
A Methodology for Developing Computational Implementations
of Scientific Theories

Peter C. R. Lane
School of Computer Science
University of Hertfordshire

College Lane, HATFIELD AL10 9AB, UK
peter.lane@bcs.org.uk

Fernand Gobet
School of Social Sciences

Brunel University
UXBRIDGE UB8 3PH, Middlesex, UK

fernand.gobet@brunel.ac.uk

Abstract

Computer programs have become a popular represen-
tation for scientific theories, particularly for implementing
models or simulations of observed phenomena. Expressing
a theory as an executable computer program provides many
benefits, including: making all processes concrete, support-
ing the development of specific models, and hence enabling
quantitative predictions to be derived from the theory. How-
ever, as implementations of scientific theories, these com-
puter programs will be subject to change and modifica-
tion. As programs change, their behaviour will also change,
and ensuring continuity in the scientific value of the pro-
gram is difficult. We propose a methodology for developing
computer software implementing scientific theories. This
methodology allows the developer to continuously change
and extend their software, whilst alerting the developer to
any changes in its scientific interpretation. We introduce
tools for managing this development process, as well as for
optimising the developed models.

1 Introduction

Implementing a scientific theory as a computer program
has become increasingly attractive to scientists in many dis-
ciplines. It is generally accepted that computational models
offer a number of valuable features, including: making all
processes concrete, supporting the development of specific
models, and hence enabling quantitative predictions to be
derived from the theory [10, 20, 21]. More broadly, we can
speak of an architecture as a computer program which sup-
ports development of a range of computational models, or
simulations, within a wide-ranging theory.

Cognitive science is one discipline where the develop-
ment of overarching ‘cognitive architectures’ has been im-
portant in unifying the results from different sub-branches

of psychology. For example, Soar [19] captures a range of
phenomena from problem solving through to learning. In-
deed, Newell [19] was the first to propose that this kind of
unification could and should take place. He estimated that
there are approximately 1,000-10,000 regularities of imme-
diate behaviour which should be captured by a complete
theory. This large number makes it clear that a theory must
begin with certain phenomena, and then gradually extend its
scope to cover all regularities; the architecture is the mech-
anism by which the current state of understanding of these
regularities is maintained over time.

This paper accepts the importance of constructing the-
ories explaining a range of phenomena, and assumes that
these theories and models will be implemented as computer
programs. We argue, though, that to date there has been no
standardised methodology to support the continued devel-
opment of unified theories, both as scientific theories and as
working computer programs.

Some of the problems can be highlighted with cogni-
tive architectures such as ACT-R [1] and Soar [19], which
are successful as toolkits for creating models in a range
of domains, often simulating human data. The first con-
cern is that, to a large extent, the architectures have become
libraries for developing models, with no mechanism for
maintaining the connection between models, such as consis-
tency of parameter values. The second concern is that there
is no control of the empirical evidence in support of the the-
ory when new versions appear; models which work in ver-
sion N may or may not work in version N+1. Although we
accept that certain practices in these communities alleviate
these problems (such as providing default values for param-
eters), there is still no consistent, formalised methodology
which can be identified by an outsider. The third concern
is that the implementation is the theory – Soar is defined
by its latest implementation. Even with the documentation,
there is little chance of another modeller replicating the im-
plementation of Soar, from scratch, to confirm all details of

Tenth International Conference on Computer Modeling and Simulation

0-7695-3114-8/08 $25.00 © 2008 IEEE
DOI

392

Tenth International Conference on Computer Modeling and Simulation

0-7695-3114-8/08 $25.00 © 2008 IEEE
DOI 10.1109/UKSIM.2008.62

392

how a particular set of empirical results was obtained [4].
To address these concerns, we begin by explicitly recog-

nising that the implemented theory is a computer program,
and that the theory, and hence the program, will change over
time as we increase both our understanding of the theory
and the demands to construct new kinds of models. De-
veloping a computer program in an environment where the
specification keeps changing requires a careful management
of each new version, ensuring that what was important in
the older versions is retained in the new. We propose man-
aging this change with a testing framework tailored to scien-
tific applications [13]. Another aspect of scientific theories
is the role of parameters in fitting empirical data. Using our
framework as a base, we also propose optimisation tech-
niques based on evolutionary algorithms as a way to locate
groups of models satisfying multiple constraints.

