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Background: BCG has low efficacy in tropical countries. We hypothesized that maternal

latent Mycobacterium tuberculosis (M.tb) infection (LTBI) results in fetal tolerance to

mycobacterial antigens and impaired responses to BCG immunization.

Methods: We enrolled 132 LTBI-positive and 150 LTBI-negative mothers and their

babies in Entebbe, Uganda. Infants were BCG-immunized at birth. Cord blood and

samples at weeks 1, 4, 6, 10, 14, 24, and 52 were analyzed for cytokine/chemokine

responses toM.tb antigens by Luminex 17-plex assay in 6-day whole blood cultures and

antibody responses by ELISA. Of the 17 Luminex analytes, seven (IL-2, IL-5, IL-10, IL-13,

IL-17A, TNF, and IFN-γ) were included in the main analysis as they were considered most

likely to represent T cell responses. Immune sensitization was defined as a detectable

cord blood cytokine response to PPD for any of the seven cytokines. Patterns of cytokine

and antibody responses were compared between infants of mothers with and without

LTBI using linear mixed models adjusting for confounders.

Results: Most infants (73%) were sensitized in utero to M.tb antigens, with no overall

difference seen between infants born to mothers with or without LTBI. Patterns of

post-BCG cytokine and antibody responses to mycobacterial antigens were similar

between the two infant groups.

Conclusions: Our data do not support the hypothesis that maternal LTBI results in

an impaired response to BCG immunization, in Ugandan infants. BCG vaccination at or

shortly after birth is likely to be beneficial to all infants, irrespective of maternal LTBI status.

Keywords: latent Mycobacterium tuberculosis infection, maternal infection, BCG vaccine, cytokine responses,

antibody responses
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INTRODUCTION

Bacille Calmette-Guerin (BCG) is the only licensed vaccine
against tuberculosis (TB). It protects against tuberculous
meningitis and miliary TB in infants (1), but its protective
efficacy against pulmonary TB varies between populations. Meta-
analyses of BCG vaccine trials have shown that latitude is an
important factor for responses in adolescents and adults, with
lower protection closer to the equator (2–5).

Modification of the protective effect of BCG through
sensitization to non-tuberculous mycobacteria (NTMs) has
been suggested as a reason for variable BCG efficacy, and its
association with latitude (6, 7). The protective effects of BCG
might be blocked by exposure to NTMs, or NTMs might provide
equivalent protection to BCG, thus masking the benefit provided
by BCG (8). Although NTMs have a variable distribution
by latitude (9), NTM exposure may not fully explain this
variability (10).

In TB endemic areas, BCG is administered to new-borns at
birth, in accordance with WHO recommendations (11). BCG
elicits different profiles of immune response in Africa compared
with the UK when given early in life (12). Prior sensitization,
perhaps due to early exposure to Mycobacterium tuberculosis
(M.tb) itself, or to environmental mycobacteria has been reported
in infants immunized some months after birth (13). However,
in utero, rather than early life, sensitization (14) may result in a
more substantial modification of responses in exposed infants.

In TB endemic areas, a high proportion of adults harbor
latent M.tb infections (LTBI). A dynamic relationship between
mycobacteria and the immune system is thought to exist
during LTBI. Individuals with LTBI may have circulating
antigens and higher concentrations of TB-specific antibodies,
plasmablasts, and memory B cells than those without infection
(15, 16). Mycobacterial antigens cross the placenta in murine
models (17). Thus, maternal LTBI might lead to exposure to
mycobacterial antigens in utero driving a modified profile of
sensitization (18), or inducing tolerance in the fetus (14, 19).
Alternatively, passive transfer of maternal anti-mycobacterial
antibodies (by providing passive immunity) or maternal anti-
idiotype antibodies (mimicking antigen) (20), might influence
the ability of neonatal BCG vaccine to elicit protective immune
responses. The maternal and placental immunological milieu
could also be influenced non-specifically by maternal LTBI,
with consequences for fetal and neonatal response following
immunization (21). For other pathogens, maternal infections
have been shown to induce either tolerization or sensitization
in the fetus, with subsequent differences in susceptibility to
infection (22). We previously showed impaired mycobacteria-
specific T-cell responses following BCG immunization of infants
born to LTBI-positive mothers, although this effect appeared to
be transient (23).

