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Abstract
The Green-Kubo (GK) method is widely used to calculate the transport coefficients of model liquids

by Molecular Dynamics (MD) simulation. A reformulation of GK was proposed in [D.M. Heyes, E.R.

Smith and D. Dini J. Chem. Phys., 150, 174504 (2019)] which expressed the shear viscosity in terms

of a probability distribution function (PDF) of ‘single trajectory viscosities’ (ST), called ‘viscuits’.

This approach is extended here to the bulk viscosity, thermal conductivity and diffusion coefficient.

The PDFs of the four ST expressed in terms of their standard deviations (calculated separately for the

positive and negative sides) are shown by MD to be statistically the same. This PDF can be represented

well by a sum of exponentials, and is independent of system size and state point in the equilibrium

fluid regime. The PDF is not well reproduced by a stochastic model. The PDF is statistically the

same as that derived from the potential energy, u, and other thermodynamic quantities, indicating

that the transport coefficients are determined quantitatively by and follow closely the time evolution

of the underlying energy landscape. The PDFs of out-of-equilibrium supercooled high density states

are quite different to those of the equilibrium states.
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I. INTRODUCTION

The rough potential energy surface or landscape (PEL) on which molecules in a liquid move

is composed of a wide range of near-harmonic valleys about which the molecules oscillate

separated by saddle points which allow for intervalley transitions involving local configurational

changes. This has been a longstanding interest in the role played by the PEL on viscous and

other transport coefficients.1 A number of phenomenological theories of self-diffusion and shear

viscosity of the liquid state are based on certain assumptions about the underlying PEL and its

time dependent evolution. These include, for example, Eyring’s thermally and stress activated

basin hopping shear thinning formula,2 and Zwanzig’s model of self-diffusion in which the

liquid is viewed to consist of regions of phase space in which the configuration oscillates before

it diffuses into another ‘cell’ through a saddle point.3,4 The related shoving,5,6 and asymmetry,7

models assume that the activation energy for a flow event is supplied by the reorganizational

release of the shear elastic energy arising from deformation of a group of molecules by an

applied shear field. More specific descriptions of the evolution of the system through its energy

landscape are provided by Stillinger’s inherent structures approach,8 involving a quench to the

nearest PEL basin, which has been used to describe supercooled liquids and glassy systems,9,10.

The Instantaneous Normal Modes (INM) approach.11–15 without quenching characterizes the

states explored at the given temperature. These latter theories are based on the assumption

that liquid molecular dynamics can be formulated in terms of collective variables analogous

to the phonons used to describe solids. Molecular Dynamics (MD) computer simulation has

played an invaluable role in testing these approximate theories. The Soft Glassy Rheology or

SGR trap model of soft materials,16–18 builds on these mean field liquid state models on taking

the zero temperature limit.
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The connections between the potential energy landscape and its time dependence, and

the processes that lead to the values of the transport coefficients of liquids are still not

well established at a qualitative and quantitative level. MD is suited to investigate these

connections, which is the subject of this work.

There are two formally equivalent equilibrium MD methods for determining the transport

coefficients (TC) of model liquids. These are the Green-Kubo (GK) time correlation function

approach and the Einstein-Kubo-Helfand (EKH) equations.19–22 Another, ‘hybrid’ route

which shares features of both approaches was discussed by Erpenbeck (see Eq. (11) in

Ref. 19). This third method has not been extensively employed in the literature, but as

will be seen in Sec. II.A has particular relevance to this work’s methodology. The hybrid

method can be rewritten in terms of ‘single trajectory’ (ST) ‘events’ whose combined ef-

fect gives the transport coefficient. Stillinger and Debenedetti pioneered this approach to

analyse in more detail the dynamical processes underpinning the self-diffusion coefficient

and shear viscosity.23,24 The application of this approach in this work is focused on the

transport coefficients themselves. This formulation was initiated for the shear viscosity, ηs,

in Ref. 25, in which the ST event was referred to as a ‘viscuit’, ηs,u to emphasize its role

as a building block, which when summed gives the viscosity. The shear viscosity is the

first moment of the viscuit PDF. Unlike the viscosity itself, ηs,u, can be negative which

indicates entropy decrease during these trajectories on the application of a small shear rate

(see pages 297-299 in Ref.26). The PDF of ηs,u for long times has a large negative stress

region, but its first moment is positive as it must be to give a positive viscosity for the system.25

The advantage of the ST approach is that the viscuit is a fundamental quantity which

provides additional information on the dynamical events that when added up give the
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magnitude of the transport coefficient. In this work the ST PDF analysis is extended to

the bulk viscosity, thermal conductivity and self-diffusion for a range of equilibrium and

out-of-equilibrium Lennard-Jones (LJ) state points. The analytic form of the PDFs and

their sensitivity to system parameters are examined. The relationship between the trans-

port coefficient PDFs and those characterizing the potential energy landscape are also explored.

In Sec. II.A the key equations of the ST approach are derived from the Green-Kubo method

(GK) for the shear viscosity. Extensions to other transport coefficients are made in Sec. II.B.

Computational details of the MD simulations are given in Sec. II.C and simulation results of

the ST properties are presented in Sec. III. A summary of the conclusions of this work is made

in Sec. IV.
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II. THEORY AND COMPUTATIONAL DETAILS

In this section the equations used to compute the ST-related quantities and computational

details are given.

A. Shear viscosity

The Green-Kubo (GK) method for calculating the shear viscosity is,26

ηs,GK(t) =
V

kBT

∫ t

0

< Pyz(0)Pyz(x) > dx, ηs = lim
t→∞

ηs,GK(t), (1)

where < Pyz(0)Pyz(x) > is the shear stress autocorrelation function, and the time origin is

defined to be at x = 0. The shear viscosity, ηs, is determined in Eq. (1) from one of the

off-diagonal elements of the pressure tensor, and the element, Pyz is chosen for clarity. For a

monatomic fluid,

Pyz =
1

V

(

N
∑

i=1

[mivyivzi −
1

2

N
∑

j 6=i

ry,ij
rz,ij
rij

φ′(rij)]

)

, (2)

where N is the number of molecules in volume V (i .e., the volume of the simulation cell here),

vαi is the α component of the velocity of molecule, i, or vi, and rα,ij is the α component of the

pair separation vector between molecules i and j. The first derivative of the pair potential,

φ(r), with respect to r is denoted by φ′. The shear viscosity, ηs, is the large t limit of the ‘time

dependent viscosity’, ηs(t) as defined in Eq. (1).

The GK formula in Eq. (1) can be transformed into the ST form by reversing the order of the

integral and the time origin average, < · · · >, in Eq. (2),

ηs,ST (t) = <
V

kBT

∫ t

0

Pyz(0)Pyz(x)dx >,

= < ηs,u(t) >, where

ηs,u(t) =
V

kBT

∫ t

0

Pyz(0)Pyz(x)dx
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=
V

kBT
Pyz(0)

∫ t

0

Pyz(x)dx

ηs,ST (t) =

∫ ∞

−∞

dηs,u(t) ηs,u(t) Pηs(ηs,u(t)),

ηs = lim
t→∞

ηs,ST (t), (3)

where Pηs(ηs,u(t)) is the probability distribution function of the single trajectory viscosity or

ST, ηs,u(t). In the penultimate line of Eq. (3) the time dependent viscosity is written as the

first moment of the viscuit PDF. The ηs,u(t) involves an integral up to time t, and is defined

starting from the value of the pressure tensor at a single specific time (‘time origin’) during

the simulation i .e., Pyz(0). There is a different PDF for each value of t, but the PDF will

converge to a limiting form for large t. In practice the influence of the intital stress dies away

rather quickly for liquids at equilibrium, typically lasting only for a few Maxwell relaxation

times, τM = ηs/G∞. The quantities defined in Eq. (3) can be obtained from equilibrium MD

simulations. The ηs,u(t) is basically the hybrid method,19 applied on an individual trajectory

basis. This computation adds little to the simulation computational time as the viscuits are

already calculated in the GK procedure, so both approaches can be carried out simultaneously.

