require a human operator. The interactions provided by this operator

usually have a pronounced effect on the resulting segmentation: good mark-up is usually
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needed to find a proper segmentation. Clearly, this is to be expected if the interactions did

not have such a profound effect on the result, they could be provided automatically [112], thus

eliminating the need for human supervision. The automatic segmentation algorithms are not

given much priority, and most impact is given to the interactive. Hence, interactive algorithms

are more efficient, as they have more practical applications. From what we observe, this is

influenced by the prior knowledge held on the data.

Furthermore, the automation of the segmentation algorithms become more difficult going

from the low level to the higher level segmentation methods. Taking a broader perspective

of the applications of image segmentation, there is a natural transition from automated to

interactive approaches, with the medium level methods usually been semi-automated. This

transition is as a result of the increase in problems to be solved within the image and a

better understanding of the image data. Thus, most of the recent researches are focused on

optimization. Since manual segmentation of retinal layers is time-consuming and prone to

bias, automatic segmentation methods are critical for full utilization of this technology [96].

While they are beneficial in most cases, limited or no attention is given to automation and

simultaneousness of algorithms.

Given that computational time is an issue for some of the algorithms, exploiting the ca-

pability of GPU programming in addition to these factors will yield a better result, both in

terms of efficiency and computational time. A study by [130] includes a wide range of graph

cut approaches, concluding that the automatic and interactive methods were evaluated indi-

vidually with approaches of its kind (automatic or interactive approaches). It also includes an

experimental evaluation of segmentation algorithms based on graph theoretical approaches.

Lastly, if the ophthalmologists could estimate the size of the retina to a certain level, this

will help model segmentation algorithms. This knowledge will not only help and make the work

more accessible but also open up new avenues for research in image segmentation. For example,

if the size of the retina is specific, region limitation can easily be applied with a high level of

confidence. Also, this could help in analysing if specific sizes of the retina mark some diseases

or not. These all can be incorporated to solve various issues of segmentation and evaluation of

retinal images. In this thesis, we utilise intensity distribution, shape prior and topology of the
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retinal in OCT images. More importantly, we show how mathematical models can be used to

incorporate the prior knowledge in fully automated image segmentation algorithms efficiently.

Due to the broad nature of segmentation, this thesis focuses on automatic segmentation of

retinal OCT B-scan images.

2.5.5 Graph Based Methods

Graph-Cut is an optimization method used in solving many image processing and Computer

Vision problems, as first reported by [148], where the problem is represented as a graph. A

graph G is a pair (ν, ε) consisting of a vertex set ν (referred to as nodes in 2D or Vertex in

3D nested grid) and an edge set ε ⊂ ν × ν. There are two main terminal vertices, the source

s and the sink t. The edge set comprises of two type of edges: the spatial edges en = (r, q),

where r, q ∈ ν\{s , t}, stick to the given grid and link two neighbour grid nodes r and q except

s and t; the terminal edges or data edges, i.e. es = (s, r) or et = (r, t), where r ∈ ν\{s , t},

link the specified terminal s or t to each grid node p respectively. Each edge is assigned a cost

C(e), assuming all are non-negative i.e. C(e) ≥ 0. A cut partitions the image into two disjoint

sets of s and t, also termed the s − t cut. The cut divides the spatial grid nodes of Ω into

disjoint groups, whereby one belongs to source and the other belongs to the sink, such that

ν = νs
⋃
νt, νs

⋂
νt = ∅ (2.1)

We then introduce the concept of max-flow/min-cut[46], which aims to find a flow f of the

maximum value in a graph (flow network) G with source s and sink t, which can alternatively

be viewed as finding a minimum cut in the flow network. This comparison is because of the

max-flow min-cut theorem, which states that ’the value of the maximum flow is equal to the

capacity of the minimum cut’. Distinctly, the max-flow computes the maximal flow allowed to

pass from the source s to the sink t and is formulated by

max
ps

∑
v∈ν\{s,t}

ps(v) (2.2)
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on the other hand, for each cut, the energy is defined as the sum of the costs C(e) of each edge

e ∈ εst ⊂ ε, where its two end points belong to two different partitions. Hence the problem of

min-cut is to find two partitions of vertices such that the corresponding cut-energy is minimal,

min
εst⊂ε

∑
e∈εst

C(e) (2.3)

The equivalence of max-flow to min-cut can be easily understood whereby if the edges

on the min-cut are removed from the graph, there will be no path from s to t, likewise,

if the saturated edges of the max-flow are removed from the graph no flow with reach the

sink from the source. The graph-based methods in image segmentation are focused mainly

on optimisation based on network flow or pattern recognition. There are many graph-based

methods, although there are two dominant methods:

Shortest-path: The shortest path algorithm seeks to find the minimum number of edges

from source to sink within a graph [30]. Dijkstra’s algorithm [32] is among the popular

shortest path based algorithms. The algorithm is optimal from its background, as it

is an extension of the breadth-first search (BFS) (that works on unweighted graphs).

Dijkstra’s algorithm extends the BFS to enable it to work on weighted graphs. However,

the algorithm works on graphs with positive weights only and cannot perform on graphs

with negative weights. Thus, the Bellman-Ford algorithm was proposed, which handles

the negative weights. Dijkstra’s algorithm is faster than the bellman-ford algorithm [30],

although it is not clear which one is better, as each of them is optimal in solving the

problem it tends to handle, just that one has a more considerable scope than the other.

The technical background of this approach is discussed in chapter 3, which utilises the

concept of the approach.

Max-flow and min-cut: is the dominant of the two main graph-based approaches. There

are two main methods for finding the max-flow, namely the augmenting paths [46] and

push-relabel [58]. The difference between the two categories is that the first method

searches for a path where it can send a positive weight, such that it saturates at least

one edge on the path. It repeats the procedure until no augmenting path can be found
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in the graph from source to sink. Also, the outflow from a node cannot exceed the inflow

into the node. In the push-relabel method, a pre-flow to find shortest paths between

nodes from source to sink it repeats the process until no path can be found from source

to sink and in this case, the outflow can exceed inflow. The technical background of

max-flow/min-cut is further discussed in chapter 6, which utilises the concept.

Graph cut was first introduced to Computer Vision by [148], to minimise the maximum

cut, by reducing the maximum flow between the small segments (sub-graph) for binary image

restoration. The algorithm had a problem of voxel isolation as it was a local optimisation

approach and did not have a global picture. It was then extended in 2000 by [150] with the

normalised cuts, this attempt to solve the problem of voxel isolation in the previous work,

which it did, however, it also did not have a global image in its approach. This was then

further extended and optimised by [16], since its introduction it has gained high acceptance

and applicability in various medical imaging applications. Following certain conditions, a cut

on a graph can be perceived as a hypersurface in N-D space enclosing the corresponding graph

[15]. As it is a matter of energy optimisation, it is also vital to know the type of constraints

to set. The region of interest and data structure should, therefore, determine the constraints

set in an algorithm to perform on. The pattern on which the algorithm follows in segmenting

an image is accordingly essential. Graph cut methods are further discussed in chapters 3 and

6 utilising variants of the method. Graph-Cut has been an active area of research since its

introduction to image processing, in particular some popular methods utilising its concept

includes [16, 92, 179].

2.5.6 Conclusion on Image Segmentation

It is important to note that the same algorithms are used in other aspects of image operations,

some using the same constraints while it varies slightly in others. Taking the graph cut

method as an example to clarify and justify the point made earlier herein, it has been used

in image segmentation [16], image restoration [148], computing stereo [17, 18] and in object

reconstruction. The graph cut constraints imposed on edges is proof of optimisation. With

single objects or problem, most algorithms perform well, taking the region growing, level
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sets, active contours, selecting a seed will obtain the desired object; however, they have been

applied to solve multiple region problems, and they have performed well. The main addition

or difficulties have been handled by recent researches tend to stabilise or improve how they

handle the issue of multiple regions or objects and speckle noise even though that is reducing

with improvement in imaging technology. As some layers are obtained simultaneously, what is

the possibility of obtaining all layers simultaneously? Keeping in mind that w(i, j) is different

from w(j, i). This, in turn, is similar to the idea of thresholdingi.e. instead of setting the

threshold as I ≥ 0, it can be in the reverse case of setting the threshold as I ≤ 0. This is

important to highlight however beyond the scope of this thesis, considering the vast research

carried on The split and merge are thus some worth related to the k-means in their approach

as they both work on intensities. Split and merge, active contour, level sets, are better for

models and shapes segmentation. The graph cut was introduced to Computer vision almost

about the same time as the active contour.

2.6 Retinal Layers Segmentation

There have been numerous attempts to segment the various layers of the retina, each attempt

with varying level of success and efficiency. Existing methods in the literature focus on the

number of layers segmented, accuracy, constraints, and others on optimization. The various

methods, challenges and success of previous segmentation methods for retinal OCT analysis are

briefly discussed in the next few paragraphs. To start with, Koozekanani [93] developed a 1-D

edge detection algorithm using a Markov boundary model, but the algorithm was prone to error

due to speckle noise. The filtering algorithm was unable to denoise the image properly, and

also introduced its own errors by erasing small image features and blurring others. Boyer et al.

[14] later extended this to obtain the optic nerve head and RNFL. Baroni et al. [9] developed a

multi-step approach for quantifying structural changes in the retina by a combination of edge

search at different (High and Low) intensities and use of prior knowledge. However, the results

were highly dependent on the image quality and the variations caused by retinal pathologies.

Moreover, the peak search approach was used to obtain 3 retinal layers by Shahidi et
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al. [149], in which the algorithm searched peaks corresponding to high and low intensities.

Likewise, Cabrera [21] segmented 7 layers using peak search interactive boundary detection

based on local coherence of the retinal structure. Also, the active contour approach is an avenue

explored by [116] to obtain the RNFL thickness, were a method based on anisotropic noise

suppression deformable splines was developed. However, the algorithm was prone to leaking

in boundaries, and the anisotropic filter did not thoroughly smooth the images. The level

set method has been used for retinal OCT image analysis [55, 64, 126, 170, 182], which have

reported successful results. However, computational time and leakage is the main challenge

of these methods.

Not only in humans, Yazadapanah et al. [174] proposed a method to segment five intra-

retinal layers in OCT images from 4 rats by adopting the Chan-Vese energy-minimizing active

contours without edges. However, despite the algorithm’s ability to handle the noise, it has

quite a costly computational time, due to the set of constraints it operates. As well, seven

retinal layers of a rodent were segmented by [115] using a method that employs an external

force derived from the image gradient through an adaptive vector-valued kernel function.

The algorithm was aimed at addressing the issue of sensitivity to speckle noise in previous

approaches. However, due to the variance in the anatomical structure of human and rodents

retina, it is quite difficult to rate its robustness directly compared to other approaches, even

though speckle noise is a major issue faced by all segmentation algorithms and these algorithms

present a way of handling the leak in active contour.

On other notes, segmentation of other features of the retina for diagnosis also exists, such

as the segmentation of the blood vessels from the optic disc [25, 42, 48, 76, 97, 144], identifying

fluid-filled regions of the retina [45, 135], and the Optic Nerve Head [14]. While segmenting

these features are still important alternative measures for the diagnosis of the aforementioned

ocular diseases, they are beyond the scope of the discussion of this thesis. Also the same

algorithms but bounded and influenced by different constraints and prior knowledge as in [14]

or the same parameters as in [116]. For this reason, previous works in segmenting retinal

layers are discussed in chapters 4 to 6 to outline relevant works to the individual chapters.
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Figure 2.11: Image segmentation methods and information from data that determines how the algorithm is
developed.

2.7 Background Summary

The main reason for much research in automated intraretinal layer segmentation is to enable

the development of more plausible quantitative tools to help clinicians diagnose and monitor

eye diseases. The potential impact of automated segmentation applications is high due to

the vast amounts of information contained in OCT images. For example, It is possible that

the thickness of the ganglion cell layer in macular OCT scans can indicate ganglion cell loss

at an earlier stage in cases of optic nerve swelling. Therefore, to better understand what

quantitative features on OCT images indicate eye diseases such as diabetic retinopathy, AMD,

and glaucoma, intraretinal layer segmentation is necessary to extract individual layer thickness.

Figure 2.11 provides an overview of the discussed literature and image segmentation. Each
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box represents a specific area of research with substantial literature, although directly or

indirectly dependent on one another. The right side of the diagram shows segmentation

algorithms (blue), while the left shows information from the data (yellow), and at the centre

(green) it shows how they are independent but come together to give the final algorithm to

be developed. Specifically, all the segmentation methods have a mathematical background,

with the exception of region growing. The information (prior knowledge 1) derived from the

data determines the constraints set in the algorithm. Combining these two elements ensures a

robust and objective algorithm is developed. It is essential to understand the data, as it plays

a crucial role in how the segmentation problem is approached and which algorithm to use.

In this thesis, we use the prior knowledge of the retinal OCT image and a selection of

segmentation methods to segment different retinal layers, which provides crucial information

to clinicians for diagnosing and monitoring prevalent eye diseases. Although the thesis focuses

on retinal image analysis, it addresses some of the challenges of image segmentation in the

broader perspective.

1Prior knowledge - refers to the layer reflectivity on an OCT image and the retina topology. To avoid
terminological confusion, the prior knowledge should not be confused with the prior probability in Bayesian
image analysis [124, 125]
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Chapter 3

Graph-Cut Segmentation

This chapter presents a comprehensive and fully automatic method for segmentation of retinal

layers in OCT images, which is comprised of fuzzy histogram hyperbolisation and graph cut

methods to segment 7 layers of the retina across 8 boundaries. One of the main ideas behind

this chapter is based on the fact that graph-cut method depends on the assignment of appro-

priate weights. Therefore, this chapter uses a computationally inexpensive method to improve

weight calculation. Specifically, the method utilises normalised vertical image gradients 1, and

their inverse 2 to represent image intensity in calculating two adjacency matrices. Then the

weights in these adjacency matrices are reassigned to make edges along retinal boundaries have

a low cost. The integration of the enhanced adjacency matrices from gradient information,

which captures the unique characteristics of retinal structures, into the graph cut framework

allows the method to find the actual minimum paths. Finally, the weight calculation is followed

by a sequential segmentation process based on individual layer characteristics.

3.1 Introduction

Medical images are an integral part of health care for diagnosis, clinical studies, research, and

learning [113]. Medical images are highly complex to handle and analyse, for many reasons
1re-scaling to [0 1]
2multiply the normalised gradient by ×− 1 + 1

45



3.1. Introduction 3. Graph-Cut Segmentation

including, the obstruction of speckle noise, managing large volumes of data and extracting

useful information from the data [153]. In particular, ophthalmic imaging technologies have

witnessed an ever-growing scale of retina images, both in volume and variety. Nowadays,

the 2D fundus images are widely available in the high-street opticians, while the recent 3D

Optical Coherence Tomography (OCT) [77] images have gradually become a standard imaging

modality in clinical practice. However, this vast amount of imaging data are stored mainly

in their raw format. Even after diagnosis and treatment, the relevant medical information

provided by the clinical experts, if any, is typically recorded separately from the images. The

lack of high-level information on the retinal image, e.g. labels, tags, markers and measures,

has hindered the development of new methods of diagnosis and treatment. To a greater

level, this has also presented a significant challenge to healthcare analytics. Furthermore, the

severity of various eye diseases and cardiovascular disorders have been shown to correlate with

changes in retinal structures [1, 134, 176]. Hence, due to the ability of OCT to provide high-

resolution images of the retina, it has become a vital tool in the diagnosis of eye diseases. An

essential aspect of the diagnostic process is obtaining individual layer properties. However,

manual segmentation processes are tedious. Due to the critical nature and open challenge of

segmentation, many computational methods have been proposed to aid with the segmentation

process.