We hypothesized that maternal LTBI influences the neonatal
response to mycobacteria, impairing the response to BCG and
M.tb. To investigate this we followed a cohort of infants of
LTBI infected or uninfected mothers over the first year of
life. We measured cellular responses induced by neonatal BCG
immunization using a whole blood assay (24). As well, the

evolution of anti-mycobacterial antibody responses was assessed,
since these have recently gained new recognition for a potential
role in protective immunity against tuberculosis (25–28). We
measured responses to both the relatively M.tb-specific antigens
(ESAT6 and CFP10) and to the broadly mycobacterial-specific
purified protein derivative (PPD) in order to evaluate exposure
toM.tb, and acquisition of responses toM.tb, in utero and during
the first year of life, as distinct from the response to BCG.

MATERIALS AND METHODS

Study Design and Participants
Healthy mothers and their infants were recruited at Entebbe
General Hospital between June 2014 and October 2016.
Women who were willing to participate in the study, had a
normal singleton pregnancy, resided in Entebbe municipality or
neighboring Katabi sub-county, and were HIV negative were
eligible for inclusion. They were excluded if cord blood was not
obtained, delivery was not normal, the mother was unwilling
to undergo a repeat HIV test or was found to be HIV-positive
on repeat testing, birth weight was <2,500 g, the neonate was
unwell as judged by the midwife, the mother had indeterminate
LTBI status (as described below), or the neonate presented
with significant congenital abnormalities likely to impair the
child’s general health and development. Enrolled infants received
all vaccines recommended by the Expanded Programme on
Immunization. Infants were included in the study based on their
mother’s LTBI status, targeting equal numbers of infected and
uninfected women. All infants were immunized at birth or within
the first week of life with a single dose of intradermal BCG
(Statens Serum Institut (SSI), Denmark).

Blood Sampling Strategy
Up to 7ml of cord blood was collected. Infants were then
randomly assigned in a 1:1 ratio (stratified by LTBI status) to
two sampling strategies to reduce the blood-sampling burden on
individual infants. Half gave 2ml venous blood at 1, 6, and 14
weeks, the remainder at 4, 10, and 24 weeks. All gave blood (5ml)
at 52 weeks. Blood draws at weeks 14 and 24 were introduced
when the study was already underway, resulting in lower sample
numbers at these times.

Tests for Latent TB Infection
Women were investigated for LTBI at approximately 1 week
post-delivery using the tuberculin skin test (TST) (PPD RT23
SSI, Copenhagen, Denmark) and T-SPOT.TB assay (Oxford
Immunotec, Abingdon, UK) (29). The TST was performed in the
mothers after bleeding for the T-SPOT.TB assay and was read
48–72 h later, and defined as positive if ≥10mm in diameter.
Women positive on both tests were considered LTBI-positive;
those negative on both tests were considered LTBI-negative.
Those with indeterminate and discordant results were excluded
in order to optimize our ability to determine effects of LTBI
(as distinct from other mycobacterial exposures). LTBI-positive
mothers were investigated for active tuberculosis by symptoms,
sputum examination (if available), and chest x-ray. No cases of
active TB were detected.
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Whole Blood Assays for
Cytokine/Chemokine Responses
Whole blood (including cord and infant venous blood) was
diluted 1 in 5 in RPMI 1640 (Invitrogen) supplemented with
2mM L-glutamine (Invitrogen) and cultured under 5% carbon
dioxide at 37◦C for 6 days in 96-well U-bottomed plates (final
volume 200 µl). Duplicate wells were incubated with medium
alone (negative control), PPD (Statens Serum Institut, catalog
#RT50) (10µg/ml), or a combination of ESAT6 and CFP10
antigens (BEI Resources, calatologue #sNR14868 and NR-49425)
(5 µg/ml).