B. Other transport coefficients

The same reformulation of the GK formulas can be made for the other transport coefficients.

Bulk viscosity

The analogous treatment for the bulk viscosity,27–30 is as follows. The instantaneous value of

the pressure, P (t), is

P =
1

3V

(

N
∑

i=1

[miv
2
i −

1

2

N
∑

j 6=i

rijφ
′(rij)]

)

, (4)
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using the virial formula. The deviatoric pressure in a constant N ensemble is,28

δP (t) = P (t)− P − 1

V
{
(

∂P

∂e

)

ρ

[E(t)−E]}. (5)

where e is the internal energy per unit volume.30 The time averages of the total energy and

pressure are E and P , respectively. The simulations of the bulk viscosity need to be carried

out in the NVE ensemble for the final term in Eq. (5) to be zero.

The corresponding expressions to those in Eq. (3) for the bulk viscosity and corresponding ST

are,28–32

ηb,GK(t) =
V

kBT

∫ t

0

< δP (0)δP (x) > dx, ηb,GK = lim
t→∞

ηb,GK(t),

ηb,ST (t) = <
V

kBT
δP (0)

∫ t

0

δP (x)dx >,

= < ηb,u(t) >, where ηb,u =
V

kBT
δP (0)

∫ t

0

δP (x)dx

ηb,ST (t) =

∫ ∞

−∞

dηb,u(t) ηb,u(t) Pηb (ηb,u(t)) , ηb,ST = lim
t→∞

ηb,ST (t), (6)

The function Pηb is the PDF for the bulk viscosity which corresponds to Pηs which is given in

Eq. (3) for the shear viscosity.

Thermal Conductivity

The thermal conductivity, λ, involves the heat flux vector, J q,
33

J q =
1

V

(

N
∑

i=1

[eivi −
1

2

N
∑

j 6=i

(rij · vij)
rij

rij
φ′(rij)]

)

, (7)

where

ei =
1

2
miv

2
i +

1

2

∑

j 6=i

φ(rij), (8)

is the energy of a molecule in the fluid, vij = vi − vj is the relative velocity between molecules

i and j. The thermal conductivity, λ, and related quantities are,33,34,

λGK(t) =
V

3kBT 2

∫ t

0

< J q(0) · J q(x) > dx, λGK = lim
t→∞

λGK(t),

8
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λST (t) = <
V

3kBT 2
J q(0) ·

∫ t

0

J q(x)dx >,

= < λu(t) >, where λu =
V

3kBT 2
J q(0) ·

∫ t

0

J q(x)dx

λST (t) =

∫ ∞

−∞

dλu(t) λu(t) Pλ (λu(t)) , λST = lim
t→∞

λu(t), (9)

where Pλ is the PDF for the thermal conductivity ST.

Self-diffusion

The fourth transport coefficient considered here is the self-diffusion coefficient, D, which is a

single particle property. This can be calculated using a Green-Kubo (GK) formula,26 employing

the velocity autocorrelation function (VACF),

DGK(t) =
1

3

∫ t

0

< v(0) · v(x) > dx, DGK = lim
t→∞

DGK(t),

DST (t) = <
1

3
v(0) ·

∫ t

0

v(x)dx >,

= < Du(t) >, where Du =
1

3
v(0) ·

∫ t

0

v(x)dx

DST (t) =

∫ ∞

−∞

dDu(t) Du(t) PD (Du(t)) , DST = lim
t→∞

Du(t), (10)

where v(t) is the velocity of an arbitrary molecule at time t, and PD is the PDF of the

self-diffusion ST.

Although strictly speaking the term ‘viscuit’ was introduced for the shear viscosity in Ref. 25,

it will be used in this work as a general term for the other ST transport (and thermodynamic)

quantities and their PDFs .

C. Probabiity distribution function, PDF

Various definitions of the viscuit PDFs will be considered in this section.

PDFs with the two sides normalized separately

It was shown in Ref. 25 that in LJ units the PDF on the positive and negative ST sides are not

9
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symmetric about ηs,u = 0 , but skewed to the positive side as the viscosity must be positive.

As the two sides of the PDF are different it is convenient to treat the two sides separately

and to establish relationships between them. The properties of the total PDF are obtained

by combining those of its two sides, in a suitably weighted manner. For generality, let X

denote one of the four transport coefficients discussed in Secs. II.A and II.B, and Xu be the

corresponding ST quantity. Each side of the total PDF is normalized to unity, which means

that the form it takes depends on the units used for the ST argument.

Let x− = Xu/σ−, where Xu < 0 and σ− is the standard deviation of Xu in the same units on

the negative side. The quantity x− is dimensionless. Also let N(x− ±∆x−/2) be the number

of viscuits in the range x− ±∆x−/2 for a given sample length. Then the relevant PDF of the

viscuits on the negative side is, P−(x−),

P−(x−) = lim
∆x

−
→0

1

N−

[∆N(x− ± ∆x
−

2
)

∆x−

]

, (11)

where N− is the number of ST on the negative side. The corresponding PDF for the positive

side is P+(x+) is also defined by Eq. (11) with the subscript ‘−’ replaced by ‘+’ throughout.

This notation convention is used generally for other quantities here. As will be demonstrated,

this PDF definition is perhaps the most fundamental of all of the types considered in this work

because the argument is independent of the units of Xu. Let X be the sample average of the

Xu combined for both sides of the distribution and < Xu,+ > be the sample average of the

positive ST. These quantities are formally related via,

X = R+ < Xu,+ > +R− < Xu,− > where,

< Xu,+ > =

∫

+

XuP+(x)dx = σ+

∫

+

xP+(x)dx,

≡ σ+I+ and I+ =

∫

+

xP+(x)dx x > 0,

< Xu,− > ≡ −σ−I− and I− = −
∫

−

xP−(x)dx x < 0,

10
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X = R+σ+I+ −R−σ−I−, (12)

where
∫

+
denotes integration over the positive side, R+ is the fraction of the total Xu

events that are positive and x represents either x− = Xu/σ− or x+ = Xu/σ+ depending on

which side of the PDF is being considered. Note that I+ and I− are both defined as posi-

tive quantities, and R− = 1−R+. The standard deviations σ− and σ+ have the same units asX .

In order to make further analytic progress it is necessary to consider the relationship between R−

andR+, and I− and I+. There is no obvious proof or derivation which establishes these relations.

It will be shown in the results section that to a good approximation, P+(x) = P−(−x) ≡ P (x),

and therefore I+ = I− ≡ I. However, R− cannot be determined by rigorous derivation, at least

as far as we are aware. The formally exact result is,

R+ =
N+

N− +N+
=

RN

1 +RN

R− =
N−

N− +N+

=
1

1 +RN

. (13)

where N+ is the total number of viscuits on the positive side of the distribution. It is reason-

able to assume that RN = N+/N− ≥ 1 but this would need to be demonstrated in practice.

Combining Eqs. (12) and (13) leads to,

X = R+σ+I+ − R−σ−I−,

=
RNσ+I+ − σ−I−

1 +RN
,

=
RNσ+ − σ−

1 +RN
I if I+ = I− ≡ I,

I ≡ IN =
[ 1 + RN

RNσ+ − σ−

]

X (14)

for each transport coefficient. The advantage of this prescription for R+ and R− is that the

ratio N+/N−, σ+ and σ− can be obtained directly and independently from an MD simulation.

