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Abstract
Recent emerging hybrid technology of positron emission tomography/magnetic resonance (PET/MR) imaging has generated
a great need for an accurate MR image-based PET attenuation correction. MR image segmentation, as a robust and simple
method for PET attenuation correction, has been clinically adopted in commercial PET/MR scanners. The general approach
in this method is to segment the MR image into different tissue types, each assigned an attenuation constant as in an X-ray
CT image. Machine learning techniques such as clustering, classification and deep networks are extensively used for brain
MR image segmentation. However, only limited work has been reported on using deep learning in brain PET attenuation
correction. In addition, there is a lack of clinical evaluation of machine learning methods in this application. The aim of
this review is to study the use of machine learning methods for MR image segmentation and its application in attenuation
correction for PET brain imaging. Furthermore, challenges and future opportunities in MR image-based PET attenuation
correction are discussed.

Keywords MR image-based attenuation correction · Image segmentation · Machine learning · Deep learning · PET/MR

Introduction

Positron emission tomography (PET) is an imaging modal-
ity that provides direct imaging of physiological biomark-
ers using radiolabeled gamma-ray emitting molecules. The
knowledge of the tissue-dependent attenuation map, needed
for attenuation correction, is a critical step to achieve
an accurate PET image reconstruction. Figure 1 shows
the effect of attenuation correction on reconstructed PET
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images. The attenuation map is usually obtained by per-
forming an additional scan using X-ray computed tomog-
raphy (CT) [1]. CT image intensity measured in the
Hounsfield unit is a map of the normalized X-ray atten-
uation coefficients, which reflects the anatomical, physi-
ological and pathological states of the underlying tissues.
Therefore, the CT image can be mathematically converted
to the equivalent linear X-ray attenuation coefficients [2,
3]. Since X-rays and gamma-rays have similar attenuations
in biological tissues, X-ray CT is the most straightforward
way for PET attenuation correction. However, it introduces
additional ionizing radiations to the imaging subjects.

On the other hand, magnetic resonance (MR) imaging
is nowadays considered the premier modality for imaging
the brain structures and functions due to its excellent soft
tissue contrast, high spatial resolution, and lack of ionizing
radiation. Therefore, MR images have been extensively used
for visualizing, analyzing, diagnosis, treatment planning,
and follow-up of a variety of neurological conditions.

To take advantages of both MRI and PET, hybrid
PET/MR systems were recently introduced and applied in
the clinical molecular imaging applications [5]. However
signal intensity in MR images is not directly correlated
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Fig. 1 A reconstructed PET
image without attenuation
correction (a), and with
attenuation correction (b) using
the [(18)F]-fluorodeoxyglucose
((18)F-FDG) radiotracer.
Adopted form [4]

to attenuation coefficient which is required for attenuation
correction in PET image reconstructions [2]. Therefore,
MR image-based attenuation correction has become one of
the challenges in PET/MR systems [6]. There are different
approaches are used to addressing this challenge which are
discussed in “MR Image-Based Attenuation Correction for
Brain PET Imaging”. T1-weighted and T2-weighted MR
images are commonly used in MR image-based attenuation
correction. Other MR image pulse sequences which provide
more details in morphological information can also be used
for this purpose. These include diffusion-weighted images
(DWI) [7], short echo time (STE) [8], ultra-short echo time
(UTE) [9], zero echo time (ZTE) [10], dynamic contrast-
enhanced (DCE) imaging [11], and magnetization-prepared
rapid acquisition gradient echo (MP-RAGE) sequences [12].

Current research utilizes different machine learning
techniques and MR image data acquisition sequences to
perform MR image segmentation for different medical
applications, including PET/MR attenuation correction.
DWI sequence [13] or a combination of sequences [14, 15]
is the most routinely used for the diagnosis and follow-
up in ischemic and hemorrhagic stroke. For quantitative
analysis in multiple sclerosis, T2-weighted MR images
is commonly used sequence either as a single imaging
sequence [16] or in a multi-sequence approach [17–19].
T1-weighted MR images are frequently used to assess
biomarkers of Alzheimer’s disease such as hippocampal
atrophy, ventricle enlargement and cortex shrinkage [20,
21]. Brain tumor segmentation of MR images received
much attention over the last decade, especially for treatment
planning and follow-up. A range of MR image sequences
were used as input to segmentation procedure: single MR
image sequence with [22] and without [23] contrast agent,
or multi-sequence MR images with [24–27] or without
contrast [24, 28].

The process of segmentation is performed by segmenting
the brain MR images into three main tissue classes: white
matter (WM), gray matter (GM), and cerebrospinal fluid
(CSF) as well as the lesion regions. These have been
a large body of literatures on brain image segmentation
methods as thresholding, edge based, watershed based,
and various machine learning techniques. For instance,
random forest classifier has been used for diagnosis of
Alzheimer disease by biomarkers such as segmenting white
matter lesions [29] or hippocampus for diagnosis [30],
and for segmentation of brain tumor lesions [31]. Support
vector machine (SVM) showed good segmentation results
in white matter lesion [32], multiple sclerosis region [33],
brain tumor lesions [24] or to diagnose Alzheimer disease
[20]. Additionally, probabilistic models were proposed to
efficiently segment the brain tissue into three classes or to
only extract the region of interest by applying the inverted
Dirichlet mixture Model [34], Markov random field [35]
and Bayesian model [36]. Furthermore, neural network such
as multilayer perceptron [37], self-organizing map (SOM)
network [38], extreme learning machine (ELM) [39], and
cellular neural network [40] achieved also good results in
segmenting the brain into different regions. Unsupervised
learning, specifically clustering techniques, have been
widely used for skull striping [41], white matter lesion
segmentation [42], and tumor region segmentation [23].
Recently, deep learning proved powerful performance in
several brain segmentation applications using convolutional
neural networks (CNN) for skull stripping [43], stroke
lesion segmentation [44], multiple sclerosis segmentation
[45], and brain tumor segmentation [27].

