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Abstract 

 

Schistosomiasis, also known as Bilharzia, is a neglected tropical disease (NTD) caused by 

the Schistosoma genus of trematode parasite and is estimated to affect 250 million people 

globally. The nucleus is a highly organised organelle with chromosomes and genes 

occupying distinct and reproducible locations. However, this spatial organisation is not fixed 

and different events such as differentiation, environmental stimuli, stress and replicative 

senescence can trigger genome reorganisation within nuclei. Previous work has already 

shown that when Schistosoma mansoni infects its obligate intermediate host Biomphalaria 

glabrata, a freshwater snail, it induces chromatin reorganisation resulting in subsequent 

upregulation of genes. B. glabrata genome organisation is more similar to mammalian than 

other invertebrates, meaning that there is potential for what can be discovered in the snail 

model to be applicable to the mechanism of infection in the human population.  

 

The mechanisms that are responsible for inducing gene movement or chromatin 

reorganisation are poorly understood, but hypothesised to be partly as a result of epigenetic 

signalling.  Histone methyl modification patterning within the nuclei of B. glabrata were 

investigated following several events known to induce or result in chromatin reorganisation, 

heat-shock, infection and ageing.  Following comparisons between controls and 

experimental groups several changes in pattern distribution were identified.  Infection of B. 

glabrata by S. mansoni H3K79me3 showed significant alteration not replicated by heat-shock 

or ageing indicating that modification of H3K79me3 is an important target for the parasite 

infection.  As such a protocol was developed to further investigate the visual co-localisation 

of gene and histone modification signals. 

 

To investigate the effects that potentially disrupting this induced chromatin reorganisation 

can cause, several drugs have been screened in the snail to assess their effect on 

subsequent changes in susceptibility. Susceptibility to infection was either assessed by one 

of two means. An absolute method scoring for complete resistance to infection.  The second 

was counting the number of cercariae, the human infective stage of the Schistosoma 

lifecycle, that were shed from the snail. Drugs chosen were shown to either inhibit gene 

movement or target epigenetic factors that could be signalling for genome reorganisation to 

occur. Preliminary data have shown that affecting the acetylation within B. glabrata nuclei 

affects the snail’s susceptibility to S.mansoni infection. 
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B. glabrata interphase genome organisation exhibits similarity to human nuclei, making it an 

excellent model organism for investigating the effects of genome reorganisation in vivo and 

as an invertebrate could be used to replace higher order models to reduce the use of animal 

models in research in line with the NC3R initatives. With a comparatively short lifespan of 12 

months it is ideal for exploring, in vivo, ageing related changes to genome organisation. We 

have previously shown that gene movement and relocation to a new non-random location is 

possible within a short time period following a heat shock or an infection within juvenile 

snails.  In 12 month aged snails it is demonstrated that significant genome reorganisation 

has occurred, with the heat shock protein 70kDa (hsp70) loci occupying a new non-random 

location within the nuclei and that neither heat-shock nor S. mansoni infection can induce 

gene relocation.  Thus indicating not just significant changes to genome organisation but a 

potential loss of the mechanisms that are responsible for reorganisation of the chromatin.  

 

Using fluorescent imaging techniques, alterations to histone markers, protein distribution and 

gene loci positioning within nuclei were investigated at varying ages within B. glabrata.  This 

verifies work done in human senescent cells in vitro replicating changes to genome 

organisation and chromobility.  As such this work presents B. glabrata as a new model for 

investigating the effects of ageing on nuclear organisation in vivo.  
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1.1 – Schistosomiasis 

 

Schistosomiasis, or bilharzia, is a neglected tropical disease (NTD), which majorly impacts 

endemic areas in less economically developed countries (LEDCs).  Areas endemic for 

schistosomiasis are located in the tropics and subtropics regions including the South 

Americas, Africa and South Asia.  The main issue caused by schistosomiasis in endemic 

areas is due to the effect of disability affected living years (DALY), lowering productivity and 

increasing required familial support to survive, that results from infection putting it on a 

similar level to malaria and tuberculosis for the effects it has in LEDCs (Colley et al., 2014).  

It is a parasitic disease caused by the trematode blood flukes of the Schistosoma genus.  

The first reported case was in 1851 when German physician Theodor Bilharz described the 

cause of urinary schistosomiasis.  Current estimates indicate that at least 230 million people 

may be infected in endemic areas with a further 770 million at risk of becoming infected 

(Walz et al., 2015; Colley et al., 2014; Vos et al., 2012).  There are three major species that 

make up the majority of human schistosomiasis cases.  Schistosoma haematobium which is 

found in Africa and the Middle East, Schistosoma japonicum which is primarily found in Asia 

and Schistosoma mansoni which is found in Africa, Middle East and the South America 

(Colley et al., 2014).  There are other species that affect humans but they tend to be more 

localised to specific regions like Schistosoma mekongi which is limited to the Mekong river 

basin in Southeast Asia (Ohmae et al., 2004).  Schistosomiasis infection can generally be 

split into two varieties, intestinal and urinary, depending on which organ the parasites prefer 

to utilise for passing their eggs back into the environment.  S. mansoni and S. japonicum, 

tend to migrate towards the blood vessels surrounding the liver and intestines whereas S. 

haematobium tend to migrate to blood vessels around the bladder. 

 

The adult schistosomes live between 3-10 years although there are cases where they have 

lived for several decades within a host (Colley et al., 2014).  They devour the erythrocytes to 

gain glucose and fatty acids essential for their survival (Huang et al., 2012; Barrett, 2009) 

which can lead to anaemia.  However the majority of symptoms associated with the 

schistosomes are associated with the eggs they produce that are either excreted harmlessly 

via faeces and urine or get lodged and trapped into host tissue (Colley, and Secor, 2014; 

Burke et al., 2009).  The eggs that fail to migrate through the host’s tissue into the lumen of 

the bowel or bladder become trapped in the tissue activating the host’s immune response.  

This results in granuloma formation and subsequent chronic inflammation of the surrounding 

tissue.  As an acute response this often results in the presentation of Katayama syndrome 
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(Burke et al., 2009) generally seen in travellers or immigrants to areas where 

schistosomiasis is endemic who were not exposed in early childhood or in utero.  Over time 

immune response to the eggs drops and the disease enters its chronic phase which differs in 

presentation for the intestinal and urinary forms, with a marked increase squamous cell 

carcinoma of the bladder being linked to chronic S.haematobium infection (Colley et al., 

2014).  Ultimately all schistosomiasis infections cause disabling systemic morbidities such as 

anaemia, malnutrition and retarded physical development.  This is more evident in endemic 

areas where the chronic form is rapidly achieved by constant reinfection by Schistosoma 

parasites that add the additional burden of parasite numbers to egg production.  In such 

areas advanced indicators of disease such as hepatic fibrosis, which can take 5-15 years to 

develop, has been recorded in children as young as six and haematuria is viewed as part of 

normal development for pubescent males, similar to females’ menses (Colley et al., 2014).  It 

is no surprise then that meta-analysis shows that schistosomiasis has significant long term 

effects on the quality of life for those in endemic areas (Vos et al., 2012). 

 

Schistosoma species have a complex life-cycle, shown in Fig 1.1, requiring both an 

intermediary and definitive host.  S. mansoni as an example requires the freshwater snail 

Biomphalaria glabrata as an intermediary host and humans as a definitive host, although it 

can also infect hamsters, mice and other primates as definitive hosts (Blanchard, 2004).  

The eggs shed from the definitive host in either faeces or urine and when they come in 

contact with fresh water they hatch into miracidia.  The miracidia swim in the fresh water and 

are able to survive for a couple of weeks before perishing if they do not find a suitable host.  

If S. mansoni miracidia come into contact with B. glabrata it will burrow into the flesh of the 

snail and release excretory secretory products (ESPs) (Zahoor et al., 2014; Lockyer et al., 

2012; Zahoor et al., 2009), which in susceptible snails elicit a cellular response that makes 

the host hospitable for the miracidia.  These ESPs include S. mansoni variant of the 

metalloprotease leishmanolysin SmLeish which has been shown to affect miracidia infection 

and modulate immune response diminishing sporocyst encapsulation (Hambrook et al., 

2018).  ESPs are also being investigated at differing stages of the life cycle in S. japonicum 

where ESPs from the egg can be linked to liver fibrosis formation (Gong et al., 2018).  In 

adults worms the proteome has been characterised, and established to contain multiple heat 

shock protein variants including HSP70, HSP90 and HSP97 which were assessed for their 

immunomodulation capability (Liu, F. et al., 2009).  HSP70 has also been shown to be 

important in S. mansoni with its inhibition affecting cercariae ability to hone in on hosts 

(Ishida and Jolly 2016).  Once in a hospitable host the miracidia develop into primary 

sporocysts and to undergo an asexual reproductive process creating multiple daughter 
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sporocysts.  The sporocysts then can produce and subsequently release multiple cercariae, 

the human infective stage.  The development of mature cercariae in the snail can take 4-8 

weeks and once they start shedding, thousands of cercariae can be shed from a snail daily 

whilst it survives.  The released cercariae migrate in the water in search of a definitive host.  

If they come in contact with human skin they will burrow in and enter the bloodstream where 

they mature into adult schistosomes and migrate to the mesenteric vessels near the liver 

and intestines and where the males and females form pairs and start to produce eggs 

repeating the cycle. 

 

 

Fig 1.1 Representative diagram of the life cycle of Schistosoma mansoni from egg through 

both intermediate and definitive hosts.  (Cdc.gov, 2019) 

 

Currently to try and reduce the strain on the endemic countries, schistosomiasis is on the 

World Health Organisations (WHO) watch list with a statement issued about trying to 
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eradicate the disease in the future.  Second only to malaria for its impact this is a lofty goal 

but the ongoing effort to do so is hampered by a lack of research into how this could be 

achieved.  Previously efforts to control schistosomiasis spread have used molluscicides to 

limit B. glabrata populations.  Although not popular now due to potential environmental 

impacts certain molluscicides have exhibited additional anti-cercarial effects (Augusto et al., 

2017).  This demonstrates that molluscides could still be a viable method for control and 

further research into the effects of molluscicide on both the snail and parasite as well as the 

environmental impact of molluscides has been done (Silva et al., 2018).  The current WHO 

program for controlling schistosomiasis is that of a mass distribution of the chemotherapeutic 

agent praziquantel.  Praziquantel is the standard treatment for infection by Schistosoma 

species as it is effective against all known species to infect humans (Botros et al., 2005; 

Harder, 2002); prior to its development the drugs available were more species specific, 

examples being Oxamiquine and Metrifonate.  The mass distribution of praziquantel once 

annually or biennially has been effective in controlling the spread of the disease.  Yet it is a 

curative anti-parasitic not a preventative, it works by clearing current infection but does not 

offer any immunity to reinfection, it is also ineffective against juvenile schistosomes in the 

host (Xiao, Catto and Webster, 1985).  This effectively means to be sure of clearing infection 

praziquantel must be taken again about six weeks after the first dose to kill off any juveniles 

that may have survived and are now egg producing.  This of course offers no defence 

against reinfection by new parasites which are highly likely in endemic areas.  This leaves us 

with two issues first is the lack of developed immunity and the second is dependency on a 

single drug as the bulwark to a devastating disease (Greenberg, 2013).  The latter issue is 

one that has come up in papers since both in lab (Giboda and Smith, 1997; Fallon et al., 

1996) and in the field (Botros et al., 2005) limited presentations of praziquantel resistance 

have been reported.  Fortunately in both cases the resistant parasites are less viable and 

either die off or revert over time, yet, it opens up the distressing possibility that a resistant 

strain could develop. 

 

Current research efforts aimed at the eradication of schistosomiasis is less concerned with 

drug development, since praziquantel seems to be standing the test of time, and on a more 

permanent solution which is the development of a vaccine effective against the parasite.  In 

this regard researchers have focused both on indigenous proteins they can extract from the 

parasite and on recombinant proteins that have been lab developed (Bergquist et al., 2002; 

Bergquist and Colley, 1998).  The issues being faced however are twofold.  First is finding 

proteins that are effective targets for vaccines which would allow the immune system to 

recognise the schistosoma parasite and the second is triggering the cellular, as well as 
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humoral, immune response (Redpath, Fonseca and Perona-Wright, 2014).  To combat a 

parasite the body needs to activate both the humoral and cellular immune responses and 

where as we have a lot of experience with vaccines that trigger the humoral, or antibody, 

response it is more difficult to prime the cellular immune response which would be necessary 

to eradicate the parasite from the host (Oliveira et al., 2008).  Although no immunity has 

been discovered in people living in endemic areas, those who suffer recurring infection do 

develop a resistance over time (Oliveira et al., 2008) and resistance in the intermediary host 

B. glabrata is well documented (Ittiprasert, W. and Knight, 2012; Baeza Garcia et al., 2010; 

Coelho and Bezerra, 2006; Goodall et al., 2006), if not entirely understood and maybe with a 

greater understanding of the processes involved in the intermediary hosts resistance to the 

parasite we can unlock new understandings that allow us to take a step forward to better 

control if not reduce the prevalence of schistosomiasis in endemic areas.  Newer 

approaches to the development of the vaccine include DNA and synthetic peptide 

vaccinations (Oliveira et al., 2008).  DNA vaccinations seem to induce both a humoral and 

cellular response in the host but few have been tested in regard to a S. mansoni vaccination 

and protection offered from those that have been tested are not improved in comparison to 

the recombinant proteins.  Synthetic peptides have the advantage of greater purity in 

production and potentially lower risks to the vaccinated but it is difficult selecting appropriate 

epitopes to replicate and several are required and need to actually be recognised by the 

immune system for them to be effective, which is harder to achieve since it has to take into 

account differences in the HLA of the target population. 

 

1.2 – Biomphalaria glabrata 

 

Biomphalaria glabrata is a fresh water snail found in warm climates and is the intermediate 

host for the human schistosomiasis parasite Schistosoma mansoni.  It has become an 

important host model not only for schistosomiasis research but for the research community 

as a whole for four main reasons.  First and foremost is the snail genome project that has 

sequenced the entirety of the B. glabrata genome in an effort that has taken over a decade 

(Adema et al., 2017; Raghavan and Knight, 2006).  Second is the Biomphalaria glabrata 

embryonic (Bge) cell line which is currently the only immortalised cell line available for any 

molluscan model, although primary cell cultures can be made they have a limited lifespan 

(Yoshino, Bickham and Bayne, 2013).  Thirdly is the composition of the nuclei of B. glabrata 

cells which more closely resemble mammalian cells when compared to other invertebrate 

models such as Drosophila melanogaster and Caenorhabditis elegans (Knight, M. et al., 
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2014).  Finally the B. glabrata model is the only model organism where it has been 

demonstrated that a eukaryotic pathogen is capable of manipulating the chromatin 

organisation of its host (Arican-Goktas et al., 2014).  These factors combined make B. 

glabrata an invaluable model for investigating the complex interactions of pathogenesis 

within a host (Bridger, Brindley and Knight, 2018). 

 

Biomphalaria glabrata is a member of the order Mollusca gastropoda class that lives in warm 

fresh water preferring temperatures between 24oC and 29oC and although an intermediate 

host for S. mansoni the differing sub-species show well documented variations in immunity 

to the parasite.  Adult immunity to infection is a result of Mendelian single gene dominance 

(Knight et al., 1991), however, juvenile resistance and degree of susceptibility to infection in 

both juvenile and adult snails are governed by complex genetic traits (Richards, Knight and 

Lewis, 1992; Knight et al., 1991).  This variation in immunity however, has allowed 

investigations into how the parasite infects the host, the kind of changes that need to occur 

in the host organism to permit the parasite to survive.  By using resistant strains such as BS-

90 and susceptible strains such as BB02 and NMRI we can identify the changes the parasite 

elicits to improve its chances to survive by comparing what happens in the susceptible snails 

and what does not in the resistant snails or vice versa (Arican-Goktas et al., 2014).  Such 

changes include time dependant upregulation of actin and hsp70 genes (Arican-Goktas et 

al., 2014).  Resistance can also be altered via epigenetic changes (Knight et al., 2016), as 

has been demonstrated with the BS-90 strain where within a generation resistance was lost 

simply due to changes in environmental temperature (Ittiprasert, Wannaporn and Knight, 

2012). 

 

The snail immune defence is affected by the haemolymph, more precisely it seems to be the 

granulocytes that consist of the hosts defence against the parasite and it is an active 

process (Bayne, Hahn and Bender, 2001).  Initial defense reactions against a parasite, like 

S. mansoni, is to first encapsulate the invading organism (Harris, 1975).  Less than half of 

the sporocyst’s surface needs to be covered to kill the parasite (Bayne, Hahn and Bender, 

2001), this encapsulation can be deterred if the B. glabrata homologue of a macrophage 

migration inhibitory factor (MIF) is knocked out or knocked down hinting at its importance for 

proper defence against the parasite to be elicited (Baeza Garcia et al., 2010). Furthermore a 

unique effect protein has been discovered in the snail that is part of a family of proteins 

rarely found in eukaryotic organisms, biomphalysin, it is a part of the β-pore forming toxin (β-

PFT) family generally found in bacteria (Galinier et al., 2013).  This protein is capable of 
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binding to the parasite and using a co-factor from the B. glabrata plasma cause damage to 

the sporocyst likely through cytolysis of its cells and caused a significant increase in 

sporocyst death over controls.  However, the level of biomphalysin does not increase on 

infection by the parasite but is rather constituitively expressed indicating that it is not 

upregulated in response to parasite infection (Galinier et al., 2013). 

 

To study the complex interaction between host and parasite in vitro work using the Bge cell 

line can be used when studying the intermediate stages of S. mansoni development.  The 

Bge cell line are cultured and immortalised embryonic cells that are adherent and show a 

fibroblast like morphology (Odoemelam, Edwin et al., 2009; Hansen, 1976).  They can be 

used in co-culture with S. mansoni to elicit the transformation of miracidia into sporocysts 

and ultimately cercariae allowing the mechanisms of the transformation and development to 

be investigated and analysed in vitro under controlled conditions to see what changes take 

place both in the host and pathogen (Coustau and Yoshino, 2000; Ivanchenko et al., 1999).  

This also means that components of the excretory-secretory products (ESP) released by the 

miracidia can be isolated and tested with Bge cell populations to attempt to isolate the 

components that help facilitate changes in the host linked to parasite survival, these ESP 

products may make effective vaccination targets.  However, the Bge cells can only show us 

so much as the cells themselves have severe aneuploidy.  Normal B .glabarata cells have 

18 chromosome pairs for a total of 36 chromosomes, the Bge cells can have as many as 67 

chromosomes within a single cell (Odoemelam, Edwin et al., 2009).  This obviously limits the 

kind of experimentation that can be done with the cells alone, but, fluorescence in situ 

hybridisation (FISH) experiments on the cells themselves, targeting single copy genes piwi 

and BgPrx4, have shown that for the genes investigated only two copies were present 

(Odoemelam, Edwin et al., 2009).  This suggests that not all the chromosomes are 

replicated in the aneuploidy and experimentation on the cells may be applicable to the 

organism in certain cases. 

 

The genome organisation of the B. glabrata nuclei is closer in structure to that seen in 

mammalian nuclei than that typically seen in invertebrate models (Knight, et al 2014) and the 

whole genome sequence has recently been published (Adema et al., 2017).  Because of this 

it means that B. glabrata is a useful model for investigating factors such as genome 

organisation and gene movement, especially since gene movement is shown to be a rapid 

process (Arican-Goktas et al., 2014).  In the case of actin it is observed that the gene was 

relocated from its usual position in susceptible snails within 30min but it had returned to its 
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usual position at the 5h time point.  This gene movement also demonstrated conclusively 

that gene relocation, in this instance, occurred prior to upregulation of gene expression, with 

the increase in gene expression not measured until the 2h time point, 90 minutes after the 

initial movement was observed.  Whereas in the resistant snails the actin gene did not have 

to move since it was already occupying a position similar to that which it is relocated to in 

susceptible snails (Arican-Goktas et al., 2014).  This indicates how important gene 

positioning and genome organisation can be for rapid response environmental stimuli and 

later work using a heat shock experiment which caused the hsp70 gene to relocate 

mimicking the relocation observed during parasite infection.  Furthermore gene relocation 

was halted in the heat shock model using a myosin inhibitory drug 2,3-butanedione 

monoxime indicating the presence of an active component, a potential nuclear motor 

(Arican-Goktas, 2013).  Although experiments have yet to be conducted into how cessation 

of non-random gene relocation may affect parasite infection of its host.  However, there is a 

complex interplay between a host and pathogen interactions as has been previously 

demonstrated even within the same population of snails and parasites (Galinier et al., 2017) 

as such inhibiting a single method of action, such as gene relocation may not, on its own, be 

enough to afford resistance to infection. 

 

1.3 – Nuclear Organisation 

 

The nucleus is a complex organelle responsible not only for the protection of the genetic 

material from damage but for the organisation and provision of essential machinery for gene 

transcription.  The nucleus itself is made up of a complex collection of structures and nuclear 

bodies with distinct purposes.  The nuclear envelope (NE) which separates the chromatin 

from the cytoplasm, is a complex interaction of two membranes, the outer nuclear 

membrane (ONM) and the inner nuclear membrane (INM) that are separated from one 

another by about 50nm (Hetzer, 2010) and supported from within by the nuclear lamina.  

The NE is perforated by nuclear structures called nuclear pores, which sit in specialised 

wells where the ONM and INM meet to create the pore membrane (Wente and Rout, 2010).  

The pores core structure is made up of eight proteins which creates a cylindrical opening 

that is 30nm in diameter and 50nm in length to traverse the lumen between the ONM and 

INM.  It is through these pores that transport into and from the nucleoplasm occurs, the 

function of the pore is contingent on the interactions its binding sites have with other 

proteins.  Nucleoporins (Nups) associate with the nuclear pore complex (NPC) and set up 

the permeability membrane due to containing a high percentage of phenylalanine-glycine 
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repeats and mediates active transportation through the NE (Hetzer, 2010).  It is these 

permanently bound Nups and other proteins that bind either at certain points in the cell life 

cycle or in a cycle of attachment and removal from the NPC that determine what 

macromolecules can be transported through the nuclear pore (Wente and Rout, 2010). 

 

Both the ONM and INM have proteins associated with them unrelated to the NPC.  ONM 

localised proteins are associated with nuclear position and possibly with the passing of 

signalling from cytoplasm to the nucleoplasm via interactions between the KASH domain of 

the ONM localised proteins and the Sad1p/UNC-84 domain of INM localised proteins 

(Hetzer, 2010).  INM localised proteins include the lamin B receptor (LBR), lamina-

associated polypeptides and emerin which interact with the nuclear lamina and potentially 

involved in spatial positioning and anchorage of chromatin within the nucleoplasm 

(Demmerle, Koch and Holaska, 2013; Boyle et al., 2001).  The INM localised proteins often 

associate with the nuclear lamina, a membrane within the nuclear envelope that is made up 

of the lamin proteins that fall into two subsets of A-type and B-type and it is this membrane 

that connects the nuclear envelope to the chromatin (Bridger, J. M. et al., 2007).  The lamins 

are of particular interest as a range of diseases have been linked to mutations with the 

proteins, now called laminopathies, which includes Hutchinson-Guilford progeria syndrome 

(HGPS) where mutation in the LMNA gene which results in a truncated lamin A protein leads 

to the appearance of rapid ageing and on the cellular level chromatin dysregulation 

(Gonzalez-Suarez, Redwood and Gonzalo, 2009).  The lamina offers support to the bilayer 

nuclear envelope while at the same time interacting with and helping maintain the stability of 

the chromatin contained within the nucleus and has an effect on histone markers associated 

with epigenetic silencing of chromatin (Camozzi et al., 2014). 

 

Another greater structure to the nucleus is the nuclear matrix (NM) sometimes referred to as 

the nuceloskeleton and likened to the similar cytoskeleton found in the greater cell body.  

This is a thin filamentous structure made up of protein and RNA that lends form to nucleus 

and is believed to remain event through cell division as a starting point for reconstitution of 

the nucleus (Elcock and Bridger, 2010).  The NM has been described several times and is 

essentially the left over structure when all the soluble material from the nucleus has been 

extracted.  The NM can bind to and tether the telomeric regions of the chromatin, interact 

with the lamina proteins and one way that chromatin organisation may be controlled is 

through this interaction but it also provides a platform onto which other nuclear bodies can 

be anchored such as transcription factories (Elcock and Bridger, 2010). 
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Contained within the nucleus are several nuclear bodies that seem to have transcriptional 

capabilities but are distinctly different.  The most commonly researched of these are the 

transcriptional factories which are situated on the NM of the nucleus and range in size from 

40-100nm, the active component within being a RNA polymerase (RNAP), with RNAP II 

being the one most commonly found in the nucleus (Elcock and Bridger, 2010).  Splicing 

speckles are a dynamic nuclear body that contains a reservoir of inactive RNAP II and an 

abundance of splicing machinery (Xie, S. Q. et al., 2006). However, these bodies have been 

shown to move around and associate with NM, at any point there can be 20-40 separate 

speckles contained within a single nucleus and they are generally found near actively 

transcribing genes (Zhang, Qiao et al., 2016).  PML bodies are another nuclear structure that 

are associated with the NM, the extent of its functions are not known but, the best observed 

is the recruitment of proteins for SUMOylation to occur and there is evidence that PML 

bodies are dispensable as pml-/- mice have shown no obvious biological defect (Lallemand-

Breitenbach and de Thé, 2010).  Then there are Cajal bodies and histone locus bodies, two 

different nuclear bodies often found in near proximity to, or associated with, one another.  

The signature of the Cajal body is the coilin protein found within the small structure and its 

responsibility for processing of snRNA, histone locus bodies are mainly responsible for 

processing of the pre-mRNA for histone proteins, they also often have high levels of coilin 

but the functional relationship between the Cajal and histone locus body is not known 

(Nizami, Deryusheva and Gall, 2010). 

 

When you combine these factors it is hardly surprising that the chromatin contained within 

the nucleus is not randomly distributed, but rather each chromosome occupies specific 

chromosome territories within the interphase nucleus (Cremer, T. and Cremer, 2001).  In 

general organisation within the nucleus has heterochromatic gene poor regions closer to the 

nuclear periphery and euchromatic gene rich regions towards the nuclear interior, as 

demonstrated in Fig 1.2, although the inverse can be found in certain cells such as the rod 

cells of the eye in nocturnal mammals (Solovei et al., 2009).  Non-random locationing of 

chromosomal territories has also been demonstrated in 3D (Schmälter et al., 2014; Bolzer et 

al., 2005).  The specific territories that a chromosome will occupy are not absolute as entire 

chromosome territories can move given the correct stimuli, such as forcing a cell into 

quiescence or senescence (Dillinger, Straub and Németh, 2017; Rutledge et al., 2015; 

Bridger, J. M., Boyle, Kill and Bickmore, 2000).  Similarly single genes can be seen to move 

during cell differentiation (Szczerbal, I., Foster and Bridger, 2009) or be forced to do so by 
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infection (Knight, et al., 2011a).  Gene movements can also be highly specific, gene 

relocation is known to occur in cancer transformation but where those genes relocate can be 

tissue specific (Meaburn et al., 2016).  The specific spatial orientation of chromosomes 

within the nucleus has been shown to affect when DNA is replicated (Heinz et al., 2018) and 

single gene relocations have been associated with changes in transcription (Arican-Goktas 

et al., 2014).  Some of these genes can be shown to be moving on their own without the 

entirety of the chromosome following and when they do loop out on chromatin fibres to 

associate with specific nuclear structures or bodies (Szczerbal, Izabela and Bridger, 2010).  

How this movement occurs is a major point of interest as they can move over significant 

distances in a relatively short space of time giving credence to the idea that there are 

nuclear motors at work within the nucleus (Bridger, J. M., 2011).   

 

 

Fig 1.2 Representative image of chromosome territory domains within the nucleus.  1) Gene 

poor chromosomes located at the periphery.  2) Gene rich chromosomes located within the 

nuclear interior.  3) Nucleolus of the nuclei, outer solid ring is the nuclear membrane and the 

inner perforated ring the nuclear lamina. 

 

Furthermore several factors have been identified within chromatin that potentially affect 

spatial organisation.  Lamin associated domains (LADs) which are areas of chromatin 

closely associated with the nuclear lamina and the interplay between the LADs and the 

lamina can affect peripheral positioning of chromatin (Forsberg et al., 2019).  Topologically 
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associating domains that produce the diverse folding of chromatin within the chromatin 

domains (Fudenberg et al., 2016).  Although it has recently been demonstrated that these 

TADs are somewhat fluid and malleable within a single cell population (Finn et al., 2019).   

Other factors that govern spatial organisation may include DNA replication machinery and 

DNA repair proteins as has been implicated by high-throughput imaging mapping (Shachar 

et al., 2015).  However, changes that signal for the genes to relocate or for differentiation to 

occur are not well understood and these extra-genetic signals that affect gene profile and 

genome organisation and are collectively referred to as epigenetics. 

 

Although the nucleus is highly organised, changes in organisation can occur for several 

reasons including age, disease and environmental stimuli.  These changes are occasionally 

dynamic and quick to resolve as during infection (Arican-Goktas et al., 2014) others like 

changes during senescence become permanent (Bridger et al., 2000).  What is necessary 

for these movements to occur is a mechanism by which chromatin can be moved.  Within 

the cytoplasm movement is facilitated by actin-myosin motors (Wollrab et al., 2019) and 

there is evidence that the same motor function may assist in Plasmodium locomotion (Kumar 

et al., 2019).  Both of these proteins are found within the nucleus as well, actin forms part of 

the aforementioned nucleoskeleton (Xie, X. and Percipalle, 2018) and nuclear myosins have 

been isolated (Nowak et al., 1997).  One hypothesis for rapid active chromatin 

rearrangement involves a nuclear motor made of these two proteins similar to those found in 

cytoplasm and this has been supported by nuclear actin and myosin inhibition experiments 

preventing chromosome relocation (Mehta, I. S. et al., 2010).  This hypothesis is further 

supported by the fact that a nuclear myosin inhibitor has been demonstrated to inhibit hsp70 

non-random gene loci relocation (Arican-Goktas, 2013). 