The last two lines in Eq. (14) follow from the assumption that, I+ = I− ≡ I. Equation (14)

11
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shows that X = 0 if RN = 1, σ+ = σ− and I+ = I−.

Alternatively we may go further and propose that, for example,

R+ =
σ+

σ− + σ+

=
Rσ

1 +Rσ

,

R− =
σ−

σ− + σ+
=

1

1 +Rσ
= 1−R+, (15)

where Rσ = σ+/σ− ≥ 1, and therefore

X = R+σ+I+ − R−σ−I−,

=
σ2
+

σ− + σ+
I+ − σ2

−

σ− + σ+
I−,

=
σ2
+ − σ2

−

σ− + σ+
I, if I = I+ = −I−

=
[Rσσ+ − σ−

1 +Rσ

]

I

I ≡ Iσ =
[σ+ + σ−

σ2
+ − σ2

−

]

X where σ+ > σ−,

=
[ Rσ + 1

Rσσ+ − σ−

]

X. (16)

PDF with dimensioned arguments

PDFs where the argument is in different units can also be derived straightforwardly from P−

and P+. For example, the PDF where the ST is in ‘real’ (i .e., here, LJ ) units is,

PLJ(Xu) = lim
∆Xu→0

[∆N(Xu ± ∆Xu

2
)

∆Xu

]

,

= lim
∆x→0

[∆N(Xu ± ∆Xu

2
)

∆xσd

]

,

=
P (x)

σd

(17)

where the PDFs are for each side of the distribution taken separately. The standard deviation,

σd ≡ σ− or σ−, and ∆Xu = ∆xσd, are all in LJ units. Note that ∆N(Xu ± ∆Xu

2
) = ∆N(xu ±

∆xu

2
). Another possible form for the ST is to express it in terms of the transport coefficient, X ,

itself, which can be obtained independently using the GK method, for example.

PX(
Xu

X
) = lim

∆Xu/X→0

[∆N(Xu

X
± ∆Xu

2X
)

∆Xu

X

]

,
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= X lim
∆Xu/X→0

[∆N(Xu

X
± ∆Xu

2X
)

∆Xu

]

,

= X lim
∆Xu/X→0

[∆N(Xu

X
± ∆Xu

2X
)

∆xσd

]

,

=
X

σd

P (x) (18)

The PDFs presented in the Results section III.B were computed from the MD simulations to

a resolution of typically, x ≃ 0.008 standard deviation units, and for a ST range of at least ca.

±8 standard deviations on both sides of the distribution.

To summarize, the transport coefficient can be obtained by the Green-Kubo or PDF routes

given in Eq. (3) for the shear viscosity, Eq. (5) for the bulk viscosity Eq. (9) for the thermal

conductivity and Eq. (10) for the self-diffusion. A PDF method for obtaining these transport

coefficients is also given in these equations. In Ref. 25 it was shown that the viscuit PDF was

asymmetric about the ordinate axis. In order to make further theoretical progress, the PDFs

P± defined above were introduced which are calculated and normalized separately for the two

sides. The difference between these PDFs, and PLJ and PX is that the latter (from their initial

definitions) are defined and normalized by the same quantity over the whole viscuit domain

(i .e., not the two halves separately).

A more direct route to obtain the transport coefficient is to simply add the individual viscuits

as they occur in the simulation. Written as a summation over the ST negative and positive

argument contributions, this is

X =
∑

+−

Xu

N
−
+N+

=
∑

−

Xu

N
−
+N+

+
∑

+
Xu

N
−
+N+

(19)

where
∑

+−,
∑

− and
∑

+ indicate the sum over all, the negative and positive ST, respectively.

Equation (19) is referred to as the ‘direct’ viscuit method to obtain the transport coefficient.

13

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
05

60
0



D. Simulation Details

The simulations were carried out using the Lennard-Jones (LJ) pair potential,

φLJ(r) = 4ǫ[(σ/r)12 − (σ/r)6], where ǫ and σ define the characteristic energy of interac-

tion and diameter of the molecule, respectively. The results presented are in LJ units of

ǫ, σ and m, the mass of each molecule. The MD time step was, ∆t = 0.004/
√
T , and the

interaction truncation distance, rc was 2.5 (see Ref. 35). The numbers of particles in the

simulation cell, N , were 500, 864, 2048 and 4000 to assess the system size dependence of the

results (most of the simulations and figures presented employed N = 864). The computations

were conducted typically for 2 × 107 time steps for N = 864 and 106 for N = 2048 for each

state point during the post-equilibration stage. Four representative fluid state points specified

in Table I were used in the simulations. State points A-C are in the equilibrium fluid part of

the phase diagram while state point D is a supercooled (metastable) liquid. The LJ state point

C in Table I, ρ = 0.8442 and T = 0.722 was introduced by Levesque, Verlet and coworkers,37,38

and has been used since as a standard reference state point in many studies. State point

C, which is quite close to the triple point, was used as the default state point to produce

most of the figures (unless stated otherwise). Simulations were carried out using NVE and

NVT dynamics, where in the latter case the Nosé-Hoover thermostat was used,39 with a time

constant of 3 LJ time units. Statistical uncertainties in the mean values were determined using

block averaging.40 Four transport coefficients were considered, whose average values for the

four state points are given in Table 1.
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III. RESULTS AND DISCUSSION

In this section the PDFs for the four transport coefficients are compared. In some examples,

the statistical characteristics of the PDFs on the negative and positive sides were determined

separately, as were their contributions to the total value of the transport coefficient. In other

cases the PDF was calculated by treating the negative and positive regions as a single domain

and the PDF normalized as a single entity.

A. Probability distribution functions and the transport coefficients

Figure 1(a) presents the Green-Kubo time correlation functions used to compute by time

integration the four transport coefficients for ρ = 0.8442 and T = 0.722 (state point ‘C’ in

Table I). The correlation functions are normalized to unity at t = 0 for ready comparison.

Figure 1(b) shows the corresponding time dependent transport coefficients, X(t) defined in

Eqs. (3), (6), (9), and (10), for ηs, ηb, λ and D respectively. At this state point a plateau

is reached in X(t) by ca. t ≃ 2.5 for all four transport coefficients. The PDFs depend

on the time, t of the ST integral. This time is long enough for the time integral of the

correlation function to reach a plateau and give a reliable value for the shear viscosity by

the GK method. This is also the time required to obtain long time limiting forms for the PDFs.

Figure 2 presents the viscuit probability distributions for t = 2.5 where the viscuit is in LJ

units (in frame (a)) i .e., PLJ from Eq. (17). Frame (b) shows PX defined in Eq. (18) where the

viscuit is normalized by the average shear viscosity. The PDF normalization was computed

over the combined negative and positive sides of the distribution (i .e., treating it as a single

domain). Both types of PDF are asymmetric, with the PDF ultimately decaying more slowly

on the positive side, which is evident in the difference curves also shown on the figure. This
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is necessary for the viscosity (the first moment of the PDF) to be positive. One could view

the positive viscuits as being the entropy producing trajectories when a small shear field

is applied. The negative viscuits are the corresponding entropy ‘absorbing’ trajectories. In

Zwanzig’s theory of self-diffusion these would be associated with the liquid-like (diffusive or

heat producing dissipative) and solid-like (oscillatory) events, respectively,3,4 although with

collective property transport coefficients such as viscosity and thermal conductivity the spatial

aspects of these processes are not so easy to picture. The PDF has a cusp in the small viscuit

limit on both sides, which is more peaked and short ranged on the negative viscuit side.

Figure 3 shows the accumulated first moment of the Xu PDF, PLJ , (t = 2.5) for the four

transport coefficients in LJ units obtained by the MD simulations evaluated at state point C.