Motivated by the challenges as mentioned earlier, this work aims to develop a compre-

hensive and fully automatic method for segmentation of retinal layers in OCT images. The

method will provide the most basic but yet crucial structural information to the original raw

data, and serve as a starting step for any further and large-scale healthcare analytics. In

theory, segmentation is the separation of images into more meaningful information based on

similarity or difference, continuity or discontinuity [171]. One of the well-researched methods

of segmentation is Graph-based methods. Segmentation using graph cut methods depends on

the assignment of appropriate edge weight. The paths obtained by the standard shortest path

algorithms [32, 46] have no optimal way of handling inconsistencies (such as the irregularity

in OCT images), as thus it sometimes obtains the wrong paths, which we call the "wrong

short-cuts". To avoid the wrong short-cuts, we reassign the weights to promote the homogene-
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ity between adjacent edges using fuzzy histogram hyperbolization. In other words, the edges

with high value get higher weights, while edges with low values get lower weights. The idea

behind this is that the transition between layers of OCT images which are from dark-bright

or vice versa are improved. This means we can better identify the layers by searching for the

changes or transitions between layer boundaries. Primarily, we take into account the transi-

tion between the layers is, in most cases very smooth, making it quite challenging to segment

the layers. Now if we re-emphasise on these changes, such that they become lucid, this aids

the algorithm in successful segmentation and avoiding wrong short-cuts.

In this study, we take into account the effect of promoting continuity and discontinuity, in

addition to adding hard constraints based on the structure of retina to segment seven retinal

layers by detecting eight layer boundaries. Distinctly, the layers are: Nerve Fibre Layer (NFL);

Ganglion Cell to Layer-Inner Plexiform Layer(GCL+IPL); Inner Nuclear Layer (INL); Outer

Plexiform Layer (OPL); ; Outer Nuclear Layer to Inner Segment (ONL+IS); Outer Segment

(OS) and Retinal Pigment Epithelium (RPE). The locations of these layers and boundaries

in an OCT image are illustrated in Figure 3.1. This chapter is organised as follows. In

Figure 3.1: Illustration of the 8 boundaries and 7 retinal layers segmented in the study. The numbers in
brackets are the sequential order of the segmentation.

Section 3.2, we review previous work on noise handling and retinal layer segmentation of

OCT images. Section 3.3 describes the proposed graph cut segmentation method. Section 3.4

presents experimental results on 150 OCT images including discussion. Finally conclusions
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are drawn in Section 3.5.

3.2 Background

3.2.1 Noise and Noise Handling in Retinal OCT

In OCT images, two main kinds of noise exist, i.e. the speckle noise during acquisition and the

shadows of blood vessels. Speckle noise in OCT images causes difficulty in the precise iden-

tification of the boundaries of layers or other structural features in the image either through

direct observation or use of segmentation algorithms [84, 115]. The noise that corrupts OCT

images is non-Gaussian, multiplicative, and neighbourhood correlated. Thus, it is not eas-

ily suppressed by standard software denoising methods [111]. Since OCT images are highly

corrupted by speckle noise, some pre-processing steps are usually performed to reduce the

effect of noise. In most cases, even though the segmentation algorithms are designed to han-

dle uncertainties and noise, the pre-processing is used as a first step to handling the noise,

irrespective of whether the analysis is performed in 2D [21, 82, 164] or 3D [165, 167, 168], in

order to remove the speckle noises and enhance the contrast between layers.

Previous attempts, including spatial and frequency compounding techniques, have been

used to address the problem of speckle noise in OCT [78, 133]. However, the tolerance or

adaptability of these techniques is limited, which then complicates the analysis stage. They

are also quite sensitive to the choice and fine-tuning of various parameters [145, 153]. Further,

the use of digital filters has been proposed to suppress the speckle noise on OCT images,

such as median filtering, wavelet-based filtering that employs nonlinear thresholds, anisotropic

diffusion filtering [45], and nonlinear anisotropic filtering [62].

Moreover, the median filter is one of the most popular methods used in OCT image denois-

ing [84]. The median filter has been used solely by [94, 149], and in combination with other

enhancement techniques. George et al. [56] used the median filter and image homogenization

using Nagao filter. A 4 x 4 median filter was applied twice to enhance the performance of the

filter in OCT denoising by [70, 93], which was later improved in combination with a Palladian

of Gaussian (1D) edge detector by Boyer et al. [14]. Recently, Lu et al. [104] combined the
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median filter and bilateral filter. The basic problem associated with the median filter and

most denoising algorithms is their intrinsic consequence in decreasing the image resolution

[31, 84]. Although some of these methods are effective in reducing speckle noise, most incline

to blur the structural boundaries in the OCT image. In fact, most of these algorithms use a

defined filter window to estimate the local noise variance of a speckle image and perform the

individual unique filtering process. The result is generally a reduced speckle level in homoge-

neous areas. However, the image is either blurred or over smoothed due to losses in detail in

non-homogeneous areas like edges or lines. Also, the conventional algorithms in OCT segmen-

tation do not consider the intensity inhomogeneity in the image, which can lead to inaccurate

segments and inability to detect all layers.

Clearly, the primary goal of noise reduction is to remove the noise without losing much

detail contained in an image [145]. We propose a method that preserves the edge informa-

tion and improves visibility by hyperbolizing the image. This improves the homogeneity of

pixel values in every layer, which consequently improves the performance of the segmentation

method, and makes the method applicable, for diagnosis and tracking medication progress of

ocular diseases.

3.2.2 Previous Work

The segmentation of retinal layers has been an area of active research and has drawn a large

number of researches, since the introduction of Optical Coherence Tomography (OCT) [77].

Various methods have been proposed, some with focus on the number of layers, others on

the computational complexity and efficiency, graph formulation and mostly now optimisation

approaches. Segmentation of retinal images is challenging and requires automated analysis

methods [8]. In this regard, a multi-step approach was developed by [9]. However, the results

obtained were highly dependent on the quality of images and the alterations induced by retinal

pathologies. A 1-D edge detection algorithm using the Markov Boundary Model [93], which

was later extended by [14] to obtain the optic nerve head and RNFL. Seven layers were obtained

by [21] using a peak search interactive boundary detection algorithm based on local coherence

information of the retinal structure. The Level Set method was reported by [126, 166, 167, 168],
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which were computationally expensive compared to other optimisation methods. Graph-based

methods in [55, 64, 82, 183] have reported successful segmentation results, with varying success

rates. Recently, [39] proposed a method using the Fuzzy Histogram Hyperbolization (FHH)

to improve the image quality, then embedded the image into the continuous max-flow to

simultaneously segment 4 retinal layers.

Moreover, the use of gradient information derived from the retinal structures has in recent

years been of interest to OCT segmentation researchers. Chiu et al. [27] utilised the gradient

information with the Graph-Cut method, where the retinal structure is employed to limit

search space and reduced computational time using dynamic programming. This method was

recently extended to a 3D volumetric analysis by [156] in OCTRIMA 3D with edge map and

convolution kernel in addition to hard constraints in calculating weights. They also exploited

spatial dependency between adjacent frames to reduce processing time. A combination of edge

detection and polynomial fitting is yet another approach proposed to derive boundaries of the

retinal layers from gradient information by [105], and machine learning by [96] with the use

of random forest classifier. The utilisation of gradient information on OCT images is mainly

due to the changes that occur at layer boundaries in the vertical direction, thereby attracting

segmentation algorithms to exploit this advantage. The method takes into account the retinal

structure and gradient information. More importantly, the re-assignment of weights in the

adjacency matrix, because segmentation using graph cut methods depends on the assignment

of appropriate edge weight as highlighted earlier.

3.3 Methods

In this section, we provide the details of the graph-cut approach to segmenting seven layers by

identifying eight retinal layer boundaries on OCT B-Scan images. A schematic representation

of the method is illustrated in Figure 3.2. Some parts of this method have been published

earlier in [34, 39]
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Figure 3.2: Schematic representation showing the main steps of the graph-cut segmentation algorithm.
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3.3.1 Pre-Processing

Speckle noise is ubiquitous in OCT images, as elaborated in the previous section 3.2, which

has negative effects on further processing. For example, the retinal OCT images have a low

Signal to Noise Ratio (SNR) due to the strong amplitude of speckle noise.

(a) (b)

Figure 3.3: Image pre-processing. (a) Original image corrupted by speckle noise, and (b) filtered image by
Gaussian (σ = 3).

Various methods have been used to handle the presence of noise. Gaussian filters are com-

monly used for image preprocessing, and an example of a preprocessed image using Gaussian

filter compared to its original is shown in Figure 3.3. The Gaussian generally is able to sup-

press the speckle noise and improve homogeneous regions. However it is not ideal for OCT as

it requires fine tuning of the filter window and is also unable to improve the homogeneity in in-

homogeneous regions. Consequently, a method for preprocessing OCT using Fuzzy histogram

hyperbolization (FHH) is proposed. FHH is simple and straight forward, yet effective to a

range of image and signal processing applications [106]. The method starts by representing

every image I, by the following [52]:

I =
M⋃
m

N⋃
n

µmn
gij

(3.1)

Where gij represents the intensity of the ijth pixel and µmn its membership value, given

m = 1, 2, 3 . . .M and n = 1, 2, 3 . . . N . In line with this, using the linear index of fuzziness, we

calculated image fuzziness with [157] :

γ(I) = 2
MN

N∑
i=1

M∑
j=1

min[µI(gij), µ̄I(gij)] (3.2)
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where µI(gij) is the membership function of greylevel gij and µ̄I(gij) = 1 - µI(gij). This maps

image greylevel intensities into a fuzzy plane using membership functions. The membership

functions are modified for contrast enhancement, and the fuzzy plane is mapped back to image

grey level intensities. The aim is to generate an image of higher contrast than the original

image by giving larger values to the greylevels that are closer to the mean greylevel of the

image than to those that are farther from the mean.

Using the concept of fuzzy histogram hyperbolisation described in [158, 159], we calculate

membership (re-scale the image to [0,1]) value for each grey-level as:

µ(gij) = gij − gmin
gmax − gmin

(3.3)

where the maximum and minimum intensity values are represented by gmax and gmin respec-

tively. Then the parameter β acts as a fuzzifier, which determines the level of transformation

and the desired grey level value L. These parameters, β and L are used to calculate the new

grey values of image using the following transformation [159]:

gij = ( L− 1
e−1 − 1)× [e−µ(gij)β − 1] (3.4)

The value of β determines a number of operations that could be performed with membership

modification [158]. The main idea behind equation 3.8 is to transform the values of the image,

such that brighter layers become brighter, while the darker layers become darker. This makes

the edges clearer, and enhances the outcome of the segmentation process. The outcome of the

equation 3.8 is shown in figure reffig:enhanca. As the value of β approaches 0, the results are

similar to that of histogram equalization, whereas if β approaches values 5 and above, it tends

to provide result similar to segmentation. We therefore take two issues into consideration: 1)

Most image de-noising processes are sensitive to the choice of various parameters [145]. 2)

The fuzzifier β modifies the membership values additionally, and so, the gray level dynamics

of the resulting image can be changed [158]. Consequently, the value of β from equation (3.4)
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is constrained to arbitrate within a specified window by the following conditions:

β = β + C

β = βmin if β + C < βmin

β = βmax if β + C > βmax

(3.5)

where βmin and βmax are the minimum and maximum acceptable values of β. To achieve the

above, we introduce a constant C, called the stabiliser. The stabiliser keeps the value of β

within the set threshold. This allows the method to set a suitable value for the image based

on the membership information without the need for user input. Of course, the threshold

values can always be adjusted easily, for the method to adapt to a wider range of images

and applications. However, we limit the study to the enhancement of retinal OCT images to

suppress and handle speckle noise and blood vessel interference. After the transformation, the

image is enhanced, and this has a positive effect in calculating the flow. Examples of image

transformations with various values of β are shown in Figure 3.4. For this image, β is set to

2.2 in the experiment and will vary depending on the image.

Figure 3.4: Image Enhancement from equation 3.8. A - unprocessed image; B - transformed images with β=
0.3; β =5; and D - transformed images with β = 2.2 (the computed value for this image).

Unlike other preprocessing methods, which reduce image quality or leads to loss of data,

this method preserves edge information and adapts to OCT inconsistencies as the value is

computed based on each image. This allows the method to adapt to different OCT images.

The use of fuzzy histogram hyperbolisation is further discussed in chapter 6.
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Figure 3.5: Sample histogram of images: a - Histogram of Figure 3.4A and b - Histogram of Figure 3.4D

3.3.2 Graph formulation and Weight Calculation

In formulating the graph, we consider the fact that there is always a transition from bright-

dark or dark-bright at layer boundaries in the vertical direction [26, 27, 156]. Hence, it is

befitting that we use two adjacency matrices to represent these transitions. To achieve this,

we obtain the vertical gradient of the image, normalise the gradient image to values in the

range of 0 to 1, and then obtain the inverse of the normalised image gradient as shown in Figure

3.6. These two normalised gradient images are then used to obtain two separate undirected

(a) (b)

Figure 3.6: Image gradients used in generating adjacency matrices: (a) - normalised vertical image gradient
computed by rescalling vertical image gradient to [o 1] containing dark-bright layer information and (b) -
inverse computed by multiplying figure 3.6a(a) by ×− 1 + 1 containing bright-dark adjacency matrix.

adjacency matrices, where Figure 3.6 (a) contains information of bright-dark layer transitions

while Figure 3.6 (b) contains information for layer transitions from dark-bright. Perhaps

second derivatives might capture the layer information and improve the segmentation results.
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The adjacency matrices are formulated with the following equation adapted from [27]:

wab = 2− ga − gb + wmw (3.6)

where wab, ga, gb and wmw are the weights assigned to the edge connecting any two adjacent

nodes a and b, the vertical gradient of the image at node a, the vertical gradient of the image

at node b, and the minimum weight added for the graph stabilisation. The resulting adjacency

matrices are weighted undirected acyclic graphs. To improve the continuity and homogeneity

in the adjacency matrices they are hyperbolized, firstly by calculating the membership function

with the fuzzy sets equation (3.7) [159] and then transformed with equation (3.8).

w′ab = wab − wij
wmax − wmin

(3.7)

where wmin and wmax represents the maximum and minimum values of the adjacency matrix

respectively. The adjacency matrices are then transformed with the following equation:

w′′ab = (w′ab)β (3.8)

where w′ab is the membership value from equation (3.7), and β, the fuzzifier is a constant.

Considering the number of edges in an adjacency matrix, we use a constant β instead of

calculating the fuzziness. The main reason is to reduce computational time and memory

usage. The resulting adjacency matrices are such that the weights are reassigned, and the

edges with high weights get higher values while those with low values get lower edge weights.

The motive here is that, if continuity or discontinuity is re-emphasised the algorithm will

perform better. Where in this case we improve both, the region of the layers get values close

to each other, while that of the background gets lower along the way, this is more realistic

and applicable in this context (as the shortest path is a greedy search approach), because at

the boundary of each layer there is a transition from bright to dark or dark to bright, and

therefore improving it aids the algorithm in finding correct optimal solutions that are very

close to the actual features of interest.
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The weight calculation is followed by several sequential steps of segmentation that will

be addressed in the next few subsections. We adopt layer initialisation from [27], where two

columns are added to either side of the image with minimum weights (wmw), to enable the cut

to move freely in those columns. This initialisation is based on the understanding that each

layer extends from the first to last column of the image, i.e. dividing the image horizontally at

each layer boundary, and that the Graph-Cut method prefers paths with minimum weights.