 

1.4 – Epigenetics Overview 

 

The term epigenetics was coined in 1942 by Conrad Waddington, currently it refers to the 

study of inheritable elements that survive mitosis and meiosis but does not affect the 

underlying genetic structure.  This broad statement currently encompasses at least four 

areas of separate but interlinked research.  These areas are DNA methylation, histone 

modification, non-coding RNA (ncRNA) and finally chromatin conformation (Zhang, 

Guoqiang and Pradhan, 2014).  All these can and do effect the expressions of genes and 

maintained through both meiosis and mitosis.  However, the epigenetics of a cell can be 
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altered by many factors making it difficult to grasp the true impact of such a dynamically 

changing system. 

 

The most widely studied epigenetic modification is the DNA methylation pattern.  DNA is 

typically modified at CpG islands, which are stretches of DNA at least 200bp in length that 

have a higher than would be expected number of cytosine and guanine residues.  In the 

mammalian genome 30% of CpG islands are found within the transcriptional start site of 

genes and 32% are found within the main body of the gene itself.  The majority of CpG 

islands are stable either methylated or not and will remain that way however approximately 

21.8% of the CpG islands in the human genome are dynamically methylated switching 

between states (Ziller et al., 2013).  DNA methylation has three potential methods of action 

that is by altering either the transcription factor binding affinity, the chromatin conformation or 

recruiting methylation specific recognition factors to promotors or gene bodies thereby 

repressing the expression of that gene. 

 

DNA methylation is governed by the DNA methyltransferases (DNMT), the DNA methylation 

patterns are relatively stable and maintained through multiple cell divisions and potentially 

inheritable via germline cells.  Because of this, DNA methylation is seen as the archetypal 

epigenetic marker.  Initially, within the mammalian genome DNA methylation is caused by 

DNMT3a and DNMT3b during embryonic development, however later control and 

continuation is governed by DNMT1 (Li, E. and Zhang, 2014).  However, despite this 

continuity provided by DNMT1-mediated copying of methylation states to daughter cell the 

DNA methylation state is not permanent with the pattern changing due to several factors 

including cellular ageing and environmental challenges.  DNMT1 will methylate DNA at 

unmethylated CpG islands however, it preferentially targets hemimethylated sites where one 

strand of DNA has been methylated but the other is not, as with the DNA in the daughter 

cells after mitosis, showing preferential maintenance of existing patterning over establishing 

new methylation marks.  This kind of activity was postulated in 1975 (Holliday and Pugh, 

1975).  Yet this does not account for how methylation marks can be changed. 

 

There are two ways whereby this could occur, passively or actively.  The passive route is by 

continual dilution, the DNMT family proteins responsible for CpG methylation get blocked 

and as the cell passes through the cell cycle each successive daughter cell will have a 

gradual reduction in methylated CpG.  Active reduction of DNA methylation has several 
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proposed methods of action including but not limited to base excision repair (BER) mediated 

by Gadd45 and 5-methylcytosine (5mC) deamination by AID/APOBEC with subsequent 

mismatch repair (Zhang, Guoqiang and Pradhan, 2014).  However the latest proposed 

method is via the action of Ten Eleven Translocation (TET) dioxygenases that would have 

5mC oxidised to 5-hydromethylcytosine (5hmC) which is in of itself an emerging epigenetic 

marker.  From 5hmC it would be converted to 5-formylcytosine (5fC) and then 5-

carboxylcytosine (5caC) which can be removed by thymine DNA glycosylase (TDG) and 

repaired by BER (Li, E. and Zhang, 2014). 

 

Maintaining the correct DNA methylation profile is essential for maintaining the health of the 

cell.  The loss of DNA methylation in a cell leads to aberrant transcription occurring and 

incorrect DNA methylation patterns have been linked to disease such as cancer (Meldi and 

Figueroa, 2015), auto-immune (Lei et al., 2009), neurodegeneration and neurodevelopment 

defects.  5hmC itself is a key component for neural health and development in murine 

models (Sun, W. et al., 2014) so the TET model of active 5mC removal by hydroxylation 

means alteration or loss of 5mC patterning is going to affect 5hmC patterning which could 

account for the neuronal effects in both cases (Santiago et al., 2014). 

 

NcRNA refers to sections of DNA that were once considered Junk DNA because they do not 

encode for a protein, now they can be referred to as dark regions, sections of DNA that we 

have yet to discover a purpose for.  ncRNA are RNA elements that affect the transcription 

and or translation of DNA to protein and several varieties of ncRNA have been identified 

(Zhang, Guoqiang and Pradhan, 2014).  Long non-coding RNA (lncRNA) is one of the most 

important, these RNA are more diversely expressed than protein encoding genes and play 

roles in cell differentiation, organ development, chromatin modification and even in X 

chromosome silencing with the Xist lncRNA being involved in directing both the DNA 

methylation of the silenced X chromosome but also its hypoacetylation (Liu and Pan, 2015; 

Nie et al., 2012).  Small interfering RNA (siRNA) and micro RNA (miRNA) both help in 

controlling translation of RNA into protein by attaching to transcribed RNA and preventing it 

from being translated into protein by indicating it for destruction (Carthew and Sontheimer, 

2009).  A newer and less understood ncRNA is the piwi-interacting RNA (piRNA) which form 

complexes with PIWI and are proposed to silence transposable elements of the DNA and 

protect overall genomic integrity (Hirakata and Siomi, 2016). 
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Histone modifications are another well researched mechanism of epigenetic variation.  

Histones are proteins that assist in DNA condensation by forming an octamer made up of 

histone proteins, two of each H2A, H2B, H3 and H4, these octamers are referred to as a 

nucleosome to which DNA is attached and wrapped around twice (Luger et al., 1997).  Each 

nucleosome binds to approximately 146 base pairs of DNA (Luger et al., 1997).  The 

nucleosomes themselves have varying affinities for both the DNA and other proteins 

affecting how condensed the resulting chromatin is causing the differentiation we see 

between euchromatin and heterochromatin.  These differences in protein affinity and 

chromatin condensation are driven by alterations in the histones that make up the octamer 

caused by post translational modifications to the component histones.  These post 

translational modifications can take several forms and some are mutually exclusive generally 

occurring on the N-terminal tail of the histone proteins although it can occur within the 

globular region of the histone as well (Zhang, Guoqiang and Pradhan, 2014).  The most 

researched and commonly found alterations to histones are methylation, acetylation and 

phosphorylation.  Decoding what has been referred to as the histone code had been a focus 

of research for decades and yet still more modifications are being found and what has been 

investigated shows a complex interplay between different histone modifications and other 

epigenetic markers such as DNA methylation (Hervouet et al., 2018). 

 

Finally there is the conformation of the chromatin itself.  Chromatin in the interphase nucleus 

occupies specific three dimensional territories of the nucleus.  The way the chromatin folds 

and forms itself into that three-dimensional structure is going to affect how accessible certain 

genes and promoter regions are (Cremer, M. et al., 2017; Kieffer-Kwon et al., 2013), how 

close long range enhancer elements are to the site they effect and formation and interaction 

of gene domains with transcriptional mechanisms such as RNA polymerase II (RNAP II) 

transcription factories (Rowley et al., 2019), Cajal bodies (Wang, Q. et al., 2016), splicing 

speckles (Chen, W. et al., 2018) and similar.  This chromatin conformational folding and 

looping can be captured using chromosome conformation capture technology (3C) but part 

of this folding is going to be influenced by the currently expressing epigenetic markers such 

as histone modifications and DNA methylation.  In fact there is extensive cross-talk 

becoming apparent between the various epigenetic modifications with CpG island 

methylation binding complexes such as MeCP2 having active histone deactylases and/or 

histone methylation sites indicating that methylation of certain CpG island methylations have 

an effect on the neighbouring histone modifications (Nagano et al., 2013).  Histone 

modifications can recruit DNMT family proteins affecting the DNA methylation of associated 

DNA and several ncRNAs have been discovered that target DNA methyltransferase 
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essentially indicating extensive cross interactions between the epigenetics at several 

disparate levels that affects overall gene expression of the cell without affecting the contents 

of the genetic information contained within it. 

 

1.5 – Histone Modifications: Acetylation 

 

Histones are integral proteins involved in the condensation and organisation of DNA into 

chromatin within the nucleus, histones H2A, H2B, H3 and H4 form the nucleosome core 

around which DNA wraps (Luger et al., 1997) with HP1 (heterochromatin protein 1) variants 

assisting in greater binding and condensation (Hiragami-Hamada et al., 2011) as well as 

DNA damage recognition (Soria and Almouzni, 2013).  The histone proteins that make up 

the nucleosome are subject to dozens of post translational modifications that alters their 

interaction with the DNA bound to them and with neighbouring nucleosomes changing the 

accessibility of the DNA to transcriptional mechanisms within the nucleus as well as the 

potential stability of the genetic code (Jenuwein and Allis, 2001).  Currently several 

mechanisms have been identified to modify the histone proteins the most commonly 

researched are histone methylation and acetylation (Zhang, Guoqiang and Pradhan, 2014).  

However, phosphorylation, ubiquitination, sumoylation, biotinylation and several other 

mechanisms have been identified, generally altering amino acids found in the NH2-terminal 

tail of the histone proteins (Zhang, Guoqiang and Pradhan, 2014) although some 

modifications have been found within the main globular structure of the protein (Ng et al., 

2002).  The most commonly affected amino acid are the lysine (K) residues that can be 

methylated, acetylated, ubiquitinated and sumolyated, although arginine (R), histidine (H), 

serine (S), threonine (T) and tyrosine (Y) residues have also been identified as targetable 

residues.  Histone modifications tend towards a more dynamic existence with known 

mechanisms for adding and removal of acetyl, methyl and phosphoryl groups from histones 

and several pathways of histone modification have been explored for specific gene 

activations in model systems (Zippo et al., 2009) and in the general aspect (Konsoula and 

Barile, 2012; Suganuma and Workman, 2008) so there is an understanding of what certain 

modifications generally indicate. 

 

The two most well researched histone modifications are histone acetylation and methylation.  

Histone acetylation is handled by histone acetyltransferases (HATs) and histone 

deacetylases (HDACs) which are responsible for the addition or removal of the acetyl group 
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(Grunstein, 1997).  Histone acetylation is associated with transcriptionally active genes.  The 

mechanism for this association is unclear but it is currently theorised that since acetylation 

occurs on the epsilon-amino group of conserved lysine residues that the acetyl groups 

negative charge antagonises the DNA phosphate backbones negative charge resulting in 

weaker binding of the DNA to the histone causing the chromatin to unravel slightly allowing 

transcriptional mechanisms to access the DNA (Zhang, Guoqiang and Pradhan, 2014).  The 

most obvious example of such an unravelling would be the acetylation H4K16 which in of 

itself inhibits chromatin fibre folding for a 30nm section of DNA (Shogren-Knaak et al., 2006).  

H4K16ac is in fact a part of a series of histone modifications and protein recruitments that 

can activate gene transcription (Zippo et al., 2009).  The same modification is also involved 

in the dosage compensation seen in D.melanogaster for upregulation of specific genes on 

the X chromosome in males to counterbalance only having a single gene copy (Gelbart et 

al., 2009). 

 

The first nuclear HAT was discovered in Tetrahymena and subsequent investigations started 

to indicate similar sequences to that of the HAT active site in other proteins previously 

identified, namely Gcn5 in yeast (Brownell et al., 1996) and the mammalian GCN5.  Gcn5 

was already identified as a transcriptional regulator within yeast cells showing a close link 

between histone acetylation and gene transcription.  In fact many of the HATs that have 

been identified are subunits in larger nuclear complexes responsible for transcriptional 

activation (Roth, Denu and Allis, 2001).  However, the HATs have also shown to be 

extremely well targeted with each HAT only acetylating a few specific lysine residues (Roth, 

Denu and Allis, 2001).  A key example of this specificity is MOF which is responsible for the 

hyperacetylation of H4K16 of the male D.melanogaster X chromosome (Gelbart et al., 2009).  

Similarly MOF is involved in H4K16ac in mammalian cells as part of gene transcription 

activation (Zippo et al., 2009). 

 

HATs have been divided structurally into two differing families, Gcn5-related N-

acetyltransferase (GNAT) (Vetting et al., 2005) and MYST, named after the first four 

identified members (Roth, Denu and Allis, 2001).  Both the GNAT and MYST families share 

a common motif which contains an Arg/Gln-X-X-Gly-X-Gly/Ala amino acid sequence and it is 

this motif that is important for interacting with the acetyl coenzyme A (acetyl-CoA) from 

which the HATs get the acetyl group to transfer to the histones (Roth, Denu and Allis, 2001).  

Although both families share this motif GNAT all share at least three similar motifs to one 

another (Vetting et al., 2005; Roth, Denu and Allis, 2001) whereas the acetyl-CoA motif is 
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the only one MYST family members have but many MYST family proteins also contain zinc 

fingers and chromodomains that are for protein to protein interactions often found in 

heterochromatin-associated proteins (Carrozza et al., 2003; Roth, Denu and Allis, 2001).  

GCN5 obviously belongs to the GNAT family as does HAT1, MYST family includes MOF and 

TAT-interactive protein with a 60KDa mass (Tip60) which was the first identified human 

MYST family member.  Interestingly hMOZ and MORE are also MYST family HATs but 

contain plant homeo domains (PHD) (Roth, Denu and Allis, 2001) which can bind to methyl-

lysine on histones (Pedersen and Helin, 2010), showing a potential crosstalk between 

histone acetylation and methylation.  Initially p300/CBP, which refers to two HATs which are 

relatively interchangeable, were althought to belong to their own small family however, 

closer examination of the motifs contain within the protein demonstrated that the protein 

shared three motifs in common with the GNAT family (Roth, Denu and Allis, 2001). 

 

HDACs like the HATs were first isolated in the 90’s, a team investigating methods to return 

transformed spindle-like NIH3T3 cells back into normal fibroblasts found that treating the 

transformed NIH3T3 with trapoxin caused the transformation to reverse.  When further 

experimentation were done on the trapoxin treated NIH3T3 cells it was discovered they had 

hyperacetylated histones (Kijima et al., 1993).  It was in discovering the target for trapoxin 

that they were able to identify the first HDAC (Taunton, Hassig and Schreiber, 1996).  At 

present eighteen HDACs have been identified in humans and they are split into four 

separate classes, class I HDACs 1, 2, 3 and 8, class IIa HDACs 4, 5, 7 and 9, class IIb 

HDACs 6 and 10, class III sirtuins (SIRT) 1-7, and class IV HDAC 11 (Bertrand, 2010).  

Class I, II and IV HDACs are all zinc dependant in their action, whereas class III are 

nicotinamide adenine dinucleotide (NAD) dependant, and related to acetylpolyamine 

amidohydrolases (APAHs) and acetoin utilisation proteins (Leipe and Landsman, 1997).  

This is evident, not due to sequence similarity but, due to crystal structure determination of 

the proteins.  Arginase contains three loops L3, L4 and L7 that coordinate with two 

manganese (Mn2+) ions where as HDACs have two conserved loops L4 and L7 coordinated 

with a single zinc (Zn2+) ion, this same α/β fold is observed in HDLP, HDAC-like 

amidohydrolase (HDAH) and APAH showing a conserved evolution from a common 

metalloprotein ancestor (Lombardi et al., 2011).  Interestingly HDAC classes I, II and IV are 

all susceptible to inhibition by trichostatin A (TSA) whereas the sirtuins are not inhibited 

(Bertrand, 2010). 
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Class I HDACs are so categorised due to their similarity to the Rpd3 yeast gene and are 

generally localised to the nucleus of the cell and ubiquitously expressed in all tissues 

(Thiagalingam et al., 2003). HDAC1 and HDAC3 can deacetylate all four histone proteins 

that make up the nucleosome at every normally targeted lysine residue however they have 

differing affinities for certain targets suggesting that, although they can globally deacetylate 

the histones if need be, there is targeting of specific lysine residues.  The most researched 

HDAC is HDAC8 which is made up of 377 amino acids a little smaller than the average of 

400-500 for most class I and lays on the boundary between classes I and II and has been 

mapped to the Xq13 by fluorescence in situ hybridisation (FISH) (Van den Wyngaert et al., 

2000).  Inhibition of HDAC8 results in hyperacetylation of histones 3 and 4 showing a more 

targeted approach.  However HDAC8 activity is controlled by phosphorylation of the protein 

by cyclic AMP-dependant protein kinase A (PKA) which causes HDAC8 activity to decrease 

(Wolfson, Pitcairn and Fierke, 2013; Somoza et al., 2004).  Conversely there is experimental 

data showing that phosphorylation of HDAC1 and HDAC2 is correlated to increase in activity 

(Segré and Chiocca, 2010).  HDAC1 is also a target for SUMO-1 (small ubiquitin-related 

modifier) which may also potentially regulate HDAC1 activity (David, Neptune and DePinho, 

2002), it should also be noted that when class I HDACs are inhibited by TSA there is a 

related upregulation of messenger RNA (mRNA) for HDAC1-3 but not for HDAC8 hinting at 

an autoregulatory loop with negative feedback increases production of HDACs by 

transcriptional machinery that HDAC8 is not a part of (Thiagalingam et al., 2003).  It is also 

becoming more evident that HDACs like HATs tend to be part of larger gene transcription 

regulatory complexes with HDAC1 and HDAC2 associating with Sin3 complex and CoREST 

and HDAC3 with silencing mediator for retinoid and thyroid hormone receptor complex 

(SMRT) and nuclear receptor corepressor (N-CoR) (Cress and Seto, 2000). 

 

Class II HDACs were discovered once Hda1 a yeast deacetylase was identified and several 

human homologues were isolated, HDAC4-7 and HDAC9-10, these HDACs are 

approximately 1000 amino acid residues in length making them much larger than the class I 

HDACs (Bertrand, 2010; Thiagalingam et al., 2003).  Class II gets further subdivided due to 

their nature, all class II HDACs have a secondary catalytic domain within their structure, 

class IIa have them in the COOH terminus region where as class IIb has it in the NH2 

terminus region.  HDAC10 although it has a NH2 terminus catalytic domain does have a 

pseudorepeat similar to a catalytic domain in the COOH terminus as well (Thiagalingam et 

al., 2003).  This class of HDACs differs from the class I in the fact that they are both 

cytoplasmic and nuclear in origin and can pass through the nuclear envelope and are more 

tissue specific.  They also generally form parts of larger multiprotein complexes, in some 
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cases the same complexes as the class I HDACs and there is definite associations been 

made between HDAC4/5 and HDAC3 with the N-CoR complex (Fischle et al., 2002).   

 

Class III are a family of proteins that bear similarity to the yeast Sir2, called sirtuins seven 

have been identified in humans SIRT1-7 (Bertrand, 2010).  These rely on a NAD-dependant 

activity that catalyses the acetyl moiety of acetyllysine.  Only SIRT1, SIRT2 and SIRT7 have 

defined histone targets, with SIRT2 targeting H4K16 deacetylation that would allow 

condensation of the 30nm segment of chromatin that is prevented from folding by the 

H4K16ac form (Inoue et al., 2007).  This may be connected to the role of SIRT2 with cell 

cycle control prior to entering M-phase.  SIRT1 is also linked to several functions involved in 

metabolism, cell cycle and lifespan  alongside the actions in epigenetic variation by targeting 

several specific histone acetylations (Inoue et al., 2007) yet, it requires interaction with 

HDAC4 for increased stability, although for SUMOylation rather than deacetylation (Han et 

al., 2016). 

 

Class IV only contains a single protein, HDAC11, at a size of 347 residues it is closer in size 

to class I (Gao et al., 2002).  However, it is not ubiquitously expressed and is limited to 

kidney, heart, brain, skeletal muscle and testes.  This limited expression is more in line with 

class II HDACs and the HDAC11 catalytic site, which takes up the majority of the sequence, 

has homologous similarity to both class I and II (Gao et al., 2002).  It is the smallest of the 

HDACs, located primarily in the nucleus and forms a complex with HDAC6 showing that like 

most HDACs there is interaction between themselves and with other proteins (Gao et al., 

2002).  HDAC11 is of particular interest due to its upregulation in certain cancers such as 

breast and colon and the fact that inhibition of HDAC11 in such cases can result in tumour 

cell apoptosis (Deubzer et al., 2013).  Several of the HDACs have evolved to support 

multiple functions and have other target substrates rather than just histones, an example of 

this is HDAC11’s diverse role in immune cell differentiation (Yanginlar and Logie, 2018; 

Yuan et al., 2018).  They also have a complex interplay amongst themselves which is what 

allows them to deal with the diverse and ever changing nature of the epigenetics of a cell.  
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1.6 – Histone Modifications: Methylation 

 

Histone methylation is another well-known modification that can occur on epsilon amino 

group of a lysine and has been identified since 1960s however, the first histone lysine 

methyltransferase (KMT) was not identified and isolated until nearly four decades later in 

2000, SUV39H1 (KMT1A) (Black, Van Rechem and Whetstine, 2012).  SUV39H1 is the 

human homolog of the D.melanogaster Su(var)3-9 gene so called due to translocation 

experiments done with D.melanogaster that showed postion-effect variegation (PEV) where 

euchromatic genes when juxtaposed next to heterochromatic regions would become 

silenced.  Su(var) (suppressor of PEV) refers to the fact that the genes transposed next to it 

would suffer from suppression of expression resulting in a variegation in gene expression, 

one example being the suppression of the white gene in D.melanogastor which is normally 

expressed throughout the eye resulting in red colouration only being partially expressed 

ending with a speckled red and white colouration (Grewal and Elgin, 2002; Muller, 1930).  

Histone lysine modifications occur on specific lysine residues within the histone protein but 

also in specific states that subtly alter the effect, lysine residues can be mono-, di- or tri-

methylated (Yun et al., 2011; Cheung and Lau, 2005) and are generally associated with one 

of three particular effects, formation of heterochromatin, gene activation involving 

transcription and elongation via RNA polymerase II or silencing of genes in euchromatic 

regions (Zhang, Guoqiang and Pradhan, 2014). 

 

SUV39H1 became the prototypical KMT and as such was dissected for the functional site 

that would signify the lysine methyltransferase activity.  The enzymatic SET domain was 

identified and had been highly conserved, from the Su(var)3-9 D.melanogaster protein, was 

130 amino acid residues in length (Dillon et al., 2005).  Using this other KMTs were able to 

identified, SUV39H2, G9a and SETDB1 to name a few.  The SET domain uses S-adenosyl-

L-methionine (SAM) as the donor for the methyl group that shall be added to the lysine 

residue.  However, a second class of KMT has been identified, which currently only has one 

member, that does not have the SET domain, this is KMT4 (Dot1L) (Zhang, Wen and Shi, 

2012; Nguyen and Zhang, 2011), which uses the same SAM substrate but with a unique N-

terminal section with the C-terminal sharing similarity with other SAM-dependant 

methyltransferases.  The crystalline structures of the SET-domain KMTs is notably different 

from other SAM-dependant methyltransferases arranging the SAM and epsilon amino group 

of the lysine at opposites of the catalytic site with a narrow tunnel for the substrate to enter 

by but, this places it directly next to the methyl group being transferred from the SAM and 
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keeps the SAM as far from the phosphate backbone of the DNA wrapped around the histone 

as possible (Dillon et al., 2005; Zhang et al., 2002).  This arrangement is believed to have 

developed to allow progressive methylation of substrates without disassociation from the 

protein. 

 

KMTs have shown a remarkable specificity not only for the target substrates but also for the 

methylation states that they are responsible for, KMT1A for instance targets mono-

methylated H3K9 (H3K9me) and will further methylate it to either a di-methylated or tri-

methylated state (Black, Van Rechem and Whetstine, 2012).  This specificity can be altered 

as was demonstrated with mutation studies of KMT7 which normally mono-methylates H3K4 

can be altered to a tri-methylation or di-methylation if a mutation occurs at Y245A (Xiao. et 

al., 2003) or Y305F (Zhang et al., 2003) respectively.  Similarly mutation of F281Y mutation 

alters DIM-5, a yeast SET-domain containing KMT, from a tri-methylase to a mono- or di-

methylase.  This particular mutation has become known as the F/Y switch which can 

establish the SET-domain substrate specification (Dillon et al., 2005). 

 

HATs and HDACs were isolated relatively close to one another; however, the first KDM was 

not isolated until 2004 (Shi et al., 2004).  Up until this point it was believed that histone 

methylation, like DNA methylation, was a long term epigenetically inheritable marker that 

was removed by the action of proteolysis and replaced with new histone proteins as 

necessary (Jenuwein and Allis, 2001).  While it is true that histone methylation is more 

enduring and does not appear to be altered as rapidly, with the average half-life of a 

methylation mark being approximately equal to that of the histone itself (Cheung and Lau, 

2005), two distinct classes of protein have been identified that have been shown to possess 

histone demethylase activity.  The KDM1 family which uses flavin adenine dinucleotide 

(FAD)-dependant amine oxidase domain and the Jumonji C (JmjC) domain containing 

protein, which are either Fe2+ or α-ketoglutarate dependant (Pedersen and Helin, 2010). 

 

KDM1A/AOF2/LSD1 was the first histone lysine demethylase discovered, it was also shown 

to be highly selective in terms of substrate only demethylating mono- (me1) and di-

methylated (me2) H3K4 but did not tri-methylated (me3) H3K4 (Shi et al., 2004).  KDM1A 

has since proven to have significant roles in embryo development, cell differentiation (Wang. 

et al., 2007) and cell proliferation of neuronal cells (Sun, G. et al., 2010).  KDM1A has also 

been a focus in cancer research, although this requires further dissecting as in some tumour 
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cell lines it can be prognostic of poorer outcomes (Lim et al., 2010) and in other instances its 

expression may be linked to beneficial actions (Wang. et al., 2009).  The KDM1 family of 

proteins comprises the only two amine oxidase domain containing KDMs, the second being 

KDM1B.  Both target the H3K4me1/me2 for demethylation with similar structures containing 

a SWIRM domain and amine oxidase catalytic domain (Burg et al., 2015) however, they 

have inherently different targets.  KDM1A targets the promoter regions of genes (Adamo et 

al., 2011) and is embryonically lethal in knockout mice models by the eighteenth day of 

embryogenesis (Wang et al., 2007).  Whereas KDM1B knockout is not embryonically lethal 

but, results in infertility in females as DNA methylation patterning can’t be established in 

oogenesis (Ciccone et al., 2009) and the KDM1B targets methylations found in the gene 

body rather than the promoter (Fang et al., 2010).  As with the KMTs small changes can 

alter KDM1B activity, it has two binding sites required for recognition of the substrate and 

removing the second, although it does not completely prevent demethylation of H3K4me2 

does result in only 50% of the target substrates being demethylated with the other 50% 

being reduced to H3K4me1 instead of being completely demethylated (Chen et al., 2013). 

 

KDM2A was the first demethylase enzyme to be discovered that did not have an amine 

oxidase catalytic domain and instead relied on a JmjC domain.  This enzyme used a Fe2+ 

and α-ketoglutarate as co-factors in the reaction to demethylate H3K36me1/me2 variants 

(Tsukada, et al., 2006).  This discovery also opened up the research of KDMs as the JmjC 

domain containing protein family was significantly larger than that of the amine oxidase 

catalytic domain containing family of proteins (Tsukada, et al., 2006).  The KDM2 family has 

a diverse role in the maintenance of genome stability with KDM2B being linked to protection 

from UV- induced apoptosis and oxidative stress (Polytarchou et al., 2008; Koyama-Nasu, 

David and Tanese, 2007).  It is also capable of overcoming the senescence barrier for cells 

which may link to some proto-tumorigenesis effects (Pfau et al., 2007) and yet this capability 

is also important for natural embryonic development (He et al., 2008). 

 

Other KDM subfamilies include the KDM3 subfamily of proteins contains three identified 

mammalian enzymes, KDM3A, KDM3B and JMJD1C however only KDM3A and KDM3B are 

have been shown to have histone demethylase activity with JMJD1C variants unable to do 

so (Brauchle et al., 2013).  KDM3A and KDM3B both target the same substrates, 

H3K9me1/me2 and minor changes, such as a T667A substitution of amino acids can 

drastically affect enzymatic activity (Brauchle et al., 2013).  The KDM4 subfamily of proteins 

was the first to show target specific against tri-methylated lysine residues.  There are five 



 

25 
 

proteins contained within this family comprising KDM4A-E, KDM4A-D all have target 

specificity to H3K9me2/me3 with all but KDM4D also targeting H3K36me2/me3 (Zhang, Wen 

and Shi, 2012).  KDM4A-C are globally present in tissue, although A and C are expressed in 

greater amounts than B, while D and E are predominantly found in the testes (Labbé, 

Holowatyj and Yang, 2013).  Functional tests involving the KDM4 family has shown that 

KDM4A-C preferentially target H3K9 residues for demethylation over H3K36, with all five 

preferentially targeting tri-methylated over di-methylated residues (Hillringhaus et al., 2011).  

The KDM5 subfamily consists of four proteins in mammalian models KDM5A-D all of which 

have the same substrate specificity, H3K4me2/me3 (Horton et al., 2016).  Another family 

that can demethylate tri-methyl marks from histones their roles in the body seem to be rather 

diverse and potentially tissue specific.  KDM5A when it was knocked out in a mouse model 

showed only minor changes in phenotype (Klose et al., 2007).  Whereas KDM5B is down 

regulated in adult tissue but, found to be upregulated in several cancer cell lines and its 

inhibition can slow tumour growth (Horton et al., 2016).  However, like KDM3A, it is important 

in the maintenance and self-renewal of ES cells (Xie et al., 2011) and it is also an important 

component in DNA double strand break repairs (Li et al., 2014).  KDM5C is also of note 

since it seems to have significant effects on neuronal development as mutations in KDM5C 

gene can be linked to mental retardation and potential autism spectral disorder (Adegbola et 

al., 2008; Tzschach et al., 2006; Jensen et al., 2004). 