After 6 days, plates were centrifuged at 400 g for 5min.
Supernatants were removed from duplicate wells, pooled,
and stored at −80◦C prior to analysis. Thawed supernatants
were randomized across plates and subjected to multiplex
bead array analysis using the human cytokine/chemokine
MilliplexTM MAP 17-plex pre-mixed kit (Merck Millipore),
following the manufacturer’s instructions. The pre-mixed bead
set included interleukin (IL)-1α, IL-1β, IL-1Ra, IL-2, IL-5, IL-
8, IL-10, IL-12p40, IL-13, IL-17A, interferon (IFN)-γ, IFN-γ-
inducible protein (IP)-10, monocyte chemotactic protein (MCP)-
1, macrophage inflammatory protein (MIP)-1α, MIP-1β, tumor
necrosis factor (TNF), and granulocyte macrophage colony-
stimulating factor (GM-CSF). Data were acquired using the
Biorad Luminex R© 200 system and Bioplex Manager Software
version 6.1 (Biorad).

ELISA for Anti-mycobacterial IgG
Antibodies
Total immunoglobulin (Ig)G against PPD, ESAT6, CFP10,
and Ag85A were assayed in plasma of a random sample
of infants, at each time point, by ELISA as described
elsewhere (23). Briefly, flat-bottomed 96-well microlon plates
(Greiner Bio-one, Germany) were coated with purified IgG
standard (GenScript, NJ, USA) and mycobacterial antigens.
After overnight incubation, the plates were blocked and samples
diluted 1 in 100 were added to the plates and left overnight at 4◦C.
Polyclonal anti-human IgG Horse Radish Peroxidase (Poly HRP,
0.5µg/ml, Dako, Denmark) was added and plates incubated. 0-
Phenylenediamine (OPD, Sigma-Aldrich, MO, USA) substrate
mixture (3mg OPD, 0.1M citric acid, 0.2M Na2HPO4, 3 µL
30% hydrogen peroxide in distilled water) was then added
and the reaction stopped with 2M Sulphuric acid and read
at test wavelength 490 nm and reference wavelength 630 nm
using a MRX1.1 plate reader and Gen5 1.07 Software (BioTek
Instruments, Inc., VT, USA). The lowest standard concentration
above which antibody was detectable (0.01µg/ml) was set as the
sensitivity of the assay.

Statistical Methods
Analyses studied the time course of PPD- and ESAT6/CFP10-
specific responses at 1, 4, 6, 10, 14, 24, and 52 weeks after
BCG immunization, and the influence of maternal LTBI on
infant responses.

We aimed to recruit 150 women with LTBI and 150 without,
to give 80% power to detect a difference of 0.35log10 (assuming a

standard deviation of 0.9log10) (30) in infant cytokine response
at 52 weeks between the two groups, and a difference of 0.5log10
at other time points (with 75 infants in each group).

Unstimulated cytokine response values were subtracted from
antigen-stimulated results. Values <3.2 pg/mL (lower detection
limit of assay) were assigned as 3.2 pg/mL. Values above 11,000
pg/mL (the upper detection limit) were assigned 11,000 pg/mL.

Baseline characteristics of participants were summarized,
by LTBI status, using percentages, means and standard
deviations, and medians and interquartile ranges. Of the 17
Luminex analytes, seven (IL-2, IL-5, IL-10, IL-13, IL-17A,
TNF, and IFN-γ) were included in the main analysis as they
were considered most likely to represent T cell responses.
Results from the remaining ten cytokines were included in
supplementary analyses.

Principal components analysis (PCA), a procedure which
transforms several (possibly) correlated variables into a smaller
number of uncorrelated variables (principal components), was
used on cord blood outcomes to investigate relationships between
the seven cytokine responses. We defined immune sensitization
as a detectable cytokine response to PPD, in cord blood, for any
of the seven cytokines. We summarized proportions of infants
sensitized based on each of the seven cytokines and on groups
discovered by PCA, and compared these proportions bymaternal
LTBI status using chi-squared tests.

Changes in log-transformed cytokine responses over time, by
mother’s LTBI status, were studied using linear mixed models
adjusted for factors that showed baseline differences between
the two groups. Profile plots showing the mean concentration
and 95% confidence intervals (CI) were used to visualize the
differences. Similar plots were generated for antibody responses.

