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Abstract—An Intelligent Software Defined Network (ISDN)1

based on an intelligent controller, can manage and control the2

network in a remarkable way. In this paper, a methodology3

is proposed to estimate the packet flow at the sensing plane4

in the Software Defined Network-Internet of Things (SDN-IoT)5

based on a Partial Recurrent Spike Neural Network (PRSNN)6

congestion controller, to predict the next step ahead of packet7

flow and thus, reduce the congestion that may occur. That is, the8

proposed model (Spike ISDN-IoT) is enhanced with a congestion9

controller. This controller works as a proactive controller in10

the proposed model. In addition, we propose another intelligent11

clustering controller based on an artificial neural network, which12

operates as a reactive controller, to manage the clustering in13

the sensing area of the Spike ISDN-IoT. Hence, an intelligent14

queuing model is introduced to manage the flow table buffer15

capacity of the spike ISDN-IoT network, such that the Quality16

of Service (QoS) of the whole network is improved. A modified17

training algorithm is introduced to train the PRSNN to adjust its18

weight and threshold. The simulation results demonstrate that19

the QoS is improved by (14.36%) when using the proposed model20

as compared with a convolutional neural network (CNN).21

Index Terms—Partial Recurrent Spike NN, cluster head, SDN-22

IoT, traffic load prediction, Quality of Service.23

I. INTRODUCTION24

THE concept of the Internet of Things (IoT) has been25

made a reality by the creation of Wireless Sensor Net-26

works (WSNs), which have the capability of monitoring or27

controlling different applications across the connectivity of the28

Internet. The basic idea of IoT is to enable real objects that are29

inserted with sensors, actuators, and network connectivity to30

accumulate and shuffle data among themselves in a cooperative31

way [1]. In other words, the IoT can be described by this32

formula (Things + Intelligence + Network = IoT) [2]. Many33

applications in the field of networks and the Internet require34

high speed, accuracy, security, and a high quality of services in35

the transfer of data. Accordingly, many solutions to enhance36

the Internet and computer networks with a high quality of37

services have been proposed, one of which is SDN-IoT. In38

an SDN, the data plane basically consists of a number of39

switches, routers, and gateways, while the control plane is40

responsible for taking the decisions for each node in the data41

plane using a southbound interface. [3]. The SDN controller42
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has two interfaces: southbound and northbound. The role of 43

the southbound interface has been described above, while the 44

northbound one is tasked with providing services in the form 45

of applications on the top of the SDN controller [4]. The 46

proficient protocol that enables the controller in the SDN 47

network to reach the switches and routers in the data plane 48

is referred to as OpenFlow [5]. This has been adopted in a 49

wide range of SDN applications such as Wide Area Networks 50

(WAN), Internet exchange point, data center networks and 51

cellular networks [6]. 52

A. Motivation 53

The amount of data flow in the data plane is the most 54

important issue in the field of traffic management and load 55

balance in SDN networks. As the number of sensing devices 56

that communicate with the switches in data plane is increased, 57

the traffic load in the queuing buffer of the SDN-IoT gateway 58

will also be increased. Also, as the number of switches in an 59

SDN increases, the performance of the centralized controller 60

in its control plane will fail to process all the requests coming 61

from the switches. The use of artificial intelligent networks and 62

machine learning with SDN has received increasingly marked 63

interest in recent years. [7] gives an overview of machine 64

learning algorithms that have been applied in the realm of 65

SDN,which is providing novel opportunities to interleave 66

intelligence in networks. The offerings of SDN, e.g., a control 67

layer with comprehensive control of the network, the dynamic 68

updating of the flow table entities and traffic analysis, can be 69

strengthened further by applying intelligent techniques with 70

it [7]. Combined with SDN, Artificial Intelligence (AI) can 71

provide solutions to network problems based on classification 72

and estimation techniques [8]. Intelligent traffic prediction is 73

an important issue in SDN-IoT. Deep learning based on an 74

artificial neural network (ANN) has demonstrated its profi- 75

ciency in traffic management, load balance and routing in SDN 76

networks [9]–[14]. One crucial requirement for improving 77

network performance is optimizing the routing process of 78

SDN, while maintaining the QoS [14]. The traditional SDN 79

implementation based on a logically centralized controller has 80

several constraints, including poor scalability and unreliable 81

performance. With the fast growth of Internet flow and scale, 82

this means that network sensor devices are widely spread, 83

but the network range that a single controller can support 84

is limited. In order to address the problem of low network 85

performance and single point malfunction caused by exceeding 86

traffic for a single controller, multiple controllers are usually 87

implemented in the network, thereby delivering distributed 88

Copyright © 2020 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works by sending a request to pubs-permissions@ieee.org. See https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-ethics/
guidelines-and-policies/post-publication-policies/ for more information. 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: 
DOI10.1109/JSYST.2020.2996185,