 

Finally The KDM6 subfamily is made up of three proteins, KDM6A-C, and are responsible for 

demethylating H3K27me2/me3.  KDM6A, also called UTX, has been shown to be important 

in regulation of HOX genes in C.elegans and other models (Agger et al., 2007; Lan et al., 

2007).   Although KDM6B does also mediate HOX gene regulation it is also activated during 

infection within macrophages and seems to be an important factor within T-helper 17 (Th17) 

cell differentiation (Liu et al., 2015; De Santa et al., 2007).  Both KDM6A and KDM6B have 

been shown to be important for final differentiation of T-cells in general (Manna et al., 2015), 

yet more recent work is casting doubt on the role these two play in development on 

mammals as a recent study has shown that even without KDM6A or KDM6B murine 

embryonic cells can demethylate H3K27me3 and activate their HOX genes (Shpargel et al., 

2014).  Similarly the KDM6C gene, also called UTY, is the Y chromosome variant of UTX 

which was althought to be incapable of demethylase activity has shown that unlike in the 

murine model (Shpargel et al., 2012) the Human variant of the gene does in fact maintain 

demethylase activity for the same substrate although is not as effective as the KDM6A/UTX 

(Walport et al., 2014). 
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1.7 The Ageing Nucleus 

 

Ageing is the gradual decline of function experienced over time of organ systems and tissue 

experienced by all living organisms, although some organisms that are able to reverse this 

state becoming pseudo-immortal like Turritopsis dohrnii (Lisenkova et al., 2017) and 

Turritopsis nutricula (Devarapalli et al., 2014) jellyfish which are a focus in research into 

ageing there is only so much that can be learned from these models.  Ageing is a 

multifaceted natural occurrence and benefits from study in multiple organisms at different 

levels.  Several models have been used over the years including D. melanogaster, C. 

elegans and Mus musculus.  Due to work in these models calorie restriction has been 

identified as one of the possible, non-genetic, interventions for improving lifespan and the 

processes it effects are being further investigated (López-Lluch and Navas, 2016).  

However, progeroid syndromes, like Hutchinson-Guilford progeria syndrome (HGPS) which 

resembles premature ageing in humans are an indication of just how important the nucleus 

is to the ageing process.  Progeria cells develop abnormalities in nuclear morphology 

(Bridger and Kill, 2004) over time that impact on nuclear and genome organisation and 

reversal of this phenotypic change has been used to identify potential treatments (Bikkul et 

al., 2018; Scaffidi and Misteli, 2005) as a way of preventing premature senescence in 

affected cells.  Although some recent work in fish has shown that nuclear morphology 

changes and premature ageing may be independent of one another (Tonoyama et al., 

2018).  This does indicate however, that there is a potential link between nuclear health and 

senescence. 

 

The accumulation of senescent cells is theorised to be one of the events that contribute to 

the phenomena of ageing.  Senescent cells are cells that are no longer capable of 

proliferating leading to degradation of tissue.  It has been shown that nuclear organisation is 

affected when cells leave a proliferating state to enter a senescent state (Bridger et al., 

2000) and organisational changes can be driven by proteins such as high mobility group A 

proteins (Narita et al., 2006) or by the accumulation of structures such as nuclear pores, 

although specific components such as the nucleoporin TPR may ultimately be responsible 

for nuclear organisation changes (Boumendil et al., 2019).  These senescent cells also effect 

normal proliferating cells around them, encouraging them to become prematurely senescent 

(Nelson, G. et al., 2012).  It has also been demonstrated that targeted elimination of 

senescent cells positively impacts on lifespan and health (Baker et al., 2016).  However, 

changes to senescent cells are not limited to genome organisation patterns but, also 
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changes in epigenetics.  Changes to DNA methylation patterns have been linked with age 

related alterations in lifespan (Cole et al., 2017), in fact such changes in DNA methylation 

are rigorous enough to estimate age physical age and models have been develop for human 

(Hannum et al., 2013; Horvath, 2013) and murine (Meer et al., 2018) models. 

 

Similarly other epigenetic markers have been investigated for connections to ageing.  One 

marker that has been associated with age is the H3K27me3 marker.  H3K27me3 marks are 

gradually accumulated within the genome as an organism ages (Ma et al., 2018; Hosogane 

et al., 2016).  Alterations to H3K27me3 patterning could also be linked to senescence with 

the formation of cytoplasmic chromatin fragments (CCFs) which are transcriptionally 

repressed fragments of chromatin extruded from the nucleus in its own vesicle (Dou et al., 

2017).  These CCFs have been shown to mediate senescence associate secretory products 

(SASPs) which are in part responsible for inflammatory effect of senescent cells and 

potentially for the bystander effect to surrounding cells.  Either way alterations to the nuclear 

health and integrity ultimately impacts not only on the individual cell but the surrounding 

microenvironment.  Ageing therefore works as an additional variable for exploration of the 

host-pathogen interaction, how these factors that affect chromatin distribution, protein 

expression and surrounding microenvironment affects the parasites ability to manipulate its 

host may further elucidate the mechanisms involved in the host-pathogen interaction. 

 

1.8 Summary 

 

In summary B. glabrata as a model allows for diverse investigations into multiple topics.  

With its similarity to mammalian nuclear organisation and shared parasitic disease, 

schistosomiasis, the complex interplay between host and pathogen interactions can be 

explored.  The current hypothesis would indicate that the ESPs from the miracidia of 

S.mansoni can cause rapid global alterations to genome organisation within its host B. 

glabrata, potential mechanism is demonstrated in Fig 1.3, and one of the most likely ways to 

affect this change is via epigenetic alterations.  There is evidence that the gene relocation 

noted in infection occurs prior to gene upregulation which would suggest the purpose for 

gene movement if gene activation.  The epigenetic targets for such changes would be 

histone acetylation, histone methylation of specific targets or DNA demethylation or DNA 5-

hydromethylcytosine.  Since histones and their respective modifications are well conserved 
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initial investigation into a link between parasite-induced gene movement will focus on 

alterations to the histone code alongside inhibition of histone modifying proteins. 

 

 

Fig 1.3 Representation of possible mode of action for the miracidia to induce gene 

relocations via excretory secretory products (ESPs).  1) Miracidia infects snail.  2) Releases 

ESPs.  3) ESPs interact with cell receptors.  4) Cell receptor signals for changes in the cell 

releasing a nuclear signal.  5) Nuclear receptor receives signal from cell receptor.  6) 

Nuclear receptor induces changes to genome organisation resulting in gene relocation. 

 

Furthermore combining this with the fact that B. glabrata is a comparatively short lived model 

organism the effects of age can be explored in relation to both infection and genome 

organisation.  Finally inducible gene movement has already been established within the B. 

glabrata model both from parasite infection and heat-shock and in both occur pretty rapidly, 

within 15mins in the case of infection.  As such there needs to be mechanisms that drive 

non-random gene relocation and since this occurs rapidly during infection the most likely 

modifications to elicit these effects are changes to epigenetic markers and motor proteins 

would need to be present in the nucleus to effect the signalled for movement.  As such the 

relationship between infection or heat shock, epigenetics and age can be explored focusing 

on the effects these have on genome organisation and rapid gene relocation. 
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Chapter 2: Investigating 

epigenetic alterations associated 

with stress factors known to 

induce genome reorganisation in 

the molluscan model 

Biomphalaria glabrata 
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2.1 Introduction 

 

The field of epigenetics is a large and ever expanding area of study incorporating chromatin 

positioning, non-coding RNA, DNA methylation and histone modification.  Histone 

modifications have an established role in maintaining gene expression with several well 

categorised modifications being linked to either gene activation such as H3K4me3 (Chen et 

al., 2015; Kim et al., 2009), H4K16ac (Gelbart et al., 2009) and H3S10ph (Zippo et al., 2009; 

Suganuma and Workman, 2008), or inactivation such as H3K27me3 (Pan et al., 2018; Wiles 

and Selker, 2017; Pushpavalli et al., 2012) and many work in concert for further modulation 

of gene activity.  These modifications have also been found to alter chromatin compaction as 

is the case with H4K16ac (Shogren-Knaak et al., 2006), which could be one mechanism by 

which increased gene activation is achieved by allowing easier access to the DNA for 

transcription. 

 

Similarly, it is well established that the nucleus is a highly organised organelle (Fritz et al., 

2019; Szczepińska, Rusek and Plewczynski, 2019; Fritz et al., 2015; Boyle et al., 2001; Croft 

et al., 1999) with chromosomes occupying specific chromosome territories.  However, during 

certain events such as differentiation (Szczerbal, Foster and Bridger, 2009; Kim, S. H. et al., 

2004) and infection (Knight, et al., 2011a; Li, C. et al., 2009) chromosome and gene 

movements occur.  In the case of Schistosoma mansoni infection of Biomphalaria glabrata 

there is clear evidence of movement prior to upregulation of gene expression (Arican-Goktas 

et al., 2014).  While with adipogenesis in porcine mesenchymal cells gene movement can be 

seen to be directed to splicing speckles (Szczerbal and Bridger, 2010) which would indicate 

directed movement of genes within nuclei.  Considering the relative overlap in what is known 

one possible indicator for movement within the genome could be alterations to the histone 

code which could then be read by nuclear motors to indicate where the gene or chromosome 

needs to be moved to. 

 

Two techniques commonly used for investigating nuclear organisation are 

immunofluorescence (IF) and fluorescence in situ hybridisation (FISH) for visualising and 

localising proteins and gene/chromosome positioning respectively.  Generally the use of the 

two methods together requires optimisation of 3D FISH due to differences between IF and 

2D FISH fixations.  2D FISH uses an acidic fixation to flatten the nuclei into a 2D 

conformation, this acidic fixation can cause denaturation of certain proteins making 
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optimisation of combined 2D FISH and IF complicated and on an “as case basis”, one 

commonly used 2D FISH-IF application that has been shown to work for Ki67 staining of 

proliferating cells.  Here are explored methods to improve the efficacy of a combined 2D 

FISH-IF approach by optimising IF for histone proteins in an acidified fixative. 

 

One of the genes induced by S. mansoni infection of B. glabrata is hsp70 (Arican-Goktas et 

al., 2014) which is a well-known inducible gene within many species (Hu et al., 2009; Boehm 

et al., 2003).  The HSP70 family of proteins are in both the cytoplasm and nucleus but and 

protect the cell by binding to and preventing the aggregation of misfolded or heat damaged 

proteins (Lindquist and Craig, 1988).  It was found to be inducible after heat shock of BB02 

strain B. glabrata snails in a manner similar to the gene movement seen during infection.  

Investigations were undertaken to assess whether significant alterations were made to the 

histone modification distribution throughout nuclei following heat shock which could be 

indicative of changes to genome organisation or gene expression in response to the 

environmental stress.  It is anticipated that changes to the epigenome, such as changes to 

the histone code, are necessary for altering genome organisation and therefore influences 

gene positioning.  As such four histone modifications were selected, all of which were 

methylation markers.  Two markers for activation and two for inactivation were selected, the 

active markers were H3K4me3 (Chen et al., 2015; Kim et al., 2009) and H3K79me3 (Nguyen 

and Zhang, 2011).  H3K79me3 was of particular interest as RNA sequencing data had 

indicated it was affected during S. mansoni infection making it a potentially important target 

for parasite/infection induced gene relocation.  The first inactivation marker chosen was 

H3K27me3 (Wiles and Selker, 2017) H3K27me3 is involved in several processes including 

ageing (Ma et al., 2018; Dou et al., 2017) and B. glabrata susceptibility is known to change 

as they age (Richards and Minchella, 1987).  H4K20me3 is a second inactivation marker 

which is associated with chromatin compaction and is related to a transition from 

proliferation to quiescence (Evertts et al., 2013), affected during some viral infections (Teferi 

et al., 2017) and shown to be associated with the innate inflammatory response (Stender et 

al., 2012).   Demonstrating that H4K20me3 is a marker that is liable to change during 

infection if the parasite infection includes immunomodulation of the host. 

 

Thus this chapter investigates optimising the existing 2D FISH fixation method for use with 

IF for histone antibodies in B. glabrata.  Characterises the nuclear patterning for four histone 

modifications using indirect IF on adult B. glabrata in comparison to stress response to 

establish if global alterations to histone modification distribution can be ascertained that 
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could indicate association with gene repositioning.  Following establishment of a conical 

pattern distribution in the adult snail three modifications, H3K27me3, H3K79me3 and 

H4K20me3 were investigated in juvenile snails post heat shock and 2h post infection to 

assess if changes to histone distribution due to either environmental stress (heat shock) or 

biological stress (S. mansoni infection) mimicked each other. 

 

ChIP has become a standard technique for investigating protein DNA interactions (Collas, 

2010).  Yet this is mainly used for global high-throughput techniques such as ChIP-seq.  This 

is because optimisation for a targeted ChIP-qPCR experiment is fraught with issues such as, 

ChIP buffer optimisation, antibody suitability and target sites for primers.  ChIP buffers that 

vary from protocol to protocol can cause issues such as that seen with H3K79me3 histone 

modification experiments in human T-cells, where despite the H3K79me3 marker being 

linked to transcriptionally active genes in yeast, it had a modest correlation with 

transcriptionally silenced genes in human cells (Barski et al., 2007).  Later it was found that 

using a buffer which contained SDS revealed specific epitopes for H3K79 methylation which 

proved that H3K79me3 was indeed associated with transcriptionally active genes (Steger et 

al., 2008).  Similarly commercially available antibodies have reliability issues even from 

batch to batch (Taussig, Fonseca and Trimmer, 2018; Voskuil, 2014) and although highly 

conserved there is no guarantee that antibodies designed to work in one organism will 

function, especially when targeting a new model organism such as Biomphalaria glabrata, or 

that a certified ChIP ready antibody will actually work during a ChIP protocol.  Finally, a 

further issue is where on the gene the primers should be targeted since there is no 

knowledge of where the histone modifications may be within the chromatin sequence or if 

they are even there to begin with. 

 

To facilitate the development of more targeted investigations of gene – histone modification 

interactions a method is required to bridge the gap between theorised presence of a histone 

modification and ChIP to allow more accurate use of ChIP-qPCR.  By combining IF and 

FISH it would be theoretically possible to identify if histone modifications are associated with 

a gene prior to ChIP.  However, the two procedures require different fixations if performed in 

2D and with 3D it may be difficult to distinguish where exactly the associations are within the 

gene even if the association was clear through all the other histone modification signals from 

unrelated chromatin containing the marker.  A method by which gene signal and histone 

modification association can be made unambiguously is required.  Proposed here is the use 

of immuno-fibre-FISH, a method for examining single chromatin fibres for both gene signal 
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and histone modification markers which would be visible within the gene signal itself, this 

would act as a validating step prior to ChIP-qPCR and potentially used for gathering 

quantative data should optimising ChIP prove difficult. 

 

2.1.1 Aims 

 To assess if changes to histone modification pattern distribution occur after stress 

factors known to induce chromatin remodelling 

 To optimise Methanol : Acetic Acid (M:AA) fixation to work with histone antibodies for 

IF 

 Development and optimisation if fibre-FISH protocol 

 

2.2 Methods 

 

2.2.1 Snail Husbandry 

 

The BB02 strain of Biomphalaria glabrata, a wild type strain susceptible to Schistosoma 

mansoni infection originally isolated from Brazil, was kept in a dedicated snail room with a 

recirculation system consisting of multiple 6.5L tanks where the water temperature was 

maintained at 27oC.  The system was mains fed and the water is filtered through a series of 

sediment filters, carbon filter and reverse osmosis membrane and then essential salts are re-

added to the water.  A 12 hour dark/light cycle was maintained and the snails fed with fish 

flake.  Faeces, debris and excess egg masses were removed from the tanks every two days.  

Maintaining this environment meant that snails reached maturity in 6 – 8 weeks and egg 

masses were laid at a rate of 2 per day/snail. 

 

2.2.2 Cell Suspensions from Biomphalaria glabrata tissue for Indirect 

Immunofluorescence 

 

Suspensions for indirect immunofluorescence (IF) were prepared using the ovotestis of two 

snails.  The shells were crushed using a microscope slide and needle nose tweezers were 

used to remove the shell and extract the ovotestes,  Either the tweezers or a scalpel were 

used to excise the tissue which was then placed into a sterilised 1.5mL microcentrifuge tube 
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containing 0.5mL of 1X PBS.  Using a tissue grinder the tissue was macerated until no large 

tissue lumps were visible in the solution.  A further 0.5mL of 1X PBS was added, mixed by 

inversion and the suspension left for 30min at room temperature (RT).  Following this 

incubation the samples were spun at 200g for 5min and the supernatant discarded.  

Samples were then washed once by resuspending in 1mL 1X PBS and centrifuged at 200g 

for 5min, this step was sometimes repeated depending on the amount of debris, until the 

supernatants were clear.  After discarding the supernatant the cells were fixed in 1mL of 4% 

paraformaldehyde (PFA) (Fisher Scientific, UK) in 1X PBS, the cells were resuspended in 

the fixative and incubated at RT for 10min.  Samples were then centrifuged at 200g for 5min, 

supernatant discarded and the pellet resuspended in 1mL 1% Triton X-100 (Sigma Aldrich, 

UK) in 1X PBS and incubated at RT for 10min to permeabalise the cells.  The suspension 

was then spun at 200g for 5min supernatant discarded and resuspended in 1mL 1X PBS, 

spun again at 200g for 5min and finally resuspended in 0.5mL 1X PBS and stored at 4oC for 

up to two weeks. 

 

2.2.3 Environmental Stressing of Biomphalaria glabrata 

 

Snails were subjected to one of two environmental stressors, heat shock (HS) and cold 

shock (CS).  For HS a water bath was set to 32oC and a beaker filled with sterile water was 

placed in the water bath to be brought up to temperature.  Once at the desired temperature 

snails were placed into the beaker and left for 2h.  For CS a polystyrene box was filled with 

water, a beaker with sterile water added to the box and ice added around the beaker 

creating an ice bath.  Temperature in the beaker was carefully monitored and once the water 

reached 16oC snails were added to the beaker and the temperature monitored to ensure it 

did not fluctuate for 2h.  Snails subjected to the environmental stressor were then dissected 

as per section 2.2.2. 

 

2.2.4 Parasite infection of Biomphalaria glabrata 

 

Snails were transferred from Brunel University London to the Wellcome Sanger Institute two 

days prior to infection to allow them to acclimatise and prevent stress from the journey 

negatively affecting the experiment.  Infections were performed on an individual basis, this 

was achieved by using a 24-well plate, each well had 10 miracidia added to it and then 1mL 

of lepple aquarium water added.  Snails were then placed into individual wells for 2h.  All 

parasite work was performed in temperature controlled environment keeping the snails at the 
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preferred 28oC to avoid adding additional stressors.  Once infection was completed snails 

were dissected as described in section 2.2.2. 

 

2.2.5 Indirect Immunofluorescence 

 

100µL of snail cell suspension (2.2.2) was pipetted onto the top of a poly-L-lysine coated 

slide propped at 45o to encouraging coating of the entire slide with enough cells for later                                         

analysis and prevent clumping in a single region.  Slides were then placed on a slide dryer 

set at 37oC until the solution had evaporated and cells had fully adhered to the slides.  They 

were then washed in 1X PBS for 5min while gently shaking to removed dried salts, excess 

liquid was then drained off onto paper towel.  The primary antibody was diluted in 2% FCS in 

1X PBS and 100µL was added to each slide, see table 2.1 for optimised dilutions of 

antibodies.  The slide was then covered with parafilm and placed into a humidified chamber 

overnight at 4oC.  Slides were then washed in 1X PBS for 15min on a shaker with three 

changes of buffer.  The secondary antibody was diluted in 2% FCS in 1X PBS and 100µL 

was then pipetted onto the slide and covered with parafilm before being placed in a 

humidified chamber at 37oC for 30min.  Slides were then washed in 1X PBS for 5min on a 

shaker three times, rinsed off in sterile dH2O and excess liquid was drained onto tissue 

paper.  The slides were counterstained with 4’,6-diamidino-2-phenylindole (DAPI) [1.5µg/mL] 

(Vectashield anti-fade mountant, Vector Laboratories).  Slides were visualised and images 

taken using a fluorescence microscope (Olympus BX41 fluorescence microscope).  Distinct 

patterns seen within the nuclei from the histone modifications were then distinguished and 

scored for 1000 nuclei in triplicate.  Number of nuclei scored, in triplicate from 3 biological 

replicates, was done so due to the mixed nature of the cell pool taken from the ovotestes 

and would minimise the effects any single cell type might have on scoring.  Samples scored 

comprised one of four categories, unstressed (controls), heat shocked, cold shocked or 2h 

post infection by S. mansoni.  The variations in pattern seen between control and stressed 

snails were compared using a Two-Tailed, Equal Variances Student T test. 
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Antibody Dilution Factor 

H3K4me3 1:200 

H3K27me3 1:200 

H3K79me3 1:400 

H4K20me3 1:200 

Donkey Anti-Rabbit TRITC 1:200 

Goat Anti-Rabbit Alexa Flour 488 1:500 

 

Table 2.1: Displays the optimised dilution factors for the primary and secondary antibodies 

used for indirect immunofluorescence. 

 

2.2.6 Optimisation of Methanol : Acetic Acid fixation for Indirect Immunofluorescence 

 

Cell suspensions were prepared from ovotestes, excision of which is outlined in 2.2.2, and 

placed in 0.5mL of 0.05M KCl solution and macerated using an tissue grinder (Axygen 

Scientific, UK) and a further 0.5mL of 0.05M KCl added to the samples, mixed by inversion 

and left to incubate at RT for 30min prior to centrifugation at 200g for 5min.  Supernatants 

were discarded and methanol : acetic acid (3:1) fix added one drop at a time followed by 

agitation of the sample until it was at the correct cellular density and left to incubate at RT for 

10mins.  Samples were then centrifuged at 200g for 5min, supernatant discarded and 

fixative added dropwise with agitation and incubated at RT for 10min, fixation step was 

repeated at least three times.  Samples could be stored at -20oC but fixative was changed 

each time they were removed from storage. 

 

Cell suspensions were dropped from height onto wet slides to get the appropriate cell 

spread.  Excess liquid was drained off the slides dried on a slide warmer set to 37oC.  

Optimisation was 30min at 37oC, room temperature for 1-2h or 4oC overnight (primary) or 4h 

(secondary) permeations for both primary and secondary antibodies.  Overnight primary 

incubation and secondary incubation at 37oC for 30mins proved to be most effective.  

Further tests were performed using ageing of the slides once dropped and RNase A washes 

to clean slides and reduce debris and finally the addition of permeablisation steps were tried 

to reduce background including use of 0.5%-5% Triton X-100 (Sigma Aldrich, UK), 1% 

octylphenoxy poly(ethyleneoxy)ethanol, branched (IGEPAL CA-630 NP40) or NP40 (Sigma 

Aldrich, UK), 1% Tween 20 (Sigma Aldrich, UK) and 1% Saponin (Sigma Aldrich, UK). 
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2.2.7 Comparison of Methanol : Acetone Fixation and 4% Paraformaldehyde Fixation 

 

Methanol : Acetone (M:A) fixation was performed in the same manner as described in 

section 2.2.6 with a M:A at a 1:1 ratio replacing the methanol : acetic acid (M:AA) fixation 

and 1X PBS replacing the 0.05M KCl.  M:A fixed cells can be stored at -20oC indefinitely.  

M:A slides can be dropped as described in section 2.2.6 and 4% PFA slides were prepared 

as described in 2.2.5.  Both fixation methods were compared to one another for overall 

antibody penetration of cells, background fluorescence and potential patterning.  These were 

then compared to M:AA fixed cells to assess if any changes occurred to patterning due to 

the acidic fixation. 

 

2.2.8 Bge Cell Culture 

 

Bge cells were grown in 25cm2 cell culture flasks using media consisting of 22% Schneider’s 

Drosophila medium, 0.45% (w/v) lactalbumin hydrolysate, 0.13% (w/v) galactose, 10% 

charcoal stripped FBS (Sigma Aldrich, UK) which has been previously heat inactivated at 

56oC with gentamicin at a final concentration of 50µg/mL.  Phenol Red was added to the 

medium to a concentration of 14.1µM to give indication when the pH of the medium starts to 

drop and should be changed.  Cells were split once a week using a sharp tapping and cell 

scraping to dislodge the cells.  The cell suspension was transferred to 15mL falcon tubes 

and spun at 1000rpm for 5mins the supernatant was then aspirated from the pellet.  Flasks 

were reseeded at a 1:6 dilution by re-suspending cell pellet in 3mL and adding 0.5mL of the 

resuspension to 9.5mL of media in the flask.  Cell culture flasks were maintained at 27oC in 

sealed flasks, no atmospheric alterations necessary. 

 

2.2.9 Harvesting Genomic DNA from Bge Cells 

 

Bge cell suspension was spun at 400g for 5mins, the cell medium removed and the cells 

washed in 3mL 1X PBS before being spun at 400g for 5mins and the 1X PBS removed.  

Once spun the cells were re-suspended in 1mL of 1X PBS and transferred to a 1.5mL micro-

centrifuge tube and spun at 400g for 5mins and the supernatant discarded and the cells re-

suspended in 400µL of digestion buffer consisting of 100mM Tris [pH 8.0], 200mM sodium 

chloride, 5mM EDTA and 0.2% SDS (w/v).  Once re-suspended 40µL of proteinase K 

[20mg/mL] was added and incubated at 55oC for at least 2h.  After digestion the mixture was 

vortexed and then centrifuged at 17000g at 4oC.  The supernatant was transferred to a fresh 
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tube and DNA precipitated by adding 10% 3M sodium acetate (v/v) and 2x volume ice cold 

ethanol (v/v) and incubated the mixture at -20oC until DNA was visible.  DNA was transferred 

using a Pasteur pipette to a fresh tube containing 70% ethanol, washed and then spun at 

170g for 5mins and supernatant discarded and replaced with fresh 70% ethanol.  This was 

repeated once more and then spun and the supernatant discarded before air drying and re-

suspending the DNA pellet in 200µL of ddH2O. 

 

2.2.10 Labelling of BAC probes and preparation for Fluorescence in situ Hybridisation 

 

Probe labelling was done using a nick translation kit (BioNickTM, Invitrogen, UK) to 

incorporate Biotin-14-dATP and to cut the probe into 200-500bp in length.  Combined in a 

0.2mL micro-centrifuge tube was 5µL 10X dNTP mix, 1µg DNA and made up to 45µL with 

distilled water and 5µL 10X enzyme mix added to a final volume of 50µL.  The contents were 

mixed then centrifuged for 5s at 10000g at which point it was incubated at 16oC for 50min.  

The probe was run on a 2% agarose gel to ensure that probe size was between 200-500bp.  

Unincorporated nucleotides were removed using Microspin G50 columns (GE Healthcare, 

UK) and the probe collected in a new 1.5mL micro-centrifuge tube. 

 

Prepping the probe for FISH requires 250ng of probe DNA, 40µg Bge genomic DNA and 3µg 

herring sperm DNA for each slide.  The DNAs are mixed together and 10% total volume of 

3M sodium acetate (v/v) and 2.25x volume of ice cold 100% ethanol (v/v) was added.  This 

mixture was incubated at -80oC for 30min or -20oC for at least 1h then centrifuged at 400g at 

4oC for 30mins.  The supernatant was discarded and the pellet washed with ice-cold 70% 

ethanol and centrifuged at 400g at 4oC for 15mins.  The supernatant is then discarded and 

the probe dried in a hot-block at 56oC and subsequently dissolved in 12µL hybridisation mix 

(50% formamide (v/v), 10% dextran sulphate (v/v) and 1% Tween 20 (v/v) in 2X SSC) per 

slide.  Prior to use the probe was denatured using the hot-block by adding distilled water to a 

well and a temperature of 75oC, once the well has reached temperature the micro-centrifuge 

tube with the probe was placed in the well for 5mins.  After denaturing the probe is incubated 

at 37oC for at least 10mins before use. 

 

2.2.11 Cell Suspensions from Biomphalaria glabrata tissue for Fibre-FISH 

 

Cells were excised from B. glabrata as described in 2.2.2.  Once ovotestes were removed 

they were placed in 0.5mL of 1X PBS in a sterile 1.5mL microcentrifuge tube and macerated 

using a tissue grinder until no large tissue clumps remain.  The sample was then spun at 
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400g for 5min and the supernatant discarded and 1mL of 1X PBS added and the pellet re-

suspended.   

 

2.2.12 Preparation of Chromatin Fibres on slides for Fibre FISH 

 

10µL of the live cell suspension from 3.2.4 was diluted in 90µL of 1X PBS and the cells 

counted using a haemocytometer.  Once the total cells are known the original solution was 

vigorously agitated and diluted in 0.05M potassium chloride (KCl) at a cell density of 1x105 – 

4x105 and left to incubate at RT for 15-30min.  Using a Shandon Cytospin 2 Centrifuge 

500µL of the cell suspension were spun onto poly-L-lysine coated slides.  Slides were 

placed vertically in Coplin jars containing a lysis solution (2.5mM Tris-HCl pH7.5, 0.2M NaCl, 

1% Triton X-100 (v/v) and 2M Urea, modified from Prof Beth Sullivan’s protocol (Sullivan, 

2010)).  Slides were incubated at RT for 30min in lysis buffer and then slowly removed from 

the solution and a clean microscope slide was then scrapped down along the slide to drag 

out the chromatin fibres from the softened nuclei.  Immediately after this the slide was placed 

in a Coplin jar containing 4% PFA for 10min at RT and transferred to a Coplin jar containing 

0.1% Triton X-100 (v/v) in 1X PBS and incubated for 10min. 