We use Dijkstra’s algorithm [32] in finding the minimum weighted path in the adjacency

matrix, which corresponds to layer boundaries (other optimisation methods utilising sparse

adjacency matrices might be used in finding the minimum path). Graph-Cut methods are

optimal at finding one boundary at a time, and therefore to segment multiple regions in most

cases, requires an iterative search in limited space. Limiting the region of search is a complex

task, as it requires prior knowledge and is dependent on the structure of the features (regions of

interest). Some additional information on automatic layer initialisation and region limitation

are discussed in [27, 34, 82].

3.3.3 ILM (B1) and IS-OS Segmentation (B2))

It is commonly accepted that the NFL, IS-OS and RPE exhibit high reflectivity in an OCT

image [27, 105, 156]. This is also evident from previously conducted studies [39], where

we segmented the two most reflective layers. Taking into account this reflectivity and the

dark-bright transition, we segment the ILM (B1) and IS-OS (B2) boundaries using Dijkstra’s

algorithm [32]. The ILM (vitreous-NFL) boundary (B1) is segmented by searching for the

highest change from dark-bright, this is because there is a sharp change in the transition,

additionally it is amidst extraneous features, above it is the background region in addition to

no interruption of the blood vessels, as can be seen in the gradient image. All of the above

reasons make it easier to segment the ILM than other layers. We then limit the region below

ILM and search for the next highest change from dark-bright in order to segment the IS-OS

boundary. In most cases the ILM is segmented, but to account for uncertainties, i.e. to

differentiate or confirm which layer was segmented, we use the mean value of the vertical axis

of the paths to determine the layer segmented, as the ILM is above the IS-OS (similar to [27].

57



3.3. Methods 3. Graph-Cut Segmentation

3.3.4 RPE (B3) and NFL-GCL (B4) Segmentation

As mentioned in the previous subsection, RPE is one of the most reflective layers. On the

bright-dark adjacency matrix, the RPE-Choroid (B3) boundary exhibits the highest bright-

dark layer transition as can be seen in Figure 3.6 (a). Additionally based on experimental

results, it is better to search for the transition from bright-dark for the RPE, due to the

interference of blood vessels and the disruption of hyper-reflective pixels in the choroid region.

Therefore searching for the bright-dark transition is ideal for the RPE most especially to adapt

to noisy images. To segment the NFL-GCL (B4) boundary, we limit the search space between

ILM (B1) to IS-OS (B2) and utilise the bright-dark adjacency matrix to find the minimum

weighted path. The resulting path is the NFL-GCL (B4) boundary, as it is one of the most

hyper-reflective layers. On other notes, the NFL-GCL (B4) and IS-OS (B2) boundaries exhibit

the second highest bright-dark and dark-bright transition, respectively in an OCT image. If

we limit the search space to regions below the ILM and above the RPE, the resulting bright-

dark and dark-bright minimum paths are the NFL-GCL and IS-OS respectively. It is also

significant to note we use the paths obtained from one adjacency matrix to limit the region on

either of the matrices. This path utilisation is feasible because the paths are (x, y) coordinates

and the matrices are of the same size. For example, in finding the NFL-GCL boundary on

the bright-dark adjacency matrix, we use paths of the ILM and IS-OS obtained from the

dark-bright matrix to limit the search region.

3.3.5 OS (B5) and IPL to ONL (B6-B8) Segmentation

To segment the OS-RPE (B5) and three other boundaries (IPL-INL, INL-OPL, and OPL-ONL

(B6-B8)) from IPL to ONL, we use the prior segmented layer boundaries (B1-B4) as bench-

marks for search space limitation. We obtain the OS-RPE (B5) boundary by searching for the

dark-bright shortest path between IS-OS (B2) and the RPE-Choroid (B3). For the remaining

boundaries, INL-OPL (B6) is segmented first, because it exhibits a different transition among

the three. Thus, the INL-OPL (B6) is obtained by searching for the shortest path between

NFL-GCL (B4) and IS-OS (B2) on the dark-bright adjacency matrix. Consequently, by util-

ising the bright-dark adjacency matrix, the IPL-INL (B7) and OPL-ONL (B8) boundaries are
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obtained by limiting the region of path search between INL-OPL (B6) and NFL-GCL (B4),

and INL-OPL (B6) and IS-OS (B2) boundaries respectively. The order in which these layer

are segmented and the boundaries used for search region limitation are shown in Figure 3.7.

Figure 3.7: Order of segmentation of boundaries OS (B5) and IPL to ONL (B6-B8)

3.3.6 Avoiding the Cortical Vitreous

The vitreous cortex depicts a layer-like structure, just above the ILM (B1), which lures the

algorithm into finding unintended boundaries as illustrated in Figure 3.8. To handle this issue,

we impose a hard constraint to restrict all paths to lie between the ILM(B1) to RPE (B3)

boundaries exclusively. This constraint is ideal because the ILM exhibits the highest transition
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from dark-bright, while the RPE exhibits the highest transition from bright-dark. Thus, the

constraint helps the algorithm in avoiding features that imitate the retinal structures and are

not of interest.

Figure 3.8: Error in Segmentation caused by Vitreous Cortex at temporal region (left) and Nasal region
(right).

3.4 Results and Discussion

We evaluated the performance of the proposed method on a set of 150 B-scan OCT images

centred on the macular region. The data set was collected in Tongren Hospital with a standard

imaging protocol for retinal diseases such as glaucoma. The resolution of the images is 512

pixels in depth and 992 pixels across section with 16 bits per pixel. Before segmenting the

images, 15% per cent of the image height was cropped from the top to remove regions with

low signal and no features of interest. We segment seven retinal layers automatically using

MATLAB 2016a software 3. The average computation time was 4.25 seconds per image on

a PC with Intel i5-4590 CPU, clock of 3.3GHz, and 8GB of RAM. The method obtains the

boundaries in the order from ILM (Vitreous-NFL), IS-OS, RPE-Choroid, NFL-GCL, OS-

RPE, INL-OPL, IPL-INL to OPL-ONL respectively. As indicated earlier, the locations of

these boundaries and the sequential order of the segmentation are shown in Figure 3.1.

Sample results of the 8 retinal layer boundaries and the underlying 7 layers are depicted

in Figure 3.9. Taking a close look at figure 3.9 (middle right) merging at the foveal region

is usually a challenge. Our method is able to avoid layer merging as shown in figure 3.10.

To evaluate the performance of proposed method we calculate the Root Mean Squared Error

(RMSE), and Mean Absolute Deviation (MAD) by equation (3.9). Table 3.1 shows the mean
3combines a desktop environment tuned for iterative analysis and design processes with a programming lan-

guage that expresses matrix and array mathematics directly. https://uk.mathworks.com/products/matlab.html
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Figure 3.9: Segmentation results of 8 boundaries and 7 layers. Boundaries from top to bottom, the segmented
boundaries are ILM, NFL-GCL, IPL-INL,INL-OPL, OPL-ONL, IS-OS, OS-RPE and RPE-Choroid.
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Figure 3.10: Zoomed view of figure 3.9 (middle right).
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and standard deviation of both MAD and RMSE, for the seven layers targeted in this study.

The evaluation matrices are computed by [81, 124, 163]

MAD(GT, SEG) =

0.5×
(

1
n

n∑
i=1

d(pti, SEG) + 1
m

m∑
i=1

d(psi, GT )
)

RMSE =

√√√√ 1
n

n∑
i=1

(SEGi −GTi)2

Dice = 2 | GTi ∩ SEGi |
| GTi | + | SEGi |

(3.9)

where SEGi is the pixel labelled as retinal Layer by the proposed segmentation method and

GTi is the true retinal layers pixel in the ground truth image. The terms pti and psi represent

the coordinates of the images, while d(pti, SEG) is the minimum distance of pti to the set of

pixels on SEG with the same segmentation label, and d(psi, GT ) is the minimum distance of

psi to the set of pixels on GT with the same segmentation label. n and m are the number of

points on SEG and GT respectively. For all layers the method has performed well. Especially

considering the low value of NFL for both MAD and RMSE. The high value in ONL+IS is

due to the presence of high noise and lower reflectivity of the boundaries within the region,

however, this is still considerably low.

Table 3.1: Performance evaluation with mean and standard deviation (SD) of RMSE and MAD for 7 retinal
boundaries. 150 SD-OCT B-Scan images (Units in pixels).

RetinalLayer MAD(SD) RMSE(SD)
NFL 0.2688 (0.0185) 0.0165 (0.0121)

GCL+IPL 0.5762 (0.0590) 0.0415 (0.0378)
INL 0.6307 (0.0785) 0.0373 (0.0612)
OPL 0.4839 (0.0410) 0.0446 (0.0335)

ONL+IS 0.6596 (0.0823) 0.0592 (0.0329)
OS 0.4401 (0.0362) 0.0328 (0.0156)
RPE 0.4369 (0.3291) 0.0311 (0.0142)

Furthermore, We evaluated the retinal nerve fibre layer thickness (RNFLT) (the area

between ILM (B1) and NFL-GCL (B4)) with additional criteria, due to its high importance in
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Table 3.2: Mean for accuracy, sensitivity, error rate and Dice coefficient of the Retinal Nerve Fibre Layer
Thickness (RNFLT) and their respective standard deviation (STD) [34].

Criteria Mean STD

Accuracy 0.9816 0.0375
Sensitivity 0.9687 0.0473
Error Rate 0.0669 0.0768
Dice 0.9746 0.0559

the diagnosis of ocular diseases, including glaucoma. The NFL evaluation is conducted using

four criteria, namely, accuracy 4, sensitivity (true positive rate (TPR)), error rate (FPR)

and the Dice score (coefficient/index). The measurements are computed with the following

equations while the Dice is computed from equation (3.9):

Accuracy = TP + TN

(TP + FP + FN + TN)

Sensitivity(TPR) = TP

(TP + FN)

ErrorRate(FPR) = FP

(FP + TN)

(3.10)

where TP , TN , FP and FN refers to true positive, true negative, false positive and false

negative respectively. TP represents the number of pixels which are part of the region that

are labelled correctly by both the method and the ground truth. TN represents the number of

pixels which are part of the background region and labelled correctly by both the method and

the ground truth. FP represents the number of pixels labelled as a part of the region by the

method but labelled as a part of the background by the ground truth. Finally, FN represents

the number of pixels labelled as a part of the background by the system but labelled as a part

of the region in the ground truth. The Mean and Standard Deviation of applying the above

criteria on the achieved results for the RNFLT are shown in Table 3.2, and the distribution of

these values in Figure 3.11. Some of the conclusions we draw from the results in Table 3.2

and their distribution Figure 3.11 are as follows:

1. The method achieves more than 95% accuracy in most image.
4The percentage of pixels in the image which were correctly classified.
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Figure 3.11: Box plot for values distribution of Accuracy, Dice coefficient and Sensitivity of RNFLT from
Table 3.2.

2. The method obtain paths very close to the actual retinal boundaries by achieving a

mean sensitivity of ≈ 97% over 150 images, which portrays adaptability to contours of

the retinal layers.

3. The distribution of the dice score from Figure 3.11 further attests to the statements in 2

above, i.e. there is a high overlap between the manual segmentation and results obtained

by the method.

Furthermore, the proposed method achieves a dice coefficient (STD) of 0.9746 (±0.0559).

This is a better performance Compared to algorithms reported in [22] with 0.903 (±.028) and

RF+Graph [96] with 0.877 (±0.053). The method also outperforms the two algorithms N and

C [103] with 0.900 (±0.027) and 0.903 (±0.026) respectively. However, it is noteworthy that

the methods were tested on a larger dataset compared to the dataset used in the evaluation.

Similarly, [67] utilised a larger dataset of 490 B-scan to evaluate the performance of the

SNet and SNet + T-Net algorithms. The dice coefficient for the machine learning algorithms
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were 0.898 and 0.904 for SNet and SNet + T-Net algorithms, respectively. Machine learning

algorithms perform better with larger training dataset, which is a challenge as highlighted in

[173].

Full automation of methods has to do mainly with the use of prior knowledge, enabling the

use of a compromise to replace user input. For example, works presented in [27, 34] relies on

the fact retinal layers spread across the image horizontally, which enabled the addition of two

columns to either side of the image, such that the cut can traverse within these columns easily.

Additionally, there has been increased interest around the performance of fully automatic and

interactive methods of segmentation. From the study, we can infer that the performance can be

traced to the use of prior knowledge e.g the brightness of the layers on OCT and unchanging

layer locations. This observation can be confirmed by looking at the progression trend of

segmentation methods. In the early days of computer vision, the interactive segmentation

method, for example, [16] was proposed mainly to handle the challenges faced by automatic

segmentation methods. However, recently, due to better insight and knowledge of the datasets

and better imaging modalities, fully automatic methods are available, with performance similar

or even better than semi-automatic methods.

3.5 Conclusion

Unlike other clinical data that are recorded usually with their inherent and abstract structure,

medical images such as the OCT images are usually acquired in the large, raw format. This

lack of structured and high-level information in retinal images has limited their potential in

clinical practice and healthcare analytics. As a way forward, this chapter has presented a com-

prehensive and fully automatic method for segmentation of retinal layers in OCT images by

integrating an advanced method of weight calculation into the graph-cut framework. The in-

troduction of stabiliser enables the method to adapt to intensity inhomogeneity of OCT images

in the preprocessing step, while the reassignment of weight aids the method in avoiding wrong

paths, which consequently improves the accuracy of the method in identifying actual layer

boundaries. The method is capable of segmenting seven retinal layers with eight boundaries.
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The core of the method is a Graph-Cut segmentation using Dijkstra’s algorithm [32]. More

importantly, the adjacency matrices from vertical gradients and a sequential process of seg-

mentation, as two critical elements of the study, are integrated into the Graph-Cut framework.

The proposed method was evaluated on a dataset of 150 OCT images, with promising segmen-

tation results. Further quantitative evaluation indicates that the segmentation measurement

is very close to the ground-truth. The main contributions of this work are as follows:

1. This chapter has presented a method to identify seven retinal layers across eight layer

boundaries automatically, so far one of the most comprehensive studies in this area;

2. The adjacency matrices are effectively integrated into the Graph-Cut framework with

better weight calculation;

3. Based on the unique characteristics of reflectivity of different retinal layers and their

changes across layers, a sequential process of segmentation has been developed.

Moreover, it is evident that the use of prior knowledge has the potential to improve segmen-

tation algorithms. Having automatic methods that could extract this knowledge will play a

vital role in how OCT image analysis evolves. This method addresses the need for algorithmic

frameworks that could be adapted to large applications of OCT images. Also, continuously

integrating images with EHR will be an ideal way to progress towards personalised healthcare.

In summary, promising experimental results have been achieved, but the segmentation of the

less prominent layers depends on the accuracy of the more prominent layers. This sequential

process affects the segmentation of the less prominent layers. Therefore simultaneous segmen-

tation might improve the results of the segmentation. Consequently, a level set method to

segment seven layers from an OCT image simultaneously is explored in the next chapter.
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Chapter 4

Level Set Segmentation

This chapter presents a simultaneous method for segmenting retinal layers in OCT images

using a level set method. The method starts by establishing a specific Region of interest,

which is vital in the segmentation process. This is because the evolution of contours in the

level set method depends on forces derived from the contour and image characteristics. Hence,

if this evolution is solely based on the real feature of the layers and image under observation,

without the interference of background noise, the performance of the method will be improved.

The method segments seven layers simultaneously by constraining the evolution of the layer

boundaries based on the layers topology in the OCT image.