The plateau values on the right of the figure are the values of the transport coefficients. The

argument of the PDF is in units of the standard deviation σd of Xu for each side. The figure

reveals that the limiting value (indicated by the GK values) is only achieved with Xu after

about 8 standard deviations. Therefore although the viscuit events are quite infrequent in that

part of the PDF (evidenced by its small value) their magnitude is such that they contribute a

non-neglible amount to the transport coefficient. The GK values for these transport coefficients

are indicated by the horizontal lines on the figure, revealing very good agreement in the large

argument limits.

Figure 4 presents the time dependent transport coefficient obtained by integration of the PDFs

and also by GK, both up to time t. More data of a similar kind for other quantities and state

points is given in supplementary material. The figure also shows the contributions to the

transport coefficients from the negative and positive sides of the PDF. Frame (a) is for the shear

viscosity and frame (b) is for the self-diffusion coefficient. For large t the contributions from the
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two sides are larger in magnitude than the summed or total value. They continue to increase

in magnitude even when the total viscosity has reached a plateau. This trend is considered to

be due to noise in the viscuit for long times (say, t > 2.5). Positive and negative values for the

viscosity (viscuit) will appear randomly with equal probability as time increases and the ηs,−

and ηs,+ will increase continuously with time without reaching a plateau. This is not a practical

problem as this noise-related feature for practical purposes cancels out in the total transport

coefficient. The peak in the total self-diffusion coefficient is associated with the cage effect

around each molecule which produces a negative region in the velocity autocorrelation function.

B. PDFs with dimensionless arguments

In this section the ST PDFs whose argument is normalized by its standard deviation are

considered. The PDF of each side of the distribution is treated separately. Figure 5 shows

the t = 2.5 PDF defined in Eq. (11) for P−, and P+ for different numbers of particles in the

simulation cell. The figure reveals that the PDF is statistically independent of N and also the

distribution is symmetrical about the ordinate axis, i .e., P−(ηs,u) = P+(−ηs,u). In the bottom

frame the P±(|ηs,u|) for the two sides are plotted on a lin-log scale, which indicates that the

wings on the two sides of the PDF for large ST values are exponential and coincident.

Figure 6 shows the P±(|ηs,u|/σd) for the negative and positive sides of the distribution as a

function of t. For a short integration time, t = 0.015 and to a much lesser extent at t = 0.493,

there are differences between this definition of the PDF on the negative and positive sides

for small |ηs,u|/σd values. The agreement for large viscuit values is better for large |ηs,u|

even for small t. The two PDFs converge as t increases to t ≃ 2.5, where the integral of the
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GK correlation function has reached a plateau value and is sufficient time to define the viscosity.

Figure 7 presents the P± for the shear viscosity ST on lin-lin and lin-log scales in frames (a)

and (b), respectively, for state point C. Data for two (not too small) t values are also presented,

but are not distinguishable on the figure. The analytic formula,

P (|ηs,u(t)|/σd) =

3
∑

i=1

Ai exp(−bi|ηs,u(t)|/σd), (20)

where Ai and bi are fit constants, matches the simulation data well. The constants in Eq. (20)

are given in the caption to Fig. 7. Frame (a) shows that the slowest decaying exponential term

captures the PDF for reduced ST greater than about 1.5 while the two other exponentials

are also required to represent the PDF for about, |ηs,u(t)|/σd < 1.5. More exponentials

could be added to improve the agreement, but just three is sufficient for graphical purposes

to demonstrate the adequacy of the general functional form in Eq. (20). PDFs with an

exponential tail are frequently found in natural processes involving a wide spread of events

of different magnitudes. The stronger events are associated with increasingly long waiting or

renewal times.41

The representation of a time relaxation function by a stretched exponential or more generally

a weighted sum of exponentials with a broad distribution of relaxation times is well established

in many fields.42–45 Here the viscosity is framed in terms of a weighted sum of exponentials

of the distribution of the ST (time is only implicitly present in this representation). The two

constructions could be considered to be equivalent if each exponential term in time corresponds

to one type of structural relaxation event characterized by the viscuit and its PDF (see

Ref. 46 for further discussion). The rarer the event, which is equivalent to an escape from a

stronger cage or deeper trap, the larger is the renewal or waiting time between their repeated

18

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
05

60
0



occurrence.47

The state point dependence of the dimensionless PDF P± of the shear viscosity is shown in

Fig. 8 for the four state points defined in Table I. These are given on lin-lin and lin-log scales

in frames (a) and (b), respectively. The figure shows that the PDFs are all monotonically

decaying and there is no statistically significant difference between them on the two sides for

equilibrium state points A-C.

In contrast, the corresponding PDF of the out-of-equilibrium state (D) is highly oscillatory

on the positive dissipative side indicative of a limited number of accessible relaxation paths

in phase space, and similar to the equilibrium state point behavior on the negative side. The

dynamical behavior of the ‘events’ of the system are quite different on the positive and negative

sides of the PDF. Therefore these PDFs are a sensitive indicator of whether the state is at or

out of equilibrium. The shear stress autocorrelation function (SACF) is monotonically and

very slowly decaying, in contrast to the appearance of the viscuit PDF. This indicates that

the viscuit PDF is providing additional information which is not visible in the SACF. As a

qualifier it is worth noting the the GK method is not strictly valid for out-of-equilibrium state

points like D because of the limited number of accessible states during a feasible simulation

(see Ref. 40 p. 49). Further discussion of these differences is given in Sec. II.C.

The PDFs of the ST from the other transport coefficients are presented in Fig. 9 for state

point C. The PDFs where the argument is normalized by the standard deviation are shown.

The ST, ηb,u, λu and Du used in their evaluation are defined in Eq. (6) for the bulk viscosity,

Eq. (9) for the thermal conductivity, and Eq. (10) for self-diffusion, respectively. Figure 9(a)

presents the reduced ST PDF for t = 0.49 and t = 2.5 for all four transport coefficients. The
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NVE ensemble is used in all four cases as the bulk viscosity defined in Eq. (6) is more readily

computed in that ensemble (i .e., so that the E(t) − E term in Eq. (5) is zero). Frames (a)

and (b) are in lin-lin and lin-log scales, respectively. Figure 9 reveals that the PDFs for the

different transport coefficients are statistically indistinguishable.

To summarize, the standard deviation normalized PDF of the single trajectory transport coef-

ficient is symmetric on its negative and positive sides. It is statistically independent of system

size, state point, and choice of transport coefficient. The function can be represented very well

by the sum of three exponentials, providing the state is a fluid in the equilibrium part of the

phase diagram. This rather surprising result suggests that the ST PDF P± may be a function

of fundamental statistical mechanical significance for transport coefficients. The PDF P± is

symmetric on the two sides. The PLJ and PX are asymmetric as is required for the transport

coefficient to be positive, which is confirmed in Fig. 2. Suggestions for the origin and possible

implications of these results are considered in Sec. III.C.

C. PDF and transport coefficient statistical mechanics

Stochastic model

The viscuit is the product of an instantaneous shear stress and the sum of its later values up

to an arbitrary time difference, t. Each of these two quantities independently follows (normal)

gaussian statistics because of the central limit theorem. The viscuit PDF (and its other

transport coefficient analogues) can therefore be expressed as the product of two partially

correlated quantities each individually exhibiting a gaussian PDF. The quantitative nature of

this correlation is implicit in the MD results but lacks any separate theoretical description. It

was shown in our previous publication,25 that PDFs generated by partially correlated random
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numbers using the Box-Muller numerical method gave poor agreement with the MD PDFs. It

overestimated the asymmetry of the PDFs between the positive and negative viscuit sides of

the distribution, which demonstrated the importance of viscuit longevity or persistence that

apparently cannot be captured by a stochastic model.

