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Abstract 

Phase—lag  computations   are   carried   out   for   a   family   of   two-step 

multiderivative    methods   for   solving   second   order   initial   value 

problems   of  the  form y"  = f ( t , y ) ,  y ( t 0 )  =  y0, y ' ( t 0 )    =   z0.       The 

analysis   is   carried   out   with   respect    to   the   familiar   model   equation 

y"   =  -λ2y,  where   λ  is  real. 

Keywords:      Phase—lag   analysis,   two-step  multiderivative   methods, 

periodic    initial   value   problems,   Pade  approximant, 

PECE  mode. 
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1.      Introduction

Periodic   initial   value  problems   of   the  form 

y"  =  f ( t , y )    ,     y(t0)   =  y0   ,     y'(t0)   =  z0                                    (1) 

arise   in   the   theory  of   orbital  mechanics   (Lambert  and  Watson   [1])  and 

have   applications   in   the   study  of  wave   equations   (Twizell   [2]).      In 

orbital   mechanics,   such   problems  can  be  divided   into   two  distinct  classes: 

(a) problems   for  which   the   solution  period   is  known  in  advance, 

(b) problems   for which  the  period   is  unknown. 

Computational  methods  applied  to  type   (a)   which  yield  a  numerical 

solution   that    stays   on  the  orbit  are  described  as   orbitally   stable; 

numerical   methods   which  yield  a  solution  that   spirals   inwards   or  out- 

wards   are   said  to  be  orbitally  unstable.     For   the   numerical    solution 

of   problems  of   type   (b)  it  is  desirable  that  the  method  used  should  be 

P-stable.     Usually,   linear   multistep   methods   are  considered  for   solving 

(1).   However,  Lambert  and  Watson  [1]   have shown that  P-stable  linear 

multistep  methods  cannot  have  order  of  accuracy  greater   than  two.     This 

feature   is   the  main  motivation  for   turning   to  multiderivative  methods 

for   the  solution  of   (1) ,   as   these  methods  are   able  to  attain,   simultan- 

eously,   high   accuracy  and  good  stability  properties.     It   is   the   aim  of 

the   present  note   to   reveal   the   small   phase-lags   of  multiderivative  methods. 

2.      Analyses

The   family  of  multiderivative  methods  developed  by  Twizell  and  Khaliq   [3] 

was  based  on  the  formula 

y(t-ℓ)   -  {exp(ℓD)   +  exp(-ℓD)}y(t)   +  y(t+ℓ)   =  0   ,                 (2) 

where   D  is   the  differential   operator   d/dt.     In   [3],   the   exponential    terms 

were   replaced  by   their   (m,k)   Pade  approximants  which  have  the  forms 
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exp(±ℓD)   =   [Qm   (±ℓD)]-1Pk(±ℓD)0(ℓm+k+1) ,                               (3) 

where  Pk   and  Qm   are  polynomials  of  degrees  k and  m,  respectively. 

These   replacements   lead   to   the  formula 

Qm(ℓD) Qm(-ℓD)y(t-ℓ)  - {Qm(-ℓD)Pk(ℓD))  + Qm(ℓD)Pk(-ℓD)}y(t) 

+Qm(ℓD) Qm(-ℓD)y(t+ℓ)  + 0(ℓm+k+2)   =                  (4) 

which,   in  turn,   leads  to  the  family  of  two-step  multiderivative  methods 

for  the  solution  of   (1).     Examination  of  the  methods   shows  that  those  based 

on  the   (0,2),   (1,1)   and  (1,2)  Padé  approximants  can  also  be  classed  as 

linear  multistep  methods.   The  method  based on  the  (m,k)   Padé  approximant 

has   local   truncation  error  with  principal   part   Cp+2  ℓp+2 dp+2  y/dtp+2 , 

where  p  =  m+k  is  the  order  of   the  method  and  C p+2 is   its  error  constant; 

for  consistency,   p≥↑   (see  Lambert   [ 4 ] ) .  

The  usual  choice  of  model   periodic   initial  value  problem  is   the 

test     equation 

y"  = - λ  2 y   ,     λ > 0  real (5) 

with   initial   conditions  y ( t 0 )    =  y   ,   y ' ( t 0 )    =  z0  as   for  (1), It  was   shown 

in   [3]   that   the   periodicity     polynomial   associated  with   (4)   and   (5)   is 

Ω(s, H 2)   =  A(H)s2   -  B(H)s   +  A(H)                              (6) 

where  H =  λℓ,  A(H)  =  Qm(i H)Qm(-i H) and  B(H) =  Qm(-i H)Pk(i H) + Qm(i H)Pk(-i H) , 

with  i  =   + √=1. 

The   interval   of  periodicity   of   the  multiderivative    method    yielded 

by   (4)   is   then  determined  by  computing   the  range  of  values of H2  for 

which   s1     and   s2   ,   the  zeros   of   the  periodicity   equation 

Ω(s, H 2)   =  0                                                    (7) 

satisfy 
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s1   =  eiθ( H)  ,   s2   =  e-iθ (H)                                          (8) 

where   0(H)   is   real   and   is   an  approximation   for  H.      The  multiderivative 

method   is   then  orbitally   stable   and   those  methods   for  which  H 2  ∈ (0,∞) 

are   said  to  be  P-stable  (Lambert  and   Watson [ 1 , p . 1 9 9 ] ) .  

Having    satisfied   the   conditions   (8)   for  orbital   stability,   the 

(consistent)    two-step   multiderivative   methods   arising   from   (4)   then  have 

no  algorithmic  damping and  the use  of  the  more  general   model   equation  

y''  = λ  -  2y  +   r eiwt (9) 

is  not   called   for  (see Gladwell  and  Thomas   [5]  and   Chawla  and  Rao   [6]). 