In summary, following our methodology requires a mod-
eller to: (1) develop the implementation of a scientific the-
ory as an architecture using a scientific-testing methodol-
ogy [13]; (2) optimise the parameters of the architecture,
using a suitable search technique on its models [9, 14, 16];
(3) use knowledge-discovery techniques to determine the
important parameters in different domains [15]; and (4) use
data-analysis and visualisation techniques to compare the
performance of architectures from different theories.

2 Computational Modelling: Three Elements

Scientific knowledge is a notoriously complex entity, re-
siding in the heads of scientists, their writings, the instru-
ments used to probe and measure the external world, and
formalisations used to explain and predict specific phenom-
ena. In this paper, we are interested in the use of computer
programs to implement scientific theories, so that simula-
tions or models of phenomena may be constructed; the mod-
els may then be used to predict or otherwise explain partic-
ular patterns of behaviour.

We propose a three-level separation of scientific knowl-
edge, into theory, architecture and model; see Figure 1 for
how these three concepts relate to each other. We define
an architecture as the implementation of a scientific the-
ory. The architecture should contain processes capturing
all of the key elements within the theory. There will be
many models for a given theory. Each of these models will
be based upon processes within the architecture, but extend
upon them to make the architecture work within a specific
domain. Some of the extensions may be experimental for-
mats or particular methods of processing input data. Fi-
nally, we can see the theory as sitting above the architec-
ture. Whereas the architecture and models are all concretely
implemented as computer programs, the theory has a large
verbal element, including all aspects of the scientists’ un-
derstanding of their theory and its implementations.

alters models

Theory changeCode change
alters theory

21 n....

Models

Architecture

Theory

Figure 1. The relation between a theory, ar-
chitecture and its models.

Our three-level separation also highlights the possible
ways in which changes may occur in the theory. The arrows
in Figure 1 illustrate that changes may originate from the
theory at the top, or from the models at the bottom. Changes
from the top will occur when the scientist decides to expand
or alter the set of processes within their theory. For exam-
ple, a cognitive architecture for memory may be expanded
with mechanisms to scan visual images. These changes
will necessitate the creation of new code in the architecture,
along with possible modifications to existing code. Finally,
new models will be developed to test the theory’s new ca-
pabilities. Changes from the bottom can occur when the
scientist looks at the implementation of their theory and de-
cides that some of the processes present in the code, which
are not articulated at the theory level, should become more
prominent. For example, a model of human memory may
need a process to compare the similarity of two patterns;
similarity testing may not have been part of the theory, but
the way it has been implemented may suggest appropriate
theoretical constructs.

3 Scientific-Testing Framework

Our methodology recognises that the scientific theory
is implemented as a computer program. Hence, we look
at how software engineers establish the correctness and
behaviour of their programs, paying particular attention
to environments in which computer programs must meet
changing specifications. Agile programming methodolo-
gies (e.g. XP [2]) provide a way to work with software in
an environment with changing specifications. Test-driven
development (TDD) is one component of such methodolo-
gies. TDD requires developers to provide tests for every
piece of code which they create. Benefits include an im-
mediate commitment to the description of the process, and
concrete examples for each piece of code. TDD is impor-
tant because it “replaces traditional top-down, up-front de-
sign with a more bottom-up, incremental design approach
which drives development forward by passing tests” [23].

393393

Test type Level Description
Unit Algorithmic implementation details

Process Functional theory’s core processes
Canonical result Behavioural empirical results

Table 1. Three levels of tests

3.1 Definition

The first step of our methodology is a commitment to
TDD: every component within the software will be devel-
oped with a set of tests designed to demonstrate its be-
haviour. We separate our tests into different groups, accord-
ing to their role in the scientific theory; see Table 1.

We define three levels of tests, depending on the relation
of the code and its test to the theory. Starting from the bot-
tom, we have the canonical results: these indicate the ex-
tent to which the models account for the empirical results,
and thus support the theory’s validity. The canonical results
demonstrate the behaviour of the theory in a specific phe-
nomenon. For example, a theory of human memory may
provide a model of the recall performance of expert chess
players. The process tests demonstrate those parts of the
software which are reflected in the theory’s verbal descrip-
tions. For example, the theory of human memory may de-
fine a process comparing two patterns together, determining
their similarity. Finally, the unit tests confirm implementa-
tion details of the software.