Three-way component analysis (31) was used to explore
relations between cytokine responses, following BCG, taking into
account trends over all time points.

Data analysis was conducted using Stata 14.1 (College Station,
Texas, USA) and R version 3.5.1 (R Foundation for Statistical
Computing, Vienna, Austria). A 5% significance level was used
for all analyses.

Ethical Approvals
Ethical approval was given by the Uganda Virus
Research Institute Research Ethics Committee (reference
GC/127/13/09/16 and GC/127/16/03/434), Uganda National
Council for Science and Technology (reference HS 1526) and
the London School of Hygiene & Tropical Medicine (reference
7104). Written informed consent was received from all mothers,
for their own and their baby’s participation.

RESULTS

Participants’ Characteristics
The study flowchart is shown in Figure 1. Between June 2014 and
October 2016, 1134 women were invited to participate, 798 (70%)
of whom consented and were tested for LTBI. 390 women tested
negative on both TST and TSPOT.TB while 133 were positive
on both tests. Among the 390 LTBI-negative women, systematic
sampling was done to randomly select those for enrolment:
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FIGURE 1 | Study flowchart. *Other reasons include discharged before consenting procedures, low birthweight babies, cord blood not taken, asphyxia, child not

vaccinated, and birth to twins.

initially we enrolled every second woman, later every third
woman, to ensure contemporaneous recruitment with LTBI-
positive women. Of the 133 LTBI-positive women, 132, with their
infants, were eligible for follow up and enrolled into the study.

Baseline characteristics of participants were similar between
the two groups (Table 1), except that LTBI-positive mothers were
on average older, more likely to have lived with someone who had
TB, to drink alcohol and to originate from the central region of
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TABLE 1 | Characteristics of study participants.

LTBI Negative LTBI Positive

(n = 150) (n = 132)

Maternal characteristics

Mean mother’s age (SD) (mv 0, 3)a 23.65 (3.67) 25.53 (4.99)

Median number of pregnancies (IQR) (mv 1, 1) 2 (1-3) 2 (2-4)

Median number of births (IQR) (mv 1, 1) 2 (1-3) 2 (1-3)

Positive malaria test during pregnancy (mv 1, 1) 38 25.5% 29 22.1%

Ever lived with someone with TB (mv 2, 1) 3 2.0% 19 14.5%

BCG scarring (mv 1, 2) 106 71.1% 95 73.1%

Ever taken any medicine for worms (mv 1, 2) 135 90.6% 116 89.2%

Current marital status (mv 2, 4)

Single 28 18.9% 20 15.6%

Married/living as married 120 81.1% 108 84.4%

Highest level of education attained (mv 2, 3)

Never attended school 5 3.4% 2 1.5%

Primary 50 33.8% 44 33.9%

Secondary 81 54.7% 66 50.8%

Tertiary 12 8.1% 17 13.1%

Smoked in the past (mv 1, 1) 1 0.7% 1 0.8%

Drink alcohol (mv 3, 4) 18 12.2% 28 21.9%

Schistosoma mansoni infected (mv 33, 36) 13 11.1% 9 9.4%

Hookworm infected (mv 33, 36) 9 7.7% 2 2.1%

Trichuris infected (mv 33, 36) 1 0.9% 1 1.0%

Any helminth infection (mv 33, 36) 20 17.1% 12 12.5%

Mother’s tribe grouping (mv 5, 3)

Central 56 38.6% 72 55.8%

Other 89 61.4% 57 44.2%

Father’s tribe grouping (mv 3, 2)

Central 58 39.5% 75 57.7%

Other 89 60.5% 55 42.3%

Infant characteristics

Sex of the baby, male 77 51.3% 77 58.3%

Mean birth weight in kg (SD) 3.24 (0.43) 3.21 (0.40)

Data are mean (SD), median (IQR), or n (%). SD, standard deviation; IQR, interquartile

range; mv, missing values. aFigures in parentheses indicate missing values in the LTBI-

Negative and LTBI-Positive groups, respectively.

Uganda. Infant characteristics (sex and birth weight) were similar
between the two groups.

Due to the study design, not all infants provided samples at
all-time points. Supplementary Table 1 shows sample numbers
assayed at each time point.