          The phase—lag of the   two—step multiderivative  method  based  on the 

use   of   the   (m,k)   Padé  approximant   is   the   leading   term  in   the   expansion 

of 

|{θ(H)    -  H }/ H | (10) 

see  Brusa  and  Nigro   [7];      the  phase—lag   is   denoted  by   Φ(H). 

It   is   easy   to   show  from   (8)   that 

                           tan θ( H)     =    [4{A(H)}2   -     {B(H)}2] 
2
1

/B(H)   .                                     (11) 

Then,   using   the   expansion 
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to   determine   θ(H),  the  phase   lag  may  be  determined  from   (10). 

By   way  of   example,   consider   the  multiderivative  method  based 

on   the   (3,3)    Pade   approximant   [3].     Here, 
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and,  using  (12),   that 

                                                6H
100800

1
(H) =φ

 

This  method,   which   is  of  order  p = 6 ,  has a much   smaller  phase-lag  than 

the  recent  method  of  Chawla  and  Rao   [6]   for  which  6H
100800

1
(H) =φ . In 

addition,   the  method  based  on  the   (3,3)   Pade  approximant  is   P-stable 
 
whereas  the  method  of  Chawla  and  Rao   [6],   which  those  authors  named 

M4, 
200
1

,  has  interval  of   periodicity  for  which  H2  ∈ (0,20(1  - 0.4 2
1

)) ~ =(0,7.35). 

The  phase-lag  of  each  of  the  first   14  entries  of  the  Pade  Table 

which   lead  to  consistent   two—step  multiderivative  methods,   are  given 

in  Tables   1,   2  and  3  for  second,   third  and  fourth  order  methods,  respect- 

ively.     Periodicity   intervals   for  these   methods  were  given  in   [3]  and 

are  reproduced  for  the  convenience  of  the  reader  in  Tables   1,  2  and  3. 

It   is  noted  from  [3]   and  Tables   1,  2 and 3  that   the  phase-lag  of 

each   multiderivative   method   has  the  value 
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3.     Predictor-corrector   combinations

Using  the  multiderivative  method  based  on  the  (0,k*)   Padé  approximant 

as  predictor  and  the  method  based on the  (m,k)   Pade  approximant  as 

corrector,   the   resulting   predictor-corrector   combination   will   be  denoted 

by   (0,k*);   (m,k). 
It  was  found   in  [3]   that  the   (0,2);   (1 ,2)  combination  has  the 

greatest   interval   periodicity,  H2 E (0,9), of   the  second   order  combinations 

in  PECE  mode.      It   is  easy  to  verify  also  that  this  combination   in  PECE 

mode  also  has  the  smallest  phase-lag  with  Φ(H)  2
1

 = H2. 

Of   the   fourth  order  combinations,   it  was  noted  in   [3]   that  the 

(0,4);   (1,2)   combination   is   to  be  preferred  to  any   other,  when  used  in 
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PECE  mode,   to  solve  linear  problems.    It  may  be  shown  that   the  phase-lag 

of  this  combination  in  PECE  mode  is  Φ(H)  =
2880

7
H4,  with  H2 ∈ (0,4,88). 

When  solving  non-linear  problems,   it  was   seen  in   [3]   that  the   (0,4);   (2,2) 

combination  in  PECE  mode  is   to  be  preferred  to  any  other  because  it 

requires  no  more  than  the  second  derivative  of  f ( t , y ) .      It  may  be  shown 

that   the  phase-lag  for  this  combination  in  PECE  mode,   for  which  H2  Є (0,15.89) 

is   Φ(H)  =
360
1

H4. 

It  is    interesting   to  note  finally  that  the     "Numerov   made  explicit" 

method  of  Chawla   [8]   has  the  same  phase-lag  and  periodicity  interval  as 

the  multiderivative  method  based  on   the   (0,4)   Pade  approximant. 

4,     Summary

This   note  has  been  concerned  with  the  determination  of   the  phase-lag  of 

each  member  of  a  family  of  multiderivative  methods  based  on  Padé  approx- 

imants  to  the exponential  function.    Each  phase-lag  was  seen to be 

directly  related  to  the  principal  part  of  the  local  truncation  error 

of  the  method. 

Phase-lag   computations  were   also  carried  out   for   predictor-corrector 

combinations  in  PECE  mode. 
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Table   1:     Phase-lags for   second  order methods. 
 

Method Phase-lage Periodicity 

(0,2)                  2H
24
1  H2 ∈ (0,4) 

(1,1) 2H
12
1        P-stable 

(1,2) 2H
72
1  )

5
36(0,2H ∈  

(2,1) 2H
72
1       P-stable 

(2,0)        2H
24
1       P-stable 

(0,3) 2H
24
1  H2∈ (0,4) 

(3,0) 2H
24
1        P-stable 

Table  2:     Phase-lags   for  fourth  order  methods 
 

  

Table  3:     Phase-lags  for  sixth  order  methods. 

Method Phase-lag Periodicity 

(2,2) 4H
720
1        P-stable 

(1,3) 4H
5760

1  H2 ∈  (0,6.5)   and   (29.5,48) 

(2,3) 4H
7200

1      H2 ∈  (0,8.2)   and   (14.6, 
7

300 )

(3,2) 4H
7200

1       P-stable 

(3,1) 4H
5760
17       P-stable 

(0,4) 4H
720
1       H2∈  (0,12) 

Numerov 4H
480
1       H2 ∈  (0,6) 

 

 
Method Phase-lag Periodicity 

(3,3) 6H
100800

1  P-stable 

Chawla  and  Rao 
⎟
⎠
⎞

⎜
⎝
⎛

200
14M  6H

12096
1  H2 ∈  (0,7.35) 
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