A further comment is in order about the role, in the
canonical results, of statistical tests in evaluating a model’s
fit to data. We anticipate that in some cases the work re-
quired to design and construct the statistical test will be
considerable, and require the expertise of a trained statis-
tician. However, once the nature of the test and the criteria
for satisfying it have been determined, the process of ap-
plying the test may be automated; it is this last, automated
process which forms the substance of the canonical result.

3.2 Implemented Test Framework

An individual test evaluates some function or method
from the program and checks that the result of that func-
tion or method is as expected. If the result is correct, the
test passes, else the test fails. The aim of testing is to high-
light any failing tests, without placing any burden on the
user to interpret passing tests, and a minimal burden on the
programmer, when creating such tests.

The framework described here follows a popular output
format, displaying a single dot ‘.’ for each passing test, but
reporting a message for all failing tests. Figure 2 shows
a typical output from the testing framework: each error is
highlighted, but several passing tests are shown only by a
sequence of dots. A summary reports any failures.

Running Unit tests: ..
Error 1: Expected 7 got 3.
Error 2: Expected 7 got 3. sorting error
...
=== DONE: There were 2 errors in 7 tests
Running Process tests: .
=== DONE: There were 0 errors in 1 test
Running Canonical results: .
=== DONE: There were 0 errors in 1 test

Figure 2. Sample output from test framework

Three groups of commands are provided for: defining in-
dividual tests, defining groups of tests, and running the tests.
Each individual test is, as described above, a check that a
piece of code has performed the task it was intended to per-
form. The basic command is (test value [message]).
The value is replaced by a call to some code, and a check
of its correctness. The optional message provides bet-
ter feedback in the event of a failing test. For example,
the call (test (= 4 (adder 2 2)) "adder") would
check that the return value of (adder 2 2) was equal to
4 – failure would give the message “adder”. Some simpli-
fying functions are provided, for example (assert-true)
and (assert-equal).

The second group of functions separates tests into cat-
egories; it is this group of functions which is designed
specifically to assist a developer using our test frame-
work. An individual function or method will likely
be tested with a variety of example data, and a col-
lection of tests will be created for that example. We
group these tests into a function, which will be evalu-
ated as a unit. In Lisp, the usual way to define such a
function is: (defun function-name () (test ...)

(test ...)). Our framework replaces the generic defun
with either of def-unit-tests, def-process-tests or
def-canonical-result-tests, as appropriate.

The final stage is to evaluate the tests. The framework
provides separate functions to evaluate tests in each cate-
gory, as well as (run-all-tests) to run every test in the
complete system. The example output in Figure 2 shows a
typical result: note how the tests for each category are exe-
cuted separately, and in turn. Errors are reported where they
occur, and a summary of how many errors were detected
provided. For the developer, it is convenient that only a
few functions must be remembered, in order to develop tests
within this framework. Also, our framework makes it easy
to run any group or all tests at any point of development.

The key element of this framework is the definition of
the terms def-XXX-tests. When Lisp encounters these
terms, it creates a function for the group of tests, just as
if def-XXX-tests were written as defun. But then our
framework places the name of that function onto a list ap-

394394

propriate to the XXX in the definition. The functions which
run the tests then look at these lists to determine which func-
tions to run. (This framework is readily implemented for
languages other than Lisp.)

3.3 Benefits of Test Framework

Comprehensible Theories A recurring complaint of
computational implementations is that the theory cannot be
understood, unless you are an expert programmer, and even
then it is notoriously hard to understand another program-
mer’s software. Use of a test-driven methodology removes
this problem, because every aspect of the program is accom-
panied with a simple, well-defined test. Understanding the
intent of each piece of the program is made easier by the
concrete example; understanding the mechanism by which
this intent is realised can be left to the programmer.

Reproducible Theories An important goal for any theory
is for its empirical results to be reproducible by other scien-
tists. A complex theory implemented as a large computer
program (Soar contains around 50,000 lines of code) would
require a dedicated researcher to attempt a reimplementa-
tion, but we should, as diligent scientists, support the pos-
sibility. The process and canonical-result tests provide just
this support. Reimplementing the underlying architecture
is permitted, but the new version must run the same set of
(perhaps translated) process and canonical-result tests to be
acceptable as an example of the same theory. (A real exam-
ple of this was the reimplementation of the Soar cognitive
architecture from Lisp into C.)