Cord Blood Outcomes and Immune
Sensitization
Based on cord blood responses to PPD for any of the seven
cytokines IL-2, IL-5, IL-10, IL-13, IL-17A, TNF, and IFN-γ, 73%
of the infants made a positive cytokine response toM.tb antigens,
with no overall difference seen between infants born to mothers
with or without LTBI (78 vs. 69%, respectively; p = 0.119).
Considering individual cytokines, a larger proportion of infants
born of LTBI-positive mothers had PPD-specific TNF responses

TABLE 2 | Immune sensitization based on cord blood responses to PPD.

LTBI-Negative LTBI-Positive

Cytokines (n = 138) (n = 116) p-value

Individual cytokines

IL2 12 8.7% 10 8.6% 0.983

IL5 7 5.1% 7 6.0% 0.738

IL10 38 27.5% 45 38.8% 0.057

IL13 21 15.2% 17 14.7% 0.900

IL17A 13 9.4% 7 6.0% 0.318

TNF 84 61.3% 84 73.7% 0.038

IFN-γ 17 12.3% 14 12.1% 0.952

Based on any of the 7 cytokines

IL2, IL5, IL10, IL13,

IL17A, TNF and IFN-γ

95 68.8% 90 77.6% 0.119

Based on PCA grouping

IL2, IL5, IL13, IL17A

and IFN-γ

30 21.7% 26 22.4% 0.897

in cord blood as compared to those born of LTBI-negative
mothers (74 vs. 61%, respectively; p= 0.038) (Table 2).

For ESAT6/CFP10 responses, there was no overall difference
in responses between infant groups, and >90% of all infants had
a positive TNF response (Supplementary Table 2).

PCA component loadings for cord blood cytokine responses
to both PPD and ESAT6/CFP10, are shown in Figure 2.
The cytokine responses to PPD, IL-10 and TNF clustered
separately from the other cytokines. The cytokine responses to
ESAT6/CFP10, IL-10, TNF, and IFN-γ clustered separately from
the other cytokines. The PCA clustering profiles described did
not differ between the two infant groups.

Maternal LTBI and Infant Cytokine
Responses Over Time
Cytokine responses to both PPD and ESAT6/CFP10 were similar,
at all-time points, between the two infant groups (Figures 3, 4
and Supplementary Table 3). The peak of the infant response to
PPD was sustained from 10 to 24 weeks of age (Figure 3). From
univariate linear mixed models, adjusted for sex of the infant and
factors that showed baseline differences between the two groups
(mother’s age, household TB contact, alcohol consumption,
parental tribe), there was no evidence of interaction between time
and mother’s LTBI status for any of the seven outcomes for either
PPD or ESAT6/CFP10 responses (Figures 5, 6), demonstrating
that the association between LTBI status and the responses did
not change over time.

Cytokine responses to ESAT6/CFP10 varied over time. IFN-γ
and TNF responses started high, increased up to about 24 weeks
and then plateaued; IL-13 and IL-17A responses increased up to
4 weeks, declined up to 10 weeks and then plateaued; IL-2 and
IL-5 responses were consistently very low, whilst IL-10 responses
declined up to 10 weeks, increased up to 14 weeks and then
plateaued (Figure 4). These responses also showed no difference
between the groups over time.
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FIGURE 2 | Principal Component Analysis of cord blood outcomes in Ugandan infants. (A) PCA for cord blood cytokine responses to PPD. (B) PCA for cord blood

cytokine responses to ESAT6/CFP10.

FIGURE 3 | Cytokine responses to PPD in Ugandan infants born of mothers with or without LTBI. PPD-specific cytokine concentrations corrected for background (on

the log scale). Points represent mean values and the bars represent 95% confidence intervals around the mean. The solid and dashed lines represent concentrations

from children born of LTBI-positive and LTBI-negative mothers, respectively.

PPD and ESAT6/CFP10 responses for the other 10
cytokines/chemokines included in the array (IL-8, MCP-
1, MIP-1α, MIP-1β, IL-1α, IL-1β, IL-12, IL-1Ra, GM-CSF,
and IP-10) were also similar between the two infant groups
(Supplementary Figures 1, 2).