The aim of this literature review is to highlight the
recent progress made on MR image-based PET attenuation
correction using machine learning for segmentation of
brain tissues. The structure of this review is as follows:

section*.4
section*.4
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Section “MR Image-Based Attenuation Correction for Brain
PET Imaging” introduces the MR image-based attenuation
correction for brain PET imaging. Section “Machine
Learning-Based Segmentation Methods for PET Attenua-
tion Correction in Brain Imaging” represents the machine
learning-based segmentation methods for PET attenuation
correction in brain imaging. Section “Performance Metrics
and Clinical Evaluation” discusses the evaluation metrics
and clinical evaluation. The challenges and opportunities are
discussed in “Challenges and Future Opportunities ” and the
conclusion is presented in “Conclusion”.

MR Image-Based Attenuation Correction
for Brain PET Imaging

With the recent introduction of hybrid PET/MR scanners,
PET attenuation correction maps need to be generated
from MR images. Unlike CT, the MR image signal
intensity has no direct mapping to PET attenuation
coefficients. For instance, bone and air have similar
intensity values in conventional MR images while they
have quite different attenuation coefficients [3]. Figure 2
illustrates the difference between CT imaging-based and
MR imaging-based attenuation correction.

Generating pseudo CT from MR images requires seg-
mented MR images where tissue classes assigned a spe-
cific attenuation coefficient. Moreover, clinically adopted
method for MR image-based attenuation correction, also
available for commercial PET/MR scanners, involves MR
images segmentation as a basis to generate pseudo CT
images [46]. MR images are commonly segmented into
three or more tissue classes then predefined attenuation
coefficients will be assigned to each voxel tissue class.
Hence, there is a great need for a reliable method to gener-
ate the attenuation correction coefficients from MR images.

As shown, it requires complex transformation to produce
pseudo CT from MR images. The main complex transfor-
mations to map a MR image to a pseudo CT images are as
follows: segmentation, atlas, and machine learning which
are discussed in the following paragraphs.

The segmentation methods are traditionally considered
the most robust and simple methods adopted in clinical
domain for MR image-based attenuation correction for
PET images [47–49]. The first clinical hybrid PET/MR
system uses the two-point Dixon gradient echo sequence
which simplifies the segmentation of MR images into
different tissue classes [4]. Nowadays, the commercial
PET/MR systems segment images into three or four
tissue classes [50], with the voxels of each tissue class
assigned an approximated predefined linear attenuation
coefficient [51] producing the attenuation correction map.
MR image segmentation was performed using different
approaches starting with simple techniques such as level
set [52, 53], thresholding [50, 54–60], and radon transform
[59] until more complicated techniques such as clustering
[61–63], classification [64] and deep learning [65–67].
Table 1 illustrates different segmentation methods applied
to different MR image sequences. The main challenge of
segmentation is the accurate delineation of bone tissue [47].
Furthermore, there is also a disagreement on the value of
a linear attenuation coefficient to be assigned for the bone
tissue [54].

The atlas-based methods, also referred to as the
registration-based methods, involve image registration
between atlas/template images (MR/CT image pairs) and
the target MR image using nonlinear transformation. First,
the MR image of the subject is co-registered with the atlas
MR image. Then, the obtained transformation is applied
to atlas CT image to create subject specific attenuation
correction map [48]. The quality of PET reconstruction is
highly dependent on the registration algorithms accuracy.

CT image

MR image

Attenuation 
correction map

Simple 
transformation Corrected PET 

image

PET reconstruction

Attenuation 
correction map

Corrected PET 
imagePseudo CT

(a)

(b)

Complex 
transformation

PET
reconstruction

Attenuation 
coefficients 
assignment

Fig. 2 The overview process of deriving attenuation correction maps from : a CT images, b MR images
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Table 1 The different segmentation methods applied on different MR
sequences

Reference Segmentation technique MR sequence

[52] Level set STE

[53] Level set UTE

[55] Thresholding UTE

[57] Thresholding ZTE

[58] Thresholding Dixon

[59] Radon transform T1 weighted

[62] Clustering STE and Dixon

[63] Clustering T1 weighted

[64] Classification DCE, MP-RAGE, T1 weighted

[73] Classification Dixon

[65] Deep learning T1 weighted

[66] Deep learning UTE and out-of-phase echo

[84] Deep learning T1 weighted

Different atlas-based techniques were proposed in the
literature [46, 68–70]. Most of the atlas-based methods
use machine learning to estimate the pseudo CT image
using MR image features such as signal intensity and
geometric metrics to learn the relationship between MR
signal and Hounsfield units in CT. This method is
time consuming and potentially have decreased accuracy
under anatomical variations, especially in cases undergoing
neurosurgery [71].

Machine learning methods are related to both
segmentation- and atlas-based methods where different
algorithms are applied either to perform MR image segmen-
tation [61–64, 72, 73] or post-registration process to learn
the complex mapping from MR images to CT in order to
generate the pseudo CT images [74–83]. Different machine
learning techniques have been applied such as Gaussian
mixture regression model, k-nearest neighbors (kNN)
regression, random forest classifier, neural networks, clus-
tering techniques, and deep learning. In the next section,
MR images segmentation methods using machine learning
for brain PET attenuation correction are reviewed in detail.
These include image clustering, image classification, and
deep learning.