Developing Theories The tests play a key role in ensuring
that each version of the software retains the scientific results
and the relation to the expected theory of the previous ver-
sion. There are two ways in which theories may be devel-
oped. First, new functionality may be added to the theory,
so the architecture will support new kinds of model. As the
architecture is altered, new code will be added, and proba-
bly existing code will be modified. The tests act as a safety
net. Every time the code is changed, the tests are checked. If
a test fails, the type of failing test tells us how to respond to
the failure. A failing unit test is the simplest case to handle:
unit tests have no relation to the implemented theory, and so
can be removed or changed to suit the new circumstances.
A failing process test means that something critical to our
understanding of the theory has changed. Further modifi-
cations may be needed to restore the previous behaviour,
or our understanding of this process at a theoretical level
may need reviewing. Finally, a failing canonical-result test
means that the empirical support for the previous version of
our theory no longer holds. Documenting these changes be-
tween versions would provide a useful commentary on the

theory’s development, as well as pointing the way to critical
areas of the theory requiring further work.

The second kind of development is more subtle. After
writing the architecture and a few models, we may review
the code and rewrite it, to improve its design: this process
is known as refactoring [7]. As above, the tests act as a
safety net, ensuring none of the earlier behaviour is broken;
Fowler and other authors on this topic insist that refactoring
is impossible without a complete suite of tests. Intelligent
refactoring holds the promise of systematically improving
the clarity of a computer program’s design. From a sci-
entific perspective, refactoring may lead us to change the
status of certain processes within the software. For exam-
ple, common processes in different models may be moved
into the architecture, to remove code duplication, and from
there we may want to give them theoretical status. If such a
change in status occurs, then the tests would be moved from
the group of unit tests to the group of process tests.

Important in both these cases is the role played by the
tests in keeping track of all the prior understanding of how
the software implements the target scientific theory. The
process tests ensure that each process within the theory is
reflected in the code, and the canonical-result tests preserve
the empirical support for the theory in a readily reproducible
format. As the theory develops, the tests will tell us, by their
group, what the impact of any changes made has been to the
developing theory. We now proceed to the next set of tools,
which use the canonical-result tests to optimise the theory’s
models and parameters, and also to support semi-automated
comparisons between theories.

4 Optimising Models

Any model created to capture the results in a single ex-
periment will have a number of parameters, which may take
a range of values. The performance of the model on each
canonical result can be used as a target for optimising the
parameter values. We formalise this process by defining a
space M of models, based on the set of possible parameter
settings; a specific model, m ∈ M, is defined by a specific
set of parameter values. Each canonical result is defined as
a function, fi(m), which produces the fitness of a model for
that task.

The presence of multiple constraints, fi, makes the prob-
lem a multi-criteria optimisation problem. One of the key
challenges is to define ‘optimal’, because two models may
outperform each other on different constraints. Our aim is
to obtain the set of models which are not worse in all con-
straints than any other model (sometimes known as the non-
dominated, or pareto-optimal set). Formally, we say that
model m1 dominates model m2 if m1 does at least as well
as m2 in all constraints, and there is at least one constraint
in which m1 does better.

395395

5 Comparing Theories

We similarly define the set of non-dominated models
from multiple theories. We allow the space M of models
to be the union of all the possible models from all the com-
peting theories. Thus, a model, m ∈ M, will be a specific
set of parameter values for one of the classes of theories. As
above, the problem is a multi-criteria optimisation problem,
because there are multiple canonical results to fit. However,
one problem of standard optimisation techniques is that the
competition can lead to examples of inferior theories being
driven completely out of the population; it is useful to see
the very best that each theory could offer, so that the scien-
tist, not the optimisation technique, could decide to rule out
the theory.

We use a modified form of non-dominated sorting ge-
netic algorithm (NDSGA) [14, 16] to locate the set of mod-
els which are not outperformed on all tasks (taken from cat-
egorisation experiments) by any other. Our approach uses
a standard sorting process [11, 22], using fronts of non-
dominated models to bias the creation of each new popu-
lation towards the non-dominated models. We extend this
algorithm (to form the Speciated-NDSGA) by using a sepa-
rate population for each theory. The property of domination
is computed across all the populations, but a complete pop-
ulation is maintained for every theory.