There is an analytic stochastic model for the product of two partially correlated gaussian

distributed quantities G and H both of zero mean.48–50,52 For transport coefficient, U(t), let,

Ut ≡ U(t) = GHt, where for the shear viscosity,

G =
√
APxy(0) Ht =

√
A

∫ t

0

Pxy(α)dα, ht =
Ht

t

ηs = < lim
t→∞

U(t) > . (21)

where A = V/kBT for the shear viscosity, and Pxy in Eq. (21) would be replaced by the

deviatoric pressure, heat flux and particle velocity for the other transport coefficients (see

Eqs. (5), (9) and (10), respectively for the definitions of the A parameter in each case). For the

shear viscosity, for example, < · · · > represents an average over the initial stress values, Pxy(0).

The PDF of Ut is,
48,49

PU(u) = B(c)D(c, u)E(c, u), where

B(c) =
2

πσgσHt

√
1− c2

,

D(c, u) = exp

(

cu

σgσHt(1− c2)

)

,

E(c, u) = K0

( |u|
σgσHt(1− c2)

)

. (22)

The function, K0(x) =
∫∞

0
exp(−x cosh(α))dα, is the modified Bessel function of the second

kind of zero order, which diverges in the x → 0 limit. The quantities, σg and σHt are the

standard deviations of G and Ht, respectively, assuming −∞ < u < ∞ with zero mean.

Because of the asymmetry of the viscuit PDF between the negative and positive sides when the
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viscuit is expressed in real units (not dimensionless), the MD generated standard deviations

reported above are based on a half-normal or half-gaussian distribution which has a non-zero

mean. The value of the half-gaussian standard deviation and mean contains the information

specific to each transport coefficient and state point. The two definitions of the standard

deviation are related through the multiplicative factor,
√

(π − 2)/π (the half-gaussian value

being the smaller). The factor of 2 in the definition of B(c) in Eq. (22) is to give the correct

normalization for a half-gaussian based PDF. The quantity, c in Eq. (21) denotes the correlation

coefficient which is bounded by −1 < c < 1. For two quantities x and y, with zero mean, c

is, c = E(xy)/σxσy, where E(· · · ) is the expectation value, and σx and σy are the standard

deviations of x and y, respectively. In the present case c is an unknown function of G and t,

and a mean-field theory value of c is therefore used in Eq. (22) which is

c =
E(Ght)

σgσht
∼
√

2τc
tc

, (23)

where τc is the relaxation time of the normalized time correlation function (for the shear

viscosity, for example, τc = ηs/G∞), and tc is the time at which the GK integral reaches a

plateau value. The last equality in Eq. (23) follows from the EKH expression for the transport

coefficient,20–22 which can be written as, < h2
t >= (2τc/t) < G2 >. Typically c is in the range

0.1 to 0.2 for the transport coefficients in the dense liquid state point regime considered here.

Figure 9(b) compares the MD-generated PDFs for the four transport coefficients with the

predictions of Eq. (21) for three values of the correlation coefficient, c. The stochastic model

PDF has a cusp for low ST, is singular at the origin and does not decay exponentially for

large ST (it decays slower with increasing c). The MD-generated PDF also has a cusp

near the origin but is probably finite at the origin owing the molecular discreteness of

the system and decays exponentially for large arguments. The analytic stochastic model
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formula initially decays more rapidly than the MD PDF but crosses over to a smaller rate

of decay in the large ST regime. It may be concluded that the deterministic nature of the

ST is a crucial factor to include in any theoretical model of its PDF. As was discovered in

Ref. 25, with a numerical stochastic model, the inclusion of a stochastic element distorts

significantly the relative probability of occurrence of individual ST and is physically unrealistic.

Ratio of the PDFs on the negative and positive sides

Figure 10 shows the PDF ratios, R = PLJ,+/PLJ,− for the same values of the absolute value

of the ST (its negative and positive regions were combined and treated as a single domain

for normalization purposes). The curves on the figures are for different integraton times,

t, indicated on the figure. Frames (a) and (b) present ln(R) for the shear viscosity and

thermal conductivity, respectively. The value of the time t ranges from 0.05 to 0.49 which

covers the initial decay period of the correlation function. The ln(R) data are linear with

|Xu| and the slope decreases with increasing t, The linearity of the dependence indicates that

R ∝ exp(A(t)|Xu|) for both transport coefficients, even at very short times. It was shown in

Ref. 25 that A(t) decays monotonically with t.

A simple model for A(t) is derived here. Let the standard deviation, σd, of each side of the

PDF be denoted by, σ− or σ+ for the negative and positive sides, respectively. It follows from

Eq. (17) that,

R ≡ PLJ,+(Xu,+(LJ))

PLJ,−(Xu,−(LJ))
=

σ−

σ+

P (Xu,+/σ+)

P (Xu,−/σ−)
, (24)

where Xu,+, σ+, Xu,− and σ− are in the same units (i .e., LJ here). For Yu,d ≡ |Xu(LJ)|/σd is

greater than about 2, the PDF, P , decays to a good approximation as a single exponential,

P (Xu) ≃ C exp(−|Xu|/σd), where the constant, C, is the same for both negative and positive

23

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
05

60
0



sides (see Fig. 3). Therefore in this Yu,d region, taking the special case where, Xu(LJ) =

−Xu,−(LJ) = Xu,+(LJ),

R ≡ PLJ,+(Xu,+(LJ))

PLJ,−(−Xu,+(LJ))
≃ σ−

σ+
exp [

(

1

σ+
− 1

σ−

)

Xu(LJ)],

=
σ−

σ+

eAXu(LJ), (25)

where,

A(t) =
σ+(t)− σ−(t)

σ+(t)σ−(t)
. (26)

For Yu,d <∼ 2 the situation is more complicated as the PDF is not well represented by a single

exponential. It was shown empirically in Ref. 25, Eq. (17), that R has the general form as

Eq. (25). Figure 11(a) compares the value of A(t) obtained from the linear regression fits of

Fig. 10 (‘MD’) with the predictions of Eq. (26). The analytic formula follows quite well the

MD curve but slightly overestimates A(t) particularly for large t.

In the approximate model of Eq. (26) the asymmetry of the two sides of the PDF (i .e., for

here, PLJ and PX) is expressed in terms of the difference in the two standard deviations

(or equivalently their ratio, σ+/σ−). Also the transport coefficient depends on the relative

number of positive and negative ST, i .e., RN = N+/N−, which occur in the simulation (see

Eqs. (12) and (13)). There is no obvious formal relationship between these two ratios. It is

more convenient to plot the inverse ratios as they are bounded by 0 and a number slightly

less than 1. Figure 11(b) gives the dependence of, σ−/σ+ against N−/N+ for different times

(implicit on the plot) and for the four transport coefficients obtained directly from the

simulations. The figure shows that N−/N+ ∝ σ−/σ+ for not too small t values, as evident in

the top right hand corner of Fig. 11(b). For short times (on the bottom left of the figure)

it is evident that the relative number of negative ST decreases less rapidly than the ‘range’

of their PDFs as measured by the standard deviations. In fact for all values of t the ratio
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N−/N+ > σ−/σ+ but they become closer in the large t limit. Therefore, in general, there is

not a trivial relationship between these two quantities, which characterize the two sides of

the PDF. Note that the two ratios tend to zero in the bottom right hand corner as would

be expected in the t → 0 limit because closely spaced successive time step values are correlated.