4.1 Introduction

Current research in retinal OCT segmentation focuses on improving various aspects ranging

from computational time, the number of layers segmented, use of prior knowledge and com-

putational complexity to mention a few. In general, segmentation is partitioning based on

some image characteristics. How these characteristics are defined determines the computation

burden of the algorithm. In some cases, this computational burden is reduced through dy-

namic programming [27] or topology modification [103]. The number of questions (conditions)

an algorithm has to check or satisfy is, therefore, a crucial factor. Some previous works in

OCT segmentation include the Markov Boundary Model [93], which was later extended by

68



4.2. Methods 4. Level Set Segmentation

[14], geodesic distance [41], level sets [126, 165], graph-based methods [27, 34, 39, 53], and

recently machine learning [96]. Taking the level set method, although the method has auto-

matic topological handling, the steps can be computationally expensive [151], while adding

complex constraints in the segmentation process usually increases the complexity of an algo-

rithm. This chapter presents a method to handle this challenge by incorporating a simple yet

efficient topological constraint to the evolution process of the level set method.

Particularly, the method proposed in this chapter is based on the following considerations:

1. The edges from image gradients are used to initialise curves in order to handle under-

segmentation and over-segmentation of the image; 2. The evolution of a curve is explicitly

based on layer arrangements and implicitly based on OCT topology. This means for each

image the initial contours are specific to the image under investigation, while the forces in the

normal direction and the topology constrains guide the contours towards layer boundaries.

The method segments an OCT image into 7 segments, relating to Nerve Fibre Layer (NFL);

Ganglion Cell Layer + Inner Plexiform Layer + Inner Nuclear Layer (GCL+IPL+INL); Outer

Plexiform Layer (OPL); Outer Nuclear Layer to Inner Segment (ONL+IS), Outer Segment

(OS) and Retinal Pigment Epithelium (RPE). Locations of these layers on an OCT image are

shown in Figure 4.1. The rest of the chapter is organised as follows. Section 4.2 discusses the

proposed method in details. Experimental results and discussions are treated in Section 4.3.

Finally, conclusions are drawn in Section 4.4.

4.2 Methods

This section describes the level set approach for segmenting retinal OCT images. A schematic

representation of the method is illustrated in Figure 4.2, and details of each step are elaborated

in the ensuing subsections.

4.2.1 Preprocessing

The preprocessing steps are illustrated in Figure 4.3. Each OCT B-scan image I is first

enhanced with a Gaussian filter to reduce the image noise. The layers targeted by this study
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Figure 4.1: Location of Nerve Fibre Layer (NFL); Ganglion Cell Layer + Inner Plexiform Layer + Inner
Nuclear Layer (GCL+IPL+INL); Outer Plexiform Layer (OPL); Outer Nuclear Layer to Inner Segment

(ONL+IS), Outer Segment (OS) and Retinal Pigment Epithelium (RPE) on an OCT image as targeted in
this chapter.

Figure 4.2: Schematic representation of the proposed level set approach.
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lies within the total retinal thickness (TRT), which starts from the Internal Limiting Membrane

(ILM) to the posterior boundary of the Retinal pigment epithelium (RPE), i.e. the boundary

between the retinal nerve fibre layer and the vitreous, and the boundary between the RPE

and the choroid regions respectively. It is commonly accepted that the NFL, IS-OS and RPE

exhibits high reflectivity in an OCT image [27, 105, 156], based on experiments the ILM

and RPE exhibits the highest transitions from dark-bright and bright-dark, respectively [34].

Based on this understanding of the retinal structure, the ILM and RPE are identified using the

shortest path [32], by searching for the highest transitions on two separate adjacency matrices

[27].

Using the identified ILM and RPE points the image is cropped to Icropped, such that only

the Region of interest (ROI) with useful layer information is remaining. This helps in dealing

with layer-like structures outside the ROI and the computational cost associated with handling

image background in segmentation. The pre-processing is vital in the segmentation process

because only the actual layer properties impact the evolution of the curve. The next operation

on the image is to generate a mask Imask of the cropped image, and then multiply it by the

original image I to get the intensity values within the mask. The examples of resulting images

from this step are shown in figure 4.3, column 4, and expressed by the equation below:

Iprocessed = Imask × I (4.1)

The process in this subsection is essential because only the layer structures are obtained when

the gradient of the image is acquired. One of the significant roles of the preprocessing is to

eliminate the need for handling background as depicted in figure 4.4 and further discussed

in the next few subsections 4.2.2 and 4.2.3. The size of the cropped image is used to reduce

computational time further and to eliminate the need for storing idle points 1

1the pixels within the image that are produced when switching pixels between the lists during evolution.
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Figure 4.3: Preprocessing steps showing: Column 1 - Enhanced images; Column 2 - identified ILM (red) and
RPE (Green); Column 3 - image masks Imask; and Column 4 - Cropped images Icropped. Row 1 - Nasal

region; Row 2 - Foveal Region; and Row 3- Temporal Region.

4.2.2 Boundary Initialisation

To initialise contours of the level set method, the vertical gradient ∇Iprocessed of the processed

image obtained and threshold by a constant T , in this case T = 0.0018. The edges of the

thresholded gradient TG, is then refined to remove small objects from the image (most espe-

cially the GCL to IPL regions), such that only complete layers are initialised, figure 4.5. This

is an essential factor, which further ensures accurate segmentation, i.e. only the initial curves

are evolved, and no merging or splitting of boundaries is allowed. Without losing context, the

refinement step can be ignored, if the layers from the GCL to INL are individual targets of

the method. However, this will require a condition for handling the splitting and merging of

boundaries or an alternate measure to correctly identify which layers are segmented. Moving

further, the edges of the refined edges serve as initial curves such that the number of identified

regions in the final output cannot exceed the number of the regions in TG. Therefore, each
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Figure 4.4: Gradient of full image with background with layer-like structures (a), and thresholded gradient of
preprocessed image TG (thresholded by T = 0.0018) with ROI only (b).

boundary curve Cb is represented by a collection of Cb(x, y) on the image.

4.2.3 Level Set Segmentation of OCT

We start by defining a level set function φ(x) at pixel x, where each point (x, y) in level set

function is defined in relation to the curve Cb as follows [151]:

φ(x, y) =



3, if x, y is outside Cb and x, y 6∈ Lout;

1, if x, y ∈ Lout;

−3, if x, y is inside Cb and x, y 6∈ Lin;

−1, if x, y ∈ Lin.

(4.2)

where Lin and Lout are two generated lists defining points inside and outside of Cb, respectively.

Adapting from [151] the lists are defined as:

Lout = {x|φ(x) > 0 and ∃y ∈ N(x) : φ(y) < 0}

Lin = {x|φ(x) < 0 and ∃y ∈ N(x): φ(y) > 0}
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Figure 4.5: Edges before refinement (a), and refined edges used for contour initialisation (b).

where N(x) is a distinct neighbourhood of x, We use a 2D list to represent boundaries, to

save the positions for easy mapping in generating the final image output. Alternatively, a 1-D

list can be used to capture the boundaries at position φ(x), as suggested in [103].

Based on the above representations, a boundary position Cb(x, y) of φ(x, y), can either

expand or shrink based on:


Expand(x, y) : Cb(x, y) := Cb(x, y) + 1

Shrink(x, y) : Cb(x, y) := Cb(x, y)− 1
(4.3)

Next, each initial boundary curve Cb is evolved depending on a speed field F based on the

following differential equation [151] :

dCb
dt

= F ~N (4.4)

Where ~N = ∇φ is the normal of the curve pointing outward. The speed field F is made

of an external speed derived from the image data and a characteristic speed based on Cb

[98]. The evolution is therefore associated with a gradient descent solution. This means a

boundary Cb will evolve until it gets to a minimum of the energy Cbmin, i.e. a static point
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of the dynamic equation (4.4). The curve Cbmin, at such stationary points, must satisfy two

optimality conditions: one for continuity and the second for discontinuity regarding the speed

field F. In summary, the evolution of each point is influenced by various forces (equation (4.4))

and the topology constrains to be described in the next subsection 4.2.4.

4.2.4 Topology Constrains

As highlighted earlier in subsection 4.2.1 the ordering of the layers must be preserved. Taking

into account the architecture of the OCT image, boundary Cb2 is always below Cb1 for any

given boundary points Cb1 and Cb2, i.e. a point Cb(x, y) on the curve will neither Shrink nor

Expand if Cb1(x, y) ≤ Cb2(x, y). Hence, with the appropriate initialisation, we enforce the

topology requirement by carrying out this simple topology validation before either shrinking

or expanding a boundary. Finally, we employ an intuitive approach to ensure this topology is

preserved, by additionally refining the topology constraint in the vertical direction:

1. Because each layer boundary spans the image horizontally (one boundary point per

column) we add a condition for evolving a boundary point Cb(x, y) to a new boundary

point Cbmin(x, y). We restrict Expand(x, y) if its neighbour points are u consecutive

points above it; do not Shrink(x, y) if its neighbour points are u consecutive points

below it;

2. Looking at the sample of initial layer boundaries in figure 4.5, a boundary point Cb(x, y)

is limited to a maximum of v operations (either Expand or Shrink) consecutively in the

vertical direction).

The parameters u and v are two prior constants, in the experiments u and v are set to 3

and 20 respectively. The parameter u aids with boundary smoothness and avoiding peaks for

Expand(x, y) or valleys Shrink(x, y) on the boundaries, while v further ensures the layered

architecture is preserved. Additionally, this is why the layer initialisation is ideal because

the starting points are based on the individual image. The topology constraints facilitate

the evolution because the validation is performed before expanding or shrinking a boundary.

Perhaps, this might not be ideal for abnormal structures. However, considering the ordering
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of the layers where Cb2 will always be below Cb1 the layers will move together even in the case

of abnormal retinal structure.

4.3 Results and Discussion

The same dataset as chapter 3 is used for evaluating the performance of the proposed method.

However, 200 images are used in this chapter, as opposed to 150 in the previous chapter

because more ground truth labellings were acquired. In the experiments, N(x) = 8, i.e 8

neighbouring pixels, mainly, because only the layers are remaining in the cropped image and

the effect of inhomogeneity is reduced. Experimental results show that the method successfully

segments seven layers of the retina. Samples of the method output are shown in figure 4.6.

The performance of the proposed method was compared to mean shift segmentation algo-

rithm [29], which involves the repeated movement of data points to their sample means [51].

A B-scan image is typically a 2-dimensional lattice of r-dimensional vectors (pixels), where r is

1 in the grey level case, 3 for colour images or r >3 in the multispectral case. The space of the

lattice is identified as the spatial domain while the grey level, colour, or spectral information

is represented in the range domain. Nevertheless, after a proper normalization with σs and

σr, global parameters in the spatial and range domains, the location and range vectors can be

concatenated to get a spatial-range domain of dimension d = r+2 [29]. The evaluation was

carried out using the mean shift algorithm [29] implemented by Vantigodi [161].

The algorithm requires three parameters, i.e σs, σr, and a threshold, M for pixels to be

eliminated during computation. Moreover, σs has no significant effect on the segmentation

results, whileM facilitates convergence and influences the number of clusters as can be deduced

from figures 4.7 and 4.8.

76



4.3. Results and Discussion 4. Level Set Segmentation

Figure 4.6: Results of Level Set Segmentation. From top to Bottom: Sample results from Nasal, Foveal and
Temporal regions respectively.
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4.3. Results and Discussion 4. Level Set Segmentation

Figure 4.8: Colour distribution of mean shift segmentation results: a - figure 4.7a; b - figure 4.7b; c - figure
4.7f; d - figure 4.7g; e - figure 4.7k; f - figure 4.7l.

On the other hand better results are achieved with σr = 3 as shown in figure 4.9. Ex-

periments with σr = 4 requires continuous tuning of the other parameters to achieve under-

segmented images, whereas a blank image is returned as the segmentation result with value

of σr >5 (similar to value of 4). Hence in our experiments the value of σr = 3, while σs = 40

and M = 3.
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Figure 4.9: Mean shift segmentation result: a - σr = 10, σs = 3, M =1; b - σr = 30, σs = 3, M =1; c - σr =
90, σs = 3, M =1
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Table 4.1: Performance evaluation of proposed method and mean shift segmentation [29] showing mean
(Standard Deviation) of Dice Coefficient on 200 B-Scan images (Units in pixels).

RetinalLayer ProposedMethod MeanShift [29]
NFL 0.951 (± 0.022) 0.41 (± 3.2)
GCL+IPL+INL 0.879 (± 0.031) -
OPL 0.892 (± 0.032) -
ONL 0.907 (± 0.030) -
IS 0.932 (± 0.017) -
OS 0.920 (± 0.028) -
RPE 0.934 (± 0.021) 0.53 (± 2.31)

Table 4.1 shows the mean and standard deviation for the performance of the proposed

method and mean shift algorithm [161] compared to the labelling of manual graders. The

proposed method outperforms the mean shift algorithm [29] in terms of the evaluation matrices

and number of layers successfully segmented. Mean shift is able to segment only two layers,

which are over segmented as seen in figure 4.9. The values show the promising performance of

the proposed method in converging at curves Cbmin very close to the actual layer boundaries.

Notably, the RNL thickness is used for diagnosing major eye diseases such as glaucoma, and

the mean (0.951) and standard deviation (±0.022) of dice coefficient for this layer is reassuring.

Moreover, it can be deduced that the method is consistent in identifying the layer boundaries

from the distribution of the values in figure 4.10. Considering the second quartiles of the NFL,

IS and RPE begin at ≥ 0.900 further attests to the good performance of the method, except

for few instances in the GCL+IPL+INL and OPL layers, where the dice score is below 0.800.

4.4 Conclusion

This chapter has presented a fully automated and simultaneous level set method for retinal

OCT segmentation. The proposed method separates retinal OCT images into seven non-

overlapping layers. This approach has explored image segmentation using level set from the

initialisation and evolution perspective. Specifically, the contributions of this chapter can be

summarised as follows.
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Figure 4.10: Box plot of mean Dice Coefficient distribution for the seven layers.

1. Based on the OCT image understanding, all image background is removed to aid in

handling under- and over-segmentation.

2. An appropriate level set initialisation technique to ensure the initial contours for each

layer and image are unique is proposed by using refined edges from gradient images.

3. Based on the topological architecture of the retinal layers in OCT, the evolution process

is constrained to guide the initial curves to the actual layer boundaries.

The combination of these components ensure the boundaries obtained by the method are

close to the true features of interest. Experimental results show that the proposed approach

successfully segmented the target layers from OCT images, and the segmentation results are

close to the manually labelled ground-truth.

Although constraints based on the layer topology aid in achieving good segmentation

results as explored in this chapter and the previous (chapter 3), it may not be ideal for diseased

images. Segmentation methods that do not heavily rely on the architecture of the layers might

perform better. In the next chapter, we explore segmentation of OCT by modelling the method

to cater for the inconsistency rather than heavily relying on the image features.
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Chapter 5

Fuzzy Region Competition and

Level Set Methods

This chapter presents a fully automated and simultaneous level set method for segmenting 9

retinal layers in OCT images. The method takes into account that although level set methods

have a fundamental way of handling topological changes, the weak boundaries and noise in

addition to inhomogeneity in OCT images make it difficult to segment the layers accurately.

Similar to the previous chapter, the method establishes a specific region of interest. More

importantly, inspired by the concept of region competition, fuzzy C-Means is used to select

components of hyperreflective layers for initialisation. The clustering in the initialisation stage

is also used to guide the evolution through; a Mumford-Shah (MS) selective region competition

force and a Hamilton-Jacobi (HJ) balloon force . Finally, the convergence of the method is

based on a HJ object indication function influenced by fuzzy membership to prevent leakages

at weak boundaries.

5.1 Introduction

Segmentation is one of the most vital steps in computer vision, as it facilitates the delineation

of various objects or Regions of interest (ROI) within an image. One of the inherent prob-

lems of existing methods for OCT analysis is the use of constants to represent inhomogeneous
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or dynamic intensity values. Although the level set is appealing for its automatic topology

handling [151], the performance of the level set method is subject to initialisation and con-

figuration of controlling parameters [99]. Also, the implementation of zero level sets is based

on partial differential equations that require reinitialisation [103], which are known for their

computational burden [151].