The chief benefit of our algorithm may be seen by con-
sidering one of the worst-case scenarios: what would hap-
pen if every model in one of the theories was dominated by
models in another? In regular NDSGA, there would be no
new models from this dominated theory. In our variation,
a new population will be created, still preferring candidates
from set 2 over set 3. Once evolution is complete, extracting
the non-dominated models from all the theories may mean
some theories have no models. However, we will still have
evolved a set of models for that theory, and can analyze their
performance. A related benefit is that some theories require
longer to evolve good values for their parameters: our ap-
proach allows these theories to ‘catch up’, and produce non-
dominated models at a later period, whereas NDSGA would
have removed them from consideration.

We have developed some software which locates opti-
mal sets of models drawn from multiple theories and tested
against multiple experimental results. The software allows
the user to visualise individual models, run optimisation ex-
periments across single or multiple sets of data and single
or multiple theories, and plot some graphs or output statis-
tics on the performance of groups or individual models. In
an initial study, we evolved models from four different the-
ories on data from 29 categorisation experiments, and com-
pared their performance with those found previously in the
literature; we routinely found a 40% improvement on other
published results [14], and employed other knowledge-

discovery techniques to locate scientifically useful param-
eter values [15]. Although only a small study, these results
suggest the potential of automated, large-scale optimisation
of models for better understanding scientific theories.

6 Discussion

Adopting our methododology requires the scientist to
make the implementation and its development part of the
knowledge that makes up the scientific theory. We may
ask how this relates to other aspects of scientific method-
ology. There is a tradition within cognitive science of using
Lakatos [12] as a source [5, 6, 19]. Lakatos proposed that
scientists develop a core set of hypotheses and elaborate
upon these with some peripheral assumptions to develop
concrete models. When a theory is challenged, it is the pe-
ripheral assumptions which are modified, not the core. The
separation proposed here is consistent with the Lakatosian
framework, as the architecture represents the core hypothe-
ses of the scientist’s theory, and the models encapsulate the
peripheral assumptions; however, nothing that we propose
constrains a scientist to adopt any particular methodological
position, beyond a commitment to representing theories in
the form of computer programs.

We have argued that using a scientific-testing framework
enhances the implementation of a scientific theory, mak-
ing it easier to reproduce and understand. An alternative
technique is to use prescriptive definitions, such as formal
specification languages or a tailored development environ-
ment [3], to define our program. The advantage of a formal
language, such as Z [17], is that an implementation may be
proven to meet the specification. Version 5 of the Soar cog-
nitive architecture was formally defined in this manner [18].
However, there are several problems in using such a frame-
work for scientific theories. The first is that a formal frame-
work provides a barrier to non-specialists wanting to un-
derstand the implementation. The formal notation must be
understood, and so provides few, if any, benefits in compre-
hending the theory over the computer program itself. The
use of process tests, as proposed here, provides an easily
understood set of demonstrations of the implementation’s
behaviour. The second problem is that we assume the sci-
entific theory to be in a constant state of flux. We antic-
ipate any evolving theory to continually add new phenom-
ena and processes. It is easy to check whether a new version
of our implementation meets prior results using our testing
framework, but hard to do so with a formal specification.
Indeed, the formal specification of Soar mentioned above
does not appear to have been updated, even though Soar is
now at version 8. Similar objections apply to tailored envi-
ronments, such as [3].

The role of canonical results is not restricted to an indi-
vidual theory. As in the section on comparing models from

396396

different theories, a canonical result represents a common
target, an important empirical result, for theorists and mod-
ellers wanting to demonstrate the value of their own theory.
An extension of this idea is to use the canonical results as
a target for the automatic generation of theories. In unre-
lated work, Frias-Martinez and Gobet [8] have shown how
theories may be generated automatically using genetic pro-
gramming. The quality of the theories is judged based on
their fitness to a standard set of experimental data – this
standard data, in our terminology, would form the canoni-
cal results of the resultant theories. A related idea is to use
genetic programming to construct alternative models from
a single architecture to suit a set of canonical results.

7 Conclusions

This paper has described a methodology and a set of sup-
porting tools to aid a scientist when using computer pro-
grams to implement and test theories. The methodology is
based around the use of tests to confirm the behaviour of a
running computer program. These tests are subdivided into
groups, based upon their importance to the theory or the
scientific domain being modelled. With these mechanical
tests in place, the scientist is free to modify their imple-
mentation or theory, with the tests providing feedback on
whether the modifications have affected the previous under-
standing or results. The second stage of the methodology
uses one group of tests, the canonical results; we show that
models can be optimised using automatic techniques, and
that the optimisation should proceed across as many canon-
ical results as possible. In addition, we have provided a cus-
tomised optimisation technique which enables a scientist to
develop and compare models drawn from multiple theories
on the same set of canonical results.