Machine Learning-Based Segmentation
Methods for PET Attenuation Correction
in Brain Imaging

Tables 2 and 3 summarize the three main categories of
machine learning techniques proposed for MR images
segmentation: clustering, classification, and deep learning.

Clustering

Khateri et al. [62] used a combination of STE sequences
with 2-point Dixon technique along with a fuzzy C-
means (FCM) clustering-based segmentation method to
detect bone tissue. They segmented the brain into four
clusters, namely cortical bone, soft tissue, adipose tissue,
and air. They concluded that the clustering technique is
an appropriate approach to segment bone and air in the
sinusoidal area. The bone segmentation results achieved
more than 90% in terms of accuracy, sensitivity, and
specificity. However, the eye area can be misclassified as
bone. The results were validated using manually segmented
bone regions on STE MR images by a neuroradiologist
expert. Later, the same team (Khateri et al. [8]) applied
FCM clustering to segment the brain into three tissue
classes (cortical bone, soft tissue, and air) using the same
combination of MR sequences (STE + Dixon). They used
morphologic operations as post segmentation to reduce
susceptibility error. This method was evaluated with CT-
based attenuation correction maps as shown in Fig. 3.
The visual comparison showed the high similarity between
MR and CT segmentation results. The evaluation measures
are signal-to-noise ratio (SNR), accuracy, sensitivity,
specificity, and correlation plots. The segmentation results
proved that the combination of STE sequence with a
clustering technique is a potential alternative for UTE
sequences for PET attenuation correction. They concluded
from the obtained attenuation correction maps that the
ethmoid sinuses are the most error-prone areas with the
largest difference in the paranasal area.

Fei et al. [63] developed a multiscale segmentation
approach using radon transform of T1-weighted MR images
to segment the head image into skull, scalp, and brain
tissue. Then, the brain tissue was classified into three
classes: GM, WM, and CS by applying unsupervised
clustering technique. The images were firstly processed
with anisotropic diffusion filter to construct a multiscale
image series in order to overcome the blurred edges
drawback. Then, a multiscale FCM technique was applied
to allow multiscale processing from the coarse to fine
levels. Afterwards, predefined attenuation coefficients
were assigned to each tissue class. The segmentation is
evaluated using dice similarity measurement. The quality
of PET images is compared with transmission (TX)-based
attenuation correction by visual inspection followed by
quantitative measurements which are relative difference,
mean squared error (MSE), and peak signal-to-noise ratio
(PSNR). The overlap ratio between the segmented and
ground truth CT is around 85% and the difference between
the MR- and TX-based attenuation correction maps is less
than 7%.
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Su et al. [72] proposed an attenuation correction method
using a single acquisition, undersampled UTE-mDixon, MR
images. They applied FCM clustering algorithm to seg-
ment the head into five different tissue classes including
brain, air, fat, fluid, and bone. After optimizing MR images,
three image features which are Dixon-fat, Dixon-water,
and R2 were used as input to the unsupervised cluster-
ing algorithm. The segmented MR voxels were assigned
attenuation correction coefficients to generate the pseudo
CT images. The coordinates of the centroids of different
tissue types were calculated to evaluate the segmentation
results. Then, the obtained pseudo CT images are compared
with measured low-dose CT images visually and subjec-
tively by calculating the CT histogram and mean absolute
predication deviation (MAPD).

Classification

Shi et al. [4] proposed bone refinement method for exist-
ing attenuation correction map. This method started with
an existing attenuation correction map from the vendor or
obtained from any segmentation-based method then refined
the attenuation correction map gradually by learning the
relationship between the MR image and the attenuation
correction map. The learning process performed using mul-
tiresolution regional learning approach by applying SVM
classifier to refine the attenuation correction coefficients
using training features of UTE1, UTE2, and MP-RAGE
sequences. The resulting attenuation correction map was
compared with vendor map and CT-based attenuation cor-
rection map by measuring the bone recovery rate, dice
coefficient, voxel-wise error, and region-wise error. The
measurements showed that the proposed method enhanced
the attenuation coefficient map. The reconstructed PET
images displayed that the error is larger in the regions
near the skull. They also concluded from the visual inspec-
tion that the proposed method reduced the underestimation
of PET activities. However, the results are still not compa-
rable with atlas-based methods.

Santos et al. [61] performed a learning-based seg-
mentation method of the skull using probabilistic feed-
forward neural network which requires user interaction.
UTE sequences were used to segment the brain into four
classes: air, brain + soft tissue, CSF, and bone. The model
was trained using two patches of raw MR intensities (UTE1
and UTE2) as input features. This method was compared
with CT-based attenuation correction map by calculating the
accuracy, the dice similarity score, and the visual compar-
ison. They found that this approach achieved high values
for the co-classification of air and soft tissue. However, the
bone values are low. This algorithm depends on the patient’s
MR intensity values which affects the performance if there
is a big difference between patients’ MR intensities.
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Fig. 3 MR image segmentation
results achieved by [8] using
clustering technique with a the
reference CT images, b the
segmented MR images, and c
the difference between the two
modalities

(a) (b) (c)

Chan et al. [64] proposed a segmentation method based
on tissue classification to differentiate bone from air.
Brieman’s random forest classifier was trained using a
set of features include gradient, textural, and contextual
features extracted from MP-RAGE MR sequences and
uncorrected PET images. The segmentation results of MP-
RAGE images are shown in Fig. 4. Dice similarity score
for each tissue class, accuracy, area under the curve (AUC)
of the receiver operating characteristic (ROC) curve, and
visual assessment were used to evaluate the segmentation
performance. The evaluation metrics were compared with
CT-based classification as ground truth. They concluded
that the segmentation results were improved when including

the uncorrected PET features compared with segmentation
using MR image features only.