This study is inspired by the work of [100], which illustrates the possibility of combining the

Hamilton-Jacobi (HJ) and Mumford-Shah (MS) level set methods to achieve better solutions.

Hence, the proposed method avoids reinitialisation by regularising the evolution process. More

importantly, we capitalise on the flexibility of the Fuzzy image processing to express prior

knowledge of the OCT image to guide the segmentation process of a selective level set method.

By utilising the prior knowledge in the initialisation, evolution and convergence steps, it

ensures the segmentation processes are exclusively based on image features. This formulation

is essential to allow the method to identify multiple layers simultaneously. It also improves the

method’s adaptability, rather than the limited window given by rigid methods that usually

complicates the segmentation process.

The proposed method segments an OCT image into nine segments corresponding to Nerve

Fibre Layer (NFL); Ganglion Cell Layer (GCL); Inner Plexiform Layer (IPL); Inner Nuclear

Layer (INL); Outer Plexiform Layer (OPL); Outer Nuclear Layer (ONL); Inner Segment (IS);

Outer Segment (OS) and Retinal Pigment Epithelium (RPE). Locations of these layers on an

OCT image are shown in Figure 5.1. The rest of the chapter is organised as follows. Section

5.2 gives an overview of the two level set methods, while, Section 5.3 discusses the proposed

method in details. Experimental results and discussions are treated in Section 5.4. Finally,

we draw conclusions in Section 5.5.

5.2 Level Set Method

Segmentation using level set methods models an image as a closed interface that separates the

image into regions. It labels pixels inside or outside the interface. This labelling in relation to

84



5.2. Level Set Method 5. Fuzzy Region Competition and Level Set Methods

Figure 5.1: Location of Nerve Fibre Layer (NFL); Ganglion Cell Layer (GCL); Inner Plexiform Layer (IPL);
Inner Nuclear Layer (INL); Outer Plexiform Layer (OPL); Outer Nuclear Layer (ONL); Inner Segment (IS);
Outer Segment (OS); Retinal Pigment Epithelium (RPE) and total retinal thickness, on an OCT image. The

brown colour is for the bright layers while blue colour is for the dark layers.

the interface is usually modelled into a higher dimensional space [100]:

φ(x, y, t)


< 0 if (x, y) ∈ Ω−

= 0 if (x, y) ∈ Φ

> 0 if (x, y) ∈ Ω+,

(5.1)

where Φ is an interface that separates an image Ω. While Ω− and Ω+ denotes the sub-regions

inside and outside Φ respectively. With this definition of the level set, it is easy to recover the

interface by looking up points where φ(x, y, t) = 0. Two formulations of the level set method

have become the most prominent and have been improved in various ways. A common feature

between them is that the interface evolves based on different forces derived from the interface

and some image features. In particular, the classic Hamilton-Jacobi (HJ) evolves based on
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forces, such as [128]:

φ


∂φ

∂t
+ F |∇φ| = 0

φ(x, y, t = 0) = φ0(x, y),
(5.2)

where ∇φ denotes geometric gradient directing the normal interface evolution, and the term

φ0(x, y) specifies the initial contour. The speed field F comprises of intrinsic forces derived

from the dynamic interface and external forces derived from the image characteristics. The

force F could also include extra generated forces, such as balloon force 1. Alternatively, the

MS methods model the segmentation as [117]:

F (u,Φ) =µ · Length(Φ) + λ

∫
|ω − u|2dxdy

+
∫

Ω\Φ
|∇u|2 dxdy, (5.3)

where u is a piecewise approximation of the regions inside and outside the interface, while

µ and λ are coordinating parameters. This formulation aims to find an optimal interface by

minimising a modified cost function. The improvements include incorporating the estimates

of regional homogeneity, for example [24], which optimises the classic formulation (5.3). The

MS methods are vulnerable to inhomogeneity, as such, various approaches have been proposed

to mitigate this limitation, such as restricting local region competition or incorporating edge

information. Extensive discussion of these mitigation strategies is however beyond the scope

of this study. Therefore, further details on the advantages and limitations of both HJ and MS

level set methods are obtainable from [23, 24, 99, 100, 117, 128, 151].

5.3 Methods

This section provides details of the fuzzy region competition and selective level set approach

to segment OCT retinal images.
1The balloon force is one way to speed up curve evolution and influence its direction toward the region of

interest [152]
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5.3.1 Preprocessing

We start by preprocessing each image I to establish an explicit ROI [40], which supports

further processing in the ensuing subsections. The layers commonly segmented on an OCT

image are between the Internal Limiting Membrane (ILM) and the posterior boundary of the

Retinal pigment epithelium (RPE). As such, the ILM and RPE are identified by delineating

the two highest changes on two distinct adjacency matrices [27] using the Dijkstra’s shortest

path [32] as illustrated in Figure 5.2a.This is based on the understanding that the NFL, IS-OS

and RPE are highly reflective in an OCT image [27, 105, 156]. Also, based on experiments the

ILM and RPE exhibits the highest transitions from dark-bright and bright-dark, respectively

[34].

The image is cropped to Icropped using the identified ILM and RPE paths, after which, a

mask Imask of the cropped image is generated Figure 5.2b. Lastly, the image mask is multiplied

by the original image I to obtain the original intensity values within the masked region. This

operation is expressed by:

Iprocessed = Imask ∗ I (5.4)

The effect of the multiplication is shown in Figure 5.2c. The steps we employ in pre-processing

the image are essential for robust segmentation. This is because only layer characteristics, are

used in the clustering, and have an impact on the evolution.

5.3.2 Initialisation

With the established RIO, two dominating intensities exist, which corresponds to the hyper-

reflective and hypo-reflective layers of the retina. Considering the inhomogeneity and in-

completeness of layer intensity values within an OCT image, FCM provides a measure with

which we can handle this problem [100]. The initialisation of the level set is by minimising a

predefined function expressed by:

F =
∑

x

∑
y

K∑
k=1

µlk(x, y) ‖ζ(x, y)− νk‖2 (5.5)
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Figure 5.2: Preprocessing steps showing: a - identified ILM (red) and RPE (Green); b - image mask Imask;
and c - processed images Iprocessed. NB: black background included for better visualisation in images b and c

4.

where ζ(x, y) refers to the image intensity used as clustering trait and ‖‖ is the Euclidean

distance. The terms νk and µk(x, y) denote the estimated centroid of each cluster and the

probability of each component belonging to a particular cluster, respectively. These terms are

adaptively estimated using fuzzy clustering by:
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µk(x, y) =

K∑
n=1
‖ζ(x, y)− νn‖2/ (l−1)

‖ζ(x, y)− νk‖2/ (l−1) ; (5.6)

νk(x, y) =
∑
x

∑
y µ

l
k(x, y)ζ(x, y)∑

x

∑
y µ

l
k(x, y)

, (5.7)

The parameter l is >1 and controls the fuzziness of segmentation. Although l may be set

as a constant, for example [100], we compute l using fuzzy histogram hyperbolisation [159] to

fully utilise the ability of fuzzy image processing in handling uncertainties. As such, the value

of l will vary between:

l =


l = β

l = βmin if l < βmin

l = βmax if l > βmax,

(5.8)

where β is the fuzzy membership value from [159] and βmin and βmax are two customisable

priors constraining the value of l to achieve the desired transformation. This transformation

optimises the segmentation performance because the intensities of image pixels close to their

centroid are assigned high membership values, while those that are distinct are assigned low

values. The outcome from 5.5 { µk(x, y)|k = 1, 2, . . .K } is the possibility of each image pixel

belonging to a specific fuzzy cluster νk. However, at this point, we are unsure of which cluster

refers to the hyper-reflective layers, therefore, we threshold the outcome of the clustering to

select a subset by,

φ0 = 2
(∑ µs +∇(µs)

2 > θ

)
− 1, (5.9)

which refers to the average of selected components µs and their gradient ∇(µs) thresholded

by the parameter θ to get the hyper-reflective layers. The selected hyper-reflective pixels are

used for initialisation, based on the fact that a bright layer is always above a dark layer in an
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OCT. The term µs is derived from

φ0 = 2([υs] > θ)− 1, (5.10)

where θ ranges between 0 and 1, and [υs] denotes a subset originating from φ0 = 2(µk >

θ) − 1. Specifically, { υs|s ∈ S and S ⊂ K} . The level set φ0 is initialised based on

(5.9). The selection of the subset enables the method to evolve near the layer boundaries,

which aids in better segmentation. Additionally, averaging the selected components and their

gradient information allows the method to differentiate the segmented layers in the final output

effectively.

5.3.3 Evolution

The evolution of the level set method determines how the interface arrives at what is perceived

to be the optimal solution. The MS and HJ level set methods employ different forces to guide

their evolution towards the desired optimum. Notably, the evolution of MS methods is based

on the force of region competition. To prevent intensity inhomogeneity from governing the

evolution process, as with classic MS methods [23], a selective region competition term is

employed;

R =
∑

s∈S
µs −

∑
(j∈K)∩(j /∈S)

µj , (5.11)

where µs denotes the selected components of fuzzy clustering, and µj denotes the unselected

components. Clearly this implies µs ∪µj = K for completeness of segmentation. The product

of the fuzzy region competition force, R, varies between 1 and −1, and the boundaries will

expand or shrink based on the sign of the force. This formulation allows the method to

track local objects and facilitates simultaneous segmentation of multiple layers based on their

distinct local properties.

On the other hand, a balloon force that capitalises on the fuzzy clustering is utilised to

steer the interfaces towards the layer boundaries adaptively [99]

G =
[
1− γ

(
2
∑

µs − 1
)]
σ0, (5.12)
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where the parameter γ, (0 ≤ γ ≤ 1), is a controlling element of the balloon force σ0. The

controlling influence of γ is such that:


σ0 = constant if γ = 0,

σ0 = ∑
µs if γ = 1.

(5.13)

In other words, σ0 is regulated by the fuzzy membership µs otherwise constant, depending

on the value of γ. The resultant balloon force from (5.13) consists of variables with pulling

or pushing force at each pixel. As it were, the dynamic interfaces are lured towards the

retinal layers, regardless of they are inside, outside or lying across the layer boundaries. This

definition also aids in handling shortcomings of the wrong classification in the initialisation

stage.

5.3.4 Convergence

One of the connate limitations of HJ methods for image segmentation is boundary leakage.

As such, an improved object indication function [100] is utilised for robust convergence:

E = e−ιmax(η·gi, (1−η)gµ), (5.14)

where the parameter η regulates the influence of various object indication functions, and the

parameter ι (ι = 10) is a constant used to reinforce the convergence process. The second term

gµ in 5.14 originates from the selected fuzzy membership functions µs, while the first term gi

is a normalised edge indicator based on image gradient.

gi = g −min(g)
max(g) , (5.15)
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where g is derived from the convolution of the image Θ with a Gaussian kernel ω and is

expressed as:

g = 1
1 + |∇(Θ ~ ω)|2

. (5.16)

By taking advantage of the image information and fuzzy clustering, the object indication

function is capable of finding optimal boundaries. Also, with this improvement, the method

can handle leakage at weak layer boundaries, e.g. the GCL-IPL region.

5.3.5 Selective Level set Segmentation of Retinal Layers

The level set components (initialisation, evolution and convergence) explained in the previous

subsections are integrated for selective level set segmentation of OCT image.

Φ =


∂φ

∂t
= δ(φ) [αE ·G + (1− α)R]

φ(x, y, t = 0) = φ0(x, y),
(5.17)

where α is a controlling parameter regularising the effect of the MS and HJ force terms,

R (5.11), and E · G (5.14) and (5.13), respectively. The parameter δ symbolises the Dirac

function of the dynamic interface φ. To avoid re-initialisation and effectively regularise the

dynamic interfaces we use the Gaussian smoothing [11]. Therefore, we conveniently advance

the interface evolution by

Φ =


∂φ

∂t
= δ(φ) [αE ·G + (1− α)R]

φ = Θ ~ φ.

(5.18)

The method converges if the total energy (5.18) influenced by the object indication function

(5.14) is less than or equal to a constant C or if the method reaches the maximum number of

iterations.
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Table 5.1: Mean and Standard Deviation (SD) of the method’s Dice score Coefficient on 200 OCT retinal
images (pixels).

RetinalLayer Mean SD

NFL 0.9292 ± 0.034
GCL 0.8562 ± 0.036
IPL 0.8689 ± 0.031
INL 0.8881 ± 0.033
OPL 0.8839 ± 0.031
ONL 0.8987 ± 0.041
IS 0.9081 ± 0.030
OS 0.9149 ± 0.027
RPE 0.9187 ± 0.028
Total Retina 0.9643 ± 0.014

5.4 Results and Discussion

The method was implemented using Matlab 2016a. We set the following parameters as; βmin
= 1.8, βmax = 2.3, σ0= 1.5, γ=0.5, η = 0.6, α = 0.5 and C = 10−4. The parameter θ =

0.6, because the target is the hyper-reflective layers. The method was evaluated on 200 OCT

retinal images. The outcome of the experimental evaluation is shown in Table 5.1, and the

distribution of values is shown in Figure 5.5. Sample outputs are shown in Figure 5.3 It can be

deduced from the Dice average values in Table 5.1 the method is consistent in identifying the

actual layer boundaries. By closely observing figure 5.3 (middle), figure 5.4 shows the proposed

method avoids merging at the foveal region, which is a challenge in OCT segmentation. The

total retinal thickness is an important marker to the performance of the method. It reinforces

the concept of prepossessing, i.e. the correct boundaries are often identified, and no layer is

missing in establishing the region of interest. there were some errors in the IS to RPE region.

This primarily has to do with the reflection of blood vessels and the proximity. As such some

pixels of the OS were wrongly classified and added to either the IS or RPE. Because the study

is limited to OCT image segmentation, the methods in [99, 100] have broader applicability.
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Figure 5.3: Results of Fuzzy Region Competition and Level Set Methods. From top to Bottom: Sample
results from Nasal, Foveal and Temporal regions respectively.
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Figure 5.4: Zoomed view of figure 5.3 (middle).
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Figure 5.5: Box-plot of Dice Score for the nine retinal layers from Table 5.1.

5.5 Conclusion

The proposed method successfully segments the OCT image into nine non-overlapping lay-

ers. The method starts by establishing a specific ROI like the previous method (chapter 4).

Notably, the idea behind using the preprocessing technique in this chapter is to isolate the

hyper-reflective layers, which is essential for the level set segmentation process to achieve good

results. The main contributions in the chapter can be summarised as follows:

1. Based on the OCT layer brightness, an exclusive subset of selected components corre-

sponding to the hyper-reflective layers are selected for automatic and appropriate ini-

tialisation of the level set method.

2. The fuzzy membership function is incorporated into the level set method to adaptively

guide the evolution of boundaries based on various image forces derived by combining

the Hamilton-Jacobi and Mumford-Shah energy functions.

3. Also, the membership function is effectively integrated into the level set method to ensure

robust convergence that is unique to each image without the need for adjustment.

Promising results makes the method suitable for OCT image segmentation, as it leverages the

ability of FCM to handle inhomogeneity and incompleteness, which overcomes the shortcom-

ings of OCT noise and inhomogeneity. On the other hand, although parameterisation improves

the performance of most methods, it is still limited to values that need to be set manually.
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Therefore, an approach for determining which method, MS or HJ, will perform better based

on specific image feature will be ideal for segmentation, instead of the constant parameter C.