 

2.2.13 IF on Chromatin Fibres 

 

Following preparation of the chromatin fibres as described in 3.2.5 the blocking buffer was 

prepared, 0.01% Triton X-100 (v/v) and 0.5% BSA (w/v) in 1X PBS.  Slides were placed into 

a Coplin jar containing the blocking buffer and incubated at RT for 15-30min.  Primary 

antibody, H3K79me3 (abcam, UK), was diluted 1:400 in blocking buffer.  After blocking slides 

were removed and excess blocking buffer drained off using a paper towel and then 25µL of 

the primary antibody is added to the area containing the fibres. Fibres were covered with a 

piece of parafilm and placed in a humidified chamber and incubated at 4oC for 24-48h.  

Slides were then washed three times in Coplin jars containing 0.05% Tween 20 (v/v) in 1X 

PBS (PBST) at RT.  Parafilm was allowed to float off in the wash buffer and the Coplin jar 

was not agitated during the wash, this preserved the fibres that can be easily scratched off.  

Slides were transferred from one Coplin jar to the next during washing.  The secondary 

antibody was diluted in blocking buffer, 1:200 for donkey anti-rabbit TRITC (Jackson Labs) 

and 1:500 for goat anti-rabbit Alexa Fluor 488 (ThermoFisher UK).  After the final wash 

excess liquid was drained off and 25µL of the secondary antibody was added to the slide 

where the fibres are contained and covered with parafilm before being placed in a humidified 

chamber and incubated at RT for 1h.  Secondary was washed off using three washes in 
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PBST following the same protocol as for the primary antibody washes.  One slide was taken, 

rinsed in sterile dH2O, drained the excess liquid off onto tissue paper and then 

counterstained with DAPI [1.5µg/mL] (Vectashield anti-fade mountant, Vector Laboratories).  

This was used to ensure staining of the fibres had worked and fibres were still in good 

condition prior to continuing on with the protocol with the remaining slides. 

 

2.2.14 FISH on Fibres 

 

Following preparation of fibres as per 3.2.5 protocol DNA was denatured by placing slides in 

70% Formamide in 2X SSC pH 7.0 at 72oC for 90s.  22x22 coverslips were prepared on a 

heated surface with 10-12µL of BAC probe prepared as described in section 3.2.3.  After 

denaturing the DNA slides were immediately removed from the solution and excess liquid 

dried off with tissue paper while ensuring the area with the fibres did not dry out.  The areas 

containing the fibres were then brought to the probe and bubbles under the coverslip 

eliminated before sealing the coverslip using rubber cement.  Slides were then left for 24-

72h at 37oC in a humidified chamber to hybridise. 

 

2.2.15 Post Hybridisation Washes 

 

After hybridisation the rubber cement was removed from the coverslips. Slides were washed 

in 2X SSC at 42oC for 5mins three times.  After which slides were blocked using the blocking 

buffer in 3.2.6 for 15-30min at room temperature in a covered Coplin jar.  A Strepavidin-Cy3 

conjugate was diluted in blocking buffer at a 1:200 dilution.  After blocking the excess 

blocking buffer was removed and 25µL of the diluted antibody added to the fibres and 

covered with a square of parafilm placed in a humidified chamber and left at 4oC for 24-48h.  

The antibody was washed off using 2X SSC for 5min, 1X PBS with 0.1% Tween 20 for 1min 

and finally 1X PBS for 1min.  After the final wash excess liquid was drained off the slide and 

fibres were counterstained with DAPI [1.5µg/mL] and covered with a glass 32x22 cover slip.  

Slides were then visualised and images captured using an Olympus BX41 fluorescence 

microscope, UPlanFLN 100x/1.30 oil immersion objective and model viewpoint GS gray 

scale digital camera (Digital  Scientific) or Leica DM4000, Leica PL Fluotar 100x/1.30 oil 

using a Leica DFC365 FX camera. 
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2.2.16 IF and FISH on Fibres 

 

After 2.2.13 but prior to 2.2.14 IF antibodies are fixed in place by using 4% PFA for 10mins 

after which slides are stored in PBST until ready for hybridisation.  Two separate protocols 

were used to try and maintain fibre integrity.  Protocol A as outlined in 2.2.14 and Protocol B 

as outlined here.  Protocol B used the Top Brite automated FISH system.  Probes were 

prepared as per 2.2.10.  As the probes reannealed with the blocking gDNA 22x22 glass 

coverslips were prepared and placed on a heated surface and the Top Brite prepared setting 

it to hybridise for 2min at 75oC and then drop to 37oC.  Once the probes were ready 10-12µL 

of probe was pipetted onto each coverslip and the slide taken from the PBST, dried of 

excess solution and the fibres placed over the probe.  Bubbles were minimised and the 

coverslip sealed using rubber cement.  The sealed slides were then taken to the Top Brite 

automated FISH and placed on the pre-warmed surfaces.  The slides were removed from 

the machine and placed in a humidified chamber at 37oC for 24-72h.  After this the fibre 

FISH protocol continues as described in 2.2.15. 

 

2.3 Results 

 

The highly ordered structure of chromatin within the nucleus is plastic, and gene and 

chromosome relocations can and do occur.  In this highly ordered system there would be 

mechanisms for directing these changes in organisation and alterations in the histone code 

are potentially involved.  Linking alterations to histone code to gene movement requires 

techniques that can assess both protein and gene sequence positioning within the nucleus.  

Two techniques used individually to visualise histone modification and gene / chromosome 

positioning respectively are indirect immunofluorescence (IF) techniques and 2D 

fluorescence in situ hybridisation (2D FISH), however, both require different fixative methods 

to work.  Initial investigation of histone modification pattern distribution within nuclei used a 

canonical fixation method with 4% PFA and assessment of changes to histone modifications 

pattern distribution via scoring were performed following conditions known to permit gene 

relocation.  Patterns for several key histone modifications are examined to assess if 

environmental stress, biological stress or ageing, all factors known to affect gene positioning, 

effects the global patterning of selected histone modifications within the BB02 strain of 

Biomphalaria glabrata.  Further investigations were conducted to see if different approaches 

could potentially allow 2D FISH fixation using M:AA (3:1) to work more effectively with the 
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antibodies used for IF, some antibody assays such as αKi67 for visualising proliferating cells 

work consistently within human cells however, only a few select antibodies or their target 

epitopes are capable of surviving the harsher fixation method containing acid.  Finally, 

investigations were undertaken to co-localise gene and histone modification markers.  To do 

so development and optimisation of an immuno-fibre-FISH protocol was undertaken.  This 

did allow both gene and histone modification markers to be visualised simultaneously. 

 

2.3.1 Epigenetic alterations induced by environmental stress 

 

Using 4% PFA fixation method for investigating histone modification alterations, experiments 

began assessing whether heat shock induced stress resulted in quantifiable alterations in 

histone patterning.  Alongside heat shock an assessment was performed to discover 

whether there were separate responses depending on the form of the environmental stress 

so snails were also subjected to cold shock to investigate if a difference in histone 

modification patterns were elicited.  H4K20me3, H3K4me3, H3K27me3 and H3K79me3 were 

all investigated.  Two of these modifications, H4K20me3 and H3K4me3 had been previously 

used for investigation in snail tissue (Odoemelam 2009) whereas the other two 

modifications, H3K27me3 and H3K79me3, have not previously been used in B. glabrata.  

From these four modifications 5 patterns were discerned overall, although no single 

modification exhibited any more than 3 patterns in the adult snails.   

1. Punctate, patterning exhibiting multiple small foci distributed throughout the nuclei in 

an even spread.   

2. Speckles patterning which showed larger distinctive foci distributed throughout the 

nuclei that were unevenly distributed.   

3. Peripheral, pattern staining that exhibited a continuous stain around the periphery of 

the nuclei with little to no staining in the centre of the nuclei.   

4. Peripheral Foci, pattern staining where distinctive large foci like those in the speckles 

patterning are located primarily or exclusively at the peripheral of the nuclei.   

5. Directional, pattern staining exhibiting heavy staining in one area of the nuclei 

encompassing part of the peripheral and some of the internal volume,  

These are represented in Fig 2.1. 
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Fig 2.1 Representative images of the 5 patterns discerned from histone modification 

immunofluorescence techniques on 4% PFA fixed nuclei, images taken from H4K20me3 (A-

C), H3K79me3 (D) and H3K27me3 (E).  A) Punctate, is made up of multiple small foci spread 

homogenously throughout the nuclei.  B) Speckles, distinct larger foci that are randomly 

distributed through the nuclei.  C) Peripheral, distinct staining around the nuclear periphery.  

D) Peripheral Foci, distinct larger foci that are predominantly situated near the nuclear 

periphery.  E) Directional, distinct staining on one are of the nuclei encompassing only part 

of the periphery and interior of the nuclei. 

 

 

Fig 2.2 Graphical representation of percentage of pattern distribution for H4K20me3 in 4% 

PFA fixed nuclei for three states, control, heat shock (32oC) and cold shock (16oC).  * denote 

statistically significant changes in pattern distribution with p-value = <0.05, error bars = ± 

S.E.M, n = 1000 nuclei, in triplicate 

 

H4K20me3 showed a predominantly punctate pattern of staining in all three conditions 

however it did show statistically significant changes in the two minor patterns.  Speckle 

staining showed a decrease in both heat and cold shock although it was only significant 
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during heat shock with p< 0.01.  This decrease in speckle staining was accompanied by an 

increase in peripheral staining, which was significant in both heat shock (p<0.05) and cold 

shock (p<0.01), although this change in cold shock was also accompanied by a minor drop 

in punctate as well.  Neither of the thermal shocks showed any statistically significant 

change from one another which may indicate that both are treated the same when the cells 

try to adapt, these changes are shown in Fig 2.2. 

 

 

Fig 2.3 Graphical representation of percentage of pattern distribution for H3K4me3 in 4% 

PFA fixed nuclei for three states, control, heat shock (32oC) and cold shock (16oC).  * denote 

statistically significant changes in pattern distribution with p-value = <0.05, error bars = ± 

S.E.M, n = 1000 nuclei, in triplicate 

 

H3K4me3 also exhibited a predominantly punctate patterning but showed significant 

changes in two patterns in response to either thermal shock.  In both cases punctate 

patterning displayed an increase (p<0.05) that appeared to be derived from a similar 

decrease in speckle staining (p<0.01).  Peripheral staining remained unaffected, however 

H3K4me3 is the only modification to exhibit a differential response to cold shock with a very 

minor increase in punctate (p<0.01) in comparison to what was scored in heat shock for, as 

is demonstrated in Fig 2.3. 
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Fig 2.4 Graphical representation of percentage of pattern distribution for H3K27me3 in 4% 

PFA fixed nuclei for three states, control, heat shock (32oC) and cold shock (16oC).  * denote 

statistically significant changes in pattern distribution with p-value = <0.05, error bars = ± 

S.E.M, n = 1000 nuclei, in triplicate 

 

H3K27me3 also showed a predominantly punctate staining pattern with no statistically 

significant alterations observed as a response to the inducement of thermal shock.  At best 

what can be inferred from the percentages shown is that both heat shock and cold shock 

may potentially cause a reduction in directional staining in favour for peripheral staining and 

cold shock may cause a greater reaction, as demonstrated in Fig 2.4. 
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Fig 2.5 Graphical representation of percentage of pattern distribution for H3K79me3 in 4% 

PFA fixed nuclei for three states, control, heat shock (32oC) and cold shock (16oC).  * denote 

statistically significant changes in pattern distribution with p-value = <0.05, error bars = ± 

S.E.M, n = 1000 nuclei, in triplicate 

 

H3K79me3 displays a predominantly punctate staining pattern similar to the previous 

modifications however, it is the only one to show the peripheral foci pattern and it is this 

pattern that is most affected by thermal shock.  After being subjected to either heat or cold 

shock the peripheral foci pattern significantly increases over what is found in the control 

state, p-values = <0.001 and <0.05 respectively.  Neither of the other two patterns display 

any considerable changes to accommodate for this change although one could surmise that 

in heat shock it may come from a combination of a reduction in punctate and speckles 

whereas in cold shock it probably comes from a reduction in punctate as demonstrated in 

Fig 2.5. 

 

2.3.2 Alterations to Histone Modifications as a result of Infection 

 

Schistosoma mansoni can induce multiple gene movement events within Biomphalaria 

glabrata snails upon initial infection (Arican-Goktas et al., 2014).  B. glabrata is most 

susceptible to infection prior to reaching sexual maturity and as such for these experiments 

smaller juvenile snails were used and only three antibodies were investigated, H4K20me3, 

H3K27me3 and H3K79me3.  In these experiments to assess if parallels to the heat shock 
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induced gene movement could be drawn, juvenile snails were either subjected to heat shock 

at 32oC for 2h or were 2h post infection with S. mansoni miracidia.  The H3K79me3 

modification was of particular interest during infection as it had been highlighted as a 

potential target from RNAseq (Knight unpublished) data as being affected post infection.  No 

new patterns were seen in the juveniles in any condition other than those already described 

in Fig 2.1. 

 

 

Fig 2.6 Graphical representation of percentage of pattern distribution for H4K20me3 in 4% 

PFA fixed nuclei for juvenile snails in three states, control, heat shock and 2h post infection.  

* denote statistically significant changes in pattern distribution with p-value = <0.05, error 

bars = ± S.E.M, n = 1000 nuclei in triplicate. 

 

Fig 2.6 clearly shows a change in histone pattern distribution as a result of environmental 

and biological stress when compared to the control.  Furthermore it also shows that despite 

both heat shock and S. mansoni infection causing alterations in histone patterning the 

pattern distribution varies significantly between the two stresses with a significant decrease 

in speckles and concomitant increase in peripheral staining, as seen in the adult snails, as a 

result of heat shock.  Whereas the biological stress of S. mansoni infection results in a 

decrease in peripheral staining and the two stressors significantly differ in both speckle and 

peripheral patterning. 
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Fig 2.7 Graphical representation of percentage of pattern distribution for H3K27me3 in 4% 

PFA fixed nuclei for juvenile snails in three states, control, heat shock and 2h post infection.  

* denote statistically significant changes in pattern distribution with p-value = <0.05, error 

bars = ± S.E.M, n = 1000 nuclei in triplicate. 

 

As demonstrated in Fig 2.7 H3K27me3 unlike with the adult snails the juvenile snails exhibit 

some significant changes after heat shock notably a decrease in punctate staining and 

increase in directional staining.  A similar but less pronounced change is also observable as 

a result from S. mansoni infection.  Although there is the same observed change as a result 

of both environmental and biological stress there is also a significant difference in the 

number of punctate nuclei when comparing heat shock to 2h post infection, in this case it 

would appear as if the changes caused by the S. mansoni infection are less dramatic in the 

decrease in punctate staining which is also seen when comparing the peripheral and 

directional patterns.  However, infection also resulted in a new pattern previously not seen 

using H3K27me3 antibodies which was speckles, although this was not statistically 

significant. 
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Fig 2.8 Graphical representation of percentage of pattern distribution for H3K79me3 in 4% 

PFA fixed nuclei for juvenile snails in three states, control, heat shock and 2h post infection.  

* denote statistically significant changes in pattern distribution with p-value = <0.05, error 

bars = ± S.E.M, n = 1000 nuclei in triplicate 

 

Fig 2.8 shows that in juvenile snails, heat shock has no discernible effect on H3K79me3 

pattern distribution.  However, the biological stress of S. mansoni infection results in 

significant alterations to H3K79me3 pattern distribution.  There is a dramatic decrease in 

punctate staining with concomitant increases in both speckles and peripheral foci staining 

resulting in markedly different pattern distributions from both the controls and heat shock 

cohorts.  This indicates there is something specific to S. mansoni infection which either 

requires alteration to H3K79me3 pattern distribution or it is potentially something the parasite 

itself is influencing to happen. 

 

2.3.3 Optimisation of Fixation for IF 

 

Initial optimisation for IF work using M:AA (3:1 v/v), hereafter referred to as the FISH fixative, 

was to optimise timing for incubations with this fixative for 2D immuno-FISH experiments.  

An H3K9me3 primary antibody was employed.  Initial experiments assessed the ability of the 
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antibody to bind the histone methylated group and be visible for three conditions.  For 

primary these were 30min at 37oC (Fig 2.9A), 1h at RT (Fig 2.9B) and overnight at 4oC (Fig 

2.9C).  For the secondary antibody, donkey anti-rabbit (DαR) TRITC, these were 30min at 

37oC (Fig 2.10A), 1h at RT (Fig 2.9) and 4h at 4oC (Fig 2.10B).  The primary antibody 

incubations were assessed whilst maintaining a secondary incubation at 1h at RT. 

 

 

Fig 2.9 Images representative of observations made in M:AA fixed nuclei during the 

H3K9me3 antibody optimisation, each image shows a different parameter for the H3K9me3 

incubation while maintaining the DαR TRITC incubation at a standard 1h at RT.  H3K9me3 

incubation times varied as follows A) 30min at 37oC, B) 1h at room temperature, C) 

overnight at 4oC.  Indicating that an overnight incubation (C) results in the least background. 
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As is evident in Fig 2.1 the optimal incubation for the H3K9me3 primary incubation was 4oC 

overnight, with an overall reduction in background signal and brighter intra-nuclei staining.  

Epitopes being revealed overnight has been seen before for nuclear lamins and a specific 

antibody in human cells (Bridger, J. M. et al., 1993).  The next step was to assess whether 

altering the length of time the DαR TRITC secondary antibody was incubated could further 

enhance the staining. 

 

 

Fig 2.10 The images are representative of what was seen during DαR TRITC secondary 

antibody optimisation in M:AA fixation while maintaining H3K9me3 incubation at a consistent 

4oC overnight.  A) 30min at 37oC and B) 4h at 4oC.  These were compared to the 1h RT 

incubation exhibited in Fig 2.1.  No appreciatable change noted in either background or 

nuclei staining intensity was observed. 

 

Fig 2.10 reveals that there was no discernible improvement between the different incubation 

conditions for the secondary antibody so utilising a 37oC for 30min for the secondary 

antibody as the shortest time was selected.  However, even with this optimisation there were 

significant numbers of nuclei that were negative for any staining pattern over the nascent 

background which would be unexpected as H3K9me3 should be a ubiquitous marker in all 

nuclei (Kim, H. and Kim, 2012).  The next step was then to improve the penetration of the 

antibodies into the snail nuclei.  Previous assays using IF and 2D FISH such as the αKi67 
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staining for proliferating cells are performed after 2D FISH.  Therefore a process in the 2D 

FISH preparation may result in better nuclei staining.  The first step after preparing slides for 

a 2D FISH is the ageing of the slides.  This was simple to perform, to assess if allowing them 

to age naturally at room temperature for either 24h or 48h could improve overall nuclear 

staining.  Following ageing in both time periods there was a reduction in the amount of 

background fluorescence, although this was most evident in the 48h ageing.  The 48h aged 

slides also showed increased nuclear staining, this is shown in Fig 2.11.  

 

 

Fig 2.11 The images are representative M:AA fixed nuclei stained using H3K9me3 primary 

antibody overnight at 4oC and DαR TRITC secondary for 30min at 37oC after the slides had 

been aged at room temperature for either A) 24h or B) 48h.  B, 48h ageing exhibits a 

reduction in background and increased nuclear staining 

 

Figure 2.11 reveals that there was some reduction in background and more nuclei were 

positively stained positive for H3K9me3 with more discernible distributions with both 24 and 

48 hr ageing.  Ageing in this instance refers to preparing slides allowing them to dry, placing 

in a container to prevent dust from settling on the slides and leaving them for either 24h or 

48h.  The ageing of the nuclei had improved overall IF with a reduction in background and 

increased nuclear staining seen in the 48h aged nuclei. 
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Another method for improving antibody penetration into the nuclei would be to add a 

permeablisation step as is required for cross-linking fixatives.  Generally, these are not 

required for alcohol fixations but additional permeablisation may aid antibody entry, it may 

also assist in revealing epitopes as demonstrated in ChIP on H3K79 methylation states 

(Steger et al., 2008).  The reagents tested were Triton X-100 in a dilution series 0.5-5%, 1% 

NP-40, 1% Tween 20 and 1% Saponin.  Of these only the Triton X-100 revealed any real 

improvement in nuclear staining and pattern discernibility at a 1% concentration.  The final 

factor that was explored for improving the FISH fixative method for IF was the temperature of 

the fixative.  Typically, fixation is performed cold to slow the reaction of the methanol, which 

fixes via a combination of coagulation and removal of lipids from the nuclear membrane, 

resulting in permeablisation.  Fixation temperature has also been shown to be important in 

the optimisation for other imaging techniques (Hobro and Smith, 2017).  So an experiment 

was performed to see if using an ice cold M:AA [3:1] solution would improve antibody 

staining using the previously established primary and secondary antibody incubation times.  

This however showed no improvement in antibody staining, instead a reduction of nuclear 

staining was exhibited with an increase in background staining, and this is demonstrated in 

Fig 2.12. 

 

 

Fig 2.12 Fixation using ice cold M:AA acid (3:1) using H3K9me3 primary antibody 4oC 

overnight incubation with DαR TRITC secondary antibody 30min at 37oC incubation 

demonstrates a reduction in discernible nuclear staining and increased background in 

comparison to nuclear staining. 

 

Finally, all aspects that improved the IF on the cells in FISH fixative were combined, natural 

ageing for 48h, 1% Triton X-100 combined with an overnight primary antibody incubation at 

4oC and 30min secondary antibody incubation at 37oC.  This resulted in an increased 

number of positively stained nuclei and reduction in background fluorescence.  
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2.3.4 Pattern discernment and comparison of methanol : acetic acid fixation [3:1] to 

methanol : acetone [1:1] and 4% PFA fixation methods 

 

Defining and scoring the patterns for comparison to other fixation methods in preparation for 

assessment of global assessment of changes to histone modifications were performed using 

a H4K20me3 primary antibody.  H4K20me3 is another common marker and the antibody had 

previously been demonstrated to work in human and B. glabrata cells.  This antibody was 

therefore used for the first set of tests to compare differing fixation methods to see how the 

optimised IF with FISH fixative compared to the previous established fixation methods.  

Initially, the FISH fixative was used and six variant patterns were identified.  

1. Punctate, patterning exhibiting multiple small foci distributed evenly throughout the 

nuclei.   

2. Speckles patterning which showed larger distinctive foci distributed unevenly 

throughout the nuclei.   

3. Peripheral, staining that exhibits a continuous stain around the peripheral of nuclei 

with little to no staining in the interior of the nuclei.   

4. Peripheral Foci, pattern staining where distinctive large foci like those in the 

speckled patterning are located primarily or exclusively at the peripheral of the 

nucleus.   

5. Asymmetrical, pattern staining where irregular shaped areas of the nucleus exhibit 

heavy staining while other areas show little to no staining resulting in an 

asymmetrical appearance.   

6. Negative, no staining visible within the nuclei 

These patterns are shown in Fig 2.13.  An initial count taken for purposes of comparison. 
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Fig 2.13 Representative images of the discernible patterns identified using H4K20me3 

primary antibody and DαR TRITC secondary antibody staining using M:AA (3:1 v/v) fixation. 

A) Punctate, multiple small foci distributed throughout the nucleus in a homogenous spread 

B) Speckles, larger distinctive foci distributed throughout the nucleus that were not as 

homogenously distributed C) Peripheral, staining that exhibited a continuous stain around 

the peripheral of the nucleus D) Peripheral Foci, distinctive large foci like those in the 

speckled patterning are located primarily or exclusively at the peripheral and E) 

Asymmetrical irregular shaped areas of the nucleus exhibit heavy staining while other areas 

show little to no staining. 

 

The objective of optimising the FISH fixative for IF is to allow immuno-FISH be conducted on 

the samples.  This would allow histone modification distribution and gene positioning to 

assessed in tandem, as it is likely that the changes to histone modifications is an initial step 

to chromatin reorganisation and occurs prior to the gene movement to either guide or initiate 

the changes required.  As such two slides were assessed, one from control snail and the 

other derived from a heat shocked snail to investigate if changes to pattern distribution could 

be discerned.  The results of the initial test are shown in Fig 2.14. 
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Fig 2.14 Graphical representation of the percentage of each pattern discerned during initial 

count using H4K20me3 staining using M:AA (3:1) fixation with and without heat shock to 

assess if global pattern changes could be discerned using this method.  Control (n= 259 

nuclei) and heat shock (n= 391 nuclei), no repetition was done for initial assessment of 

method viability. 

 

As can be seen from Fig 2.14 there were still a significant number of negative staining nuclei 

even after optimisation of FISH fixative for IF, for histone modifications it seemed that the 

FISH fixation was less than ideal but not unusable.  The next step was to test the more 

common fixation methods, methanol:acetone (M:A) (1:1 v/v) and 4% formaldehyde solution 

made up from paraformaldehyde powder to avoid the methanol used in concentrated 

formaldehyde solutions to minimise polymerisation of the formaldehyde in to 

paraformaldehyde.  As with the FISH fixations were performed at room temperature.  With 

both the canonical fixation methods negative staining diminished significantly to <2% of 

nuclei and this remained consistent in later experiments for multiple antibodies.  Due to this 

consistent low level of negative staining it could be attributed to either of the two antibodies 

not penetrating the nuclei, the nuclei on the edge of the slide not being covered by the 

parafilm or similar other issues that could result in incomplete stain of all nuclei.  When 

combined with the ubiquitous nature of modifications such as H4K20me3 and H3K27me3 it is 

more likely that there was incomplete coverage than negative staining.  The initial 

experiment with M:A fixation only displayed four distinct patterns of distribution, punctate, 

speckles, peripheral and asymmetrical. 
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Fig 2.15 Graphical representation of the percentage of each pattern discerned during initial 

count using H4K20me3 staining on control snails using M:A fixation (n= 403 nuclei). 

 

Fixation using M:A fixation more commonly used for IF resulted in clearer staining with four 

clearly defined patterns.  The 4% PFA fixation resulted in three easily identifiable patterns, 

punctate, speckles and peripheral as well as showing significantly different pattern numbers 

which were clearer than in either the M:A or the FISH fixative.  As such although M:AA 

fixation has been used successfully in the past for certain IF antibodies and it does work to 

an extent with histone modifications it is best to utilise the cross-linking fixation methods.  

This does mean that 2D FISH and histone modification IF could potentially be done together 

but validation of specific antibodies would be required to denote that the acid fix had not 

affected the functionality of the antibody. 

 

2.3.5 Fibre FISH Lysis Buffer Optimisation 

 

Being able to perform both FISH and IF on cells together would allow for better visualisation 

of the interactions between histone proteins and genes however, due to the abundance of 

histones, if we take 916 Mb (Adema et al., 2017; Gregory, 2003) as our estimate, there could 

be up to 124,000 of each histone within each nucleus.  Therefore 3D FISH would likely be 

extremely difficult to analyse as well as requiring more specialised equipment than normal 

IF.  Hence the objective of this experiment was to develop a protocol for performing Fibre-
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FISH on B. glabrata cells which would allow for the visualisation of gene and histones 

allowing for co-localisation of specific histone modifications using 2D methods.  This would 

also serve as an intermediate step for the development of chromatin immunoprecipitation 

(ChIP) qPCR experiments allowing for confirmation of association of gene and histone 

protein prior to full scale experimentation. 

 

Biomphalaria glabrata cells and nuclei are notoriously hard to lyse requiring extended times 

in hypotonic solution over human cells but, are also particularly fragile under certain 

conditions which means making adjustments is extremely difficult to gauge.  Since initial cell 

lysis had already been optimised for 2D FISH isolating nuclei was not an issue but multiple 

methods for nuclear lysis had to be explored.  The protocol that was initially followed was 

one written by Prof Beth Sullivan (Sullivan, 2010).  The initial step was to optimise the time 

required in the lysis buffer.  Due to B. glabrata nuclei being comparatively small the initial 

density used was based on the protocols optimised for Drosophila melanogaster which 

utilised 2.2x105 cell/mL (Sullivan, 2010).  The basic buffer using the lowest concentration of 

urea (0.2M) was used and a time series of 12 - 16 minutes was executed.  Using this alone 

resulted in minimal lysis during later time stages of 15 and 16 minutes. Similar methods for 

lysis were considered.    Another method for generating fibres was to use a 0.1-0.4M NaOH 

with 30% methanol solution to soften the nuclei and help fix the fibres to the slide using 

manual combing as described in (de Barros et al., 2011), this method resulted in the loss of 

all nuclei on the slide so was discounted. 

 

Further optimisation of Sullivan lab lysis buffer was performed using the same cell density 

and two time points, 12min and 16min, with 0.3M and 0.4M urea versions of the buffer 

respectively.  The 16min time point at 0.4M urea showed the greatest lysis but this was still 

only approximately 5% of the nuclei.  Alterations were made to the cell density trying a range 

of cell densities from 2.2x105 down to 1.0x104 using the 0.4M lysis buffer for 16min the lower 

density range showed the best lysis but the 1.0x104 had too few nuclei present on the slide 

to work with and 5.0x104 although showing improvement in nuclear lysis, this lysis was 

minimal only creating bundled chromatin next to almost complete nuclei while other nuclei 

had swollen but not lysed as demonstrated in Fig 2.16. 
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Fig 2.16 Representative image of the 16min time point using the unaltered nuclear lysis 

buffer from Prof Beth Sullivan’s lab.  This demonstrates that no complete lysis was achieved, 

only either swelling of nuclei but with no lysis or minor lysis where minimal chromatin is 

extracted as bundles just outside the nuclei without forming any distinctive fibres. 