IEEE SYSTEMS JOURNAL 2

control management. With this arrangement, the control plane89

is split into several sub realms, with each controller only90

needing to manage the switches in its own. This can alleviate91

the deficiencies of the control plane in terms of reliability,92

scalability and versatility [15].93

The design of an intelligent controller based on AI is the94

main topic in this paper. However, it is deemed appropriate95

to choose an algorithm that is more biologically realistic96

than an ANN. Spiking Neural Networks (SNNs) the “third97

generation of ANNs” are so and arguably the only viable98

option, if the aim is to gain clear insights into how the brain99

computes. Moreover, SNNs are more hardware friendly and100

energy-effective than ANNs [16]. SNNs are dynamic systems,101

with time being a more important factor than for conventional102

feedforward ANNs [17].103

B. Contributions104

This paper introduces a Partial Recurrent Spiking Neural105

Network (PRSNN) as a congestion controller in the proposed106

model. The PRSNN is a type of SNN with partial feedback107

in the hidden layer. Also, another controller based on ANN108

is introduced to manage the sensors in the spike ISDN-IoT109

network.110

The main contributions of this paper can be summarized as111

follows:112

1.We propose a spike ISDN-IoT model with two intelligent113

controllers in SDN intelligent stack, both of which are placed114

in the SDN control plane. One of them, which is based on115

PRSNN, estimates the amount of packet flow in the network,116

whilst the other, which is based on an ANN controller, selects117

and manages the cluster head of the sensors in the sensing118

area.119

2. We propose an intelligent queuing model to estimate the120

capacity of the buffer size in the spike ISDN-IoT network121

based on a PRSNN controller.122

3. We propose a modified training algorithm for PRSNN to123

update its weights, the delay and the threshold values.124

The remainder of this paper is organized as follows. Section125

II reviews related works, section III presents the proposed126

system model with the network architecture and section IV127

presents the modified training algorithm. Then, in section V,128

the evaluation setup is presented and in section VI the results129

are shown, with the QoS improvements being discussed.130

Finally, in section VII the conclusion to the paper is provided.131

II. RELATED RESEARCH WORK132

This section introduces the most recent research relating133

to the use of deep learning in traffic management and load134

balance applications in SDN networks. Mao et al. [14] pro-135

posed a non-supervised deep learning convolutional neural136

network (CNN) based routing methodology for a Software137

Defined Wireless Network, which can control the traffic of138

the network better than conventional routing protocols, with139

higher service quality.Tang et al. [9] proposed two deep-140

learning CNNs based on intelligent partial overlapping channel141

assignment to route traffic in a wireless SDN-IoT network,142

which improves the performance of the network. they utilized 143

deep learning to predict the future traffic loads of switches. 144

Tang et al. [12] proposed a deep learning CNN based traffic 145

load prediction algorithm for predicting traffic load at the 146

next time interval and preventing congestion in an SDN- 147

IoT network, which significantly outperforms the conventional 148

method. Mao et al. [13] proposed intelligent routing based 149

on a real-time deep learning strategy for a CNN in an 150

SDN communication system. Yu et al. [10] suggested a deep 151

reinforcement learning mechanism for an SDN to optimize 152

the routing of the sensing area, which provides good con- 153

vergence and effective routing services. Kumar and Vidyarthi 154

[18] proposed a green routing algorithm based on particle 155

swarm optimization for optimizing the number of control 156

nodes and their clustering. The results obtained indicate a 157

significant extension of the lifetime of the sensor network. 158

Lin and Tsai [19] proposed a controller system for enhancing 159

network scalability and reducing computation delay in SDNs, 160

whilst meeting QoS requirements based on hierarchical edge- 161

cloud SDN (HECSDN). Xu et al. [20] showed that multiple 162

distributed controllers can be used in SDNs to improve scala- 163

bility and reliability, where each manages one static partition 164

of the network. The concept of Software Defined Wireless 165

Sensor Network is experiencing rapid growth in the domain 166

of IoT. The SDSense is a novel architecture proposed in 167

[21], which entails an SDN based WSN design, where soft- 168

ware enabled sensors are dynamically reconfigured to adapt 169

to current network conditions, which significantly improves 170

network performance. Misra et al. [22] proposed a situation- 171