Koesters et al. [73] applied Adaboost classifier to
extract bone tissue from T1-weighted MR sequences.
Afterwards, the bone attenuation coefficient was added
to Dixon-based attenuation map from the manufacturer
that reflects four tissue attenuation coefficients but not
bone tissue. This method was evaluated by comparing the
standardized uptake value (SUV) estimation between CT,
Dixon, and the proposed model for whole-brain and regional
analyses. The results showed that there is a significant
improvement in terms of SUV estimation bias by comparing
the proposed model with Dixon-based MR images. The

Fig. 4 MR image segmentation
result achieved by [64] using
voxel classification to
differentiate bone from air. a
T1-weighted MR image, b
segmented MR image, and c
corresponding CT image as
ground truth
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proposed approach reduced the whole brain SUV estimation
bias of Dixon-based approach by 95% and a similar residual
SUV bias to CT-based approach.

Deep Learning

Deep learning is an emerging technology in machine learn-
ing which represents advanced and more complex forms of
neural networks. Deep networks are self-learning structures
capable of learning high-level image features and model-
ing a nonlinear mapping between different image spaces
through the convolution process. These methodologies
showed their superiority in several medical applications,
which paved the way for their recent exploration for PET
attenuation correction by generating attenuation maps using
different MR sequences.

There are only few publications that applied deep
learning to brain MR image segmentation for PET
attenuation corrections [65–67]. Each of these proposed
studies used different MR image sequences and network
architecture to train the deep network.

Liu et al. [65] applied a deep convolutional encoder-
decoder network called Segnet [85] using T1-weighted
MR images. This work required a co-registration between
CT and MR images before the training process and the
creation of ground truth. To train the network, the labels
were generated by segmenting the CT images into three
classes (air, soft tissue, and bone) using intensity-based
thresholding technique. These classes were assigned an
attenuation coefficient value to generate the pseudo CT
images as illustrated in Fig. 5. Dice similarity score for
each class was calculated to evaluate the segmentation
results and PET reconstruction error was measured to
quantify the obtained PET image. The proposed method was
compared with Dixon-based soft tissue and air segmentation
and anatomic CT-based template registration. The results
achieved accurate pseudo CT scans and good PET images
with lower errors compared with Dixon-based and CT-
based attenuation correction. The main limitation of this

approach is the intrasubject registration which would affect
the segmentation performance.

Jang et al. [66] used UTE and out of phase (fat and
water) MR images which were acquired using dual echo
ramped hybrid encoding (dRHE) to segment the brain into
three classes: air, soft tissue, and bone. UTE sequences used
as an input to retrain a pretrained deep network [86] with
T1-weighted MR images. Transfer learning was applied
to adopt the knowledge learnt from other MR sequence
to UTE sequences to improve the learning and obtain
a reliable training. The obtained segmented MR images
were processed using conditional random field technique
to refine the segmentation results. Furthermore, the out of
phase images were used to segment the soft tissue into
fat and water components using two-point Dixon-based
segmentation. The segmented labels from deep learning-
and Dixon-based water and fat images were integrated to
generate the pseudo CT images. The proposed method was
compared with three other MR-based attenuation correction
methods while using CT-based attenuation correction map
as the standard reference. Dice similarity score between the
predicted labels and CT ground truth images was calculated
to evaluate the segmentation results. The corrected PET
images were evaluated using relative PET errors. The results
showed that this method is clinically feasible with rapid
dRHE acquisition time and less than 1% relative PET error
in most brain regions. They also showed that the application
of conditional random field did not increase the computation
time but improved the air and bone detection as well as it
corrected some artifacts.

Arabi et al. [84] proposed a deep learning generative
adversarial semantic model that generates pseudo CT
images for MR image-based attenuation correction. The
generative adversarial network consists of two main
components: synthesis network and segmentation network.
The synthesis part generates pseudo CT images from
T1-weighted MR images and the segmentation network
segments the obtained pseudo CT images into four tissue
classes which are bone, air, soft tissue, and background.

Fig. 5 a Pseudo CT image
obtained by segmenting b
T1-weighted MR image with the
use of c CT image as a ground
truth [65]
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The two blocks are connected to each other since the
segmentation network contributes to the backpropagation
process on the synthesis network. The method was
compared with an atlas-based method and a commercial
segmentation based method by calculating the cortical
bone dice similarity coefficient, mean error, mean absolute
error, SUV error, relative mean square error (RMSE),
PSNR, and structural similarity index measurement (SSIM).
They found the proposed method and atlas-based method
have similar performance with tolerable errors. They also
concluded that the deep learning method outperforms the
commercial segmentation-based approach used in the clinic.
CT-based attenuation correction maps were used as standard
reference for evaluation.

PerformanceMetrics and Clinical Evaluation

PerformanceMetrics

The segmentation accuracy is crucial for medical image
analysis and quantification. Usually, the segmentation is
evaluated using different evaluation metrics such as dice
similarity coefficient or F1- measure [63], Jaccard index
[87], sensitivity (recall) [62], specificity (precision) [62],
accuracy [64], AUC-ROC [64], and false discovery rate [4].

The attenuation correction map is usually evaluated
by calculating the PET reconstruction error [56], MAPE
[58], RMSE [57], relative difference maps [63], and visual
comparison of the maps [61]. The majority of studies
used CT attenuation correction map as the gold standard
reference for validation [52–58].

Clinical Evaluation of PET Attenuation Correction
Maps

A variety of clinical studies were carried out to evaluate the
clinical performance of MR image-based PET attenuation
correction methods. Tables 4 and 5 summarize the clinical
studies with their evaluation metrics.