 

The next step was to use 5x104 cell density and decrease the salt concentration to make it 

even harsher in an attempt to cause more lysis.  The NaCl concentration was dropped from 

0.5M to 0.2M and lysis was performed for 16 and 20min, while the unmodified lysis buffer 

was also run for 20 and 25min respectively to see if increasing lysis duration worked.  By 

altering the salt concentration better lysis was achieved although the chromatin was still 

found in bundles rather than clearly defined single chromatin strands as is exhibited in Fig 

2.17. 
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Fig 2.17 Representative image of nuclear lysis after using a 0.2M NaCl, 0.5M urea modified 

lysis buffer for 20min.  Although lysis has occurred the nuclei is still showing mainly 

chromatin fibre bundles rather than single chromatin fibres 

 

Another nuclear specific lysis buffer that is normally employed for ChIP was developed by 

the Gozani lab (50mM Tris pH8.0, 10mM EDTA pH8.0 and 1% SDS (w/v)).  This had 

previously shown some promise in cross-linked ChIP optimisation for B. glabrata nuclei and 

was a more stringent lysis buffer than that suggested by the Sullivan lab.  RIPA buffer 

(150mM NaCl, 5mM EDTA, 50mM Tris, 1% NP-40 (v/v), 0.5% sodium deoxycholate (w/v) 

and 0.1% SDS (w/v)) was also tested alongside the Gozani nuclear lysis buffer each at two 

time points 10 and 15mins.  Both initially seemed to show improved lysis but, with the 

Gozani nuclei lysis buffer showing the greatest improvement as represented in Fig 2.18, 

ultimately this was not repeatable and the best consistent results had still come from the 

Sullivan lab buffer. 

 

 

Fig 2.18 Representative image taken from initial Gozani nucleus lysis buffer at 15min of 

lysis, here more completely lysis of the nuclei was achieved and single chromatin fibres were 

identifiable, this however was not repeated in later experiments using this lysis buffer. 

 

Returning to the Sullivan lab buffer further alterations were made this time to the urea 

concentration again as the increase to the suggested maximum of 0.5M had had the best 

effects on lysis so far as well as experiment with surfactant changes.  2M urea, 5% Triton X-

100 (v/v) (Sigma Aldrich, UK), 0.5% SDS (w/v) (Sigma Aldrich, UK), 0.5% sodium 

deoxycholate (w/v) (Sigma Aldrich, UK) were all tried for 20mins of lysis with and without 

manual combing to see the effects additional force had on the nuclei and production of 

chromatin fibres.  This revealed that 2M urea and the addition of manual combing both had 

positive effects on lysis, although the greatest improvement was from the addition of manual 
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combing.  The substitution of Triton X-100 as the surfactant to SDS or sodium deoxycholate 

also seemed to improve lysis but, DAPI staining following either of these treatments had 

reduced intensity in comparison to previous fibre staining so were ruled out.  To assess if 

any further improvement could be made a 7M urea solution was used as well but, no further 

enhancement in lysis was observed.  So a final test was run using the modified lysis buffer, 

as outlined in 2.2.12, using 20, 25 and 30min lysis in conjunction with manual combing, 

shown in Fig 2.19.  15min incubation exhibited increased overall lysis of nuclei but fibres 

were still mainly contained within bundles not yielding the single chromatin fibres that would 

be needed.  20min incubation in the lysis buffer resulted in a greater number of single 

chromatin fibres but there were still several bundles.  30min lysis resulted in the greatest 

number of lysed nuclei and more consistent generation of single chromatin fibres. 

 

 

Fig 2.19 Representative images of 2M urea adjusted Sullivan Lab lysis buffer at incubated 

for A) 15min, B) 20min and C) 30min followed by manual combing.  A) Shows improved lysis 

but, still mainly bundled fibres, B) shows improved lysis and more single chromatin fibre 

formation, C) shows more single chromatin fibres and a better spread of fibres and overall 

on the slide more nuclei showed consistent lysis. 
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2.3.6 IF on Chromatin Fibres 

 

Following optimisation of the lysis buffer solution indirect immunofluorescence staining using 

the H3K79me3 primary antibody and DαR TRITC secondary antibody was performed on the 

fibres.  The H3K79me3 which had previously been shown to work in IF on B. glabrata and 

remains relatively consistent in staining was used at a 1:400 dilution and DαR-TRITC 

secondary was used at a 1:200 dilution.  This proved successful at a 4x104 cell/mL density.  

The results of which can be seen in Fig 2.20. 
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Fig 2.20 Representative images of IF for histone modification H3K79me3 on chromatin fibres 

extracted from Biomphalaria glabrata cells derived from the ovotestis.  A) The full length of 

the lysed nucleus, B-E) 1000x maginification of the chromatin fibre bundle demonstrating the 

H3K79me3 staining.  Although the lysis this time resulted in mainly chromatin bundles some 

single fibres can be distinguished. 

 

Although the fibre extraction is incomplete and most remain in bundles which is not ideal it 

does show a proof of concept that with further refinement this could be used to associate 

gene and histone modifications visually prior to moving into targeted ChIP-qPCR work.  This 

is the first time IF has been performed on chromatin fibres derived from B. glabrata and 

shows that the lysis process used is not causing damage to the histone protein visualised.  

After this the fibres were once again fixed using 4% FA to fix the IF signal in place and FISH 

was attempted on the fibres as per 2.2.14.  This did result in dulling of the IF signal as well 

as loss of fibres and unfortunately no FISH signal was found using a Strepavidin-Cy5 

conjugate 1:200 dilution (Jackson Labs). 

 

2.3.7 FISH on Fibres 

 

Having managed to successfully generate fibres and stain them for IF signal, the lack of 

FISH signal was unfortunate but, due to IF signal already requiring the Cy3 filter an 

unfamiliar streptavidin-Cy5 conjugate had been used and one that was not fully optimised for 

FISH on B. glabrata nuclei.  As a result to see whether fibres generated could be targeted by 

FISH it was performed alone in the absence of IF as a proof of concept.  This highlighted 

several issues with the FISH process, fibres are very fragile and easily lost due to 

mechanical force so washes have to be done static and simple movements could potentially 

cause loss or breakage of fibres.  The FISH process requires several changes of solution 

normally and removal of either coverslips or parafilm which sometimes necessitate manual 

removal.  With this it was evident that even without going through IF protocol first several 

fibres were damaged or lost.  Another problem was the mountant normally used did not hard 

set so even after the final coverslip was in place some movement could occur which 

potentially damages the fibres.  Although through this a few images were captured that 

potentially showed gene signal on the fibre, Fig 2.21, it would require further optimisation to 

be able to run through the whole process. 
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Fig 2.21 Images that show hsp70 loci signal in fibre bundles following Fibre FISH.  Green in 

these images is the hsp70 loci, blue are the chromatin fibre bundles.  A) Displays some 

breakage and disruption to the fibre.  B) Representative of unbroken chromatin fibres 

although the signal is contained within a bundle.  C) Chromatin bundles that have been 

slightly damaged but still shows hsp70 loci close to the start of separating into single fibres. 

 

  



 

66 
 

2.3.8 Fibre FISH 

 

Optimising the protocol required altering the cell density once more as it had become clear 

that several fibres would be lost throughout the process due to washes, movement and 

solution changes.  This also needed to be readdressed as the initial optimisation was 

utilising buffer alone to lyse the nuclei resulting in a 1.0x104 - 4.0x104 cell density being used, 

generally around the 4.0x104 mark, with the addition of manual combing, increased lysis 

time and optimised buffer it was likely a greater density could be used without issue.  Further 

experiments found that a 1.0x105 to 4.0x105 cell density provided ample lysed cells with 

minimal to no overlap. 

 

Optimisation of the protocol was required to limit the amount of potential damage the slides 

were exposed to during the process.  The simplest way to achieve this was to combine two 

steps, the denaturation of the chromatin and the application of the coverslip.  Using the Top 

Brite automatic FISH system (Resnova, Italy) no formamide denaturation solution is required 

as it uses the formamide in the hybridisation mix the probe in dissolved in to denature the 

chromatin as it is warmed up.  This also eliminates one step whereby the solution or 

movement could damage the fibres. 

 

The final issue was the mountant used for the fibres, in this instance a hard set formulation 

was found that cured at room temperature for 15min which eliminated the potential for post 

mounting damage to occur.  As such the whole protocol was undertaken with the greater cell 

density, H3K79me3 primary antibody was used and a Goat αRabbit Alexa Fluor 488 

(ThermoFisher, UK) secondary was used to allow the FISH to be done using an optimised 

Strepavidin-Cy3 conjugate (Jackson Labs, UK) for visualisation of the gene signal. 
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Fig 2.22 An image showing both IF of H3K79me3 in green and FISH of hsp70 loci in red on 

a chromatin fibre bundle in the merged image and with the channels separated for ease of 

distinguishing the the IF and FISH signals. 

 

Unfortunately single clearly defined fibres were not found with both the IF and FISH signal 

however, it does show a chromatin fibre bundle with both gene and histone modification 

signals.  With some further refining this technique can certainly be used to visually assess 

whether there is a correlation between a gene and a histone modification and using image 

analysis software potentially even quantify that relationship to an extent.  It would certainly 

however act as a confirmatory step prior to ChIP-qPCR to assess whether there is a 

correlation between the two that should be picked up by ChIP provided appropriate primers 

and antibodies are available. 

   

2.4 Discussion 

 

Indirect immunofluorescence is one of the basic techniques used for investigating structures 

and proteins within nuclei but trying to combine this with other techniques to get a greater 

overview of protein chromatin interactions as with histone modifications and gene loci is 
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difficult due to the comparative difficulty of optimising existing techniques for new organisms 

and need for specialised equipment.  Typically, such interactions would require the use of 

3D FISH and confocal microscopy to visualise.  2D FISH in comparison requires no more 

specialised equipment than IF does and is quicker to carry out and easier to analyse than 3D 

FISH but using a different fixation method from IF.  Taking this into consideration 

optimisation of IF to work with the M:AA fixation used in 2D FISH was a logical step forward.  

Certain antibodies, such as the αKi67 used to test for proliferating cells had been 

successfully used after FISH previously showing that it was at least possible to perform IF on 

M:AA fixed cells. 

 

After much experimentation and comparison with the more typical fixation methods used for 

IF it became apparent that although certainly possible to do IF for histone modifications on 

M:AA fixed cells it was not ideal.  It resulted in a large proportion of nuclei with negative 

staining, which later experiments using 4% PFA showed just was not the case, and pattern 

discernment was made harder due to increased background, reduced intensity of staining 

and quite possibly alteration due to the harsh acidic fixation that was potentially affecting the 

epitopes the antibodies were targeted against.  This meant that although possible it would 

likely not provide any definitive results and any result of IF for these histone modifications 

done on M:AA fixed cells would be suspect and need to be verified by other methods.  This 

is especially true when comparing the original data collected from the H4K20me3 which 

showed minimal to no punctate patterning, but in PFA fixed cells punctate makes up the 

majority of patterning.  This could indicate that such small but numerous foci are the most 

susceptible to damage via the acidic fix hence why the large number of negative stained 

nuclei and apparent increase in patterns exhibiting larger foci or the asymmetrical staining 

pattern which could have been a result of damage to punctate patterning.   

 

Not shown here is IF for a non-histone protein that was investigated for, HP1α, this is a 

histone associated protein involved in many processes.  This protein was indicated from 

work related to S. mansoni infection, as playing a role in a stress response.  This protein was 

clearly present in large foci as was expected in nuclei that had been fixed using the M:AA 

fixation method.  However, later attempts at identifying it by using either the M:A or 4% PFA 

fixations failed with four separate antibodies.  This raises an interesting question as to 

whether the M:AA fixation caused a false positive reaction or whether the acidic fix that 

destroyed / effected the epitopes for histone modifications worked in the favour of the HP1α 

epitopes by revealing them for antibody to attach to, similar situations have been found with 
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ChIP and H3K79me3 (Steger et al., 2008).  Considering the staining seen in the few cells 

with a positive response look very similar to that seen in human cells in the literature it may 

be the case that the acidic methanol:acetic acid fix could have some advantages in specific 

cases.  To explore this however would require greater investigation outside the scope of the 

current investigation that was specifically looking for a way to visualise both a gene loci and 

histone modification together using a combined 2D FISH - IF approach. 

 

The next stage was to assess whether stress induced changes to chromatin organisation 

would be detectable with a global approach using IF alone.  To do this it was determined that 

a global stressor was necessary in this case heat shock was already known to affect 

chromatin organisation to a degree as it can induce the movement of the hsp70 loci and can 

cause previously resistant snails to become susceptible to Schistosoma mansoni infection 

(Ittiprasert, Wannaporn and Knight, 2012).  It had also been shown to affect histone in 

Drosophila melanogaster either by increase phosphorylation (Dyson, Thomson and 

Mahadevan, 2005) or by triggering removal of nucleosomes form active sites (Zhao, 

Herrera-Diaz, and Gross, 2005).  This indicated that heat shock likely had quite a significant 

effect on the snail and one that could hopefully be seen in changes to histone patterning as 

the hsp70 gene loci was moved.  Four histone modifications were chosen, H3K27me3 and 

H4K20me3 are both well-known and documented induces of gene inactivation, likely one of 

the response to sudden stress would be the down regulation of genes, especially in the case 

of heat shock those that coded for proteins that would be particularly susceptible to the 

increased temperature.  H3K4me3 is a known marker for gene activation, such as is known 

to occur with hsp70 during heat shock and finally H3K79me3 another marker for gene 

activation but, like HP1α previously mentioned also highlighted to become upregulated 

during S. mansoni infection. 

 

H4K20me3 showed no real change in the majority of the nuclei but we did see a change 

shifting from a speckle pattern to one more concentrated at the periphery, this could indicate 

a greater shift towards activation of the internal genes while ensuring the more peripheral 

genes were properly locked down maybe because they are the ones most susceptible to 

heat shock or are genes that have been moved to the periphery due to being more 

susceptible and while under stress the rearrangement ensures there is a lower risk of 

proteins produced by those genes being transcribed and damaged.  Conversely, the gene 

activation marker H3K4me3 also exhibits a decrease in speckle staining but increases the 

number of punctate nuclei showing a more global internal distribution of gene activation 
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markers rather than being concentrated in distinct foci.  In all states however there is minimal 

peripheral staining which is more common in the gene inactivation markers of H4K20me3 

and H3K27me3 which supports the notion that a switch to peripheral staining for H4K20me3 

may be to further consolidate gene inactivation of those peripherally located gene loci.  

H3K4me3 is the only marker that showed any statistically significant change between heat 

shock and cold shock but, this was a very minor increase in the number of punctate nuclei, 

this could indicate that more gene activity is required to combat cold shock over heat shock 

but, since it is the only one to show any significant change further investigation would be 

required to assess if there is indeed a significant difference in epigenetic response to 

differing temperature extremes. 

 

H3K27me3 showed no significant changes in response to thermal stress, this may be 

because although it is a gene inactivation marker part of that association is accumulation of 

the H3K27me3 marker because the gene has become inactive so it is also a consequence of 

inactivation not just a cause for inactivation.  Such a marker therefore may not be rapidly 

changed in response to stress as it has other functions in relation to genome organisation.  It 

would be interesting however, to assess how this marker may be changed as a result of a 

longer term stress, such as living in a hotter environment since this has been shown to 

cause the F1 generation of resistance snails to become susceptible even after being return 

to their preferred temperature (Ittiprasert, Wannaporn and Knight, 2012).  Finally, the 

H3K79me3 showed only minor variation with an increase peripheral foci staining, which 

could be indicative of more active genes moving towards the periphery as H3K79me3.  This 

may be counter intuitive since the periphery is generally associated with gene inactivation 

but, H3K79 methylation in yeast also denotes a change from active euchromatin with H3K79 

methylation staining and SIR protein silenced telomeric regions which would likely be moved 

to the periphery (Ng et al., 2003; Ng et al., 2002).  With H4K20me3 staining more prevalent 

at the periphery in heat shock and linked with its role with increased chromatin compaction 

(Evertts et al., 2013) it is not strange that a marker known to border silenced regions like 

H3K79me3 may also be drawn to a more peripheral position. 

 

Following the creation of baseline in the adults during environmental shock three of the 

antibodies were tested in the juvenile snails.  H3K79me3 was selected due new data 

showing that it was upregulated in infection, it was therefore a significant marker to proceed 

with to assess how closely heat shock induced gene movement mimicked the S. mansoni 

infection induced gene movement.  H3K27me3 was retained as a standard marker for gene 
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inactivation although it had not shown any significant change in the adults it is also a marker 

indicated to change due to age so may show a different response in the juveniles.  

H4K20me3 had already exhibited change in the adult snails so could be used as a 

benchmark for changes in a gene inactivation marker if H3K27me3 proved to show no 

significant difference as with the adult snail. 

 

H4K20me3 did show that there was indeed a change from the adult baseline in comparison 

to juvenile controls.  However, the response to heat shock observed was exactly the same 

as that in the adult snails, the decrease in speckles for a concomitant increase in peripheral 

staining.  The infection response was exactly the opposite with a decrease in peripheral 

staining with an increase in speckles, this could indicate a global decrease in gene 

suppression and chromatin compaction which would likely facilitate increases in expression 

of target genes such as hsp70, hsp83 and actin (Arican-Goktas et al., 2014; Ittiprasert, 

Wannaporn and Knight, 2012).  It would also indicate that although both S. mansoni infection 

and heat shock induce the movement of the hsp70 loci that the response elicited within the 

nuclei for both movement differs.  This was particularly true when you examined the 

H3K79me3 markers which showed absolutely no change between the control and heat 

shock juvenile snails but, dramatically different changes between the control and infected 

juvenile snails.  The reduction in punctate foci with an increase in peripheral foci and 

speckles would seem to indicate a switch from a more diffuse spread of gene activation to 

more targeted hubs where genes have either been marked to become more active or 

reorganisation of the chromatin due to gene movement has resulted in more concentrated 

pockets of H3K79me3 staining in the nucleus.  This would seem to support the fact that S. 

mansoni is using some epigenetic signalling mechanism to manipulate the host cells to 

make it more hospitable.   

 

H3K27me3 also showed some changes in both heat shock and infection within juvenile snail 

with decreases in the number of punctate stained nuclei and increases in directional 

staining.  This is in contrast to there being no statistically significant change in the adult 

snails following heat shock.  However, unlike with H3K79me3 and H4K20me3 the alterations 

noted in H3K27me3 pattern staining were the same in both heat shock and infection, 

although the response in infection could be described as being somewhat diminished in 

comparison with that seen in heat shock.  This would seem to indicate that alterations in 

H3K27me3 may be less important in infection than it is in heat shock or that fewer genes are 

targeted for silencing during infection than in heat shock. 
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These results show that it is possible to see alterations in epigenetic markers that may be 

related to gene movement.  They also show that although two stressors, heat shock and 

infection, may elicit similar responses such as hsp70 gene loci movement the effect they 

have on the epigenome will not necessarily be the same.  The next steps were to develop 

techniques for combining FISH and IF to investigate the interplay of histone modification and 

gene movement at a level where both gene and histone modification can be linked.  For this 

a Fibre-FISH protocol was optimised for work with Biomphalaria glabrata. 

 

Working with B. glabrata tissue and cells posed many issues when developing protocols 

optimised to them.  While the cells are covered in polysaccharides which can make lysis and 

DNA extractions difficult they also prove to be extremely hardy under the correct conditions.  

During optimisation of the Fibre-FISH protocol it became evident that in developing protocols 

using B. glabrata nuclei there is a fine balance between stringency and efficacy that has to 

be walked to ensure that the nuclei extracted are fit for purpose.  A typical issue faced is the 

choice of surfactant used.  Non-ionic surfactants such as Triton X-100 and NP40 are not 

always stringent enough without prolonged incubation times to cause the desired lysis.  

Conversely anionic surfactants such as SDS even at low concentrations such as 0.5% were 

too stringent destroying the fibres and structures that the protocol required to remain, 

although this may prove more useful in extractions where maintaining structures are less 

important such as in cases where cross-linking fixation is used, such as that used in ChIP 

which maintains the protein bindings not just the natural bounds. 

 

Ultimately, the protocol required the combined approaches of two separate protocols, a 

chemical lysis to soften the nuclei membranes and mechanical combing, to result in the final 

lysis and spooling of the chromatin fibres.  This unfortunately, although it does result in 

greater lysis also seems to result in less consistent lysis with formation of chromatin bundles 

being achieved rather easily but, causing separation out down to the single chromatin fibre 

to occur less readily.  It is likely a skill to develop the necessary technique with the combing 

to increase the occurrence of single chromatin fibres for assessment.  It should also be 

noted that fixation of the antibodies prior to proceeding to FISH did result in some reduction 

in the brightness of the antibody.  Whether this was due to incomplete fixation allowing for 

some of the antibody to be removed in later washes, damage to fluorophores due to 

denaturation in FISH or a combination of the two it does mean that using this method may 

not be applicable for weaker signals or it may require a sandwhich approach to the IF to 
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improve signal or maybe even do so after the FISH.  There are several ways that could 

improve the signal from the antibody staining if need be. 

 

The development of this technique does however, solve one of the biggest issues faced 

when running a ChIP-qPCR experiment.  That is the uncertainty of whether a histone 

modification is associated with the gene of interest or not.  With the combination of both 

FISH and IF available within the Fibre-FISH technique one can visualise the approximate 

relationship of gene signal and histone modification.  With many ChIP ready antibodies also 

applicable for use in IF you can check to see if the antibody works and if it is near or within 

the gene of interest, this removes the uncertainty factor of gene-protein association when 

optimising the ChIP experiment.  It can also allow for relative measurements to take place of 

where in the gene signal the histone modifications are.  This along with the knowledge of the 

sequence used for in the creation of the gene probe one can estimate where the 

modifications may be within the gene allowing for more targeted development of primers for 

ChIP-qPCR.  Finally, using consistent exposure times when taking images, software could 

be used or developed to measure relative intensity or number of signals contained within the 

gene signal.  This would allow for an estimate of changes in histone modification presence 

as a confirmatory test to add credence to ChIP-qPCR data or as a method of quantification 

in of itself once validated. 

 

In summation it is clearly demonstrated that these antibodies, though not designed to work in 

the snail, due to the highly conserved nature of histone modification across species do work 

in the new model.  There is also clearly exhibited differences in histone modification pattern 

distribution following a stressor such as heat shock which is a known to potentially induce 

gene relocation.  However, though similar responses are caused by infection in the juvenile 

there are clear differences in nuclear responses most obvious of which is demonstrated in 

H3K79me3 pattern distribution which is relatively unchanged after heat shock but 

significantly different following S. mansoni infection.  Although ultimately immuno-FISH was 

not possible a new protocol was developed for the first time in the snail for immuno-Fibre-

FISH to allow for future assessment of the co-localisation of gene signal and histone protein 

modification markers. 
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Chapter 3: Investigating the 

effects of epigenetic and genome 

reorganisation inhibitory drugs 

on Biomphalaria glabrata 

resistance to Schistosoma 

mansoni infection 
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3.1 Introduction 

 

It is well established that DNA is not randomly distributed within interphase nuclei (Cremer, 

T. et al., 1982) and that it in fact forms into distinct chromosomal territories to which they can 

be consistently and reliably mapped (Croft et al., 1999).  The same has been shown with 

genes being consistently mapped to the same region within nuclei (Arican-Goktas et al., 

2014; Szczerbal, Foster and Bridger, 2009) and when induced activation occurs the genes 

are moved to another non-random nuclear location (Arican-Goktas et al., 2014; Szczerbal 

and Bridger, 2010).  This movement is even associated with upregulation of the moved 

genes (Arican-Goktas et al., 2014; Szczerbal, Foster and Bridger, 2009).  In particular within 

the freshwater snail Biomphalaria glabrata it has been shown for the first time that gene 

movement precedes upregulation of gene expression (Arican-Goktas et al., 2014).  One 

method by which this directed gene movement is hypothesised to occur is via an actin-

myosin motor (Mehta et al., 2010; Dundr et al., 2007; Chuang et al., 2006) similar to that 

used in cytoplasmic movement.  Although the role of actin and myosin as a nuclear motor 

may be debated (Bridger 2011), it is evident that both protiens do have roles within nuclei 

which can impact on gene activation (Sokolova et al., 2018; Mehta et al., 2010). 

 

2,3-Butanedione monoxime (BDM) is a known inhibitor of myosins (Ostap, 2002; Soeno, 

Shimada and Obinata, 1999) and its use interrupts actin-myosin interactions even within 

nuclei (Mehta et al., 2010).  It has also been previously shown to prevent gene movement 

from occurring in a heat shock model of Biomphalaria glabrata (Arican-Goktas, 2013).  By 

inhibiting the nuclear myosins investigations can be undertaken to elucidate the role gene 

movement has in the upregulation of target genes like hsp70.  This would potentially inhibit 

the non-random nuclear relocation of the gene while permitting any changes to epigenome 

which would signal for that relocation to occur.  Allowing for the isolated effect of gene 

relocation to be explored and indicate if halting gene movement in the host B. glabrata alone 

is enough to increase resistance to infection by the parasite Schistosoma mansoni as well as 

any changes to gene expression that may result from the prevention of gene movement.   

 

It is also well established that epigenetic changes, such as that to the ‘Histone Code’ (Kühn 

and Hofmeyr, 2014; Jenuwein and Allis, 2001), can affect gene transcription rates.  The two 

most common forms of modification made to histones are methylation and acetylation.  In 

particular the addition of an acetylation mark is indicative of gene activation (Eitoku et al., 



 

76 
 

2008; Agalioti, Chen and Thanos, 2002) and in particular the H4K16ac is linked to 

transcriptional activation (Zippo et al., 2009).   

 

Since histone acetylation is easily reversible and have key roles in gene regulation they 

would be perfect targets for an invading organism to exploit and due to their role in cancer 

there have been several drugs developed to target either acetylation, histone 

acetyltransferase inhibitors (HATi), or deacetylation, such as histone deacetylase inhibitors 

(HDACi).  Three drugs were selected to interfere with changes in acetylation, remodelin a 

known NAT10 inhibitor (Wu et al., 2018), anacardic acid which inhibits Gcn5 and p300 HAT 

family members (Ghazifard et al., 2019; Eliseeva et al., 2007) and sodium butyrate which is 

a HDACi (Monneret, 2005; Davie, 2003).  With these drugs it was investigated whether 

inhibiting either the histone acetylation or histone deacetylation would affect the overall 

resistance of B. glabrata to S. mansoni infection.  This could potentially narrow down 

potential targets within the excretory secretory products (ESP) from the parasite that could 

be used for treatment especially if one or more was found to have functions that affected the 

acetylome of the host. 

 

The likely mechanisms of action during infection is that upon infection the parasite induces 

changes in the host cells via ESPs.  These cause alterations to the epigenome which is the 

trigger for alterations to chromatin organisation which nuclear motors facilitate by non-

randomly reorganising the chromatin as dictated by the modification to the epigenome.  This 

change in chromatin organisation results in alterations to gene expression with upregulation 

of target genes such as hsp70 which the parasite requires to improve survivability in the host 

and continue its lifecycle.  With this approach two points during initial infection by the 

parasite are being targeted.  The motors themselves using BDM, preventing relocation of 

chromatin from occurring and potentially preventing upregulation of a target gene, hsp70, 

and preventing alterations to the epigenome by inhibiting changes to the histone acetylome. 

3.1.1 Aims 

 Verify S. mansoni induced gene movement is not strain specific 

 Investigate the effects of BDM treatment of B. glarata on susceptibility to infection 

and gene expression 

 Assess the effects of inhibiting changes to the acetylome on B. glabrata susceptibility 

to infection  
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3.2 Methods 

 

3.2.1 Cell Suspensions from Biomphalaria glabrata tissue for FISH 

 

Cell suspensions were made from a single ovotestis of a B. glabrata juvenile snail (≤0.5cm in 

diameter).  The shells were crushed and the ovotestis excised using needle nose tweezers 

and singly placed in a 0.5mL of a 0.05M potassium chloride (KCl) solution inside a sterilised 

1.5mL microcentrifuge tube.  The tissue was macerated until no large tissue clumps 

remained using a tissue grinder (Axygen), another 0.5mL of 0.05M KCl solution was added 

and then incubated for 30min at RT.  The suspension was spun at 200g for 5mins and the 

supernatant discarded.  The cells were then resuspended in the fixative, which consisted of 

methanol:acetic acid in a 3:1 ratio, which was added dropwise with constant agitation until 

0.5mL of fix was added and with a further minimum incubation of 10min at RT.  Samples 

then were spun at 200g, the supernatants discarded and fixative added dropwise once again 

with constant agitation and incubated for 10min at RT, this was repeated at least once more.  

The final addition of the fixative was used until the solution looked a watery white colour, 

generally around 100µL.  Once cells were fixed in suspension and stored at -20oC.  After 

prolonged storage however, samples were spun and fixative replaced. 

 

3.2.2 2D Fluorescence in situ Hybridisation  

 

Slides were prepared by dropping 20µL of M:AA fixed cell suspension onto a wet slide from 

height and the excess liquid drained before drying on a slide dryer set to 37oC.  The slide 

was then aged for 48h at room temperature or artificially aged by placing at 70oC for 1h.  

The slides were taken through a dehydration series of 70%, 90% and 100% ethanol 

spending 5mins in each before being dried on the slide dryer.  Probes were derived from the 

BB02 and BS90 bacterial artificial chromosome (BAC) libraries encoding for the actin, 

ferritin, hsp70 and myoglobin genes. 

 

Once the FISH probe was denatured, see section 2.2.10, the slide was denatured by placing 

them in a 70% formamide in 2X SSC pre-warmed to 72oC and incubating them at 

temperature for 90sec.  Immediately after incubation the slides were immersed in ice-cold 
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70% ethanol for 5min after which they were transferred to 90% and 100% ethanol for 5min 

each and the slides dried.  As the slides were drying 22mm x 22mm coverslips were placed 

on the dryer as well, one for each slide to pre-warm them for probe addition.  Once slides 

were dry and coverslips warmed 10-12µL of the denatured probe was pipetted onto the 

coverslip and the slide placed over the cover slip and pressed down.  Air bubbles were 

removed using guided pressure and the coverslip sealed to the slide using rubber solution 

(Weldtite) and placed in a humidified chamber at 37oC.  Time was critical as the probe 

cannot be permitted to excessively cool, as such the slides were prepared one at  time and 

the probe was not added to the next slide until the previously one was sealed and in the 

humidified chamber.  Once the probe was added the slides were incubated for 12-72h. 