Due to the promising results achieved using level set methods in chapters 4 and 5, we further

explore simultaneous segmentation using the graph cut method in the next chapter. This will

enable the assertion of the performance of the methods and the role of prior knowledge.
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Chapter 6

Fuzzy Histogram Hyperbolization

and Continuous Max-Flow

This chapter presents a method for simultaneous segmentation of OCT images using graph-cut

method. The main idea behind this method is that if segmentation is based on differences and

similarity, then we can find efficient computational techniques to improve these features. The

method starts by establishing a distinct region of interest with all the crucial layer information,

as the methods in chapters 4 and 5. It also, utilises the fuzzy C-means in a similar way to

the method in Chapter 5. In addition to these, the main contributions of this chapter are as

follows:

1. The transformation of the distinct ROI using fuzzy histogram hyperbolisation to improve

the homogeneity within individual layers without distorting image information.

2. Building Graph-cut data terms by selecting the hyperreflective layers, which are effi-

ciently integrated into an unsupervised continuous max-flow framework.

6.1 Introduction

Prevalence of the four major causes of blindness and visual impairments, which are age-related

diseases [88], calls for efficient strategies and techniques for the prevention and treatment
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of such diseases. Recent update by the World Health Organisation (WHO) highlights 285

million people worldwide fall victim of acute visual impairment and blindness [127, 181]. Older

people from 50 years and above make up 65% of the visually impaired and 82% of the blind.

Glaucoma, a disease that is known for its necessity of life long treatment, is lately estimated

to account for 64.3 million people, a figure anticipated reaching 111.8 million by 2040 [155].

It is also projected that the number of victims people with Age-related macular degeneration

(AMD), which is the third cause of blindness, will significantly rise from 196 million in 2020

to 288 million by 2040 [178]. With such overwhelming projection estimates, there is a need

for robust computer-aided diagnostic (CAD) tools, should the aim to reduce this prevalence

be achieved. Although the information provided by the OCT is useful, it requires further

processing to extract clinically useful information. As such, segmentation is at the core of this

image-based eye examination. Currently, manual segmentation is not only tedious but also

impractical due to the volume and variety of data.

Owing to the motivation and challenges mentioned above, many computer-aided diagnos-

tic (CAD) methods have been proposed to aid in OCT analysis with varying success rates.

However, these methods are restrictive in their performance. Furthermore, OCT suffers from

speckle noise, which causes difficulty in the precise identification of the boundaries of layers or

other structural features either through direct observation or use of segmentation algorithms

[115]. The noise that corrupts OCT images is non-Gaussian, multiplicative, and neighbour-

hood correlated. Thus, it cannot be easily suppressed by standard software denoising methods

[111]. Previous attempts, including spatial and frequency compounding techniques, have been

used to address the problem of speckle noise in OCT [78, 133]. However, these approaches

can be too expensive to apply in practice in addition to technical issues beyond discussion in

the context of this study. Additionally, digital post-processing, anisotropic diffusion filtering

[45] and nonlinear anisotropic filtering [62], methods have been used for speckle noise suppres-

sion in OCT images. While these methods are effective in reducing noise, the image is either

blurred or over smoothed due to loss of details (edges or lines) in non-homogeneous areas.

Obviously, the purpose of pre-processing is to remove the noise without losing much detail in

an image [145].
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In this chapter, an efficient method for robust OCT image segmentation by utilising a

combination of inexpensive methods is proposed. Distinctly, the method starts by establishing

a well-defined region of interest with all the crucial layer information similar to chapters 4

and 5. The image is then transformed using fuzzy histogram hyperbolisation to improve the

homogeneity within individual layers. Next, we cluster the intensity values of the transformed

image into two clusters using fuzzy C-means. From the clustering outcome, we select pixels

belonging to the hyperreflective layers by thresholding the average of selected components and

their gradients by a parameter. These selected pixel’s grey values are used to build data terms,

which are integrated into an unsupervised continuous max-flow framework for computation of

flow and optimisation. The method can successfully segment 5 layers of the retina in OCT

images. Specifically, the layers are identified as: Nerve Fibre Layer (NFL); Ganglion Cell +

Layer-Inner Plexiform + Inner Nuclear Layer Layer(GCL+IPL+INL); Outer Plexiform Layer

(OPL); Outer Nuclear Layer (ONL); Inner Segment + Outer Segment + Retinal Pigment

Epithelium (IS + + OS + RPE). The locations of these layers as segmented by the method in

an OCT image are illustrated in Figure 6.1. This chapter is organised as follows. In section

6.2 we revisit the literature to provide insight into current studies. Section 6.3 provides details

of the proposed method, while section 6.4 illustrates experimental results and accompanying

discussions. Lastly, section 6.5 is reserved for concluding remarks.

6.2 Previous Works

Image segmentation is a process of partitioning an image into non-overlapping sub-regions

which are similar with respect to some features such as pixel intensity or texture [129, 180]. The

segmentation of retinal layers in OCT scans is not a trivial process due to the inhomogeneity,

presence of vessels shadows and inherent speckle noise, variability and complexity of structures

(i.e., macula, fovea and optic nerve) in pathological tissues. In recent years, several methods

have been developed to detect, locate and segment different retinal layers (e.g. RNFL, GCL,

IPL, etc) in OCT images [5, 6, 83, 97, 135, 139, 175]. These segmentations methods can be

grouped into three main classes based on the dimensionality of the OCT images (i.e. 1D,

100



6.2. Previous Works 6. FHH and Continuous Max-Flow

Figure 6.1: Illustration of the 5 retinal layers segmented in the study.

2D or 3D) [31]. However, the segmentation approaches of each group differ concerning the

number of retinal layer features to be extracted like intra-retinal layers or fluid-filled regions

in the retinal images [31].

Early segmentation methods of OCT images are based on features extraction from either

conventional pixel intensity or gradient information. However, in the literature, most of the

recent segmentation methods of OCT structures are based on more complex algorithms. The

most popular methods include deformable-based approaches and graph-based techniques De-

formable segmentation approaches such as level sets, active contours (snakes) and geodesic

active contours use the regional characteristics or edge proprieties in the image to extract tis-

sues in the OCT images. These models are either parametric or geometric depending on the

contour characteristics because they perform the segmentation using a closed curve around

the target tissue and execute an iterative operation. Methods such as level-set evolve toward

the OCT tissues by searching in the scan either the largest gradient or using regional features

in the image. A classical deformable – based retinal layers segmentation method is proposed

in [174] by Yazdanpanah et al. The method adapts Chan-Vese’s energy-minimising active

contours using a multi-phase framework which incorporates a circular shape prior that model
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the boundaries of the retinal layers in the OCT scan and estimate the shape constraints

using least squares. In [170] Wang et al. proposed an automated segmentation method of

intra-retinal layers in a high-resolution 3D SD-OCT images. The method combines a level

set algorithm, hysteresis thresholding model and multi-region continuous max-flow algorithm

to extract seven intra-retinal layers including NFL, GCL+IPL, INL, OPL, ONL+IS, OS and

RPE. Dodo et. al, presented in [40] a level set segmentation method of seven intra-retinal

layers. The method uses a region of interest and applies a gradient edges algorithm, which

then use to initialise curves for the layers. The layer topology is used as a constraint in the

algorithm evolution process. Although these deformable methods achieve good segmentation

results, they need very robust pre-processing techniques to remove noise and imaging arte-

facts. They can produce poor results on heterogeneous images due to local minima. Often,

the model’s implementation can be complex as they use prior knowledge of the OCT image

structures (i.e. pixel intensities, shapes, texture, colour, positions etc.) to define constraints

on the algorithms evolution. These constraints could lead to segmentation inaccuracies when

the methods are used to segment different OCT image modalities.

Like deformable segmentation approaches, graph-based methods use energy minimisation

algorithms [15, 16, 19, 92]. They incorporate both regional and boundary regularisation pro-

prieties in the same manner as Mumford-Shah [13, 131]. Among all the numerous energy

optimisation approaches, graph cut techniques are one of the most popular methods used

in OCT segmentation. The methods consist of separating a graph by a maximum flow or

minimum cut optimisation algorithm [46, 148], in this model, the segmentation is performed

using adjacency graph, which consists of a set of vertices (i.e. image pixels) and a set of

weighted edges (i.e. weight values between two vertices) measuring the similarity between two

neighbouring pixels. The segmentation is achieved by minimising a cost function which adds

the values of the weights in the edges that are separated. In [34], Dodo et al. proposed an

automated graph-cut segmentation method of retinal layers from OCT scans. This combines

a fuzzy histogram hyperbolisation model and graph cut algorithm to segment eight (8) intra-

retinal layers in high-resolution 3D SD-OCT images. Kaba et al. presented in [83] kernel

graph cuts and continuous max-flow algorithm detect and segment the retinal layers including
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ILM, RNFL-GCL and RPE from circular SD-OCT scans. The segmentation is performed by

adopting a multi-regional graph cut segmentation technique, that includes a kernel-induced

segmentation functional and a continuous multiplier based max-flow algorithm. In [6] Antony

et al. proposed an automated globally optimal graph-theoretic method, which simultaneously

performs the segmentation of retinal layers and the micro-cystic macular edema (MME) from

volumetric OCT images.

These graph-based segmentations are very applicable in the segmentation of intra-retinal

layers. They can incorporate prior information such as shapes, textures, sizes, pixels seeds

and position into the graph energy algorithms guiding algorithm and achieving optimal seg-

mentation results. While the graph-based methods generate good segmentation results, their

performances depend highly both on the selection of initial seed pixels and the search param-

eters. Another drawback is finding the right cost functions of the graph functional that can

distinguish individual tissue in the OCT the scans.

Recently, with the improvement in computing power and the availability of large volume

of data, various retinal layer segmentations have been explored using deep neural networks

[43, 68]. This has been very effective in medical image analysis tasks in general. A typical

deep neural network for retinal layer segmentation was proposed in [43] by Fang et al. This

segmentation method extracts nine (9) layer boundaries in OCT images of non-exudative

AMD patients by combining both graph-cut search and deep neural network. In [68] He et al.

presented a segmentation method of eight retinal layers in OCT images using a cascaded fully

convolutional network (FCN) framework that guarantees the topological relationship between

layers. Although deep neural networks methods achieve good results, they rely heavily on

large datasets, and they are computationally expensive to perform. They are also sensitive to

biases in the datasets, which can lead to segmentation errors when used in different datasets.

The method proposed in this chapter takes two significant things into account. Firstly,

by establishing a defined region of interest, the chances of the algorithm finding features

that are not of interest is highly reduced. Secondly, the OCT is well known for its intensity

inhomogeneity; as such, using fuzzy c-means to handle the fuzzy nature of OCT is ideal. Also,

using the FCM as opposed to constants in building data terms allows the method to adapt
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to different images. Additionally, we capitalise on domain knowledge to reduce uncertainties

in both the preprocessing and segmentation steps. Specifically, we transform the images to

improve homogeneity and make each layer intensity values as similar as possible using the

fuzzy histogram hyperbolisation. In the segmentation stage, we improve the graph energy

function by incorporating selected components belonging to the hyper-reflective layers. This

improvement enables the graph cut method to differentiate the source and sink without the

need for user interaction.

6.3 Methods

This section details the proposed approach. A snapshot of the processes of the method is

illustrated in Figure 6.2. The method consists of two main parts, which are detailed in the

ensuing subsections.

6.3.1 Preprocessing

As highlighted in the previous sections (1 and 2) and also evident in the literature, noise

affects the proper identification of features of interest and negatively impacts the performance

of segmentation algorithms [111, 115]. As such, we start by establishing an explicit region of

interest by cropping the original image I to a cropped image Icropped as illustrated in Figure

6.3. The cropping of the image is based on domain knowledge, which is always useful in any

form of analysis. Specifically for OCT image, the commonly segmented layers are within the

total retinal thickness (TRT), i.e. the boundary between the retinal nerve fibre layer and

the vitreous, and the boundary between the RPE and the choroid regions. Additionally, it is

commonly accepted that the NFL, IS-OS and RPE exhibits high reflectivity in an OCT image

[27, 105, 156], and based on experiments the ILM and RPE exibits the highest transitions

from dark-bright and bright-dark, respectively [34]. With these understanding of the retinal

structure, we simply identify the ILM and RPE using the shortest path [32], by searching for

the highest transitions on two separate adjacency matrices [27]. At this point it is fitting to

crop the image I using the identified ILM and RPE points (Figure 6.1 C2) and then generate
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Figure 6.2: Schematic representation of the proposed OCT segmentation algorithm.
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Figure 6.3: Preprocessing steps showing: R1 - Nasal region; R2 - Foveal Region; and R3- Temporal Region;
C1 - Input images; C2 - identified ILM (red) and RPE (Green); C3 - image masks Imask; C4 - Processed

images Iprocessed; and C5 - Transformed images

a mask Imask of the cropped image (Figure 6.1 C3). Lastly, we multiply the mask by the

original image I to retrieve the pixel intensity values within the mask, which is expressed by

the equation below:

Iprocessed = Imask ∗ I (6.1)

The result from equation (6.1) is a processed image Iprocessed containing part of the image

with the layers information only as illustrated in Figure 6.3 C4. This process of cropping on its

own improves the performance of the segmentation method because with the two dominating

intensity values remaining, there is less interference of image noise. It also helps in dealing

with layer-like structures outside the ROI and the computational cost associated with handling

image background in segmentation.

Moreover, because of the intensity inhomogeneity within individual layers and across the

image, we transform the processed image using fuzzy histogram hyperbolisation [158]. This

transformation is such that bright layers get higher values and the value of the dark layers
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becomes lower (Figure 6.1 (C5)), which enables the segmentation of seven layers as opposed

to four layers in previous study [39]. It also further suppresses the image noise and make the

intensity values within each layer as similar as possible, thereby differenciating it from the

others. The pre-processing steps employed in the method is vital in the segmentation process

as it enables computation of the flow strictly based on layer properties. It also allows us to

utilise the full potential of the optimisation method, without having to employ complicated

optimisation constraints that usually limit the method’s performance.

6.3.2 Segmentation

Continuous max-flow unsupervised segmentation without user interaction utilises a piece-wise

constant function to model the image, where two grey values gv1 and gv2 are chosen to build

data terms [39, 179]:

Cs(x) = D(f(x)− gv1(x)), Ct(x) = D(f(x)− gv2(x)) (6.2)

where D(·) is some penalty function. The problem with such formulation is that the distri-

bution of values within the OCT is not equally distrubuted and fuzzy. In other words, the

regions are inhomogeneous due to the incompleteness and fuzziness. Therefore, to compute

the values of gv1 and gv2 it is convenient to employ FCM to cluster the image intensity values.

This is because two main intensity values exist in the transformed image, which belong to

either the bright or the dark layers. Consequently, we minimise a predefined function as in

equation 5.5. The outcome from equation (5.5), { µk(x, y)|k = 1, 2, . . .K }, is possibility of

each image pixel belonging to a specific fuzzy cluster νk. However, at this point, we are unsure

of which cluster refers to the hyper-reflective layers, therefore, we threshold the outcome of

the clustering to select a subset by,

GV = 2
(∑

Avg(µs +∇(µs)) > θ
)
− 1, (6.3)

which refers to the average of selected components µs and their gradient ∇(µs) thresholded by

the parameter θ. The value of theta ranges between 0.5 to 1. This improves the probability
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that the components selected actually belong the hyper-reflective layers. The term µs is

derived from

GV = 2([υs] > θ)− 1, (6.4)

where θ ranges between 0 and 1, and [υs] denotes a subset originating from GV = 2(µk > θ)−1.

Specifically, { υs|s ∈ S and S ⊂ K} .

In summary, the flow will be based on the image under examination, as opposed to the cho-

sen priors in equation (6.2). We set gv1(x) = GV (equation (6.3)), while gv2(x) is determined

from the non-selected components. Averaging the selected components and their gradient en-

ables assertion as to which cluster components belong to the bright layers. Likewise, the value

of the hypo-reflective layers will also be as close to their relative values as possible.