For example, Aasheim et al. [88] evaluated the perfor-
mance of the most recent version of Siemens UTE-based
attenuation correction for PET data using seven lymphoma
and twelve lung cancer patients. They concluded that fur-
ther improvement is needed for accurate segmentation of
bone. Choi et al. [89] studied the clinical quantification
of PET using UTE-based attenuation correction including
bone segmentation. They found that UTE-based attenuation
correction causes spatial bias in PET quantification.

Delso et al. [90] were the first to publish a clinical
evaluation of bone identification based on brain ZTE
sequences. They reviewed the attenuation maps from 15
clinical datasets acquired with a PET/CT/MR trimodality

setup and they found out that ZTE images are an efficient
imaging sequence to overcome the limitation of bone tissue
in attenuation correction maps with sufficient accuracy.
Moreover, the evaluation results showed that ZTE sequence
is better than UTE according to Jaccard distance value.
Sekine et al. [91] proposed a study to evaluate the clinical
feasibility of ZTE-based attenuation correction compared
with a clinical applied method based on atlas attenuation
correction. The calculations showed that the absolute
relative difference between PET images is improved with
ZTE-based attenuation correction. They concluded that this
method is more accurate than clinical atlas attenuation
correction.

Anazodo et al. [92] evaluated the addition of bone
information on Dixon attenuation correction maps from
T1-weighted MR images and the results proved the
improvement of underestimation of PET activity. Andersen
et al. [93] assessed the regional and absolute bias introduced
from neglecting bone using different Dixon image-based
methods. They concluded that further improvement for the
existing methods is required to adopt PET/MR imaging in
clinical routine.

Dickson et al. [94] assessed the quantitative accuracy of
Dixon- and UTE-based MR image attenuation correction
methods which were compared with CT-based attenuation
correction method. Significant underestimations of activity
concentrations were found using both Dixon and UTE
sequences. The underestimation using UTE is less than with
Dixon attenuation correction.

Baran et al. [95] developed a segmentation-based method
which compared with three other MR-based methods. The
proposed method is based on gaussian mixture segmentation
with two different approaches of attenuation coefficients
assignments (constant and continuous values). This study
firstly compared two attenuation coefficients reference
maps using manually segmented MR image- and CT-based
maps and concluded that there is a very small mean
differences across all subjects. Then, the proposed method
was evaluated with CT-based attenuation coefficients and
compared with the vendor UTE and UCL methods [68].
They found out that the reconstructed PET with continuous
attenuation coefficients has a better agreement with the
reference map especially in the cortical bones region while
UCL method showed an overestimation for all brain regions.
They also observed that the significant differences appear in
the cerebellum region. Moreover, the segmentation results
showed an underestimation in the esophagus region.

Finally, Ladefoged et al. [96] published a comparison
study that evaluates eleven selected MR attenuation
correction methods from the literature to study their
feasibility in the clinical domain. The evaluated methods are
two vendor-implemented using Dixon and UTE sequences,
five atlas-based methods, one emission-based method, and
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three segmentation-based methods. They used a large
dataset which contains 359 patients. The main finding of
this study is all methods do not exceed more than 5%
relative error in the whole brain and in all brain regions
compared with CT-based reference map. They also found
out that three template-based methods [68, 70, 97] and
one segmentation-based method [50] outperform the others
in terms of robustness, outliers, and clinical feasibility.
Another conclusion is the vendor-implemented methods
outperform other methods in term of processing time.
The main limitation of this study is the results cannot
be generalized since the subject datasets do not include
children and patients with anatomical changes.

Challenges and Future Opportunities

MR Image Segmentation: Challenges
and Opportunities

Although MR images can provide needed information for
PET attenuation correction by the aforementioned methods
such as tissue segmentation, MR image segmentation itself
is challenging. A common problem with segmentation
techniques is the misclassification of the pixels which
makes the determination of boundaries very challenging.
This may lead to false negatives where the lesion regions
classified as healthy and false positive where the healthy
regions identified as diseased lesions. Hence, robust and
accurate segmentation techniques are required to be used in
clinical routine.

Machine learning techniques such as neural networks,
clustering, random forest, and SVM presented good accu-
racy with different sets of features. The combination of
different techniques for different medical applications leads
to better performance and accuracy such as combining
random forest classifier with Markov random field to seg-
ment white matter lesions in contrast-enhanced FLAIR MR
images [29] and combining regularized SVM with a kNN
classifier for hippocampus segmentation as represented in
[98].

Comparison between the performance and efficiency
of each technique is generally applied within the same
context and same medical application. For instance, there
are several studies that compared the segmentation results
using different classifiers as represented in [19, 99–103].
The comparison study between different types of classifiers
showed the superiority of deep neural networks and
especially CNN in the segmentation task.

The conventional machine learning workflow composes
of features extraction and selection then classification.
However, the feature vectors control the performance of

segmentation methods rather than the classifier’s type.
Therefore, more attention on the development of the feature
extraction techniques should be carried out with the usage
of simple classifiers. Deep learning is the best solution
to avoid the hand-crafted features as the training process
of the deep network learns the features automatically
through the convolutional layers. At the end of the learning
process, only high-level features that represent the main
characteristics of the data are preserved.

Although deep learning has shown to be superior than
any other machine learning techniques, it needs a good
estimation of the numerous parameters of the network as
well as it needs excessive training time to obtain the weights
which will be used for predictions.