Cord Blood Sensitisation and Infant
Cytokine Responses Over Time
There was no difference in evolution of PPD responses based on
cord blood response profiles (Supplementary Figure 3).

Antibody Responses Over Time
Antibody concentrations were similar, at all-time points, between
the two infant groups. Anti-ESAT6 and anti-Ag85A IgG antibody
concentrations declined up to 10 weeks and then gradually
increased, consistent with maternal antibodies (in both groups)
waning and then infants generating their own antibodies.
There was no difference in antibody concentrations over time,
based on cord blood response profiles. Antibody levels to
PPD, Ag85A, and CFP10 were generally higher than those to
ESAT6 (Figure 7).

Frontiers in Immunology | www.frontiersin.org 6 May 2020 | Volume 11 | Article 929



Lubyayi et al. Maternal-M. tb and Infant Immune Response

FIGURE 4 | Cytokine responses to ESAT6/CFP10 in Ugandan infants born of mothers with or without LTBI. ESAT6/CFP10-specific cytokine concentrations corrected

for background (on the log scale). Points represent mean values and the bars represent the 95% confidence intervals around the mean. The solid and dashed lines

represent concentrations from children born of LTBI-positive and LTBI-negative mothers, respectively.

FIGURE 5 | Estimates for the interaction terms between time and LTBI status

for cytokine responses to PPD. Estimates and 95% confidence intervals for

the interaction term between time and LTBI from univariate linear mixed

models for cytokine responses to PPD.

Associations Between Cytokine Response
Dynamics Over Time
Results from three-way component analyses show that IL-
10, IL-2, and IL-5 responses to PPD evolved in a similar
way (Supplementary Figure 4A), and TNF and IL-17 responses
evolved similarly to each other, whereas IL-13 and IFN-γ
responses separated out independently from the other cytokines.
Responses to ESAT6/CFP10 clustered for IL-13, IL-5, and
IL-17 (Supplementary Figure 4B), indicating similar evolution
patterns over time; TNF, IL-10, IFN-γ, and IL-2 were separated

FIGURE 6 | Estimates for the interaction terms between time and LTBI status

for cytokine responses to ESAT6/CFP10. Estimates and 95% confidence

intervals for the interaction term between time and LTBI from univariate linear

mixed models for cytokine responses to ESAT6/CFP10.

from the other cytokines indicating unique evolution patterns
over time. However, there were no differences in clustering
patterns between the groups based on mother’s LTBI status.

DISCUSSION

In this study, we show that Ugandan infants were sensitized
to mycobacterial antigens in utero, regardless of maternal LTBI
status, and that maternal LTBI had no effect on evolution of
immune responses to BCG over time.
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FIGURE 7 | Antibody responses to PPD, ESAT6, Ag85A, and CFP10 in infants born of mothers with or without LTBI. Antibody responses to PPD, ESAT6, Ag85A, and

CFP10 (ng/ml). Points represent mean values and the bars represent 95% confidence intervals around the mean. The solid and dashed lines represent concentrations

from children born of LTBI-positive and LTBI-negative mothers, respectively.

Maternal infections during pregnancy, with various
pathogens, sensitize the fetus in utero (14, 18, 32, 33), and
prenatal M.tb sensitization has long been recognized among
mothers from TB-endemic settings (14). In addition, maternal
helminth co-infection appears to modify the infant response
to subsequent infection with the same pathogen (22), and to
BCG immunization (34). In a small preliminary study, we
demonstrated impaired mycobacteria-specific T-cell responses
following BCG immunization of infants born to LTBI-positive
mothers, although this effect was transient (23). We therefore
postulated that maternal M.tb infection would strongly
influence fetal sensitization and the neonatal response to BCG
immunization. Our new results refute this hypothesis. A previous
study from South Africa showed that maternal HIV infection
had an effect on infant immune responses in the presence of
maternal M.tb sensitization at birth, however, these effects were
not maintained post immunization with BCG (35). Our study
design differed from the South African study in terms of earlier
BCG immunization (at birth, rather than age 6 weeks), larger
sample size, exclusion of HIV positive mothers, use of two tests
(TST and T-SPOT.TB) rather than one (QuantiFERON-TB Gold
In-Tube) to rigorously distinguish LTBI-positive or negative
mothers, and more frequent sampling during infancy. Together,
the two studies provide clear evidence that maternal LTBI does
not impact the infant response to BCG in endemic settings.