By utilizing the augmented Lagrangian method [12], the max-flow function can be repre-

sented as follows:

Lc(Ps, Pt, P, λ) :=
∫

Ω
psdx+

∫
Ω
λ(divp− ps + pt)dx

− c2‖divp− ps + pt‖2
(6.5)

Where λ is the Lagrangian multiplier introduced to optimise the flow and c is the steps in

augmented Lagrangian.The spatial flow p∗(x) is constrained, by imposing a condition in such

a way that only saturated flows contribute to the total spatial flows and cuts, as follows:

CαTV := {p|‖p‖∞ ≤ α, pn|∂Ω = 0} (6.6)

where α is the penalty parameter to the total variation term ∂Ω and is constant throughout.

In other words, at potential cut locations x ∈ Ω where ∇λ∗(x) 6= 0 the spatial flow p∗(x) is

saturated, while at locations x ∈ Ω where |p(x)| < α is unsaturated we must have ∇λ∗(x) = 0

and therefore the cut does not sever the spatial domain at x. This definition enables the

optimisation of the flows and the labelling of potential cuts to be executed simultaneously.

The various flows and the multiplier are optimised in an iterative process until convergence.

Putting everything together from equation (6.5) to begin the optimisation, we initiate the
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values of p1
s = min(Cs, Ct), p1

t = min(Cs, Ct), p1 = 0, λ1 = (Cs − Ct) > 0, and then let k = 1

and start the kth iteration,

• Optimizing p by fixing other variables

pk+1 := arg max
‖p‖∞≤α

Lc(pks , pkt , p, λk).

= arg max
‖p‖∞≤α

− c2‖divp(x)− F k‖2
(6.7)

the sub-minimization problem (6.7) is solved by using a single step of the following iterative

procedure computed by [179]:

pk+1 =
∏
α

pk + c∇(divpk − F k) (6.8)

where ∏α is the convex projection onto the convex set Cα = q |‖ q ‖≤ α and F k is a fixed

variable. The term div is a positive divergence towards the sink, which ensures all incoming

flow is to passed along since it is a directed graph.

• Optimizing ps by fixing other variables

pk+1
s := arg max

ps(x)≤Cs(x)
Lc(ps, pkt , pk+1, λk)

= arg max
ps(x)≤Cs(x)

∫
Ω
psdx−

c

2‖ps −G
k‖2

(6.9)

where Gk is a fixed variable and optimising ps we compute at each x ∈ Ω pointwise;

• Optimise pt by fixing other variables:

pk+1
t := arg max

pt(x)≤Ct(x)
Lc(pk+1

s , pt, p
k+1, λk)

= arg max
pt(x)≤Ct(x)

− c2‖pt −H
k‖2

(6.10)

where Hk is a fixed variable and optimizing pt can be simply solved by

pt(x) = min(Hk(x), Ct(x)) (6.11)
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• then finally update λ by:

λk+1 = λk − c(divpk+1 − pk+1
s + pk+1

t ) (6.12)

In the event of each iteration K+1 the convergence criterion is determined by

errk = ‖λk+1− λk‖/‖λk+1‖ (6.13)

The method converges if the error rate err∗ < E or when it reaches the maximum number of

iterations. Without losing context, in-depth details regarding the augmented Lagrangian, total

variation and Lipschitz principles adopted in the method are obtainable from [12, 16, 17, 92].

6.4 Results and Discussion

The images utilised in this entire study were captured using the Heidelberg SD-OCT Spectralis

HRA imaging system (Heidelberg Engineering, Heidelberg, Germany) in Tongren Hospital,

China. Non-invasive OCT imaging centred at the macular region was performed on 13 subjects

between 20 to 85 years of age. Manual ground truth labels of the layers were provided, which

serve as benchmarks for evaluation of the algorithms’ performance.

To evaluate the performance of the proposed methods in this thesis experiments were

carried on a set of 225 macula OCT scans, 75 each from the temporal, foveal and nasal

regions. The resolution of each image is 512 pixels in depth and 992 pixels across section

with 16 bits per pixel. Fifteen per cent (15%) of the image height was clipped from the top to

remove regions with low signal and no features of interest. Using MATLAB 2016a software, on

a PC with Intel i5-4590 CPU, clock of 3.3GHz and 8GB RAM, the average computation time

was 12 seconds per image. Comparing segmentation methods can be quite challenging because

various studies use different data set and a variety of statistical matrices for evaluation. Also,

the evaluation depends on the dimension of the data used, the standard used for comparison,

e.g. ground truth, the similarity between many experts, and so on. For the sake of readability

and to reduce wordiness, the compared methods are referred to as follows:
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Chapter 3 - MGCS

Chiu et al. [27] - MSTC

Chapter 4 - MLSS

Chapter 5 - MRCL

Chapter 6 - MFHM

The evaluation is carried out by standardising the number of segmented layers to five, which

have been illustrated earlier in Figure 6.1. Sample visual results of the methods are shown

in Fig 6.4. Generally, all the methods performed beyond average, but with varying success

rates as to be expected. This performance is somewhat attributed to the preprocessing steps

because it reduces the impact of image noise. Hence, the major challenge posed is in the

method’s ability to handle inhomogeneity. MFHM adapts better to the inhomogeneity and

inconsistency of retinal OCT images, based on experimental results to be discussed in the

ensuing paragraphs.

To begin with, the Root Mean Squared Error (RMSE) and Dice coefficient (DC), which are

common statistical measures for evaluating segmentation algorithms, are chosen to compare

the performance of the selected methods. Comparison is made between the result of the

methods and the ground truth labels by computing the RMSE and DC using equation (3.9)

The adaptability to the inconsistency of the retinal layers of the methods is notable. This

is an important factor due to the distinct retinal architecture for each person, in addition to

various imaging protocols.

What can be extracted from Table 6.1 is that MFHM segments the NFL better, which

can be attributed to the preprocessing technique in isolating the layers and the optimisation

ability of the max-flow algorithm. Next, with regards to the NFL is MGCS, and then MSTC.

The error in step is due to the inability of standard shortest path algorithms (e.g. [32]) to

handle inhomogeneity such as that of the OCT. Although MFHM achieved the highest DC

for the NFL, the accompanying SD is the highest. Also, MRCL outperforms MSTC in the

NFL because in some cases it converges at a local minimum. The value of the NFL for both
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Figure 6.4: Results of the 5 compared methods. Showing results from left the temporal region, center the
foveal region, and right nasal region of the reitina.
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RMSE and DC are promising to range from 0.921 to 0.970, respectively.

As for the RPE region, MGCS and MSTC segmented the RPE regions better than the

others. The performance of both methods is due to the region limitation, which allows the

methods to search within a specific range based on the layer characteristics. Plus, the RPE

region has limited blood vessels interference. Additionally, MSTC outperforms MRCL for

the same reasons. MFHM, in some cases, removes part of the RPE by cutting through the

OS layer due to the proximity, which is the reason for its under-performance. Hence, the

reason for the highest RMSE in RPE compared to other methods. Also, MRCL segments the

RPE better than MFHM although both methods do not employ region limitation or topology

constraints, but it is able to adapt to the topology, as it initially segments 9 layers as discussed

in chapter 5.

MFHM segments four layers better than the other methods with better consistency as can

be deduced from the values of DC and the RMSE in Table 6.1. Notably, The effect of using

the FCM is influential to the performance MRCL and MFHM, which is indirectly deducible

in comparison to MSTC and MGCS for the level set and graph cut methods, respectively.

The FCM handles the inhomogeneity in case of image noise, by adaptively estimating values

specific to the image, which aids the methods in achieving better results.

Generally, region limitation based on retinal topology aids in handling incompleteness in

MGCS, MSTC and MSTC, while FCM aids in handling inhomogeneity within layers in MRCL

and MFHM. This can be deduced from the NFL layer performance discussed earlier based on

the performance matrix in Table 6.1. This is also portrayed in the GCL to IPL, OPL and

ONL regions, except for the fact that MFHM segments these layers better. This is mainly

because the transformation of the image makes the layers visible, making it straightforward

for the method to identify the layers.

Due to the importance of the retinal nerve fibre layer in diagnosing eye diseases ( and

recently neurological and other terminal diseases), it is further assessed with the accuracy

measure computer by:

Accuracy = TP + TN

(TP + FP + FN + TN) (6.14)
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Table 6.2: Performance evaluation on 225 OCT images showing values of accuracy (standard deviation (SD))
of the method in identifying the Nerve Fibre Layer (NFL) (units in pixels).

Method Accuracy Mean (SD)
MGCS [34] 0.9281 (0.053)
MSTC [27] 0.8977 (0.058)
MLSS [40] 0.9045 (0.050)
MRCL [37] 0.9144 (0.052)
MFHM 0.9440 (0.022)

where the terms TP , TN , FP and FN refers to true positive, true negative, false positive and

false negative respectively. Distinctly, TP represents the number of pixels which are part of

the region in the ground truth that are labelled correctly by the segmentation methods. TN

represents the number of pixels which are part of the background region in the ground truth

and labelled correctly by the methods. FP denotes the pixels labelled as a part of the region

by the methods but are actually part of the background in the ground truth. Lastly, the term

FN represents the pixels labelled as a part of the background by the methods but are truly

part of the region in the ground truth. The performance of the methods using the accuracy

criteria (eqt. (6.14)) is shown in Table 6.2 while the distribution of the values is shown in

Figure 6.5.

What can be deduced from Table 6.2 is that all methods are efficient in segmenting the

NFL with accuracy between 0.89 and 0.94. MFHM achieves the highest accuracy of ∼ 95%,

with accompanying adaptability to the contour variance of the OCT as may be inferred from

the SD. With regards to the level set MSTC and MFHM, the superior performance of MFHM

is due to MRCL converging at a local minimum in some images.

Moreover, the promising performance of these methods is further affirmed by the distribu-

tion of values in Figure 6.5. MGCS, MSTC and MRCL have the highest individual accuracy

with their fourth quartiles reaching ∼ 99%. Notably, MGCS and MRCL have no outliers be-

low the first quartile, which means they are more consistent in finding the retinal boundaries

and with their accuracy values start from ∼ 76%. MSTC has the second best start of the first

quartile. However, it has underperformed in identifying the NFL in few images due to some
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Figure 6.5: Boxplot of the distrubution of accuracy in segmenting retinal nerve fibre layer thickness results
from Table 6.2.

constraints in the method as can be seen in the outliers (+ sign in red in Figure 6.5).

Further, although MFHM has the highest mean accuracy in Table 6.2 and the accuracy

value starts at ∼ 84%, it still has few outliers in the distribution (+ sign in red in Figure

6.5). MFHM performs better because the bright layers have been isolated, which enables the

appropriate location of the layers as the source and sink are adaptively assigned. In theory,

MFHM is able to locate the optimal points where the change is highest, which corresponds

to points with the minimum relationship between the nodes. MSTC have the lowest starting

value at ∼ 70% due to the method falling for wrong short-cuts as hinted earlier. However, it

has still achieved individual accuracy higher than MFHM.

In summary, the graph cut methods in MGCS and MFHM perform better than the level

set methods in MSTC and MRCL. In particular, MFHM outperforms the others because

it optimises the flow and then finds the layer boundaries. It is as if the max-flow min-cut

algorithm is innate for segmentation problems, where the goal is to find the highest change

from the standard layer distribution, which also refers to the point where the layers differ

the most. Furthermore, the use of prior knowledge improves the performance of the methods
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and enables them to achieve better results. Finally, If accuracy is desired, prior knowledge is

essential in the development of the methods. Whereas computational methods for achieving

good results are efficient and may segment more layers, there is always the challenge posed by

image noise and inconsistency. This assertion is not generalisable as portrayed by the results,

and further studies can look into balancing between both for better segmentation results.

6.5 Conclusion

This chapter has presented a fully automatic and simultaneous method to segment five layers

from an OCT image by utilising domain knowledge and inexpensive computational methods.

As opposed to filtering and averaging denoising methods, that usually require a filter win-

dow, we utilise domain knowledge to preprocess the image in order to reduce the effect of

noise and improve homogeneity. Specifically, the cropping of the image to contain the lay-

ers only promotes accurate segmentation by aiding in convergence, while the improved FHH

transformation improves segmentation results by reducing image noise and inhomogeneity.

The preprocessing steps employed in this approach ( and other chapters 3 to 5) can be used

individually to improve the performance of other segmentation methods. This assertion is

based on the understanding that the steps improve similarity and difference within the image,

thereby isolating individual features of interest.

Further, the use of the reinforced fuzzy C-Means in building data terms allows the method

to cater for inconsistency within the image, by computing membership value unique for each

image. This process is appropriate for building the graph model for OCT segmentation,

because the values of OCT vary even within each layer, depending on image noise and imaging

modality.

Summatively, the experimental results of this study suggest that the methods can provide

essential information necessary for the diagnosis and prevention of major eye diseases. Also,

the results show the methods adapt to the inhomogeneity and pathological inconsistency of

the retinal layers. These results are achieved by rigorous selection of computational methods

that enable incorporation of prior knowledge.
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6.5. Conclusion 6. FHH and Continuous Max-Flow

Finally, a retrospective approach was taken in proposing this method by utilising efficient

processes from previous chapters that are best suited for OCT analysis. This raises a question

with regards to the dimension of machine learning approaches. Because this learning process

can be facilitated through training a learning model. Machine learning models have recently

been utilised and come with their challenges, which can be handled through the utilisation of

prior knowledge.
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Chapter 7

Conclusion

Research in computer-aided diagnostics is gaining more grounds in various aspects of health-

care. The reason for this is apparent, as it improves the diagnostic process and saves both

time and effort compared to manual diagnosis. The role of medical image analysis in diag-

nosing diseases cannot be overemphasised as it allows the identification of various features of

interest necessary for clinical examination. Notably, retinal image analysis is one of the highly

researched areas due to the ability to extract useful information from retinal images used in

diagnosing and preventing major eye diseases, including glaucoma, diabetic retinopathy and

age-related macular degeneration. This intricacy in retinal image analysis is because the eye

is one the five senses people value the most [71] and structural changes in retinal layers has

been shown to correlate with the severity of the dominant eye diseases highly. As such, it is

crucial to assess the changes occurring on retinal layers in OCT scans to monitor eye diseases,

since the causes of these diseases are not fully known. To assess the changes in retinal layers

caused by diseases requires segmentation of different retinal layers. However, this evaluation

process is not only time consuming, cumbersome and subjective when done manually, but also

becoming impossible due to the amount of data becoming available to clinicians for analysis.

Consequently, many automated retinal image analysis methods are being proposed due to

the earlier mentioned challenges of manual image analysis and proven ability of automated

analysis methods to extract the different futures necessary for a clinical eye examination.

However, image noise, intensity homogeneity and other imaging artefacts significantly degrade
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the performance of these automated methods. To handle these challenges, this thesis focuses

on presenting robust and reliable automated techniques for retinal OCT image analysis. In

this regard, four innovative methods for segmenting different retinal layers in OCT images

are proposed. All the four methods achieved promising experimental results, which shows

the proposed methods are efficient in segmenting the retinal layers. The proposed methods

solve significant issues in OCT image analysis that are related to the lack of uniform intensity

within layers in the OCT image, which hinders accurate segmentation of boundaries. These

issues affect current OCT segmentation techniques such as level set, active contours, graph

cut, machine learning approaches, and are also found in commercially available OCT imaging

tools.