The viscuit concept can be extended to any quantity of the system, Y , which is a function of

the configurations

δY (x) = Y (x)− Y ,

Yu(t) = δY (0)

∫ t

0

δY (x)dx, (27)

where Y is the time average of Y . The average potential energy per particle, u, is an example of

Y which does not define a transport coefficient but is instead a representation of certain aspects

of the potential energy landscape. The ratios, N−/N+ and σ−/σ+ can also be computed for this

quantity. Figure 11(b) also shows that the u data fall on the same curve for all t as that of the

transport coefficients. This indicates that the dynamical and statistical aspects of transport

coefficients are coupled strongly to those of the underlying potential energy landscape of the

system, which is intuitively what one would expect. There are studies of the configurational

aspects of the potential energy landscape (i .e., the potential energy dependence of the number

of saddle points,51) but little on its time dependence. Further details of the computed ratios

and other quantities for t = 2.5 using state point C are given in Table III. A more complete

list for all of the equilibrium state points for different times is given in supplementary material.

Stillinger and Debenedetti also explored this hybrid approach in the context of the potential

energy landscape, represented by inherent structure basins, to cast light on the Stokes-Einstein

relation.23
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Figure 12 presents a further analysis and comparison of the statistics of the viscuits and the

potential energy landscape. The top frame shows a time trace of the local time averages

for quantity X (the shear stress or potential energy) and its associated ST. The time traces

appear quite similar although the fluctuation features peaks and troughs do not coincide,

which is presumably because the viscuit samples local anisotropies in the structure to a greater

extent than the potential energy. Inspection of the time series indicates that the large outlier

fluctuations are independent and random. The traces suggest that there is a distribution

of energy minima with different depths usually closely bounded by energy maxima. The

transits out of the minima are rapid and because of the neighboring maxima probably in-

volve local rearrangement of the surrounding molecules as encapsulated in the shoving model.5,6

The bottom frame of Fig. 12 shows the PDF of blocks of Nt consecutive property values

accumulated during the simulation, Xt =
∑Nt

i=1Xi. The PDFs for shear stress (S) and potential

energy, where the negative and positive sides of the distribution are treated separately, are

given on the figure for very short and long times. The data collapse onto a gaussian (see the

Fig. 12(b) caption for further details). This confirms that, independent of Nt, the property

block summations exhibit a normal distribution in accordance with the central limit theorem.

In contrast, the corresponding viscuit PDFs are exponential in character (see for example

Fig. 9).

Figure 13(a) shows a ‘scattergram’ of the shear viscuit and the corresponding quantity for

the potential energy, for two times, t = 0.078 and 2.525. At short times there is a strong

(‘wishbone’) correlation between the ST and the initial value of, X(0). At longer times

which corresponds to the transport coefficient relaxation time, the scattergram adopts a

‘butterfly’ shape (first reported for the viscuit in Ref. 25). The corresponding potential
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energy scattergram is statistically the same. Note that in both cases the distributions are

very similar for the shear stress and potential energy derived quantities. This indicates that

the potential energy landscape and its time evolution plays an important role in governing

the transport coefficients. This is a well-known conclusion in the literature, which in fact is

the basis of a number theories of the liquid state discussed in the Introduction. The kinetic

contributions to the energy still have an indirect but important effect on the evolution of the

potential energy with time even though the kinetic contribution to the transport coefficients

is relatively small at liquid-like densities. Therefore it is necessary to consider the effects

of the kinetic contributions to the energy to understand the origins of the transport coefficients.

Figure 13(b) shows the corresponding profiles for the supercooled liquid state D. The long time

(t = 1.15, here) viscuit distributions have some similarities with those in frame (a). There are

however a number of qualitative differences between those of the equilibrium state in frame

(a). The ST distributions for the potential energy and stress are significantly more localized

on the plane and to the left in frame (b), and the symmetry about ordinate axis has been lost.

There is a significant bias towards negative viscuits, which indicates a frequent change in sign

of the stress and excess energy. This trend is consistent with the picture that the configuration

of particles is oscillating with small amplitudes about its potential minimum. Dissipative

trajectories (i .e., the positive viscuits) still occur but are fewer and ‘caged’ intermittent events

(this is consistent with the PDFs of Fig. 8). This suggests that the quench directs the system

into one of the valleys on the landscape with depths lower than the kinetic energy. The evidence

from the literature is that the arrangement of particles in such a basin is in a stressed state,52–55

and remains there for long enough to compute quasi-equilibrium data.56,57 At short time

there is a stronger correlation between the initial value of stress and u and the corresponding ST.
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D. The potential energy landscape and the Fluctuation Theorem

The present results for the ST PDFs bear striking similarites with those associated with the

entropy production fluctuation theorems,58–60 (FT) whose general form is,

P (σt)

Pt(−σt)
= eσt , (28)

where σt is the net entropy production over time t due to an applied field. Equation (28) is

valid for systems driven arbitrarily far from equilibrium. Equation (25) is of the same form

as Eq. (28) which was confirmed numerically in Fig. 10. In the case of constant magnitude

planar Couette flow, σt = −[V/kBT ]γ̇
∫ t

0
Pyz(x)dx, whereas in the ST context the argument of

the exponential is proportional to the viscuit. Another difference is that the system considered

here is at equilibrium, when the right hand side of Eq. (28) is unity. There is no external

field in the present work such as might be introduced by Non-equilibrium Molecular Dynamics

(NEMD).61 The viscuit formulation is essentially a rewriting of the Green-Kubo formula where

the entropy producing and decreasing trajectories which would be produced on the applicaton

of a small field, have been separated into different PDFs. For the viscuit PDFs the asymmetry

in the PDF between the negative and positive sides of the distribution is due to short term

correlation between successive values of a variable. From an initial state, subsequent states

are more likely to have a property value of the same sign and magnitude as the initial one, a

correlation which decays with time. This will lead to more of the trajectories being ‘entropy

producing’ than entropy absorbing on the application of a small external field to the system.

In contrast, in the limit of small applied fields the PDF involved in the FT tends to a shifted

gaussian where the negative and positive sides are symmetric. Considering the shear stress

example, this PDF can be expressed in terms of the viscuits as follows (see Refs.62–65 for the
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key steps and derivations). Let σt be the average of the shear stress, σ, over a time period, t,

σt =
1

t

∫ t

0

σ(x) dx, (29)

which may also be known as the block average. The two PDFs of relevance are,

P (±σt) =
1√

2πσd,t

exp

(

−(±σt − σ)2

2σ2
d,t

)

, (30)

where σ is the average of σ over the entire time domain covered and σd,t is the standard deviation

of the block averages. See the supplementary material for the proof that this shifted gaussian

satisfies the FT. For large t,

(σt − σ)2 ≃ 2

t

∫ t

0

< δσ(0)δσ(t) > ds,

=
2

t
<

∫ t

0

δσ(0)δσ(t) > ds,

=
2

t
< δσ(0)

∫ t

0

δσ(t) > ds,

limγ̇→0(σt − σ)2 =
2

t
< Xu,t > (31)

where δσ(t) = σt − σ and Xu,t is the viscuit. Inspection of the formulas for the FT and viscuit

PDFs in Eqs. (30) and (31), respectively, show that they are not obviously related, as the

FT PDF involves an average of the viscuit and the viscuit is a function of the system in the

zero shear rate limit. Nevertheless the strong similarity in the behavior of the two different

types of PDF suggests that there may be a more direct formal link which connects the viscuit

PDFs and those average quantities which comply with the FT in the zero field limit.62 The

smaller the field the closer the FT PDF approaches a gaussian. In the GK-viscuit PDFs

the (virtual) field can be made arbitrarily small without changing the relative probability of

entropy increasing to entropy decreasing trajectories (i .e., is independent of field strength).

The viscuit PDF, in contrast, has a nongaussian form, based on exponentials, and this is in the

zero shear rate limit. It is not obvious how to combine these two trends in a ‘unified’ theory.
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The less frequent larger viscuits may come from more structured parts of the potential energy

landscape, while the cusp-like region near the origin of the PDF would come from the flatter

regions of the PEL where there are more low activation energy avenues for stress relaxation.