MR Image-Based Attenuation Correction:
Challenges and Opportunities

Hybrid PET/MR scanners introduced the complementary
nature of MR and PET images to clinical applications
and have improved the PET quantification for disease
diagnosis and treatment planning by providing different
tissue characteristics. Furthermore, it also reduced the
acquisition time in case of simultaneous acquisitions. The
mergence of MR image modality into the field of PET
attenuation correction and quantification raised the new
challenges and difficulties.

Table 2 summarizes two types of segmentation methods
which are applied on PET attenuation correction: supervised
and unsupervised techniques. Fuzzy c-means clustering
is the only unsupervised technique which is applied in
the literature. However, most of these studies [8, 62]
are evaluating the segmentation results by reporting the
accuracy values which leads to an inaccurate evaluation
since the accuracy metric is not applicable in the case of
class unbalancing issue. The high values of accuracy do not
indicate a robust segmentation result. On the other hand,
the supervised machine learning techniques are as follows:
SVM, random forest, and adaptive boosting classifiers.
The random forest-based approach [64] used PET features
combined with other MR image features and achieved
the dice value 0.98. This method is not comparable with
other methods that rely on MR features only. Moreover,
the reviewed methods used different MR sequences; hence,
there is no way to compare the results. Some studies used
simple and conventional MR sequences such as T1-w [63,
65, 73] and others used more sophisticated sequences such
as UTE sequences [61, 66].

The main limitation of deep learning-based method
is the availability of big data especially with medical
datasets. The deep models require a lot of data to be well
trained and tested. Sufficient training data with different
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abnormalities should build deep learning models that can
perform better than atlas-based methods which assume
healthy tissue of each patient. Furthermore, the computation
time of large datasets is another challenge of training deep
models. The training process can take several days; hence,
the usage of high performance computers and graphical
processing units is mandatory. The promising thing is once
the model is trained, the predication time is very short.
Another common limitation in the studies that applied
deep learning for PET attenuation correction is the need to
apply co-registration between MR and CT images. The mis-
registration can lead to further errors in the segmentation
and PET reconstructions processes. Moreover, the loss
function that calculates the training error can cause issues
especially in the case of data unbalancing where some
classes are minorities such as the bone class in the brain.
Therefore, the prediction will be biased toward the majority
classes and cause high specificity and low sensitivity
segmentation. Voxel-wise methods [104], class weighting
[18] and customized loss functions [105, 106] are some
potential solutions.

MR image-based segmentation methods are the clinically
adopted method in commercial scanners for attenuation
correction [47]. These methods are easy to implement with
low computational cost. However, they suffer from a poor
segmentation by misclassifying bone (by air or soft tissue)
due to a low T2 relaxation time. Consequently, the lack
of good bone segmentation leads to inaccurate attenuation
coefficient map which produces a strong spatial bias of the
PET activity. For instance, ignoring the bone attenuation
coefficients in the head can lead to 20% underestimation of
PET activity [107].

Another challenge is the assignment of attenuation
coefficients to each tissue type. Currently, there is no
agreement on the value for each class where. For instance,
soft tissue linear attenuation coefficient ranges between
0.094 and 0.100, while trabecular bone has one single value
assigned to 0.110 and cortical bone ranges from 0.120 to
0.172 [47]. This variation of attenuation coefficients effects
the accuracy of attenuation correction map even if the
segmentation accuracy is high.

One more important limitation is the assignment of
discrete attenuation coefficients while the density of body
tissue is represented by continuous values. There is a need
to explore and develop segmentation methods that measure
continuous attenuation coefficient values for bone and other
tissues in order to obtain accurate PET quantification.

Moreover, there is an interpatient variability of tissue
attenuation coefficient based on gender and age. This
variability can cause non-negligible errors especially in the
tissue regions that show high interpatient variability such as
bone.

Additionally, there are other, clinically related, chal-
lenges and difficulties that affect MR image-based attenu-
ation correction which are outside the scope of this review
such as body truncation artifacts, the presence of ancillary
objects during the scanning such as the patient bed, MR
coils, positioning aids, and medical probes [108].

Emerging Techniques

Deep learning-based methods were proposed for pelvic
and prostate PET attenuation correction. For instance,
Bradshaw et al. [109] applied a 3D CNN called DeepMedic
[110] to segment pelvis T1- and T2-weighted MR images
for PET attenuation correction. Beside segmentation-based
methods, there are other works that applied deep learning
for attenuation correction for brain [111] and pelvic [112]
to learn the relationship between MR and CT images
then generate pseudo CT images. Deep learning showed
its superiority to classical techniques for MR images
segmentation. However, the applications of deep learning
for brain MR image segmentation for attenuation correction
are limited.

There are other studies that utilized deep learning-based
methods for MR image-guided radiation therapy and treat-
ment planning for brain tumor [113–115], prostate/pelvic
region [116] and other different whole-body tissues [117].
These studies applied different deep models such as stan-
dard CNN, dilated CNN, and generative adversarial net-
works (GAN). A comparison study [113] between one
segmentation, four atlas, and one deep learning methods
to evaluate the MR image-based radiotherapy planning in
the pelvic region study showed the outperformance of deep
learning method in terms of segmentation accuracy, CT
generation accuracy, and dosimetric evaluation.

In terms of MR sequences, currently there is room
for improvement of the PET attenuation correction perfor-
mance by using more sophisticated MR sequences with
high signal intensity for bone such as UTE, ZTE, or Dixon
sequences. These sequences are able to capture very short
T2 values [57, 60] which enables accurate detection of bone
tissue and, in turn, improves the attenuation correction map.
Another elegant way is acquiring UTE sequences at differ-
ent echo time to extract more information. Moreover, Dixon
sequences provides easy access to four tissue classes which
are soft tissue, air, fat, and lung.