PCA in cord blood showed IL-10 and TNF tending to
group separately from the other five cytokine responses, but
there was no evidence that maternal LTBI was associated with
a differing pattern of response, or that differences in these

cord blood profiles impacted the subsequent infant response
to BCG.

This conclusion is surprising in view of the recognized
effects of prenatal exposure to other pathogens on neonatal
immune responses. One possible explanation lies in the
observation that, in our study, a very high proportion of infants
demonstrated cord blood cytokine responses to mycobacterial
antigens, regardless of maternal LTBI status. The mechanism
of fetal sensitization may involve transfer of either antigen or
antibody. Interestingly, antibody to PPD and to ESAT6/CFP10
was found in the cord blood of almost all our study infants,
in considerable concentrations, implying that exposure to
mycobacteria, whether NTM or M.tb, was almost universal.
Passive transfer of antibodies appears to have occurred regardless
of maternal LTBI status. Nevertheless, how fetal sensitization to
mycobacterial antigen occurs in the absence of maternal LTBI
needs further investigation.

A second possible explanation for the lack of difference in
response between infants of mothers with and without LTBI is
that the BCG stimulus is sufficiently strong to override effects
of prior in utero exposures. Our principal component analysis
of cord blood responses suggested distinct groups with IL-10
(potentially suggestive of tolerization) separate from Th1 or Th2
cytokine responses for PPD, and Th1 vs. Th2 biased groups
for ESAT6/CFP10. However, these initial sensitization patterns
were not reflected in the profile of response that developed
following BCG. In addition to driving antigen-specific responses,
it is possible that BCG-induced increases in function of innate
immunity, through trained immunity, could have contributed
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to a lack of difference in responses between infants born of
mothers with or without LTBI (36). However, additional analyses
using techniques such as intracellular cytokine staining would be
needed to assess the extent of cytokine production from innate
cells compared to antigen-specific lymphocytes, whether T cells
or B cells.

In our study, the peak infant T cell response to PPD was
sustained from age 10 to 24 weeks, later than the 6–10 week
period previously reported (37). This is important, as the
peak for BCG-induced responses should inform future prime-
boost strategies regarding timing of the boost—perhaps boosters
should be given much later than has previously been thought.
Our study differed from the South African study (37) in terms of
the geographical location and the use of whole blood stimulation
with Luminex assays to measure analytes in supernatant, as
compared to flow cytometry.

Comparing UK BCG-vaccinated and un-vaccinated infants,
BCG vaccination induced several cytokines and chemokines
(IFN-γ, TNF, IL-2, IL-6, IL-1α, IL-4, IL-5, IL-13, IL-10, IL-
8, IP-10, MIP-1α, G-CSF, and GM-CSF) (38). Our results
are comparable: infants in our study produced similar
cytokines, although it was not possible to determine which
cells produced them.

This was the largest study of its kind to date. Although
recruitment (and hence statistical power) was slightly below
target, there was no suggestion of any consistent or persistent
differences between the two groups. Thus, the small reduction
in power is unlikely to explain the lack of differences seen. Use
of a whole blood assay means that we cannot be sure about the
cellular source of the analytes measured; for this analysis we have
focussed on those most likely to be of T-cell origin; moreover,
given that analytes were measured after 6 days of culture.

In conclusion, our data suggest remarkably high early
exposure to mycobacterial antigens in utero in Uganda, but no
impact of this exposure on the infant response to BCG. Our
data do not support the hypothesis that prenatal exposure to
antigens or antibodies resulting from maternal LTBI results in
impaired cytokine responses induced by BCG immunization.
The implication of our findings is that maternal LTBI is not the
reason for reduced effectiveness of BCG in the tropics and all
infants are likely to benefit from BCG immunization regardless
of their maternal LTBI status.
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