This is illustrated in the schematic diagram in Fig. 14. Although a completely different field,

these ideas parallel those developed to account for interfacial separation of rough solid surfaces

under load by Persson.66,67 The load pressure takes the place of the PDF and the separation,

that of the viscuit. Assuming a fractal surface roughness, the theory produces an exponential

tail in the low deformation limit, and as the pressure increases the asperities become more

deformed and the surface smoother (this is the cusp region). Exponential (activation energy)

terms appear in kinetic models of diffusion in liquids,68 and these may be considered to play

an important role in governing the form of the viscuit PDFs.
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IV. CONCLUSIONS

Equilibrium state point transport coefficients of liquids have traditionally been determined

by, for example, the Green-Kubo (GK) technique. This involves integrating with time a

time origin-averaged time correlation function. A complementary approach was introduced

in Ref. 25, which reveals new aspects of the factors that determine a transport coefficient.

This procedure is to simply reverse the order of the integral and time-origin averaging in GK

which leads to the transport coefficient being the first moment of a probability distribution

function of so-called single trajectory (ST) dynamical and structural events. We referred

to these events as ‘viscuits’ in Ref. 25 in which the shear viscosity was investigated, and is

used here as a general term for the corresponding properties of other quantities (transport

and thermodynamic). This is information that is already available in the GK computational

procedure, but is not usually analysed for its statistical properties.

The main advantage of the viscuit analysis, in our opinion, is it provides another ‘window’

to understand the factors that determine the origins of the viscosity and other transport

coefficients. In particular it could provide insights into the role played by the time dependence

of the potential energy landscape on the transport coefficients. This link is approximated in

a number of prominent theories of the dynamics of liquid state, and the present approach

offers the possibility of adopting a more systematic methodology for quantifying this link

(and hence improving these theories). The viscuit values added up give the same value

for the transport coefficient as the GK approach, as the two approaches are formally the

same in that respect. There may be practical benefits in using the viscuit PDF approach

compared to GK, for example, in ‘filtering out’ viscuit ranges that are noisy and contribute

relatively little to the value of the transport coefficient, but this would need further exploration.
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This work also considers the bulk viscosity, thermal conductivity and self-diffusion coefficient.

The sensitivity of the PDFs to state point in equilibrium and metastable liquids is also

investigated. Positive values of these quantities are in all cases found to be associated with

PDFs that are asymmetric, with the negative viscuit (‘entropy absorbing’) side being more

’peaky’ and short-ranged near the origin than on the positive viscuit side. This follows from

Eq. (17) which shows that the height of the PDF on each side is inversely proportional to its

standard deviation. The standard deviation is larger on the positive side as positive viscuits

are overall more probable (hence a larger standard deviation) because property values are

correlated and similar for a few successive time steps. It was found that the two PDFs

are statistically the same on reflection about the ordinate axis when the viscuit argument

of the PDF is normalized by its standard deviation (determined separately for the two

sides), provided the time in the viscuit definition is not excessively short compared to the

correlation time of the associated time correlation function in the Green-Kubo treatment.

The differences between the two sides of the PDF are then due solely to the differences in

their respective standard deviations. Another surprising property of this ‘reduced’ form of

probability distribution function (‘PDFR’) is that it is statistically independent of system size,

transport coefficient and state point, providing the system is in the equilibrium fluid range.

The underlying causes of this remarkable insensitivity to system specification are not known

as far as we are aware. We also carried out simulations with a purely repulsive inverse power

poential with an exponent of 12 at several state points in the equilibrium fluid part of its

phase diagram. It was found that the PDFR of this system was also independent of state

point and is the same as that of the LJ system. Further investigation would be required to see

if this is also the case for other potentials, such as those that have, for example, an important

coulombic component, and also for polyatomic molecule systems.
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The PDFR can be represented very well by a sum of several exponentials. Significant con-

tributions to the value of the transport coefficient come from many standard deviations from

the mean (e.g ., up to almost about 8). The practically important large viscuits are extreme

rare flow events which could imply slowly decaying states originating in highly structured

parts of the potential energy landscape (see the schematic in Fig. 14). This is consistent

with the observation by simulation that the high wavevector components of the shear stress

autocorrelation function are more slowly decaying with time.69 A large viscuit could be due to

a large instantaneous modulus or a long relaxation time, or a combination of the two.

The equivalents to the viscuits for thermodynamic properties (e.g ., the potential energy) were

also computed, and found to be statistically indistinguishable from those of the transport

coefficients. It is already known that the potential energy landscape underpins the transport

coefficients, although there are still uncertainties on the details of this. The present results

demonstrate through the viscuit analysis that their is a commonality between all the transport

coefficients and the potential energy as they have same probability distribution function in

reduced form for the systems studied in this work. Although the kinetic contribution to this

behavior contributes little directly to the transport coefficients at liquid-like densities its role

in driving the time dependence of the potential energy landscape and therefore the transport

coefficients should not be underestimated. The simplicity of this result gives encouragement

that more realistic models for the transport coefficients could be derived within the theoretical

framework established in this study.

The PDFRs of out-of-equilibrium supercooled high density states do not exhibit the symmetry

and ‘universality’ found for the equilibrium states. The asymmetry in the negative and
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positive viscuit regimes revealed in the PDFs and viscuit scattergrams suggest that these

measures could be useful in exploring the behavior of supercooled and highly pressurized

liquids important for rheology and tribology. An analytic formula for the PDF based on a

partially-correlated stochastic approximation is shown not to fit the MD-generated PDFs very

well, highlighting the need to account for the classical equations of motion in any model of

these event processes.

SUPPLEMENTARY MATERIAL

The numerical data for calculated properties of state points A-C is presented in tabular form

in supplementary material. Another simple derivation of the FT for a near equilibrium sheared

system represented by a gaussian PDF is presented (this result is already well-known in the

literature,62,63).
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Key T ρ ηs ηb λ D

A 2.0 0.5000 0.627(1) 0.39(1) 2.80(1) 0.399(2)

B 1.0 0.8000 2.09(1) 0.87(1) 6.68(1) 0.067

C 0.722 0.8442 3.28(1) 1.22(1) 6.90(1) 0.032(1)

D 0.500 0.9211 1688 2.62(5) 9.29(2) 0.0(1)

TABLE I: The transport coefficients for the four state points considered in this study. States

A-C are in the equilibrium fluid part of the Lennard-Jones phase diagram. State D is an

out-of-equilibrium metastable state in the supercooled part of the LJ phase diagram,36 which

explains the extreme values of the TC compared with those of states A-C.