We propose that the general picture of scientific the-
ory construction and development makes our methodology
applicable to many other domains in computational sim-
ulation and modelling. Both stages of our methodology,
the scientific-testing framework and the optimisation tech-
niques, are supported by software tools; see:
http://homepages.feis.herts.ac.uk/˜comqpcl

References

[1] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass,
C. Lebière, and Y. L. Qin. An integrated theory of the mind.
Psychological Review, 111(4):1036–1060, 2004.

[2] K. Beck. Extreme Programming Explained: Embrace
Change. Reading, MA: Addison-Wesley, 1999.

[3] R. Cooper, J. Fox, J. Farringdon, and T. Shallice. A system-
atic methodology for cognitive modelling. Artificial Intelli-
gence, 85:3–44, 1996.

[4] R. Cooper and T. Shallice. Soar and the case for unified
theories of cognition. Cognition, 55:115–49, 1995.

[5] R. P. Cooper. The role of falsification in the development of
cognitive architectures: Insights from a Lakatosian analysis.
Cognitive Science, 31:509–533, 2007.

[6] E. A. Feigenbaum and H. A. Simon. EPAM-like models
of recognition and learning. Cognitive Science, 8:305–336,
1984.

[7] M. Fowler. Refactoring: Improving the Design of Existing
Code. Reading, MA: Addison-Wesley, 1999.

[8] E. Frias-Martinez and F. Gobet. Automatic generation of
cognitive theories using genetic programming. Minds and
Machines, 17:287–309, 2007.

[9] F. Gobet and P. C. R. Lane. A distributed framework for
semi-automatically developing architectures of brain and
mind. In Proceedings of the First International Conference
on e-Social Science, 2005.

[10] F. Gobet and A. J. Waters. The role of constraints in expert
memory. Journal of Experimental Psychology: Learning,
Memory & Cognition, 29:1082–1094, 2003.

[11] D. E. Goldberg. Genetic Algorithms in Search Optimiza-
tion and Machine Learning. Reading, MA: Addison-Wesley,
1989.

[12] I. Lakatos. Falsification and the methodology of scientific
research programmes. In I. Lakatos and A. Musgrave, ed-
itors, Criticism and the growth of knowledge. Cambridge:
Cambridge University Press, 1970.

[13] P. C. R. Lane and F. Gobet. Developing reproducible and
comprehensible computational models. Artificial Intelli-
gence, 144:251–63, 2003.

[14] P. C. R. Lane and F. Gobet. Applying multi-criteria optimi-
sation to develop cognitive models. In Proceedings of the
UK Computational Intelligence Conference, 2005.

[15] P. C. R. Lane and F. Gobet. Discovering predictive variables
when evolving cognitive models. In S. Singh, M. Singh,
C. Apte, and P. Perner, editors, Proceedings of the Third In-
ternational Conference on Advances in Pattern Recognition,
part I, pages 108–117. Berlin: Springer-Verlag, 2005.

[16] P. C. R. Lane and F. Gobet. Multi-task learning and transfer:
The effect of algorithm representation. In C. Giraud-Carrier,
R. Vilalta, and P. Brazdil, editors, Proceedings of the ICML-
2005 Workshop on Meta-Learning, 2005.

[17] D. Lightfoot. Formal Specification Using Z. Basingstoke,
UK: Palgrave, 2001.

[18] B. Milnes. The specification of the Soar cognitive architec-
ture using Z. Technical report: CMU-CS-92-169, Carnegie-
Mellon University, 1992.

[19] A. Newell. Unified Theories of Cognition. Cambridge, MA:
Harvard University Press, 1990.

[20] A. Newell and H. A. Simon. Human Problem Solving. En-
glewood Cliffs, NJ: Prentice-Hall, 1972.

[21] H. A. Simon and F. Gobet. Expertise effects in memory
recall: Comments on Vicente and Wang. Psychological Re-
view, 107(3):593–600, 2000.

[22] N. Srinivas and K. Deb. Multiobjective optimization using
nondominated sorting in genetic algorithms. Evolutionary
Computation, 2:221–248, 1994.

[23] W. Stott. Extreme programming: Turning the world upside
down. IEE Computing and Control Engineering, pages 18–
23, 2003.

397397