 

After incubation the rubber seal and coverslips were removed and the slides washed thrice 

in 2X SSC at 42oC for 5min each.  The excess liquid was drained off and 100µL of 4% 

bovine serum albumin (BSA) (Sigma Aldrich, UK) in 2X SSC was added to the slides and 

covered with parafilm and incubated at 37oC in a humidified chamber for 20mins.  The 4% 

BSA was removed before the addition of 150µL of streptavidin conjugated to Cy3 (Jackson 

ImmunoResearch) in 1% BSA in 2X SSC (1:200 Dilution), covering with parafilm and 

incubating at 37oC for 30mins.  The slides are washed in 2X SSC for 5min, followed by 1X 

PBS with 0.1% tween 20 (Sigma Aldrich, UK) for 1 min and finally rinsed for 1min in 1X PBS.  

Finally the slides were dipped in sterile water, excess liquid drained off onto tissue paper and 

then counterstained with DAPI [1.5µg/mL] (Vectashield anti-fade mountant, Vector 

Laboratories) and a 32x22 glass coverslip placed to cover the nuclei. 

 

3.2.3 Gene Positioning Analysis 

 

Images were taken using an Olympus BX41 fluorescence microscope and processed for 

image analysis using adobe photoshop CC2015 where gene signals are isolated and 

background that could interfere with the script analysis was removed.  Script processing was 

done using IP Labs software and Croft et al script (Croft et al., 1999), whereby the nuclei 

were divided into 5 concentric rings of equal area and the intensity of gene signal (green) 

and the intensity of chromatin signal (blue) are measured.  When the gene signals were 

normalised against the DAPI accurate extrapolation of gene positioning is achieved 

comparable to that using 3D methods. 
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3.2.4 Gene Expression Analysis 

 

RNA was extracted from the remaining tissue of the snails after ovotestis had been 

removed.  This was accomplished using either TRI-Reagent or RNAzol RT (Sigma, UK).  In 

both cases samples were first macerated in solution using an axygen tissue grinder and then 

frozen at -80oC until used. 

TRI-Reagent Protocol 

Samples were defrosted and spun at 12,000g for 10min at 4oC and the supernatants 

transferred to new tubes to remove excessive insoluble material.  Samples were incubated 

at RT for 5min before the addition of 0.1mL 1-bromo-3-chloropropane and vortexing for 15s 

and a further RT incubation for 15min.  The solutions were spun for 15min at 12,000g at 4oC.  

The top aqueous phase was removed from each tube and placed in a fresh microcentrifuge 

tube and 0.5mL of 2-propanol was added and mixed by inversion before incubating at RT for 

10min.  Samples were then centrifuged at 12,000g for 10min at 4oC.  Supernatants were 

discarded and the remaining pellet was washed in 1mL 75% ethanol spun at 12,000g for 

5min at 4oC and the supernatant discarded again.  Samples were washed in 0.4mL of 75% 

ethanol and spun at 12,000g for 5min at 4oC the supernatant discarded, the sample spun 

done briefly and the remaining solution pipetted out and the sample allowed to air dry for 15-

30s and then dissolved in 20µL RNase Free water initially. 

RNAzol RT Protocol 

Samples were defrosted and spun at 12,000g for 10min and supernatants transferred to new 

tubes to remove any excessive insoluble material.  Samples were incubated at RT for 10min 

followed by addition of 0.4mL of RNase free water to the samples to precipitate the DNA and 

proteins, samples were mixed via inversion and further incubated at RT for 15min.  Following 

incubation the samples were spun at 12,000g for 15min at RT.  Supernatants were carefully 

pipetted out of the tube into a new microcentrifuge tubes keeping track of total volume of 

each sample.  Once transferred isopropanol was added to each sample to form a 1:1 ratio of 

supernatant to isopropanol precipitating the RNA.  The samples were mixed via inversion 

and incubated at RT for 15min after which they were spun at 12,000g for 8min.  

Supernatants were discarded and the pellets washed in 0.4mL of 75% ethanol twice, 

centrifuging at 4,000g for 5min between each wash and discarding the supernatants.  After 

the final wash the samples were spun down again, the remaining supernatant was carefully 

removed via pipetting.  The pellet was allowed to air dry for 15-30s and then dissolved in 

20µL RNase Free water initially 
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1µL of each sample was then further diluted in 9µL of RNase Free water and analysed for 

quantity and quality on a thermo nanodrop 2000.  Genomic DNA contamination was 

removed using DNAse 1 (AMPD1, Sigma-Aldrich,UK).  2µg of RNA from each sample was 

treated with 2µL (2U) of DNAse 1 and made up to 20µL total volume using 2µL of 10x 

Reaction buffer and RNase Free water.  Samples were incubated at 37oC for 6h, after which 

2µL of stop solution was added followed by a 70oC incubation for 10min and finally cooled to 

4oC.  Samples were then split into two and underwent conversion into cDNA using the 

Superscript IV VILO kit (Thermo Fisher Scientific, UK) 4µL of either the Master Mix or no-RT 

Master Mix control, 11µL of DNAse 1 treated RNA and 5µL RNase free water and mixed via 

pipetting.  Samples were spun down briefly and incubated at 25oC for 10min, 50oC for 10min 

and finally 85oC for 5min to convert the RNA into cDNA.  Samples from both the active 

reverse transcriptase and negative control were then run at a 1/10 dilution on a Quantstudio 

7 (Applied Biosciences, UK) qPCR machine to assess the samples for gDNA contamination. 

Once the samples were clear of gDNA contamination they were run in triplicate for actin, 

ferritin and hsp70, myoglobin was used as an internal control.  The cycle used for 

amplification was 50oC for 2min for UDG activation to remove RNA contamination of the 

sample, 95oC for initial denaturation and then 40 cycles of 95oC 15s, 58oC for 1min, followed 

by a melt curve analysis as a final step.  

 

The primers used were actin (F: 5’-GGAGGAGAGAGAACATGC-3’; R: 

5’CACCAATCTGCTTGATGGAC-3), ferritin (F: 5'-CTCTCCCACACTGTACCTATC-3'; R: 5'-

CGGTCTGCATCTCGTTTTC-3') and hsp70 (F: 5’AGGCGTCGACATTCAGGTCTA-3’; R: 5’-

TGGTGATGTTGTTGGTTTTACCA-3’) with myoglobin (F: 5’-GATGTTCGCCAATGTTCCC-

3’; R: 5’AGCGATCAAGTTTCCCCAG-3’) as the internal house keeping gene for 

normalisation.  Analysis was performed by comparing the fold change in gene transcript 

using the ∆∆Ct method and student T tests performed to assess if significant difference in 

expression were achieved between BDM treated and control infected B. glabrata 

 

3.2.5 Pilot Drug Treatment and Analysis 

 

10mM of 2,3-Butanedione monoxime (BDM) was prepared using sterile water and juvenile 

snails were treated individually for 15min by placing them into a well of a 24-well plate 

containing 1mL of the 10mM BDM solution.  After drug treatment snails were removed from 

the solution and washed twice using lepple aquarium water before being exposed to the 
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parasite as per 2.2.4.  Initial analysis of BDM effectiveness as a treatment was performed 

using two methods, overall resistance whereby the number of snails that exhibited 

resistance to infection were counted each week and via shedding counts.  Shedding was 

induced in the snails once a week by covering their tanks in foil to block out the light for at 

least 12h prior to shedding and then placing individual snails into a well of a 24-well plate 

containing a known volume of lepple water, enough to cover the snail, and then placing them 

under a direct light source.  This induced shedding of parasites from the snail into the water.  

After 1h the light source was removed and the snails washed and replaced in their tanks.  A 

1/10th volume of Lugol solution (Sigma Aldrich, UK) was then added to each well to stain and 

neutralise the parasite.  Using a dissecting microscope individual wells were inspected to 

see if any parasites were present in the wells to assess resistance to infection.  Wells that 

were positive for parasites had shedding counts performed on them, this involved taking 12 

aliquots of 5µL from each positive well, counting the number of cercariae in each aliquot and 

then averaging it out and calculating the number of cercariae for the known volume of 

solution. 

 

3.2.6 BDM Dose Optimisation 

 

20 snails were taken for each group and exposed to BDM as previously outlined in 3.2.5.  

Snails were exposed to varying concentrations of the drug as follows, 20mM, 50mM, 0.1M, 

0.2M, 0.5M and 1M.  After exposure the survival of each snail group was tracked over the 

following week.  A separate group was given 20mM dose for 15min daily to assess how they 

would respond to a multi-dose trial. 

 

3.2.7 Drug Assay Trials 

 

The same methodology as outlined in 3.2.5 was used for later experiments for 0.1M BDM, 

1µM methylene blue (Sigma Aldrich, UK), 1µM remodelin, 1µM anacardic acid (Sigma 

Aldrich, UK) and 2.5µM sodium butyrate (Sigma Aldrich, UK) with minor variations.  

Methylene blue and remodelin were added directly to the tanks water and snails were 

maintained in static tanks for 24h prior to infection.  Anacardic acid and sodium butyrate 

snails were dosed in 35mL of sterile water in a falcon tube containing 15 juvenile snails for 
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48h, the falcon tubes were sealed with parafilm with air holes punctured in so they could not 

escape.  Prior to infecting snails were washed twice and infected as outlined in 2.2.4.  

 

3.3 Results 

 

The host-pathogen relationship is a complex interplay of host immune response and 

pathogens immune evasion.  With S. mansoni infection of B. glabrata one of the many factor 

involved in host compatibility to infection is S. mansoni ability to induce changes within the 

host nuclei to cause upregulation of target genes such as hsp70.  Within is investigated the 

importance of non-random gene relocation to host gene regulation using a myosin inhibitor 

to prevent gene movement and the relationship between changes to the host acetylome via 

HATi and HDACi which would inhibit certain alterations to the host epigenome.  Both of 

these factors, changes to the epigenome and inhibition of nuclear motors, could potentially 

affect the complex host-pathogen relationship and impact on host susceptibility to infection.  

By gaining a deeper understanding of how these factors contribute to susceptibility to 

infection new targets for intervention may become apparent. 

 

3.3.1 2,3-Butanedione Monoxime (BDM) gp snail strain drug assay 

 

Previous research (Arican-Goktas et al., 2014) used two snail strains, the resistant BS90 

and Susceptible NMRI to establish the gene movement induced by the parasite Schistosoma 

mansoni and showed the inducement of movement of the hsp70 loci.  This led to the 

establishment of a heat shock model of gene movement using the susceptible BB02 strain of 

snail.  This snail however showed different localisation of hsp70 gene loci to that established 

in the previous snails.  The resistant BS90 had an intermediate gene position that did not 

move, NMRI had an intermediate gene position that moved to an internal position and in the 

heat shock model BB02 had an internal gene position that moved to an intermediate position 

after heat shock.  To establish gene localisation in interphase nuclei an erosion script (Croft 

et al., 1999) was used [Fig 3.1].  To establish if S. mansoni induced gene movement was 

essential to infection two areas needed to be investigated.  First does S. mansoni induce 

gene movement in multiple strains of snail.  Previous work by Arican-Goktas et all had 

investigated the NMRI susceptible lab strain so the gene pool (gp) lab strain and BB02 wild 

type susceptible strains were both investigated to establish that S. mansoni induced gene 
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movement in other susceptible strains. Once this was established the focus of the 

investigation was on the importance of gene movement to infection, this was explored using 

a global myosin inhibitor (BDM) known to affect nuclear myosins and shown to prevent heat 

shock induced gene movement in the BB02 strain (Arican-Goktas, 2013).  This would 

elucidate whether preventing gene movement would increase the host snails resistance to 

infection, as gene movement did not occur in the resistant BS90 snail strain, and impact on 

expression of the target gene, hsp70. 

 

 

Fig 3.1 Representative images of the erosion analysis (A) Demonstrates the function of the 

script which divides nuclei into 5 concentric rings of equal area and then measures the 

intensity of the DAPI signal.  (B)  Demonstrates the constraint of FISH signal measurement 

to within the same concentric rings as the DAPI signal.   FISH signal can be normalised by 
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dividing it by DAPI to take into account the relative density of DNA in different parts of the 

nucleus to extrapolate back into 3D positioning.  (C) The image used for analysis shown in A 

and B.  The 5 concentric rings created by the erosion script are referred to as shells with 

shell 1 being the most peripheral and shell 5 the most internal.  Using this method FISH 

signal can be localised to one of three nuclear areas, periphery, intermediate or internal.  D) 

Is a peripheral FISH signal, E) is an intermediate FISH signal and F) is an internal FISH 

signal.  G) Is a representation of a graph generated to show peripheral FISH signal 

localisation, H) a graph that is representative of an intermediate FISH signal localisation and 

I) is a graph representative of an internal FISH signal localisation. 

 

All infection work was performed at our collaborators laboratory at the Wellcome Trust 

Sanger Institute where they maintain the susceptible gene pool (gp) strain a third separate 

B. glabrata strain that was produced by cross-breeding several strains to create one that 

was optimised for susceptibility to the S. mansoni parasite for maintenance of its life cycle.  

The initial experiments conducted used this strain of snail and a global myosin inhibitor 2,3- 

butanedione monoxime (BDM) which had been shown to prevent gene movement after 1h 

heat shock in the BB02 strain (Arican-Goktas and Bridger unpublished data). 

  



 

85 
 

 

Fig 3.2 Relative gene position found in the gp strain in three different experimental 

conditions.  Control, uninfected snails, Infected 2h, control snails 2h post infection and BDM 

+ 2h, snails treated with 10mM BDM for 15min prior to infection 2h after infection.  * 

indicates bars that are significantly different with p-value = < 0.05, error bars = S.E.M. n ≥ 50 

nuclei, in triplicate 

 

It was established that in the gp strain the normal gene loci positions are internal, same as 

that exhibited in the BB02 strain and upon infection it is moved to an intermediate position as 

demonstrated in Fig 3.2.  This move to an intermediate position is the same not only as the 

heat shocked BB02 snails but also shows movement of the hsp70 gene loci similar to that 

NMRI strain following infection, although going in the opposite direction.  The BDM treated 

snails showed changes in gene position with an increase in intermediate signals but, does 

not show a significant decrease in internal signals.  The BDM treated snails also exhibits 

significant differences from the control infected snails having more internally located gene 

loci.  This may indicate that not all gene movement was halted resulting in a gene positioning 

pattern somewhere between the two controls with increased intermediate signals over 

uninfected controls but more internally located gene loci than controls two hours after 

infection.  The remaining tissue, head-foot and hepatopancreas, from the subjects used to 

make the cell suspensions for FISH were processed for RT-qPCR to assess how hsp70, 

actin and ferritin gene expression was affected during infection and by BDM treatment. 
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Fig 3.3 Comparative gene expression in gp strain snails when using the 0min Control as the 

baseline comparison for ∆∆CT calculations for A) hsp70 gene expression which shows 

increases in hsp70 gene expression in the BDM treated snails in comparison to controls, B) 

actin which shows potentially higher expression in the control when compared to the BDM 

treated and C) ferritin which exhibits no differences between BDM treated and controls.  * 

indicates bars that are significantly different with p-value = < 0.05, error bars = S.E.M 

 

Previous work, (Arican-Goktas et al., 2014), has shown that both actin and hsp70 gene 

expression is upregulated in NMRI strain B. glabrata after infection by S. mansoni parasites.  

In the gp strain there is a definite increase in expression of hsp70 shown in both the treated 
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and untreated infected samples although time for expression peaks seem to differ with the 

BDM peaking at 30min and the control showing increasing expression continuing on until the 

2h time point relative to their constitutive controls as displayed in Fig 3.3A.  However no 

increase in gene expression was evident from either the actin or ferritin genes as is evident 

in Fig 3.3B and 3.3C.  The previous study (Arican-Goktas et al., 2014) did show increases in 

actin expression but, this could be a strain specific event. 

 

When BDM treated samples were compared to the internal BDM treated 0min control the 

gene expression fold increases demonstrated a similar pattern expression as the control 

group.  However as can be seen in Fig 3.3 when comparing to the untreated 0min control 

you can see a significant change in gene expression profile of the hsp70 gene, as 

demonstrated in Fig 3.3A, which is likely due to a combination of both the parasite and the 

BDM treatment resulting in increased hsp70 gene expression.  Actin and ferritin gene 

expression still exhibited no significant changes between treated and untreated snails post 

infection as exhibited in Fig 3.3B and Fig 3.3C respectively.  To assess the overall difference 

that results from the BDM treatment alone, control samples were compared to BDM treated 

samples at each time point [Fig 3.4]. 
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Fig 3.4 Increases in gene fold expression in gp strain snails when comparing Control to 

BDM treated ∆∆-CT to each other at time point.  Assessing the effect of BDM treatment 

while controlling for S. mansoni infection.  A) hsp70 gene expression is consistently elevated 

due to BDM treatment when infection is controlled for, B) actin gene expression and C) 

ferritin gene expression both show comparatively little change as a result of BDM treatment 

when infection is controlled for, although in both cases BDM treated does appear to cause a 

reduction in actin and ferritin gene expression in comparison to controls.  * indicates bars 

that are significantly different with p-value = < 0.05, error bars = S.E.M 
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Fig 3.4 displayed that BDM treatment alone does seem to elicit changes in gene expression 

on its own as well.  In particular hsp70, as demonstrated in Fig 3.4A, which was the main 

target and it was hypothesised that preventing gene movement may prevent upregulation of 

the hsp70 gene yet the BDM itself causes a spike in hsp70 gene transcription.  Because of 

this it will be difficult to assess whether preventing gene movement did in fact prevent the 

parasite from further enhancing hsp70 expression and whether preventing gene movement 

could be a viable target for preventing infection.  Following the FISH and qPCR results the 

long term effects of BDM treatment were examined by looking at the susceptibility to 

infection [Fig 3.5] and the overall cercariae shed from the snails [Fig 3.6] 

 

 

Fig 3.5 Kaplan-Meier graphs comparing Control (n= 24 snails) to BDM treated (n= 24 snails) 

snails over a period of 12 weeks. A) The survival of the two experimental snail groups, 

Control and BDM treated.  B) The overall resistance to infection exhibited by the two 

experimental groups, Control and BDM treated.  The BDM treated group exhibit no 

statistically significant change in either survival or resistance when compared to the control 

group using a Log-Rank test. 
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Fig 3.6 Average cercariae shed from each experimental group, Control (n= 24 snails) and 

BDM treated (n= 24 snails), over the 12 weeks of the experiment, error bars = S.E.M.  

Counts involved taking the average number of cercariae from 12 aliquots containing 5µL of 

the water a snail was shed in and calculating the number of cercariae by volume. 

 

The FISH data shown in Fig 3.2 does show that BDM treatment has an effect on gene 

movement and the overall resistance to infection in the BDM treated group was four fold 

greater in raw numbers, although this was not statistically significant.  It also showed that 

BDM on average did generally shed less however, this decrease in average cercariae shed 

may be attributable to the greater number of resistant snails in the treated group lowering the 

average shed per snail for the group.  This would seem to indicate that the amount of 

cercariae shed by a snail is not being affected by the BDM treatment.  This pilot test 

indicates that there was potentially an increase in resistance offered by the BDM but further 

experimentation was warranted. 

 

The concentration of the BDM dose used in the experiment was to keep it in line with the 

previous heat shock experiments but no upper limit was established.  Before rerunning the 
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BDM experiment a maximum survivable dose was investigated to maximise the effects 

treatment may have on the snails.  The results of which are shown in Fig 3.8. 

 

 

Fig 3.7 Kaplan-Meier graph showing the overall survival of snails over 4 days for treatment 

using different concentrations of BDM (n= 20 snails per dose).  20mM and 50mM 

concentration were both tolerated without any deaths.  0.1M displayed a minor decrease in 

tolerability with higher concentrations quickly exhibiting lethality.  The 20mM multi-dose was 

more tolerable than a single 0.2M dose but less so than a single 0.1M dose though it did 

demonstrate than a multi-dosing protocol may be possible. 

 

The dosing experiment demonstrated that the LC50 for the snail was likely between 0.2M 

and 0.5M, however, survival post infection was also highly variable so to ensure the 

maximum number of snails survived it was prudent to use a lesser dose where survival was 

near 100%.  For this reason 0.1M was chosen for future experiments, it was an order of 

magnitude greater than the previous dose used and the only death in the group was what 

appeared to be the weakest member of the cohort. 
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3.3.2 BDM BB02 snail strain drug assay 

 

A larger cohort drug study was conducted using the optimised BDM dose.  The Wellcome 

Sanger Institute snail facilities although adequate for infection and maintenance of a life 

cycle was not capable of breeding the numbers required so instead we used snails bred and 

maintained at Brunel University London, the BB02 strain.  These would be transferred to the 

facilities at the Sanger Institute two days prior to infection.  Alongside the BDM two other 

drugs would also be tested, the HSP70 inhibitor methylene blue (MB) and NAT10 inhibitor 

remodelin (R), both at 1µM concentrations for 24h prior to infection.  No cercarial count was 

taken during these experiments and only resistance was measured. 

 

 

Fig 3.8 Kaplan-Meier graphs for comparison of the four groups Control (n= 76 snails), BDM 

(n= 76 snails), Methylene Blue (MB) (n= 74 snails) and Remodelin (R) (n= 78 snails) over 

the course of 4 weeks of experimentation A) The survival of the four experimental groups, 

Control, BDM, MB and R.  B) The overall resistance to infection exhibited by the four 

experimental groups, Control, BDM, MB and R.  All four groups showed comparatively better 

survival than that of the previous study however, both BDM and R showed significant 

reductions in resistance to infection.  * indicates statistically significant changes using a Log-

Rank test to compare two curves p-value = <0.05. 
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The second drug trial showed significantly different results from the first, although 

survivability was not much different between the groups there was significant difference in 

resistance seen in both the BDM and remodelin groups with both showing significantly 

earlier onset of shedding and even the MB group demonstrated some earlier shedding than 

the control group.  For BDM this contradicted what had been previously shown in the smaller 

pilot study.  Similarly the hsp70 gene loci positioning was now showing that the BDM had 

had some effect on gene positioning as with the initial trial with it neither matching the control 

0min or the control 2h but seeming to occupy a midpoint between the two.  The BDM treated 

cohort exhibited an intermediate position predominantly in shell 4 rather than shell 3 and 

shell 2 as with the control infected while still showing a shift from the internal shell 5 position 

that uninfected control cohorts possessed [Fig 3.9].  This was not too surprising as the initial 

study had shown that the BDM+2h infection group also exhibited a different gene positioning 

[Fig 3.2] from both control groups although canonical internal positioning was not 

significantly affected in the first trial in the BDM+2h infection group. 

 

 

Fig 3.9 Relative gene position found in the BB02 strain in three different situations. A) 

Control, uninfected snails, B) Control snails 2h post infection, C) 0.1M BDM treated snails 2h 

after infection.  * indicates bars that are significantly different p-value = <0.05, error bars = 

S.E.M. n ≥ 50 nuclei, in triplicate 
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Fig 3.10 Comparative gene expression in BB02 strain snails when using the 0min Control as 

the baseline comparison for ∆∆CT calculations for A) hsp70 gene expression which shows 

increases in hsp70 gene expression in the BDM treated snails in comparison to controls, B) 

actin gene expression C) ferritin gene expression.  B and C once again show a similar 

pattern with initial expression of both actin and ferritin being lower in the BDM cohort but with 

it increasing as the control cohort decreases at 30min so expression is higher in BDM cohort 

at both 30min and 2h post infection. 

 

In contrast to what was previously seen during the gp strain experiments BDM treatment 

initially seemed to stop any increase in hsp70 gene expression.  In contrast when comparing 

0min controls to 30min and 2h time points an increase in gene expression was obsereved.  

Actin gene expression similar to the gp strain remains relatively static, which differs from that 
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seen during experiments with the NMRI strain where actin expression increases at the 2h 

time point.  This could be a strain specific response or the activation of the actin upregulation 

may come later in the BB02 and gp strains.  There is also upregulation of ferritin within the 

BDM treated samples.  However, since ferritin upregulation was linked to physical damage 

response with the NMRI strain using irradiated miracidia (Arican-Goktas et al., 2014) it is 

likely this is a response to the higher concentration of BDM used.  Greater concentration of 

BDM caused osmotic injuries in snails and potentially even at this safe dose it could cause 

some injury to surface cells during exposure and the increase in ferritin expression seen 

here could be in response to such injury. 

 

However, when comparing all samples to the 0min untreated control [Fig 3.10] the 

combination of being BDM treated and infected significantly increased gene expression of 

hsp70 as is demonstrated in Fig 3.10A.  In fact in this case the effect is so dramatic, that 

there seemed to be no increase in expression in the BDM treated samples as a result of S. 

mansoni infection.  This could be due to the significantly increased dose, 0.1M compared to 

10mM, or strain differences between the gp and BB02 strains or a combination of these 

factors.  However, in comparison to untreated 0min controls a significant increase in gene 

expression is readily apparent.  In contrast neither actin or ferritin gene expression is 

significantly altered as is exhibited in Fig 3.10B and Fig 3.10C respectively.  When 

controlling for time and infection it is evident that BDM treatment causes significant 

increases in hsp70 expression as had been previously shown in Fig 3.4.  In this case it 

would appear that at 0.1M concentration in the BB02 strain the S. mansoni parasite could 

not elicit any further increase in gene expression than was already occurring due to the BDM 

treatment. 

 

The data so far from the two experiments have been consistent with one another despite 

being derived from two different strains of the snail except for the long term effects on snail 

resistance to infection.  To get a more solid conclusion on the effects on long term resistance 

a third trial for BDM was conducted, still using the BB02 strain and the 0.1M concentration to 

assess the effects on resistance. 
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Fig 3.11 Kaplan-Meier graphs for comparison of the two groups, Control (n= 70 snails) and 

BDM treated (n= 61 snails), over the course of 4 weeks of experimentation.  A) The survival 

of the two experimental groups, Control and BDM treated.  B) The overall resistance to 

infection exhibited by the two experimental groups, Control and BDM treated.  Log-Rank 

tests for comparing two curves showed no statistically significant change between the two 

cohorts. 

 

The third BDM trial showed no significant difference in survival [Fig 3.11A] or resistance to 

infection between control and treated groups, either positive or negative [Fig 3.11B].  

However, the same conclusion cannot be said about preventing gene movement since the 

BDM did not prevent the parasite induced gene movement in either of the first two studies 

although it did have some effect on gene position in the gp strain.  Similarly the gene of 

interest in this experiment was hsp70, due to the ease of using a heat shock model for gene 

movement and its apparent import in infection, however, although the gene may or may not 

have moved it is evident that BDM treatment also induces upregulation of hsp70 maybe 

through another mechanism than that of the parasite meaning that to identify whether 

preventing gene movement prevented upregulation and infection a method which did not 

cause up regulation of the target gene would also need to be identified. 
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3.3.3 The effects of inhibiting histone acetyl marker changes on infection 

 

During the large cohort study alongside BDM two other drugs were investigated, one of 

which showed significant effects on snail resistance.  Remodelin is a NAT10 inhibitor that is 

known to prevent acetylation of several proteins including histones.  During the previous 

experiment it showed significantly earlier shedding than the control group and although not 

quantified the number of parasites shed appeared to be significantly greater than the control.  

To confirm this a smaller experiment was conducted where cercarial counts were taken the 

results of which are shown in Fig 3.12. 

 

 

Fig 3.12 Average cercariae shed from the snails of either the Control or Remodelin treated 

cohorts.  This shows that Remodelin treated snails consistently shed more on average than 

Control snails.  * indicates statistically significant differences as derived from a Two-Tailed, 

equal variances, Student T-Test with p-value = <0.05, error bars are = S.E.M 

 

This trial did not replicate the earlier shedding point seen previously however it did show 

consistently that the remodelin treated snails were shedding more parasites on average.  

This raised the question of whether it was remodelin specifically or if the manipulation of 

acetyl markers on histones in general would have the same effect.  To this end two drugs 

were trialled, anacardic acid (AA) a HAT inhibitor and sodium butyrate (SB) a HDAC 

inhibitor, the former preventing the addition of acetyl marks as remodelin would have done 

and the latter preventing the removal of acetyl markers.  Both were tested for toxicity and 
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snails had 100% survival after being kept in active concentrations of the drugs for 4 days so 

no toxicity issues were apparent and snails would be dosed for 48h prior to infection. 

 

  

Fig 3.13 Kaplan-Meier graphs showing comparisons between the three groups, Control (n= 

24 snails), Anacardic Acid (AA) (n= 24 snails) and Sodium Butyrate (SB) (n= 12 snails) over 

a 6 week period post infection.  A) The survival of the three experimental groups, Control, 

AA and SB.  B) The overall resistance to infection exhibited by the three experimental 

groups, Control, AA and SB.  Log-Rank tests were performed for statistical analysis and no 

statistically significant different was found when comparing either of the treated cohorts to 

the controls. 
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Fig 3.14 The average number of cercariae shed from each group over the 6 weeks of 

experimentation.  The treated groups were compared to the controls at each time point using 

a Two-Tailed, unequal variances, Student T-Test with a p-value = <0.05, * indicates 

significant changes from the control cohort.  Error bars = S.E.M 

 

This first experiment with AA and SB showed that the HAT inhibitor AA mimicked what had 

the most recent remodelin trial as the number of shed cercariae parasites were significantly 

increased early on after infection and consistently shed more cercariae on average although 

significance was lost after the first week.  Sodium butyrate the HDAC inhibitor displayed the 

complete opposite with 100% resistance exhibited in all surviving test subjects which went 

on beyond the weeks shown until the 9th week when the experiment was ended for the SB 

group as week 8 is the last point at which shedding could potentially occur in an infected 

snail.  However due to a decreased survival rate in the experimental groups a final 

experiment was conducted assessing remodelin, AA and SB. 
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Fig 3.15 Kaplan-Meier graphs comparing four groups, Control (n= 40 snails), Anacardic Acid 

(AA) (n= 26 snails), Remodelin (R) (n= 42 snails) and Sodium Butyrate (SB) (n= 36 snails), 

over 6 weeks of experimentation.  A) The survival of the four experimental groups, Control, 

AA, R and SB.  B) The overall resistance to infection exhibited by the four experimental 

groups, Control, AA, R and SB.  Log-Rank tests were conducted to compare treated cohorts 

to the controls, statistically significant curves are denoted by * with p-value = <0.05 

 

 

Fig 3.16 The average number of cercariae shed from each group over seven weeks.  Two-

Tailed Student T-Tests were used to compare each treated cohort to the controls, p-value = 

<0.05 * = statistically significant difference.  Error bars = S.E.M 
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This time remodelin did not demonstrate any increased susceptibility in fact the numbers of 

cercariae shed from the remodelin group were significantly less at week 5 in comparison to 

control, the same was true for AA as well, however AA also shed a week earlier than all 

other groups at week 4 which holds to the pattern that HAT inhibitors may increase B. 

glabrata susceptibility to infection and by the end of the 7th week AA was once again 

shedding more than the control group.  It would appear that HAT inhibition results in either 

earlier or greater average number of cercariae shedding which could be indicative of an 

increased speed of maturation of the parasite in the host.  The theory of HAT inhibition 

increasing susceptibility is also supported by the action seen by its opposite, the HDAC 

inhibitor which once again afforded complete resistance to parasite infection.  It would 

appear that preventing the addition of acetyl marks to histones increases a snail’s 

susceptibility to infection while preventing their removal offers greater resistance to infection 

or may even block infection entirely. 