35

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
05

60
0



Quantity ηs ηb λ D

XD,− -4.432(9) -2.00(2) -11.64(3) -0.0942(1)

XD,+ 7.72(3) 3.18(5) 18.55(4) 0.1261(1)

XD 3.29(2) 1.18(4) 6.91(3) 0.03194(9)

XGK 3.29(2) 1.20(4) 6.94(3) 0.03193(5)

XP,− -4.432(9) -2.00(2) -11.64(3) -0.0942(1)

XP,+ 7.72(3) 3.18(5) 18.55(4) 0.1262(5)

XP 3.29(2) 1.18(4) 6.91(3) 0.0320(2)

σ− 12.04(3) 5.29(6) 31.06(9) 0.2495(9)

σ+ 16.96(5) 7.1(1) 41.3(1) 0.299(1)

σ+/σ− 1.4086(4) 1.342(7) 1.330(4) 1.198(2)

N+/N− 1.252(2) 1.208(5) 1.207(1) 1.1252(7)

IN 0.807(2) 0.807(6) 0.814(3) 0.781(4)

Iσ 0.670(3) 0.664(9) 0.677(5) 0.646(5)

TABLE II: Computed quantities for state point C using NVE dynamics, in LJ units or

dimensionless. The duration t = 2.49 is the integration time for GK and the ST. The

properties, XD,− and XD,+ are the values of the transport coefficient derived by summing the

negative and positive ST values, respectively, and XD is the total value. XGK is the value of

the transport coefficient obtained from the Green-Kubo formula. XP,−, XP,+ and XP are the

components and total value of the transport coefficient obtained by numerical integration of

the ST PDF. These quantities are defined in Eqs. (3), (6), (9), and (10), for ηs, ηb, λ and D

respectively. The quantities, σ− and σ+ are the ST standard deviations of the negative and

positive sides of the PDF. The ratio, N+/N−, is the number of entrants on the positive side

divided by those on the negative side. The quantity, IN is defined in the last line of Eq. (14),

and Iσ is defined in the last line of Eq. (16).36
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Figure Captions

Figure 1: Frame (a) shows the time correlation function relating to the four transport

coefficients in GK, using ρ = 0.8442 and T = 0.722. Frame (b) shows the corresponding time

dependent transport coefficients, X(t), defined in Eqs. (3), (6), (9), and (10), for ηs, ηb, λ and D

respectively. The shear viscosity, thermal conductivity and self-diffusion coefficient functions

were computed in constant T simulations while those for the bulk viscosity were using NVE

dynamics.

Figure 2: The single trajectory viscosity PDF in LJ units (frame (a)) defined in Eq. (17) and

in units of the averaged viscosity (in frame (b)) defined in Eq. (18) for the state point, (‘C’ in

Table I) ρ = 0.8442 and T = 0.722 with t = 2.5. The differences between the PDFs on the

negative (P−) and positive (P+) sides are shown in red. On the left or negative side, P− − P+

is shown, and on the right P+ − P− is given.

Figure 3: The four transport coefficients in LJ units derived from the accumulated first

moment of the PDF, P . The data is from a simulation for state point is C in Table I, taking

t = 2.5. The transport coefficients obtained using the GK formulas are indicated by horizontal

lines. Scaling factors to aid clarity of the different curves are given on the figure.

Figure 4: The time dependent shear viscosity, ηs(t), (frame (a)) and self-diffusion coefficient,

D(t), (frame (b)) for state point C. The figures also show the separate contributions from the

ST on the negative and positive sides (i .e., ηs,− and ηs,+ for the shear viscosity and D− and

D+ for the self-diffusion coefficient. The GK values for the total transport coefficient are also

shown as a function of t in each case. Note the log-lin scale.
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Figure 5: The shear viscosity standard deviation reduced PDF defined in Eq. (11) for

t = 2.5 and several system sizes using ρ = 0.8442 and T = 0.722. Frames (a) and (b) give

PSD(|ηs,u|/σd) on lin-lin and lin-log scales respectively The numbers of particles in the MD

cells are are given in the figure key.

Figure 6: The shear viscosity, P -type PDFs on the negative and positive sides of the

distribution are shown for different t values, given on the figure. The sets of curves are shifted

vertically to improve clarity.

Figure 7: The reduced PDF, P , for the shear viscosity compared with an empirical fit to the

simulation data for t = 2.49 using Eq. (20). The constants are, A1 = 0.92726, A2 = 1.45707

and A3 = 0.50139, and b1 = 2.57893, b2 = 27.86215 and b3 = 0.87189. Frames (a) and (b) are

on lin-lin and lin-log scales, respectively. The full fit and just the slowest decaying term (‘fit

limiting’) are shown on both frames. The PDF of the total energy per particle is also shown.

The simulations were carried out at constant temperature.

Figure 8: The state point dependence of the viscuit PDF. Key: (State A) ρ = 0.5, T = 2.0

for t = 1.7782, and (State B) ρ = 0.8, T = 1.0 for t = 2.1501. (State C) ρ = 0.8442, T = 0.722

for t = 2.4855, Frame (a) shows the data on a lin-lin scale, and frame (b) presents the same

data on a lin-log scale, taking the argument as |ηs,u|/σd. The out-of-equilibrium State Point D

(magenta and green symbols for the negative and positive PDF sides, respectively) shows a

significant breakdown of the symmetry. The positive ST side of the PDF is highly oscillatory

unlike that of the negative side.

Figure 9: The dimensionless argument PDF, P for the four transport coefficients at the state
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point, ρ = 0.8442 and T = 0.722. Frames (a) and (b) have the ordinates on lin and log scales,

respectively. All calculations were performed with NVE dynamics. On the figure, ‘S’ stands

for the shear viscosity, ‘B’ for bulk viscosity, ‘T’ for the thermal conductivity and ‘D’ for the

self-diffusion coefficient. Data for t = 0.5 and 2.5 are given on the figure. Frame (b) also has

the mean-field prediction using Eq. (21), with three values of the correlation coefficient, c,

which are specified on the figure.

Figure 10: The ratios, R, of the PLJ PDFs for the same absolute values of the ST, and for

different integraton times, t, indicated on the figure. Frame (a) is for the shear viscosity and

frame (b) shows the R data associated with the thermal conductivity ST.

Figure 11: Frame (a): The parameter A(t) obtained directly from the MD data slopes

of Fig. 10(a) and from Eq. (26), A = (σ+ − σ−)/σ+σ−. Frame (b): The ratio σ−/σ+ as a

function of N−/N+ for the four transport coefficients is shown. The linear regression fit to the

abscissa values greater than 0.6 has an intercept of −0.361 and a slope of 1.3425. The viscuit

equivalents for the potential energy landscape u and pressure, P are also shown on frame (b).

Figure 12: Frame (a): The shear (‘S’) and potential energy (‘u’) time traces, with points

separated by 4.2 reduced time units (also the viscuit time, t). State point C and NVT dynamics

were used. The time trace of the local time-averaged quantity (‘t-av’) and ST or viscuit

(‘visc’) are shown. Frame (b) is the PDF of the quantity. Xt, for property X summed over

time t or Nt time steps. The PDFs on the negative and positive ST sides treated separately

are given on the figure. The shear stress (‘S’) and potential energy, u are the quantities

considered again. A comparison is made with a gaussian distribution. The MD PDF was

rescaled onto an equivalent gaussian using, Pg(x) =
√

2/π exp(−[x/σg]
2/2)/σg. The reduced
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PDF, Pg,MD = gPMD([x/σMD]/g), where g =
√

π/(π − 2) is plotted on the figure.

Figure 13: Frame (a) shows a ‘scatter’ plot of Pxy(0) and the average deviatoric potential

energy per particle, u(0) − u against the corresponding ST quantity. Both quantities are

normalized separately by their corresponding standard deviations. The standard deviation of

Pxy(0) is denoted by σxy. The state point is T = 0.722 and ρ = 0.8442. Data for two times,

t = 0.078 denoted by ‘A’, and t = 2.525 denoted by ‘B’, are shifted vertically by −5 and +5,

respectively, for clarity. Key: shear stress (black star), potential energy (red open square)

for t = 0.078, and shear stress (blue filled in square), potential energy (green open circle)

for t = 2.525, Frame (b) as for frame (a) except that data from a supercooled liquid state

simulation at T = 0.5 and ρ = 0.9211 are presented. The symbols, ‘A’ and ‘B’ correspond in

this frame to t = 0.011 and 1.15, respectively.

Figure 14: Schematic diagram illustrating the effects of qualitatively different regions on the

potential energy landscape on the viscuit PDFs (indicated by the arrows). The 6N phase

space vector is represented qualitatively on a 2D diagram.
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