Furthermore, prior knowledge plays a vital role in image segmentation as it aids in dealing

with the incompleteness of the retinal structure. Some of this knowledge is low level, such as

coherence of brightness, colour, texture, but equally important is mid or high-level knowledge

about consistency and topology of features or feature models. Therefore the architecture or

characteristics of the image being analysed should ideally determine the set of constraints to

be deployed in a segmentation algorithm. On the other hand, there is difficulty in classifying

standard anatomy for all retinas due to several possible interpretations in the context. Thus

difficulty then lies in specifying what constitutes prior knowledge.

Moreover, high-level segmentation methods such as graph-cut and level set provide the

ability to incorporate prior knowledge, which we call modelling powers. Non-technically, these

modelling powers are constraints or conditions that are imposed, usually based on prior knowl-

edge, of how the method differentiates or separate the pixels of different regions. There is a

wealth of information in Electronic health records (EHR). Harnessing knowledge from this data

and integrating it with medical images will be of pivotal influence in personalising health care.

The integration of this variety of data can also provide knowledge on establishing standards

for clinical diagnosis and validation of segmentation methods. Additionally, it also will aid

in: bridging the gap between clinicians and researchers; and establishing common standards

for diagnosis and evaluation of retinal pathologies. Also, the beneficiaries of similar research

work will increase by creating synergy among the different stakeholders in healthcare.
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In summary, this thesis presents innovative and plausible fully automated methods for the

segmentation of retinal layers from OCT images. It also provides insight into the challenges in

image segmentation by raising factors that influence the performance of image segmentation

algorithms. Although this thesis is by no means complete as highlighted in chapter 1, it is

hoped that the contributions and findings of the research serve as a guide for future studies,

as it enters the pool of literature, and therefore informs future research ideas. Similarly, a

retrospective approach to the outlined limitations and the possible dimension of the study

raises issues to be reflected upon for continuous improvement, which can be beneficial to

the broader research community. The rest of this chapter is organised as follows. Section

7.1 summarises and recapitulates how each chapter contributes to meeting the objectives of

this thesis with accompanying comparison. Beneficiaries of this research work are outlined

and briefly discussed in section 7.2. Lastly, limitations and possible extensions of this thesis

besides those highlighted earlier at the end of chapters 3 to 6 are discussed in Section 7.3.

7.1 Comparison of Proposed Methods

At this point, it is essential to reflect on the objectives of this thesis and highlight how each

chapter contributes to achieving the objectives, as highlighted in chapter 1 b(section 1.2.

• OBJ1: Developing fully automated image segmentation methods.

• OBJ2: Combining rigorously selected image processing techniques.

• OBJ3: Utilising prior knowledge of the retinal layers to improve segmentation accuracy.

• OBJ4: Improving homogeneity in retinal OCT image.

• OBJ5: Preprocessing OCT images.

• Chapter 3: presented a sequential method for segmenting 7 layers across 8 boundaries

of the retina (OBJ1). The method uses image gradient and its inverse to represent

image intensity values to calculate two adjacency matrices, which captures unique layer
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characteristics. These adjacency matrices are transformed using fuzzy histogram hypoli-

sation to improve the strength of connectivity amongst adjacent edges. The improved

adjacent matrices are integrated into the graph-cut framework to sequentially segment

8 boundaries of the retina based on unique layer characteristics (OBJ2), (OBJ3).

Without losing context, the preprocessing technique in chapter 6 was the first instance

fuzzy histogram hyperbolisation was explored in the entire research. The results from

a preliminary study lead to one of the main ideas of this chapter, which is to say if

the graph-cut method is dependent on the assignment of appropriate weight, then by

improving the connectivity of adjacent edges in the adjacency matrix the performance

of graph-cut methods can be improved.

Additionally, this transformation of the adjacency matrices is influenced by the under-

standing that if segmentation is based on similarity and differences, then making the

features or regions in the images as unique as possible can improve the performance

of segmentation algorithms. The method achieved promising results, but the segmen-

tation less prominent boundaries rely on the accurate segmentation of the prominent

ones. Further, the method is unable to properly segment GCL and IPl individually due

to the noise and merging of layers at the foveal region. It also did not segment the IS

from the OS region due to its proximity to the OS-IS boundary. Because, the method

searches within a limited region, it sometimes obtains the ONL-IS boundary. Besides,

the OS layer is thin, making it difficult to have a specific limit for the search space. For

this reason, the method effectively identifies seven layers of the retina, which have been

illustrated in 3.1. Also, this has triggered the exploration of simultaneous segmentation

methods in chapters 4, 5 and 6.

• Chapter 4: the method proposed segments 7 layers of the retina simultaneously (OBJ1).

The method starts by establishing a specific region of interest (OBJ5), which ensures

the evolution of the initial layer boundaries is influenced by the actual layer properties

solely. The method utilises edges from the OCT image gradients to represent initial layer

boundary contours. Then constraints based on the OCT layer topology are deployed to
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manage the evolution of the initial contours to the actual layer boundaries (OBJ3).

The method can handle edge leaks, which is a common challenge for standard level set

methods. The method also converges quickly, as it carries out the topology checks before

a boundary point expands or shrinks.

In contrast, the method in chapter 4 also segments 7 layers efficiently, but slightly

different from those segmented in chapter 3. This difference in segmented layers is

mainly because the topology constraints in chapter 4 differ from the region limitation in

chapter 3. Mainly due to fragile boundaries within the GCL+IPl and INL region, the

method converges better at the OPL region. It can handle the OS region better because

the two other layers IS and RPE are the brightest. Consequently, the level set topology

constraint can handle that challenge, as it evolves from the brighter part of the layers

to where the layer boundaries transitions.

The constraints limit the performance of the method, as highlighted in the discussion

in chapter 6.4. For this reason, the study in chapter 5 was initiated to explore level set

segmentation further to segment more layers. The main additions of this chapter are

the establishment of an explicit region of interest because boundary and image features

influence the evolution of level set methods; the use of edge from the gradient in the

initialisation phase; and the layering topology constraints imposed on the evolution

process.

• Chapter 5: presented a fully automated simultaneous segmentation method for segment-

ing 9 retinal layers without imposing constraints in the segmentation process OBJ1.

Similar to the method in chapter 4, the method starts by establishing a specific region

of interest for the same reasons. This method utilises different methods including fuzzy

C-means, edge detection and the graph cut all of which contributed to appropriate ini-

tialisation of the level set method (OBJ2). The combination of these methods enables

the selection of particular components belonging to the hyperreflective layers (OBJ3).

The level set method is then initialised based on a subset of the selected components and

evolved adaptively to the boundaries based on various image forces. The convergence of
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the method is upon reaching a criterion for optimality or reaching the maximum number

of iterations.

The method leverages the ability of FCM to handle inhomogeneity and incompleteness,

which overcomes the shortcomings of previous methods due to OCT noise and inho-

mogeneity. The method segments more layers compared to other proposed methods

because it obtains the gradient of the image and then the selection of the hyperreflective

layers, which allows it to differentiate each layer using the region competition. Also,

the membership value has been incorporated into both the evolution and convergence

function, which enables the method to distinguish between the individual retinal layers

in the selective level set segmentation process. The distinct supplements of this chapter

are the use of selected component in the initialisation phase; and the use of the fuzzy

region competition to guide both the evolution and convergence of the selective level set

method; which aids in handling the intensity inhomogeneity of OCT images.

In general, although parameterisation improves the performance segmentation methods,

it is still limited to values that need to be set manually. For the sake of comparison and

to further explore the graph cut method without constraints, the study in chapter 6 was

initiated.

• Chapter 6: presented a method to segment 5 retinal layers using a combination of fuzzy

image processing techniques and continuous max flow method (OBJ1, which is an ex-

tension of initial work [39] in this PhD research. As highlighted earlier, the preprocessing

method utilised in chapter 3 was first explored in chapter 6. The proposed method starts

by establishing a well-defined region of interest (ROI) with all the crucial layer informa-

tion similar to methods in chapter 4 and 5. The ROI is then transformed using fuzzy

histogram hyperbolisation to improve the homogeneity within individual layers (OBJ4).

Next, the intensity values of the transformed ROI is clustered into two (2) using fuzzy

C-means. From the clustering outcome, pixels belonging to the hyperreflective layers

are selected by thresholding the average of selected components and their gradients by

a parameter (OBJ3). These selected pixel’s grey values are used to build data terms,
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which are integrated into an unsupervised continuous max-flow framework to segment

the retinal layers OBJ2.

The method segments 5 layers because no constraint is set, and the main thing taken into

account is the brightness of the layers. Hence, the preprocessing steps are essential, as

they isolate the layers to enable better segmentation of the targeted layers. The method

takes advantage of a similar approach to the method in chapter 5 (to select components

belonging to the hyper-reflective layers). Due to the foveal region merging, the method

can efficiently segment 5 layers, and so far, no technique is integrated into the method

to mitigate the merging of the layers. In contrast, Five (5) layers are the least to be

segmented by any of the proposed methods in this thesis.

On the other hand, the method achieved the best segmentation results in four (4) out of

the five (5) layers, compared to the other methods. The main additions of chapter 6 are,

the transformation of images using restrained fuzzy histogram hyperbolisation; and the

integration of selected components to build data terms, as opposed to constants, into

the unsupervised continuous max-flow for segmentation. This combination enables the

method to perform robust segmentation of OCT by handling the inhomogeneity within

the images.

Discussion with regards to the individual performance of the proposed methods has been

made earlier in section 6.4. The variance in the number of layers successfully segmented by each

method relies on the modelling ability of the segmentation method and how the preprocessing

supports the segmentation of the targeted layers effectively. Notably, promising results in

segmenting the same 5 layers over 225 OCT images has been achieved by all the methods, which

shows the suitability of the proposed methods for OCT segmentation. However, although the

algorithms are developed based on the understanding of OCT images, they may perform

differently on different dataset due to scanner resolution, disease or scanning protocol. In

such cases, various parameters might require adjustment. On the other hand, this is an issue

that may be handled better through machine learning algorithms.

Generally, the graph-cut methods outperformed the level set methods in OCT image seg-
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mentation, which was not the expectation at the beginning of the evaluation experiments.

While the level set method was able to segment more layers than the graph-based methods.

It is to be noted that these observations are limited to the scope of this research, which can

provide an avenue for further exploration. The full potential of the technology in retinal image

analysis is yet to be fully utilised as commercial systems focus on segmenting only a few layers

of the retina. Eye diseases pose a threat to the quality of life, which makes it critical to prevent

them with new technology by leveraging the knowledge available.

7.2 Beneficiaries of the Thesis

Following the contributions as outlined in Chapter aims and recapitulated in Section contri-

bution, the beneficiaries of this thesis are as follows:

1. Eye specialists One of the primary beneficiaries of this research work is ophthalmol-

ogists. Because the prevalence of major eye diseases and the challenges clinicians face

in diagnosing and treating these diseases motivates the entire study. Other beneficiaries

support in their various capacities in this endeavour to curtail vision loss and visual

impairments. The methods proposed in this thesis can reduce the challenges faced by

eye specialists by improving the accuracy of OCT image analysis tools and reducing the

time it takes to complete an eye examination.

2. Research community This thesis benefits various research communities including,

image preprocessing, image segmentation, data analysis and ophthalmology because it

brings elements of these areas together as highlighted in the introductory section of

chapter 2 (see section 2.1). The methods proposed in this thesis touches some aspects

of optimisation, constraints, parameterisation and graph and statistical model based

image processing in the context of image segmentation. This can benefit researchers and

research groups focused on these research areas individually.

Early stage researchers can highly benefit from this research. This is because it lays a

foundation and provides supporting evidence as to why particular methods work and
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also how the problems are formulated to fit into the solution. References to further

literature are usually provided where necessary to enable interested parties to explore

beyond the scope of this thesis. This is found to be useful because it is challenging

to comprehend general ideas discussed in journals due to the vast amount of literature

at the early research stage. Additionally, it will reduce the time it takes early stage

researchers to familiarise with retinal image analysis, as it is well known how dwelling

on literature can complicate the scoping process of research. It is a daunting process

usually undertaken, and hopefully, the contents and structure of this thesis will simply

and improve the process and outcome of the review process.

3. Industry the industry producing the OCT machines can derive useful information, for

example, what makes the segmentation method restrictive, the factors that affect the

accuracy of methods. In particular, the image preprocessing technique can be used as a

first step image enhancement before applying other enhancement techniques. This can

highly improve the performance of the complete image analysis results. This insight into

the influencing factors can, in fact, be more beneficial to the industry as they have better

access to both the research community and eye care specialists. Thereby allowing the

industries to leverage this link to develop better machines.

7.3 Limitation and Future Work

This section discusses the limitation of this study and elaborates on possible directions for

future work. The major limitations of this research can be summarised as follows:

1. As highlighted in chapter 6, there are challenges, including difference of dataset and

evaluation metrics and the number of layers segmented, in comparing segmentation

methods. The proposed methods could have been compared to more methods in the

literature to better ascertain the performance and stands of the methods in the state of

the art retinal image analysis.

2. As a result of limited access to data, the methods are only tested on healthy eyes. It
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will be ideal to test the methods on both normal and abnormal images, to implement

more efficient methods that could extract both normal and diseased features from OCT

images robustly. Because the build-up of the proposed methods is such that they could

work on different OCT images without the need for adjustment. However, we can only

infer that based on performance due to the limited access to data.

3. Due to limited accessibility to eye specialists, we are uncertain about the immediate needs

of the clinics and hospitals. For example, most of the prior knowledge utilised in this

research is based on the understanding of the OCT and information from the literature.

We might not know very current and vital information in eye diagnosis unless published,

which hinders the development of analyses tools, because algorithms capable of solving

the problems in real-time would have been ideal.

4. Due to the limitation of the desktop computing capability, we were unable to fully engage

in 3D retinal image analysis, which may provide more layer contextual information for

diagnosing of eye diseases.

Based on some of the limitations and ever-changing nature of both eye diagnosis and

computer-aided diagnostic tools, there are many avenues that research in the retinal image

analysis may take. Thus, we cannot exhaust the list of possibilities, but we highlight some

directions with the most potential based on findings are as follows:

1. Similar to many other imaging modalities, OCT imaging systems introduce lots of

speckle-noise and artefacts during the imaging process. As such, more powerful and

efficient denoising methods are necessary to filter out all noise while preserving all the

layer structure information. There are many existing methods for image denoising, such

as median filter, Gaussian, and anisotropic diffusion filter, to mention a few. Improving

these methods can make the structure extraction more accessible and efficient.

2. Computer-aided diagnostic tools are currently used in much diagnostic decision making.

For example, in classifying healthy and unhealthy eyes or the presence or absence of

particular eye disease. Using segmentation results in the absence of ground truth labels
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has also proven to be useful and handle the challenge of training data in machine learning

techniques. We can further test the accuracy of the methods by incorporating the results

into a classification problem. However, this is dependent on data availability. Also, to

assess the actual performance of such methods requires monitoring of time series data

is essential to monitor minor changes to the retinal structures.

Furthermore, image registration techniques for both 2D and 3D images are critically

needed to monitor the longitudinal data collected. These methods will enable the efficient

monitoring of eye diseases as they begin manifesting in their early stages to allow timely

intervention.

3. As both data and code publishing is now on the rise, further evaluation of the methods on

different datasets will be conducted, with the view to better understand the influencing

factors in image segmentation. It will be essential to enable intensive view into the

performance of the methods.

4. Use of machine learning techniques: When this study started the use of machine learning

in computer vision is not as common as it is now. It is evident from this research

that through learning more about the structure of the data and prior knowledge, we

were able to improve the performance of the latter methods. Now with the machine

learning framework, this learning process can be facilitated with improved accuracy and

utilisation of the most relevant image traits in the image analysis process.

5. Develop interactive segmentation versions of the proposed methods to ascertain if the

interactive segmentation can enable segmentation of all the retinal layers and compare

the results to the fully automated methods proposed in this thesis.
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