The usage of the special sequences such as UTE,
ZTE, and Dixon images along with robust segmentation
techniques and continuous linear attenuation coefficients
can achieve better accuracy for PET attenuation correction
than atlas-based methods. However, the major drawback
of this sequences in the long acquisition time potentially
hampering clinical flow.
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Conclusion

This article presented the application of machine learn-
ing techniques for MR image segmentation-based PET
attenuation correction in hybrid PET/MR scanners. Among
machine learning techniques, clustering, classification, and
deep learning are proposed in the literature for tissue seg-
mentation. Deep learning approach outperforms other clas-
sical machine learning techniques in this task. Although
much progress has been made recently with machine learn-
ing methods for segmentation, the reported deep learning
methods are fewer especially for brain PET attenuation cor-
rection. In summary, deep learning is needed to improve the
segmentation and attenuation correction accuracy and inten-
sive clinical evaluation studies of deep learning approach
are required.
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Alberola-López C, Fichtinger G Eds. Medical Image Computing
and Computer Assisted Intervention – MICCAI 2018. Lecture
Notes in Computer Science. Springer International Publishing,
2018, pp 81–88

https://doi.org/10.1002/ima.22253
https://doi.org/10.1016/j.media.2016.05.004
https://doi.org/10.1016/j.cmpb.2018.01.003
https://doi.org/10.1080/02699052.2016.1222080
https://doi.org/10.1016/j.compbiomed.2018.05.005
https://doi.org/10.1007/s12021-017-9328-y
https://doi.org/10.1007/s12194-010-0106-x
https://doi.org/10.1007/s11063-017-9672-9
https://doi.org/10.1007/s11063-017-9672-9
https://doi.org/10.1007/s11042-017-4696-8
https://doi.org/10.1007/s13042-013-0205-1
https://doi.org/10.1155/2014/291581
https://doi.org/10.1007/s00521-016-2834-2
https://doi.org/10.1016/j.cmpb.2015.08.001
https://doi.org/10.1109/TMI.2016.2621185


J Digit Imaging

45. Valverde S, Cabezas M, Roura E, González-Villà? S, Pareto D,
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57. Khalifé M, Fernandez B, Jaubert O, Soussan M, Brulon V,
Buvat I, Claude Comtat: Subject-specific bone attenuation
correction for brain PET/MR: can ZTE-MRI substitute CT scan
accurately? Physics in Medicine & Biology 62(19):7814, 2017.
https://doi.org/10.1088/1361-6560/aa8851

58. Juttukonda MR, Mersereau BG, Chen Y, Su Y, Rubin BG,
Benzinger TLS, Lalush DS, An H: MR-based attenuation
correction for PET/MRI neurological studies with continuous-
valued attenuation coefficients for bone through a conversion from

R2* to CT-Hounsfield units. NeuroImage 112:160–168, 2015.
https://doi.org/10.1016/j.neuroimage.2015.03.009

59. Yang X, Fei B: Multiscale segmentation of the skull in MR images
for MRI-based attenuation correction of combined MR/PET. Jour-
nal of the American Medical Informatics Association 20(6):1037–
1045, 2013. https://doi.org/10.1136/amiajnl-2012-001544

60. Keereman V, Fierens Y, Broux T, Deene YD, Lonneux M, Van-
denberghe S: MRI-Based Attenuation Correction for PET/MRI
Using Ultrashort Echo Time Sequences. Journal of Nuclear
Medicine 51(5):812–818, 2010. https://doi.org/10.2967/jnumed.
109.065425

61. Santos Ribeiro A, Rota Kops E, Herzog H, Almeida P: Skull
segmentation of UTE MR images by probabilistic neural network
for attenuation correction in PET/MR. Nuclear Instruments
and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 702:114–
116, 2013. https://doi.org/10.1016/j.nima.2012.09.005

62. Khateri P, Rad HS, Jafari AH, Ay MR: A novel segmenta-
tion approach for implementation of MRAC in head PET/MRI
employing Short-TE MRI and 2-point Dixon method in a
fuzzy C-means framework. Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment 734:171–174, 2014.
https://doi.org/10.1016/j.nima.2013.09.006

63. Fei B, Yang X, Nye JA, Aarsvold JN, Raghunath N, Cervo
M, Stark R, Meltzer CC, Votaw JR: MR/PET quantification
tools: Registration, segmentation, classification, and MR-based
attenuation correction. Medical Physics 39(10):6443–6454, 2012.
https://doi.org/10.1118/1.4754796

64. Chan SLS, Jeffree RL, Fay M, Crozier S, Yang Z, Gal Y, Thomas
P: Automated Classification of Bone and Air Volumes for Hybrid
PET-MRI Brain Imaging. In: 2013 International Conference on
Digital Image Computing: Techniques and Applications (DICTA),
2013, pp 1–8

65. Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB: Deep
learning mr imaging–based attenuation correction for pet/mr
imaging. Radiology 286(2):676–684, 2017

66. Jang H, Liu F, Zhao G, Bradshaw T, McMillan AB: Technical
Note: Deep learning based MRAC using rapid ultrashort
echo time imaging. Medical Physics 45(8):3697–3704, 2018.
https://doi.org/10.1002/mp.12964

67. Gong K, Yang J, Kim K, El Fakhri G, Seo Y, Li Q: Attenuation
correction for brain pet imaging using deep neural network based
on dixon and zte mr images. Physics in medicine and biology
63.12:125011, 2018

68. Burgos N, Cardoso MJ, Thielemans K, Modat M, Pedemonte
S, Dickson J, Barnes A, Ahmed R, Mahoney CJ, Schott
JM, et al: Attenuation correction synthesis for hybrid pet-mr
scanners: application to brain studies. IEEE Trans. Med. Imaging
33(12):2332–2341, 2014