 

3.4 Discussion 

 

Schistosomiasis is a debilitating tropical disease for which there is currently only one 

universal treatment which does not affect immature adult parasites and requires at least two 

doses to ensure clearance of the parasites (Cioli, 2014).  In order to develop new effective 

treatments or discover potential targets we need to have a clearer understanding of how the 

parasite infects its host and what interrupts it.  Initially the focus was on preventing gene 

movement that was exhibited in a time response manner to upregulation of gene expression.  

The main focus was on hsp70 as this gene loci could be moved in a heat shock model and 

movement was halted.  This led to the current development of a drug assay model for snail 

infection that ideally would allow for the testing of new compounds with known targets to see 

how they affected susceptibility of B. glabrata to S. mansoni infection. 

 

The initial target was nuclear myosin, a protein thought to be a component of the nuclear 

motor necessary for gene movement (Mehta, 2010).  The drug used was 2, 3-Butanedione 

monoxime (BDM), this was not ideal as this is not specific for nuclear myosin but inhibits all 

myosins so would have a plethora of off target effects.  Although it did prevent gene 

movement in the heat shock model it was unable to effectively prevent gene movement 

during infection.  Furthermore, part of what was hypothesised to act as ameliorating factor 
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would be the reduction in hsp70 expression that was shown to become upregulated 

following gene repositioning.  However, the exposure to BDM also resulted in significant 

upregulation of hsp70 gene expression in both the gp and BB02 strains which is a 

complicating factor in this case making it difficult to assess if preventing gene movement 

would prevent parasite induced upregulation and making it impossible to assess if reduction 

in hsp70 expression would result in increased resistance to infection. 

 

The BDM work however did highlight some issues that would need to be addressed in 

moving forward with the development of an assay for assessing the effects of a compound 

on resistance to infection.  Firstly is assessing overall susceptibility to infection, although 

initially the pilot study used two measures, overall resistance and cercarial count the second 

trial only used one factor, overall resistance.  This was because the pilot study had shown no 

significant difference in cercarial shedding, the loss of a second measure for control was 

highlighted however with the remodelin trial run concurrent to the second BDM trial.  Not 

only did the snails on the remodelin treatment shed significantly earlier in that first trial it was 

obvious from the wells the snails were shed in that they were also shedding significantly 

more but, this was not accounted for at this time.  Resistance when investigating a disease 

as complex as a parasite is not solely about being completely immune to infection as 

changes in the success of the parasite, such as an increased cercarial shed or changes in 

incubation times, could indicate potential mechanisms of interest.  Significant changes in 

number of cercariae could indicate factors affecting their survivability that can then be 

investigated and refined to identify pathways and drugs that could have greater success due 

greater specificity if it was a result of an off target effect or improved binding efficiencies. 

 

The second issue that came to light was survival of the snails.  Generally young snails are 

used and in these experiments juveniles, ranging from 2-5mm in size, as at this stage they 

have not begun to sexually mature and have the greatest susceptibility.  This however, 

resulted in issues of survival leading up to shedding with loses of 10-55% within the first 

three weeks being common in the BDM trials meaning significant reductions in numbers 

before the assessment of changes to susceptibility can begin.  This problem became even 

more apparent during the anacardic acid and sodium butyrate trials where survival rates 

dropped in some groups to as low as 16%.  This is acceptable depending on the numbers 

needed and the metric used.  Although the use of two assessment criteria are 

recommended, overall resistance and cercarial count, if complete or significant resistance is 

expected to be granted lower survival levels are acceptable but when assessing for 
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pathways that may only partially impact viability of the parasite greater numbers are 

required.  On average it would be advisable to calculate the minimum number of subjects 

you would need to get a significant result at week 4 and then infect at least double that 

number assuming an average 50% survival rate over the first 4 weeks. 

 

Whereas the BDM trials were inconclusive at best in regards to whether preventing nuclear 

myosin driven gene movement could prevent infection it did allow to develop the assay 

necessary for testing if epigenetic therapies could afford resistance.  Alterations in epigenetic 

factors has been shown to be important for disease development as shown with curcumin 

induced protection from diabetic nephropathy (Tikoo, et al, 2008).  Initially focusing on the 

remodelin and then anacardic acid for the HAT inhibitors the initial remodelin trial 

demonstrated significant increase in susceptibility with almost 95% of all treated snails 

shedding a week earlier than normal, the second trial did not show earlier shedding but 

consistently higher shed numbers with significantly more shed in the fifth week.  

Unfortunately this was not replicated in the third trial for remodelin but there were survival 

rate issues with that third trial showing significantly higher death rates prior to shedding than 

the previous two studies.  However, the anacardic acid, another HAT inhibitor does support 

the same hypothesis that manipulating histone acetylation, specifically preventing 

acetylation, does result in decreased resistance.  The first anacardic acid trial demonstrated 

significantly greater shed numbers in the fourth week of the trial and consistently shed more 

over the weeks while the second anacardic acid trial did not shed more but did shed a week 

earlier.  Finally the HDAC inhibitor, sodium butyrate, showed a 100% resistance to infection 

in two trials indicating that preventing deacetylation results in an increased resistance to 

infection.  This was congruent with other studies using sodium butyrate (SB) that show that it 

can ameliorate the effects of C. pseudotuberculosis infection in rats (Zhou, et al, 2019) and 

decrease salmonella infection in pigs (Casanova-Higes, Andrés-Barranco, and Mainar-

Jaime, 2018).  SB has also been shown to be potentially effective in treating Epstein-Barr 

virus (EBV) induced cancers (Westphal, et al, 2000) and EBV is currently the only other 

infection shown to induce chromatin reorganisation (Li, et al , 2009).  Although in the case of 

EBV, SB was investigated as a adjuvant to EBV induced cancer therapies not as a direct 

preventative measure as is the case in this study. 

 

Taken in conjunction the results for the HAT and HDAC inhibitors indicate that preventing 

acetylation of the histones reduces the resistance of the snail likely allowing progression of 

the parasite development to happen quicker resulting in either earlier shedding or greater 
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average number of shedding parasites earlier on.  Conversely preventing the deacetylation 

of histones increases resistance to infection with SB exhibiting a 100% resistance to 

infection.  However, it should be noted that both experiments involving sodium butyrate and 

anacardic acid had issues with general survivability.  This was likely due to changes to the 

environment the snails were kept in however as remodelin had a similar issue in the last trial 

where it did not have previously and the latter two experiments were conducted at a newer 

facility.  The snails had previously survived 4 days of exposure to both sodium butyrate and 

anacardic acid so acute toxicity is unlikely to be an issue but, a long term toxic effect has yet 

to be ruled out. 

 

It has been demonstrated within this chapter that manipulation of the epigenome does affect 

B. glabrata resistance to S. mansoni infection.  Considering that inhibiting the acetylation of 

histones increases susceptibility slightly while preventing deacetylation gives apparent 

resistance to infection.  It could indicate that HAT inhibitors are inhibiting the activation or 

upregulation of genes involved in protecting the host from infection.  Whereas the HDAC 

inhibitors would be preventing the suppression or down regulation of genes that protect from 

parasitic infection which would indicate that suppression of the host genome is more 

advantageous to S. mansoni during initial infection.  Although certain gene targets are 

definitely upregulated during initial infection such as hsp70, since the diverse role of such 

stress proteins include chaperoning other partially folded proteins it could be inadvertently 

affecting the proteome.  This could be either by slowing the correct folding of proteins 

needed to combat the infection or simply the massive upregulation of the hsp70 gene taking 

up resources that could be used by more critical immune gene and suppressing the 

proteome in a similar manner to the genome is being suppressed. 
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Chapter 4: The effects of ageing 

on the epigenetic and genome 

organisation of Biomphalaria 

glabrata and developing B. 

glabrata as a model for 

investigating the effects of 

ageing on genome organisation 

  



 

106 
 

4.1 Introduction 

 

Ageing is a multifaceted degeneration of an organism over time and includes dozens of co-

contributing factors.  Due to this the ageing field benefits from having several different 

models to draw upon when investigating any one facet of the ageing process.  D. 

melanogaster for instance with its comparatively short lifespan and multiple tools allowing for 

gene editing is an excellent organism for exploring the effects of knockdown and knockouts 

of certain genes on ageing such as Indy (I’m not dead yet) (Rogina and Helfand, 2013; 

Rogina et al., 2000) and mth (methuselah) (Petrosyan et al., 2014; Araújo et al., 2013; Lin, 

Seroude and Benzer, 1998).  Whereas murine models have proven invaluable for assessing 

changes to epigenetics and chromatin (Dou et al., 2017; Cole et al., 2017; Wang, T. et al., 

2017).  As well as exploring the effects of clearance of senescent cells may have on health 

as an organism ages (Baker et al., 2016; Chang et al., 2016).   

 

The effects senescence has on nuclear organisation during interphase have been explored 

in human fibroblasts in vitro (Mehta et al., 2010; Bridger et al., 2000) however, replicating 

these changes seen in vitro in an in vivo model has proven difficult.  What would be required 

is a model organism that can be easily maintained, be kept in large enough numbers and are 

similar enough in nuclear organisation to human nuclei with known inducible genes.  To this 

end Biomphalaria glabrata a freshwater snail was put forward as a potential organism.  

Being an invertebrate it meets the criteria for ‘replacement’ with in the NC3R’s framework as 

a partial replacement, they are comparatively easy to maintain and can be bred in sufficiently 

large numbers for any experimentation required with comparative ease.  Once maintenance 

is achieved it would be a simple matter to maintain sufficient numbers for each experimental 

age required and the interphase organisation of B. glabrata is more similar to human than 

other invertebrates (Arican-Goktas et al., 2014) while also possessing genes that are easily 

inducible such as hsp70 (Arican-Goktas, 2013) allowing for investigation of cessation of 

gene movement which is a hallmark of senescent cells in vitro (Bridger unpublished data) in 

an in vivo experiment. 

 

One of the targeted genes during S. mansoni infection of B. glabrata is actin (Arican-Goktas 

et al., 2014).  Actin proteins serve several major functions including making up part of the 

cytoskeleton that supports the cell (Stricker, Falzone and Gardel, 2010).  They are also 

partially responsible for intracellular movement when they interact with another protein, 
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myosin (Le Goff, Amblard and Furst, 2001; Tsukada, Azuma and Phillips, 1994).  Generally 

filamentous actin acts as a tether or guide line and the motor protein myosin will move along 

it.  In this manner this manner the two protein work in tandem to move organelles or constrict 

tubules (Ripoll et al., 2018; Buss, Spudich and Kendrick-Jones, 2004).  Both actin and 

myosin proteins have been localised to the nucleus and considering actin is targeted for 

upregulation by the S. mansoni parasite and gene relocation is known to occur during 

infection could these two be linked and if so could myosins also be affected.  Nuclear myosin 

1β (NM1β), has also been demonstrated to be affected during changes in cell fates from 

proliferating to quiescent (Mehta et al., 2010), distribution is affected in progeroid syndromes 

like Hutchinson-Gilford Progeria Syndrome (HGPS) (Mehta et al., 2011) and restoration of 

myosin can prevent premature senescence of osteoblast stem cells in rats (Zhang et al., 

2011).  NM1β is also been indicated in roles involving transcription (Philimonenko et al., 

2004) and myosin inhibitors like 2,3-butanedionemonoxime prevents induced gene 

movement (Arican-Goktas, 2013; Mehta et al., 2010).  It is therefore possible that changes in 

chromobility seen in senescent cells may also be a result of alterations to NM1β distribution 

only these changes, unlike in quiescence, may be irreversible.  As such the effects of old 

age (12 months) were investigated in the snail and how age impacts on chromatin 

organisation via epigenetics and chromobility via inducible gene relocation and NM1β 

distribution and how these are comparable to changes seen in vitro in senescent human 

cells (Bridger unpublished data). 

4.1.1 Aims 

 To assess age related alterations to histone methylation modification distribution 

 To investigte if the hsp70 gene loci is non-randomly relocated in old age for B. 

glabrata in vivo. 

 To investigate if after age related relocation of the hsp70 gene loci that gene loci can 

be induced to be move via heat shock or infection. 

 To assess changes to nuclear myosin 1 beta (NM1β) distribution within nuclei as a 

result of age. 

 To assess whether there is an increase in cellular dysfunction via FISH by 

prevalence of polyploidy of the hsp70 loci. 

 Comparison of in vivo aged B. glabrata nuclei to previous data on human senescent 

cells in vitro to establish is B. glabrata is a viable model for studying the effects of 

ageing on genome organisation. 
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4.2 Methods 

4.2.1 Snail Husbandry 

See protocols outlines in 2.2.1. 

 

4.2.2 Cell Suspensions for IF 

See protocols as outlined in 2.2.2 for how cell suspensions were created for aged snails.  In 

the case of aged snails however due to the greater size of the snail there is inherently more 

tissue available when sampling so only a single snail was used for each cell suspension.  

Aged snails were also exposed to both heat shock and parasite infections following the 

protocols outlined in 2.2.3 and 2.2.4 respectively.  However, due to the greater size of the 

aged snails 6-well plates were used for the individual infections using 3mL of lepple 

aquarium water and 10 miracida per well for each snail was maintained. 

 

4.2.3 Indirect Immunofluorescence 

See protocols outlined 2.2.5 for preparing the slides for IF.  Assessment for NM1β staining 

was conducted on three snails from each group and pattern counting was performed until a 

single pattern reached 200 and then percentages derived from these data were used. 

 

4.2.4 2D Fluorescence in situ Hybridisation 

See protocols 3.2.1 for creation of cell suspension for FISH and protocol 3.2.2 for the FISH 

protocol used and 3.2.3 for how the images were analysed. 

 

4.2.5 Aged related resistance to Infection 

Following the protocol outlined in 4.2.2 for infection and 3.2.5 for assessing overall 

resistance to infection 10, 12 month old (aged), snails were infected with miracidia and split 

into 2 groups.  The control group consisting of 5 12 month old snails and a test group of 5 

snails that were treated with 1µM Remodelin for 24h prior to being washed and exposed to 

the miracidia. 
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4.2.6 Age related polyploidy 

Images from FISH on nuclei derived from the ovotestes of juvenile and aged snails were 

pooled from three biological replicates each and haploid and negative nuclei were removed.  

The number of hsp70 gene loci were then counted in each nucleus and tallied.  Each 

biological replicate contributed at least 90 images to the pool and the pool was of at least 

300 images after haploids had been removed.  Each replicate was counted separately to 

allow for a statistical T test to be performed on the overall percentage that each of the three 

categories made of the overall picture.  The three categories used were diploid (2 signals), 

tri-/tetraploid (3-4 signals) and polyploidy (5≤). 

 

4.3 Results 

 

The field of ageing is an ever growing body of research that encompasses all aspects of 

biology.  Investigating the effects in vivo on genome organisation however, is hampered by 

the current models either due to a combination of ethical and logistical issues with 

mammalian models such as mice or the lack of similarity in genome organisation or ageing 

process in invertebrate models such as fruit flies.  B. glabrata, although an invertebrate 

model, does not undergo a metamorphic stage in its development and consequently are not 

made up of mainly post-mitotic cells as with the commonly used invertebrate ageing models 

such as D. melanogaster.  Similar benefits arise in comparison to mammalian models as B. 

glabrata has a comparatively shorter lifespan, is easier to care for and being aquatic it is 

easier to test compounds for their effect on genome organisation.  Taking into consideration 

the previous factors this study took the comparatively similar genome organisation of B. 

glabrata to human organisation and investigated whether similarities to that seen in human 

cells grown in vitro to senescence could be drawn in the aged organism. 

 

4.3.1 Age Related Epigenetic Changes 

Genome organisation is a complex interplay of several factors one of these factors is 

changes to the histone proteins that make up the nucleosome and subsequently affects how 

tightly compacted the chromatin is, how accessible genes are to transcriptional protein 

complexes and potentially chromatin organisation.  Here three such markers are 

investigated, H3K27me3, H3K79me3 and H4K20me3.  Five patterns [Fig 2.8] were initially 

identified in juvenile snails these being,  
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1. Punctate, patterning exhibiting multiple small foci distributed throughout the nuclei in 

an even spread.   

2. Speckles patterning which showed larger distinctive foci distributed throughout the 

nuclei that were unevenly distributed.   

3. Peripheral, pattern staining that exhibited a continuous stain around the periphery of 

the nuclei with little to no staining in the centre of the nuclei.   

4. Peripheral Foci, pattern staining where distinctive large foci like those in the speckles 

patterning are located primarily or exclusively at the peripheral of the nuclei.   

5. Directional, pattern staining exhibiting heavy staining in one area of the nuclei 

encompassing part of the peripheral and some of the internal volume,  

These are represented in Fig 2.1. 

 

The same patterns were discerned in the aged snail and the aged snails response to heat 

shock were investigated, the results demonstrated in Fig 4.1, and compared to the response 

seen previously in juvenile and adult snail controls and after heat shock for H3K27me3 [Fig 

4.2], H3K79me3 [Fig 4.3] and H4K20me3 [Fig 4.4].  It is a well-established fact that as 

organisms age they become frailer and less able to adapt to changes that younger organism 

can tolerate with comparative ease, such changes include changes to histone (Nelson et al., 

2016), lamins (Dou et al., 2017) and DNA methylation (Meer et al., 2018; Welberg, 2014).  

With this comparison some conclusions could be drawn as to whether part of what leads to 

this fragility is a change in epigenetic response in cells of older organisms limiting the kind of 

response to stress that can be elicited. 
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Fig 4.1 The charts show the average percentage of nuclei exhibiting the patterns outlined in 

Fig 4.1 present in each of the histone modifications tested A) H3K27m3, B) H3K79me3 and 

C) H4K20me3 for both Control and Heat Shocked Aged snails.  * denote patterns that exhibit 

statistically significant change in distribution p-value <0.05, error bars = S.E.M.  n= 1000 

nuclei, in triplicate. 

 

 

  

Fig 4.2 Representation of pattern population distribution for H3K27me3 modifications across 

three age groups, juvenile (4 weeks), Adult (3 months) and Aged (12 months) in one of two 

conditions A) Control and B) Heat Shocked.  * denote patterns that exhibit statistically 

significant change in distribution, p-value <0.05, error bars = S.E.M.  n= 1000 nuclei, in 

triplicate. 
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Fig 4.3 Representation of pattern population distribution for H3K79me3 modifications across 

three age groups, juvenile (4 weeks), Adult (3 months) and Aged (12 months) in one of two 

conditions A) Control and B) Heat Shocked.  * denote patterns that exhibit statistically 

significant change in distribution, p-value <0.05, error bars = ± S.E.M.  n= 1000 nuclei, in 

triplicate. 
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Fig 4.4 Representation of pattern population distribution for H4K20me3 modifications across 

three age groups, juvenile (4 weeks), Adult (3 months) and Aged (12 months) in one of two 

conditions A) Control and B) Heat Shocked.  * denote patterns that exhibit statistically 

significant change in distribution when comparing either adult or aged cohorts to juvenile 

cohort, p-value <0.05, error bars = S.E.M.  n= 1000 nuclei, in triplicate 

 

After scoring the patterns of histone modifications the most noticeable alteration due to age 

in the snails are an increased number of patterns being exhibited that were not seen in the 

juvenile cohort.  H3K27me3 has started to exhibit speckles, H3K79me3 show a directional 

pattern and H4K20me3 demonstrate both peripheral foci and directional patterns.  Yet a key 

difference between juvenile and aged snails is most obvious in H3K27me3 patterning.  The 

speckled patterning which H3K27me3 juveniles did not exhibit is now quite abundant, making 

up 16% of all observed patterns in the control.  Considering the low abundance of the new 
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patterning in the H3K79me3 and H4K20me3 cohorts it would seem unlikely that this could be 

merely a result of damaged or mutated cells.  This was further supported when comparing 

the speckles patterning in the other two modifications with H3K79me3 and H4k20me3 

displayed a 4% and 8% increase, respectively.  Similarly when comparing all three 

modifications to one another the percentage of speckles patterning in each is quite similar to 

one another ranging from 14-16% in the controls and 24-30% in the heat shocked snails.  

Furthermore, all of the patterns showed the same increase in speckle staining after heat 

shock, even if previously there had been a decrease in speckle staining as with H4K20me3.  

When comparing the aged cohort to the juvenile cohort this change in speckled staining 

proved to be statistically significant in all but the H3K79me3 controls.  Similarly reductions in 

the punctate staining were also significant in all but the H3K79me3 controls indicating that 

the majority of this change is likely a shift from punctate staining to speckle staining. 

 

4.3.2 Alteration in gene positioning 

 

The hsp70 gene loci positions for the BB02 wild type susceptible strain of B. glabrata has 

been previously established to be internally positioned and shifts to an intermediate position 

following either heat shock (Arican-Goktas, 2013) or infection by Schistosoma mansoni [Fig 

3.10].  Previous work performed in the Bridger lab also indicates that human cells passaged 

into senescence will undergo significant chromosomal rearrangements upon becoming 

senescent (Mehta, I. S. et al., 2007; Bridger, J. M., Boyle, Kill and Bickmore, 2000) and once 

this occurs no further rearrangement of genes or chromosomes are possible.  To establish 

B. glabrata as a model for in vivo genome organisation changes associated with ageing the 

ground work required at least one known gene which could be reliably induced to move.  In 

this respect there is the hsp70 loci that has been induced to move via heat shock (Arican-

Goktas, 2013) and infection by S. mansoni [Chapter 3].  Knowing the canonical position for 

the BB02 susceptible strain to be internally positioned it needed to be established what the 

position was for the aged cohort Figure 4.5 demonstrates where the canonical hsp70 gene 

loci position is in the aged snail cohort as well as the position of the gene loci following either 

heat shock or S. mansoni infection, these were compared to the previously established 

positions. 
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Fig 4.5  The comparative gene position of the hsp70 loci in aged (12 month old) snails, 

comparing control to heat shock and S. mansoni infection both known induces of hsp70 

gene loci movement.  There is no statistically significant change in comparative gene 

position post heat shock or S. mansoni infection.  n ≥ 50 nuclei, in triplicate. 

 

As can be seen in Fig 4.3 the hsp70 gene loci for the aged cohort is located at the periphery 

of nuclei showing a marked difference from the canonical position of the juvenile BB02 strain 

which is located at an internal position.  Similarly unlike with the juvenile cohort where both 

heat shock and S. mansoni infection are capable of inducing gene movement we can see 

there is no statistically significant change in gene positioning, using a two-tailed student T-

test assuming equal variances, between the three groups indicating that either the gene 

cannot be moved or does not need to be moved.  However, taking into account what is 

known about human senescent cells in culture it would not be unreasonable to suggest that 

after this observeable gene rearrangement that it is not possible to move the genes.  This 

replicates what is seen in vitro in human fibroblasts in an in vivo model. 
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4.3.3 Nuclear Myosin 1β 

 

Nuclear myosin 1β (NM1β) is a target of 2,3-butanedione monoxime (BDM) previously used 

to prevent gene movement in vitro in the Bridger lab, although as a reversible drug the 

effects are not long lasting enough to prevent infection as borne out during the BDM drug 

trial (Chaper 3).  However, previous work has shown that in human cells passaged into 

senescence that NM1β is affected in ageing cells.  Combine this with the changes seen in 

epigenetic response which could potentially be linked to chromatin mobility the distribution of 

NM1β was investigated in both the juvenile and aged snails.  Four patterns of NM1β 

distribution were identified as shown in Fig 4.6, however though similar patterns were seen 

in both the juvenile and aged cohorts the intensity of staining was significantly different with 

the foci seen in both peripheral foci and speckles patterning being lower in number in the 

aged cohort and the punctate patterning in the aged cohort appearing to be almost negative 

in the majority of cases. 
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Fig 4.6 Representative images of patterns seen with NM1β antibody staining.  A) Peripheral 

Foci, larger distinct foci that are positioned towards the periphery of nuclei B) Speckles, large 
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distinct foci distributed throughout nuclei C) Large Regions, concentrated asymetrical 

staining of different areas of nuclei D) Punctate, fine small foci evenly distributed throughout 

the nuclei  

 

 

Fig 4.7 Representative images exhibiting the difference between speckles in the juvenile 

and aged cohorts taken at 0.1 shutter speed and 1 gain for DAPI and 0.5 shutter speed 5 

gain for the mysoin image.  A) Juvenile snail nuclei speckle patten showing multiple large 

distinct foci.  B) Aged snail nuclei speckle pattern showing fewer foci that appear duller in 

comparison to juvenile snail nuclei 

 

The overall pattern distribtuion does seem to change significantly when comparing the 

juvenile to the aged snail as shown in Fig 4.8.  This alteration could be indicative of a decline 

in NM1β present in the senescent cells which, if this is indeed part of a nuclear motor meant 

to facilitate chromatin mobility this could explain the apparent absence of such mobility in the 

aged cohort.  Further study is certainly warranted in this investigation especially since 

previous work shows NM1β disruption in in vitro scenescent cells. 
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Fig 4.8 Comparison of NM1β pattern distribution between juvenile (n1= 309, n2= 285 and n3= 

302 nuclei) and aged (n1= 367, n2= 361 and n3= 355 nuclei) snail cohorts.  * denote patterns 

that exhibit statistically significant change in distribution p-value <0.05, error bars = S.E.M. 

 

4.3.4 Infecting Aged Snails 

Snail susceptibility to infection has been shown to be affected by the age of the snail with 

young adult snails exhibiting greater resistance to infection this however reverts with old age  

(Richards and Minchella, 1987; Richards 1977).  It has also been demonstrated that snail 

size can affect snail suceptibilty to infection, with larger snails being less suceptible 

(Niemann and Lewis, 1990).  The previous work by Richard C. S. and Minchella (1987) 

observed snails up to 9 months which had become suceptible once more in a strain with 

variable adult suceptibility.  It was ascertained in the BB02 strain that gene positioning in 9 

month old snails differs from that of the aged (12 month) cohorts, this is shown in figure 4.9 

which demonstrates an intermediate gene position in control snails, this differs from both 

juvenile, which is internal, and aged, which is peripheral.  Consequently this work was the 

first time that the suceptibility of such old snails had been investigated and was using the 

BB02 snail strain to compare survival and resistance between juvenile and aged snails.  

Normally infections are done with juvenile BB02 snails to ensure an infection rate of ≥95% 

this drops as the snails become young adults.  Now with the aged snails there are three 

possible outcomes, further increased resistance with age, same susceptibility as seen in 

adult snails or increased susceptibility to infection reverting to back to juvenile suceptibility.  

The main factor of consideration here is the advanced age of the snail although true that 
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young adult snails have an increased resistance over juvenile snails the exact mechanisms 

are not well understood in susceptibly strains.  It could be a function of sheer size which the 

aged snail certainly has over normal adults.  However, with age comes a reduction in 

function in many key areas including immunoresponce which could mean that the age snail 

exhibits an increase in suceptible in comparison to younger adult snails.  Conversely it has 

also shown that gene movement is not induced in the aged snail so dependent on how 

critical this is to infection this could also affect the chances of infection.  Fig 4.10 shows the 

comparative survival and resistance rates of the two groups of snails while Fig 4.11 shows 

the average cercarial shed from aged snails. 

 

 

Fig 4.9 Relative gene position of the hsp70 loci in BB02 strain Biomphalaria glabrata of 

differing ages, 1 month, 9 month and 12 month. * indicate the shells that show statistically 

significant with a p-value < 0.05. error bars = S.E.M.  n ≥ 50 nuclei images for each age 

group. 
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Fig 4.10 Comparison of control and remodelin treated snails’ survival and resistance in two 

age groups over six weeks.  A) Aged snails’ (ncontrol= 5 snails, nRemodlein= 5) survival and 

resistance B) Juvenile snails’ (ncontrol= 6 snails, nRemodlein= 7) survival and resistance. 

 

The aged snails did not survive long following infection by S. mansoni in either group.  

Similarly there seemed to be no change in resistance to infection compared to juveniles.  

The single non-shedding snail present in the control group at week 4 had died by week 5 so 
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it is uncertain whether it had resisted infection or simply was too weak to allow the 

maintenance of an infection to the point where viable cercariae were shed.  The treatment 

with remodelin was initially to see if it could reduce the susceptibility of the aged snails as 

has been shown with HAT inhibitors in the event that the aged snails still exhibited the 

increase resistance shown in adult snails.  It is unclear whether this ultimately affected the 

snails although the remodelin treated snails did survive infection better, with 40% surviving 

until the 5th week when all of the controls had perished there is also the fact that 100% of the 

snails exhibited active infection at the 4th week.  Remodelin also potentially affected the 

development of the S. mansoni infection as the treated snails seemed to shed significantly 

more cercariae than the control group [Fig 4.11].  When comparing the juvenile survival and 

resistance rates to those of the aged snails there was also no significant difference 

discernible between the two groups, either with or without treatment. 