69. Schreibmann E, Nye JA, Schuster DM, Martin DR, Votaw J,
Fox T: Mr-based attenuation correction for hybrid pet-mr brain
imaging systems using deformable image registration. Medical
physics 37(5):2101–2109, 2010

70. Mérida I, Costes N, Heckemann RA, Drzezga A, Förster S,
Hammers A: Evaluation of several multi-atlas methods for
pseudo-ct generation in brain mri-pet attenuation correction.
In: Biomedical Imaging (ISBI), 2015 IEEE 12th International
Symposium on, IEEE, 2015, pp 1431–1434

71. Chen KT, Izquierdo-Garcia D, Poynton CB, Chonde DB, Catana
C: On the accuracy and reproducibility of a novel probabilistic
atlas-based generation for calculation of head attenuation maps on
integrated pet/mr scanners. European journal of nuclear medicine
and molecular imaging 44(3):398–407, 2017

https://doi.org/10.1016/j.neuroimage.2017.04.034
https://doi.org/10.1016/j.neuroimage.2017.04.034
https://doi.org/10.1118/1.4941014
https://doi.org/10.1007/s10334-012-0353-4
https://doi.org/10.1088/0031-9155/60/20/8047
https://doi.org/10.1088/0031-9155/60/20/8047
https://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html
https://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html
https://doi.org/10.1007/s11307-016-0990-5
https://doi.org/10.1007/s11307-016-0990-5
https://doi.org/10.2967/jnumed.115.163550
https://doi.org/10.2967/jnumed.115.163550
https://doi.org/10.2967/jnumed.109.069112
https://doi.org/10.1186/2197-7364-1-7
https://doi.org/10.1002/mrm.26953
https://doi.org/10.1088/1361-6560/aa8851
https://doi.org/10.1016/j.neuroimage.2015.03.009
https://doi.org/10.1136/amiajnl-2012-001544
https://doi.org/10.2967/jnumed.109.065425
https://doi.org/10.2967/jnumed.109.065425
https://doi.org/10.1016/j.nima.2012.09.005
https://doi.org/10.1016/j.nima.2013.09.006
https://doi.org/10.1118/1.4754796
https://doi.org/10.1002/mp.12964


J Digit Imaging

72. Su K-H, Hu L, Stehning C, Helle M, Qian P, Thomp-
son CL, Pereira GC, Jordan DW, Herrmann KA, Traugh-
ber M, Muzic RF, Traughber BJ: Generation of brain
pseudo-CTs using an undersampled, single-acquisition UTE-
mDixon pulse sequence and unsupervised clustering. Medi-
cal Physics 42(8):4974–4986, 2015. https://doi.org/10.1118/1.
4926756

73. Koesters T, Friedman KP, Fenchel M, Zhan Y, Hermosillo G,
Babb J, Jelescu IO, Faul D, Boada FE, Shepherd TM: Dixon
Sequence with Superimposed Model-Based Bone Compartment
Provides Highly Accurate PET/MR Attenuation Correction of
the Brain. Journal of Nuclear Medicine 57(6):918–924, 2016.
https://doi.org/10.2967/jnumed.115.166967

74. Xiang L, Wang Q, Jin X, Nie D, Qiao Y, Shen D (2017) Deep
Embedding Convolutional Neural Network for Synthesizing CT
Image from T1-Weighted MR Image. arXiv:1709.02073

75. Wu Y, Yang W, Lu L, Lu Z, Zhong L, Huang M, Feng Y, Feng
Q, Chen W: Prediction of CT Substitutes from MR Images Based
on Local Diffeomorphic Mapping for Brain PET Attenuation
Correction. Journal of Nuclear Medicine 57(10):1635–1641,
2016. https://doi.org/10.2967/jnumed.115.163121

76. Wu Y, Yang W, Lu L, Lu Z, Zhong L, Yang R, Huang M,
Feng Y, Chen W, Feng Q: Prediction of ct substitutes from
mr images based on local sparse correspondence combination.
In: International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer, 2015, pp 93–100

77. Johansson A, Karlsson M, Nyholm T: CT substitute derived
from MRI sequences with ultrashort echo time. Medical physics
38(5):2708–2714, 2011

78. Zhong L, Lin L, Lu Z, Wu Y, Lu Z, Huang M, Yang W, Feng
Q: Predict CT image from MRI data using KNN-regression with
learned local descriptors, 2016, pp 743–746

79. Yang W, Zhong L, Chen Y, Lin L, Lu Z, Liu S, Wu Y, Feng
Q, Chen W: Predicting CT Image From MRI Data Through
Feature Matching With Learned Nonlinear Local Descriptors.
IEEE Transactions on Medical Imaging 37(4):977–987, 2018.
https://doi.org/10.1109/TMI.2018.2790962

80. Yang X, Lei Y, Shu H-K, Rossi P, Mao H, Shim H, Curran WJ,
Liu T: Pseudo CT estimation from MRI using patch-based random
forest. In: Medical Imaging 2017: Image Processing, vol 10133.
International Society for Optics and Photonics, 2017, p 101332Q

81. Huynh T, Gao Y, Kang J, Wang L, Zhang P, Lian J,
Shen D: Estimating CT Image From MRI Data Using
Structured Random Forest and Auto-Context Model. IEEE
Transactions on Medical Imaging 35(1):174–183, 2016.
https://doi.org/10.1109/TMI.2015.2461533

82. Torrado-Carvajal A, Herraiz JL, Alcain E, Montemayor AS,
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