 

  

Fig 4.11 The average cercariae shed from each group during a 1 hour window once a week 

 

The average cercarial shed numbers as shown in Fig 4.11 shows quite a dramatic two-fold 

difference in the average number of parasites shed on the 4th week.  However, due to a wide 

variance in numbers of both groups this caused an overlap that could not be seen as 

statistically significant.  However, it can be concluded that although mature snails are harder 

to infect this gain in resistance is something that diminishes as the snail grows older 

meaning that the parasite would have two periods where it could potentially infect the snail 

easily as indicated in previous work (Richards and Minchella, 1987; Richards 1977) and 

potential loss of chromobility at extreme age investigated does not impact on infection of 
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aged snails.  This could also indicate that B. glabrata could be of use in studying the decline 

of innate immunity with age if it can be demonstrated that it is in fact a decline in their 

immune system that precipitates their increased susceptibility to infection in the aged cohort.  

Remodelin in the aged cohort exhibited no increase in cercarial numbers or earlier shedding 

that it has done in juveniles.  Remodelin was originally developed as a medication for 

alleviating the symptoms of a partial progeroid syndrome Hutchinson-Guilford Progeria 

Syndrome (HGPS) and although only slightly and not of significance in this trial the aged 

snails treated with remodelin did have slightly better survival than the control in the aged 

cohorts. 

 

4.3.5 Polyploidy Increases with Age 

Another hallmark of ageing is an increased number of dysfunctional cells, normally these like 

senescent cells can be cleared by the immune system however, just as with senescent cells 

as the immune system decline they can start to accumulate in the body.  Some of these 

dysfunctional cells could potentially become benign growths or cancerous.  Defining such 

cells within a model organism would require significant investigation.  Here is started a basic 

investigation into the ovotestes of the snail looking at an obvious marker for cellular 

dysfunction, the accumulation of aneuploidy.  A cell will develop aneuploidy when it is unable 

to enter mitosis and divide properly, normally such cells would stop replicating their DNA and 

enter a senescent state however, with mutations this control can be bypassed and cells can 

continue to erroneously duplicate the DNA growing larger and causing issues for the cells 

around it as it disrupts the microenvironment, can no longer assist in proliferative repair of 

the organ and potentially has reduced to no function further compromising the tissue.  As the 

tissue examined in this instance is derived from a cell pool taken from the ovotestis the 

accumulated aneuploidies could be from several potential processes either linking to cancer 

or fertility issues with age as cells could be of either somatic or germline origin. 
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Fig 4.12 This demonstrates the percentage of different ploidy states found in tissues from 

control juveniles (n1= 93, n2= 127 and n3= 154 nuclei scored) and aged (n1= 148, n2= 147 

and n3= 170 nuclei scored) cohorts during FISH experimentation comprising at least 300 

images taken and assessed after haploid and null images had been removed from each set 

pooled from 3 biological replicates each.  * denotes statistically significant change in number 

of a ploidy state between juvenile and aged p-value <0.05, error bars = S.E.M.  

 

 

Fig 4.13 Representative FISH images of nuclei exhibiting the hsp70 loci (green), A) Diploid 

nuclei showing two loci, B) Tetraploid nuclei with four loci and C) Polyploid nuclei with 

greater than 5 loci, in this example potentially up to thirteen loci are present in a single 

nuclei. 
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As can be seen in Fig 4.12 the vast majority of cells still maintain their diploid state with a 

smaller percentage exhibiting tri- or tetraploid which are likely preparing for mitosis.  It is also 

possible that some of these numbers could be made up of dysfunctional germline cells that 

have not split properly but at this point that would be hard to verify however it does clearly 

demonstrate that cellular dysfunction is limited within the juvenile cohort.  In comparison the 

aged cohort shows no statistically significant difference in either the potentially normal states 

categorised above.  However, when comparing the obviously dysfunctional cells, those with 

severe polyploidy of 5 or greater copies of the hsp70 gene, as demonstrated in Fig 4.13C, 

there is a statistically significant increase in the number of cells that exhibit this 

characteristic.  Now since the ovotestis is the tissue used for these tests this may simply a 

function of decreasing fertility as a result of malfunctioning germline division rather than 

tumorigenic in nature but, it does open the door for B. glabrata to be used for future 

investigations for either the potential effects of ageing on fertility, on tumorigenesis or both. 

 

4.4 Discussion 

 

The objective of these experiments was to ascertain if B. glabrata was potentially a viable 

model for the study of genome organisation in the field of ageing.  It began with investigating 

whether global epigenetic changes, via chromatin modifications, which could be indicative of 

altered genome organisation could be identified between a juvenile and aged cohort.  From 

previous work in the field of ageing in mammalian models it is known that H3K27me3 (Ma et 

al., 2018; Dou et al., 2017) and H4K20me3
 (Nelson, et al, 2016) are affected as organisms 

age and H3K79me3 from previous work in the adult snail was known to be relatively 

unaffected by stress such as heat shock or cold shock while being affected by infection 

making it a relatively stable marker for assessment of age related stress.  Initial investigation 

revealed that all three showed some level of aberrant staining with patterns that were not 

present in the juvenile cohort appearing in the aged cohort.  This in itself was not 

unexpected.  As an organism ages systems breakdown and become more error prone which 

could easily allow for a small number of aberrant patterns to appear in aged tissue.  The 

numbers seen in H3K79me3 and H4K20me3, aside from the appearance of new abberant 

patterns, initially seemed to follow a similar distribution to that seen in the juvenile cohort.  

H3K27me3 highlighted the biggest difference in age as it also showed a new pattern.  

However, this could not be accounted for by aberrant patterning due to a few dysfunctional 

cells as it made up a significant proportion of the patterns in the aged cohort.  Then on closer 

inspection of the aged cohorts for H3K79me3 and H4K20me3 the same change in patterning 
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was observable, although both had previously had the speckled pattern it now made up a 

greater proportion of the population, significantly so in all but one case.  Also when 

comparing the three histone modifications to one another the speckled pattern made up a 

similar percentage of the aged cohort in both control and heat shocked samples with the 

same increase seen in speckle patterning after stress.  This indicated that there was a 

greater mechanism at play that was exhibiting decreased functionality that could potentially 

be affecting genome organisation as a whole. 

 

The increased population of speckled patterning within aged cohort snails for multiple 

histone modifications could indicate that although histone modifications were occurring in 

specific nuclear areas the indicated change to chromatin organisation they would normally 

elicit was being inhibited.  This was further supported by the increase in speckled patterning 

exhibited after heat shock.  This inhibition of chromatin reorganisation but not histone 

modifications is indicative of an inhibitory factor related to active transport of chromatin within 

nuclei.  This meant that potentially the modificantion was being made to the histones but 

what would then read it or was responsible for causing the movement was either no longer 

active or losing functionality.  This would be likely indicate a disruption of the nuclear motor 

as as such inhibition of movement has been observed when nuclear myosin is disrupted 

(Kulashreshtha, et al 2016). 

 

To test this hypothesis FISH and gene location was used to compare the gene signals 

position of the aged cohort to what had originally been established in juveniles.  This 

indicated that a major change had occurred in genome organisation between the juvenile 

and aged cohort.  As the gene positioning had migrated from an internal position to a 

peripheral position with significantly more gene signal now being located at or near the 

nuclear membrane.  This is similar to what is seen in senescent human cells in vitro as 

significant genome reorganisation occurs in the transition from proliferative to senescent 

(Bridger et al, 2000).  The aged cohorts were exposed to stressors capable of eliciting gene 

movement in juvenile snails, heat shock and S. mansoni infection, however exposure to 

such stress did not elicit gene movement in the aged cohort.  This means that either the 

gene does not need to be moved or cannot be moved to induce an infection.  In this instance 

it would be slightly more prudent perhaps to say the gene could not be relocated, this is 

because with the histone modification there has already been demonstrated there are 

potential inhibitory effects of ageing in regards to chromatin organisation.  It has also been 
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demonstrated that after senescense induced genome reorganisation in human cells in vitro 

that further gene movement is not possible (Bridger unpublished data) 

 

Having confirmed both a change to the epigenetic markers and chromobility the next step 

was to see if there are other changes associated with senescence in vitro that are replicated 

in vivo in the aged B. glabrata cohort.  Another known altered factor within the senescent 

cells is NM1β (Mehta, et al, 2010) which our lab hypothesise may form part of an actin-

myosin nuclear motor within the nucleus, responsible for rapid genome reorganisation.  The 

initial testing for this has shown that there is potentially a difference in pattern distribution, 

with the more common peripheral foci distribution shifting to a more punctate distribution 

however, it should be noted here that the punctate distribution observed in the aged cohort 

exhibited significant reduction in fluorescence appearing dull to the point where nuclei could 

be mistaken for being negative at first glance.  This was also the case with the peripheral 

foci in the aged cohort where brightness and number of foci are both diminished although 

not to the extent seen in the majority of the punctate patterned nuclei.  This could be an 

indication of decreased levels of NM1β being present in the cells or being present in a more 

inactive state.  If this is the case it would make sense of what is observed in the histone 

modifications as the number of nuclei that show the speckle staining after heat shock is in 

the region of 24-30% and the number of punctate cells that appeared nearly negative is 

32%.  Considering after a global stress response like that caused by heat shock one would 

expect all the nuclei with limited functionality to be highlighted as such it is interesting that 

the percentages here are so similar.  Although, not conclusive, it is supportive of the idea 

that NM1β may play a role in genome reorganisation, especially when added to this is 

evidence that inhibition of nuclear myosins in general can prevent gene movement from 

occurring when inhibition is in effect (Mehta et al, 2010, Kulashreshtha, et al 2016) 

 

Considering gene movement did not seem to be inducible in the aged cohort it seemed 

reasonable to see if they could be infected by S. mansoni as previous attempts to inhibit 

gene movement by use of a myosin inhibitor proved inconclusive due to the reversible 

nature of the drug this would not be an issue in the aged cohort.  Alongside this fact is that it 

is widely accepted in the literature that it is more difficult to successfully infect adult snails as 

they exhibit increased resistance but resistance would wane with greater age (Richards and 

Minchella, 1987; Richards 1977).  The aged cohort is significantly older than snails generally 

used in experimentation so it would be interesting to see if this increased resistance 

persisted.  Half the aged cohort was also treated with remodelin, a HAT inhibitor, that as 
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shown in chapter 3 generally reduces resistance to infection either resulting in earlier 

maturation of the parasite in the snail with concomitant earlier shedding or increased 

average shed numbers.  Remodelin is also used as a potential treatment for Hutchinson-

Gilford Progeria Syndrome (HGPS) which is a partial progeriod syndrome in that it mimics 

several, but not all, the symptoms of advanced ageing so it would be interesting to see how 

this affected the aged cohort.  As shown, all but one of the snails shed before they died and 

that one exception died early in the experiment so may not have been resistant, however the 

remodelin snails demonstrated better survival with one of the snails surviving to 6 weeks 

post infection and exhibited generally better survivability but not significantly so.  This did 

show however, that the aged cohort was just as susceptible to infection as the juvenile 

cohort.  Now whether this is a function of a decline in their immune response or whether 

gene movement in general is not as important a factor for progression of infection is unclear.  

Until further tests can be done in juvenile which actively inhibit NM1β only and see if that 

confers any resistance or a similar drug that puts a halt to gene movement, it does however 

open up the possibility of studying decline in innate immune response as a consequence of 

ageing if this can be shown to be the cause for this return of susceptibility in the aged cohort. 

 

In developing this as a potential ageing model for genome organisation the next area to look 

at was general chromatin stability which was gauged by the accumulation of aneuploidy 

exhibiting nuclei.  This showed a significant increase in the percentage of nuclei that had 

more copies of the hsp70 gene loci than would appear in normal healthy cells.  This 

accumulation of aneuploidy containing cells could be indicative of any number of factors 

from increased number of senescent cells which have become senescent due to potential for 

cancerous growth, to actual tumour growth or a function of decreasing fertility within the 

aged cohort.  Any of these factors however show that B. glabrata could be promising for 

investigating ageing related accumulation of dysfunctional cells in relation to genome 

organisation. 

 

It has been demonstrated that old snails exhibit an altered genome organisation, that 

changes with age with juvenile, 9 month and aged (12 month) snails all having different 

canonical positioning of hsp70 loci.  That in the aged snail there is a change in NM1β 

distribution with a potential decrease in protein expression, when comparing juvenile to aged 

snail nuclei.  As well as an inability for known inducers of gene repositioning, heat shock and 

S. mansoni infection, to induce such gene repositioning in aged snails.  These in vivo 

changes mimic those seen in vitro in human cells passaged into senescence (Bridger 
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unpublished data).  With all these factors combined with the ease of husbandry and drug 

treatment, relatively short life span, similarity to human genome organisation and reduced 

ethical consideration allowing the B. glabrata model to come under Replacement for the 

NC3R’s initiatives.  Therefore, for the purposes of genome organisation relating to age B. 

glabrata will make an exemplary model with the potential to expand research into other age 

related disciplines of study. 
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Chapter 5: Discussion 
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5.1 Discussion 

 

Schistosomiasis is a neglected tropical disease that is endemic throughout the tropics and 

sub-tropics with an estimated 250 million individuals infected and further 750 million living in 

endemic areas (Walz et al., 2015; Colley et al., 2014; Vos et al., 2012).  With population 

growth and raising global temperatures it would not be surprising for these numbers to 

continue to rise as there is currently no effective measure to eradicate this debilitating 

disease.  Treatment is currently dependant on a single drug, praziquantel, however, there 

have been sporadic instances in the wild (Botros et al., 2005), and lab induced (Giboda and 

Smith, 1997; Fallon et al., 1996), of resistance.  Attempts at developing a vaccine to the 

parasite are ongoing but, are progressing slowly due to limited success in stimulating the 

adaptive cellular immune response that is crucial for parasite clearance alongside the more 

typical humoral response.  To this end it would be beneficial to develop a greater 

understanding of the mechanisms of infection used by the parasite to infect its host and in 

investigating this a potential new way to interrupt the progression of S. mansoni life cycle 

has been discovered.  Sodium butyrate, a class I HDAC inhibitor currently available as a 

supplement, has exhibited the ability to confer greater resistance to exposed snails.   

 

5.1.1 Drug inhibition of infection 

 

Histone acetylation modifications tend to be quicker to change, with higher turnovers 

(Waterborg, 2002), although some acetyl sites have been shown to be more stable (Zheng, 

Thomas and Kelleher, 2013).  Therefore histone acetylation are potential targets for the early 

changes seen in the host resulting in movement of genes within 15 minutes of infection 

(Arican-Goktas et al., 2014).  As such drugs that interfere with histone acetylation, HAT and 

HDAC inhibitors, were a viable target to try and affect the early changes during infection.  

Because of this 3 drugs targeting histone acetylation, two HAT inhibitors and one HDAC 

class 1 inhibitor, sodium butyrate, were used.  These established a clear role for histone 

acetylation in S. mansoni infection of B. glabrata.  Although the effects of the two HAT 

inhibitors were less pronounced resulting in earlier shedding and / or occasionally greater 

cercariae numbers in early weeks than controls.  This highlighted the effects of the HDAC 

which resulted in 100% resistance in snails that survived the trial.  While the survival rate 

from sodium butyrate exposure was comparatively poor the results were clear.  Although not 

the first drug to inhibit infection in B.glabrata discovered as other compounds, like the 
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HSP90 inhibitor geldanamycin has previously been shown confer resistance in the snail 

(Ittiprasert and Knight, 2012). 

 

One advantage however, is that sodium butyrate is currently sold as supplement so could be 

made comparatively cheap. Therefore if the effects seen in vivo in B. glabrata could be 

repeated in vitro in human cell and cercariae co-cultures it would be easier to set up trials.  

In fact sodium butyrate has already be tested as an adjunct therapy for othe infectious 

diseases (Raqib et al, 2012).  This means that it could also be used as potential treatment 

on its own or alongside praziquantel or if not effective in humans used alongside or in 

replacement of molluscides like Euphorbia milii latex (Augusto et al, 2017).  Sodium butyrate 

is water soluble meaning it may be possible to use it to treat water systems if the minimum 

effect dose is researched and found to be viable.  If the environmental impact of adding it to 

the water could also be examined it may prove to be effective at limiting the spread of 

schistosomiasis without impacting on the ecology of the snails.  Furthermore even if it is not 

viable as a treatment option it has narrowed down important changes that are required by S. 

mansoni and could help narrow research for vaccine development.  This would be via 

helping narrow the targets for development to the component or components of the ESPs 

which are demonstrated to affect acetylation in the host. 

 

5.1.2 Establishing an ageing model 

 

With the effect which HDAC and HAT inhibitors have when the host is treated it is evident 

that S. mansoni caused alterations to the epigenetics of its host B. glabrata.  This is 

congruent with changes to genome organisations described in snails susceptible to infection 

where the movement of certain gene loci are observed.  It has also been observed that with 

snail strains vulnerable to infection there can be varying levels of susceptibility throughout 

their lifespan with juvenile and old snails generally being more susceptible than egg laying 

adults (Richards and Minchella, 1987; Richards 1977).  This could indicate alterations to 

genome plasticity or organisation between juvenile and adult and old snails that impacted 

susceptibility.  This indicated that there were possibly alterations occurring to the epigenome 

of the snail as it developed which hampered the action of the parasite to control its host. 
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The genome organisation of the interphase nuclei of B. glabrata is similar to that of human 

nuclei and in vitro experiments on senescent cells had demonstrated that the ability to move 

genes or chromosomes in the interphase nuclei is lost (Bridger, unpublished data).  Since 

gene movement (Arican-Goktas et al, 2014) and alteration to genome organisation 

(Odoemelam, 2009) is affected by the parasite the effects of age on genome plasticity in the 

snail were investigated.  These experiments on 12 month old snails exhibited remarkable 

similarity to what is seen in in vitro human senescent cells.  Gene position was significantly 

altered and the gene did not move when exposed to either heat shock or parasite infection.  

With this it was demonstrated that B. glabrata was a viable model for investigating the 

effects of ageing in a living organism with similar genome organisation to that of human 

nuclei.  It also demonstrated that gene movement in these older snails did not occur.  

However, the aged snails did not prove any more difficult to infect than the juvenile usually 

used with all infected aged snails exhibiting active shedding.   

 

Unfortunately the cessation of gene movement in the aged cohort did not prove enough to 

provide resistance to infection.  However, as with all aged creatures there may be other 

factors involved that could render them more susceptible to infection.  It was demonstrated 

that the aged snails had significantly more nuclei exhibiting hsp70 aneuploidy than juvenile 

snails which would point to a loss of regulation and clearance of such cells which could be 

due to a declining immune system.  This could indicate that although gene movement cannot 

occur in the weakened state of the aged snail it simply is not necessary for parasite infection.  

Other attempts at preventing gene movement using BDM proved inconclusive as the drug 

was reversible within a relatively short time frame and gene movements were merely 

delayed rather than completely prevented.  The target in this case were the nuclear myosins, 

for their role in genome plasticity to be fully explored and importance of gene movement to 

S. mansoni infection it will be necessary to develop siRNA inhibitors specifically targeted 

against the nuclear myosins.  However, as with senescent human cells in vitro it was 

demonstrated that the nuclear myosin 1β showed altered pattern distributions in the aged 

snail cells further supporting the aged snail as a viable model for investigating ageing in vivo. 

 

5.1.3 Epigenetic modifications affected by stress 

 

Alterations in genome organisation, like those exhibited between juvenile, 9 month old and 

aged 12 month old snails are probably indicated for by shifts in long term epigenetic 
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modifications, which would suggest changes to histone or DNA methylation states.  

Experiments focused on changes brought about by heat stress in snails as this replicated 

the gene movement observed in infection.  This would allow for the assessment of any 

global changes in histone modification pattern distribution that could be detected due to age 

but also changes in stress response capabilities as an organism aged as well.  Modifications 

known to increase with age and gene silencing, H3K27me3 (Ma et al., 2018; Dou et al., 

2017, Wiles and Selker 2017) and H4K20me3 (Evertts et al., 2013) as well as a modification 

associated with gene activation (Nguyen and Zhang, 2011) and linked to S. mansoni 

infection H3K79me3 were selected. 

 

H3K27me3 showed significant changes as a result of heat shock only within the juvenile 

snail cohorts.  However, the marked reduction seen in H3K27me3 punctate staining in 

juveniles resulted in the juvenile punctate staining post heat shock decreasing to the level 

that was closer to both the adult (3 month) and aged (12 month) cohorts in either their 

unstressed or heat shocked state.  Although there is a significant difference between the 

aged heat shock and juvenile heat shock but not between heat shocked juvenile and adult or 

adult and aged cohorts.  The major difference in response to ageing and heat shock was 

seen in the distribution of the remaining patterns.  Peripheral staining increased in response 

to heat shock in both juvenile and adult, with adult snails exhibiting more peripheral 

patterning to begin with.  Whereas this peripheral stain has declined with age and in 

response to heat shock actually decreases further.  Directional patterning also increases 

after heat shock in juveniles although remains unaffected in both adult and aged cohorts the 

pattern distribution differs with adult cohorts having number similar to juvenile post heat 

shock in both controls and heat shock whereas aged cohorts controls and heat shock show 

patterning distribution to control juvenile.  The decrease in peripheral staining in the aged 

cohort could be a result of the formation of CCFs which are known to contain H3K27me3 

modified chromatin (Dou et al., 2017).  However, the most striking difference is in the 

appearance of a new pattern in the aged cohort, speckles. 

 

A similar shift was seen in both H3K79me3 and H4K20me3 with both exhibiting decreases in 

the more evenly distributed punctate pattern to more specialised patterns with age, although 

the changes in the H3K79me3 were only really evident in the aged cohort or after heat shock 

in adult or aged snails.  While H4K20me3 exhibited a shift in pattern distribution from juvenile 

to adult, the distribution did not significantly change for between adult and aged except for 

the appearance of new patterns.  Although fewer in number than those of the new pattern in 
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H3K27me3 aged samples, this could indicate a loss of regulatory control as histones are 

being modified which either should not be or genome plasticity has decreased not permitting 

the rearrangement to the correct patterns to occur.  Of interest is the H4K20me3 modification 

as not only does it show significant change from juvenile to adult but, after heat stress, aged 

cohorts exhibit the opposite response from juvenile and adult, with the aged cohort 

demonstrating increased speckle staining and juvenile and adult cohorts a decrease after 

stress.  In fact the change in speckle staining happened in all three modifications and 

exhibited similar percentage distribution in aged pre and post heat shock.  This likely 

supports a loss of genome plasticity as modifications were being made but redistribution 

wasn’t occurring, potentially as a result to a change to the NM1β distribution (Mehta et al 

2010). 

 

5.1.4 Epigenetics affected by infection 

 

Having shown significant changes to histone modification patterning throughout life 

comparisons were made to juveniles snails post infection to assess what changes the 

parasite induced.  H3K27me3 which had exhibited such significant changes with age showed 

comparatively little change between control and 2h post infection, the patterns mimicking 

closely that seen in heat shock.  H4K20me3 conversely showed a divergence from the 

juvenile heat shock model and instead mimicking the response to heat shock seen in the 

aged cohort study.  Although the increase in speckles was not significant for infection the 

decrease in peripheral was and though not as dramatic as that seen in heat shocked aged 

snails the general shift in patterning was the same. 

 

H3K79me3 was the most dramatic change as seen in chapter 2 the shift in patterning was 

unique to infection by the parasite and completely separate from that caused by heat shock 

model that replicated the loci movement.  As such this modification would be a focus for 

further study, however, optimising ChIP qPCR can be difficult in a new model organism and 

although histone modifications are quite well conserved throughout organisms there is no 

guarantee an antibody will work and if it does for IF and is certified ChIP ready there is no 

assurance that it will work for the ChIP application (Luu et al, 2011).  Similarly optimising 

ChIP qPCR requires knowing roughly where the histones may be found within the gene 

sequence to properly target the primers.  As such a method that would allow for better 

visualisation of the co-localisation of gene sequence and histone modification could act as 
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linking experiment between IF and ChIP qPCR.  For this the immuno-fibre-FISH on B. 

glabrata protocol was optimised.  With the goal of allowing better targeting of gene and 

histone modification associations and potentially allow for quantitative analysis of images in 

the case the antibodies for IF work but ChIP fails. 

 

With the optimised fibre-FISH protocol the screening of more histone modifications can be 

done to narrow down specific targets that may be associated with parasite induced gene 

movement.  These could also prove useful for not just understanding the movement induced 

due to parasite infection but, what modifications are involved in gene movement in general.  

From this understanding of what histone modifications are involved in signalling gene 

movement, or if specific codes of histones act as guiding coordinates to nuclear machinery 

that causes the rearrangement it may be possible to identify precisely what protein 

complexes are involved in rapid chromatin relocation.  Furthering our understanding of what 

is required to relocate genes within the interphase nuclei could potentially indicate what 

signalling pathways S. mansoni needs to activate to cause the desired result.  This would 

likely be a component of the ESPs the parasite releases upon infection of the host and may 

differ from that which causes change to the host acetylome.  Once that component has been 

isolated it may be possible to ascertain if the protein has the same effect in the human host it 

will offer yet another target for vaccine development. 

 

5.1.5 Further work 

 

Having established changes to the pattern of histone modifications occurred during infection 

and that inhibition of changes to the acetylome affected snail resistance to infection the next 

step would be to investigate similar inhibitors to epigenetic modifications.  Using the methods 

developed in chapter 3 for running drug trials within B. glabrata you could screen multiple 

histone modification inhibitors for their effectiveness against the parasite.  Although the key 

would be to ensure that the drug was affecting the host’s epigenome and not the parasite as 

EZH2 inhibitors have been shown to prevent the miracidia from being able to progress in 

their life cycle into sporocysts (Roquis et al, 2018).  However, a drug that would be of 

particular interest would be pinometostat as this would prevent alterations to the methylation 

state of H3K79 which was shown to be affected by parasite particularly dramatically and in a 

way that was not replicated by heat stress or ageing. 
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The effect of NM1β inhibition needs to be further explored.  The drug BDM had too many off 

target effects and ultimately due to its reversible nature did not inhibit the action of NM1β 

long enough to discover if this would have affected resistance to infection.  This was most 

obvious with the 0.1M concentration that caused the snail to be paralysed for 30 to 45 

minutes after exposure but regained movement within the hour.  Since BDM affects all 

myosins this could be used as a proxy for how long drug remained in effect.  Combine this 

with the gene loci position being different from both uninfected and untreated infected at 2h 

and there is no clear picture of what effect NM1β inhibition would have.  To further explore 

this the use of siRNA to targetedly inhibit NM1β in B. glabrata would be the most efficient 

method.  A protocol has previously been developed using PEI transfection that had been 

shown to be effective in B. glabrata (Knight et al, 2011b).  Using this method it should be 

possible to acertain whether NM1β is directly involved in gene relocation and if preventing its 

action can confer resistance to infection. 

 

Having developed the protocol for fibre-FISH the next step would be to establish if the hsp70 

loci in B. glabrata was associated with the H3K79me3 modification prior to and / or after 

infection.  Of the modifications investigated this is the only one that was uniquely linked to 

infection.  It has also been previously shown to be difficult to evaluate using ChIP (Barski et 

al., 2007, Steger et al., 2008) in human cells.  This combined with the potential issues using 

antibodies in a new model organism means that actually visualising the association in one 

state or another would be appropriate prior to taking the next step and using ChIP-qPCR to 

quantify the association.  Ultimately using this method will eliminate some of the 

troubleshooting involved in ChIP work looking at targeted gene sequences by at least 

confirming association.  

 

In relation to the aged snail model there are a couple of experiments that could improve the 

model itself.  These would include the development of chromosome paints and assessing 

chromosome territories to identify if it is single gene loci moving or whole chromosome as in 

the human cells in vitro (Mehta, 2010).  As for using the model, investigating alterations to 

gene position at more age points to assess if it is a gradual change with age for if there are 

milestones where the majority of these alterations occur would be interesting.  Simialrly 

investigating the effects of certain drug treatments such as resveralogues (Latorre, 2017) or 

the effect of periodic stressing such as heat shock or cold shock could afford new insights 

into what affects the ageing process and how it can be modulated. 
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5.1.6 Conclusion 

 

Within this thesis it has been demonstrated that the epigenome of the B. glabrata snail is 

significantly affected by S. mansoni infection, heat-shock and ageing.  As such I have even 

identified a specific marker, H3K79me3, which may be uniquely affected by S. mansoni 

during infection.  Tools have been developed to further elaborate how those changes relate 

to target genes that are known to move during infection, which can also aid in 

troubleshooting for ChIP and antibody issues.  Similarly it has been demonstrated that 

directly interfering with certain histone modification changes within the host can affect B. 

glabrata susceptibility to infection by S. mansoni.  That by modulating the hosts’ ability to 

either add or remove actyl groups to histones their susceptibility to infection either increases 

or decreases.  It has also been exhibited that although adult snails in the literature are more 

resistant to infection aged snails are no harder to infect than the sexually immature juveniles.  

However, in investigating this fact B. glabrata has come to the fore as a new model for 

investigating the effects of ageing in vivo in an organism with similar interphase chromatin 

organisation as humans. 

 

In closing, this research presents new tools for investigating the effects host:pathogen 

dynamic on chromatin organisation of the host.  Identifies modifications elicited in B. glabrata 

by S. mansoni to support its own survival.  Shows that by interfering with B. glabrata ability 

to modulate its chromatin organisation directly affects S. mansoni survival as it likely uses 

those same mechanisms to affect change for its own survival.  As well as establishes B. 

glabrata as a new model organism for investing the effects of ageing on chromatin 

organisation. 
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