aware protocol switching scheme for software defined wire- 172

less sensor networks to support application in real-time.They 173

showed that their protocol is capable of enhancing the network 174

performance. Dias et al. [23] designed and implemented a 175

scalable system architecture that integrates a WSN into IoT. 176

Priority-based virtual machine allocation and a network traffic 177

management scheme with bandwidth allocation along with 178

a dynamic flow pathing mechanism were proposed by Son 179

and Buyya [24]. Al-Shammari et al. [25] proposed a traffic 180

flow management policy to allocate and organize traffic flow 181

network resources. 182

AI has become a very important issue and researchers have 183

been devising procedures for improving this area in the field of 184

training algorithms, where SNNs are proving to be remarkably 185

effective. There are many algorithms that have been proposed 186

and implemented for training an SNN [17], [26]–[30]. 187

Different from the reviewed literature, this paper imple- 188

ments two intelligent controllers in the spike ISDN-IoT control 189

plane based on SDN intelligent stack. Also, we present a 190

modified training algorithm to enhance the controllability of 191

a spike ISDN-IoT network. The modification of the training 192

algorithm is based on the spike back propagation (SBP) [26], 193

[30]. Our proposed algorithm introduces a further training 194

mechanism to prevent the occurrence of unwanted spikes that 195

may lead to errors in the predicted level of traffic. In an 196

attempt to enhance the efficiency of the proposed model (spike 197

ISDN-IoT), we compare it with the deep learning CNN traffic 198

prediction. 199
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III. SYSTEM MODEL200

Fig. 1, illustrates the proposed model that is introduced201

in this paper. The occurred advancement in the science202

of networks, communications and artificial intelligence have203

boosted using these technologies in different facet of life.204

The application of the proposed model in the field of health,205

specifically, in hospitals in Iraq is our focus. The model206

consists of a sensing plane, control plane and application plane207

of an spike ISDN-IoT network.208

A. Sensing plane209

The proposed model consists of an IoT patient monitoring210

zone, which is defined as the number of wireless sensing211

nodes in the sensing area classified according to their activity212

into three types, as: Forwarding Cluster Head (FCH), which213

we refer to as the OpenFlow switch; active node; and sleep214

node. Active member nodes transmit their data to an FCH215

and in turn, it forwards aggregated data to the sink node as216

a GATEWAY (GW), the internal components of which are217

shown in Fig.2. In practice, the GW connects the WSN using218

a point-to-point connection over the Internet. That is, it can219

connect to the Internet via local routers with firewalls. [23].In220

this paper, we propose an intelligent SDN stack for routing and221

traffic management of patient sensor data. The packet flow that222

arrives from the buffer of the FCHs with a number of active223

sensors is destined for the hospital cloud network, as shown in224

Fig. 1.The FCH approach has two phases: setup and steady-225

state. In the setup phase, where the FCHs are chosen, each226

sensor node belongs to its FCH and a cluster is formed, with227

every node that is not an FCH determining its neighbors and its228

distance. Secondly, during the steady-state phase, every active229

sensor begins to send data to its FCH. The FCH approach230

takes into account some basic factors: residual energy of the231

sensor nodes, their density and the residual capacity of the232

buffer size. This is explained in the following equation:233

IRN = f({ENN × αN × dN if dN ≥ dth}) (1)

where, IRN , ENN and dN represent the weight, the residual234

energy and the density of the sensor N sequentially.f(·) is a235

nonlinear function which represents the performance of the236

ANN reactive controller, and dth is the minimum density237

threshold.The term density of one node is the amount of238

aggregated neighboring nodes in a place in range r. αN is the239

factor of flow buffer size capacity for every sensor as described240

in the following equation:241

αN =
αNmax

no. of alive sensor nodes in range r
. (2)

where, αNMAX is the maximum capacity of flow buffer size in242

the sensor. Each node manages itself in terms of determining243

whether to be active and be able to transmit its data or remain244

in sleep mode. To avoid congestion in the FCHs’ flow buffer,245

which might not have enough capacity to accommodate the246

sensory-data, the approach has the capability of making the247

number of active sensors coordinate with their FCHs buffer248

size. The number of active nodes SA is determined as in the 249

following equation: 250

SA =
flow table size ofFCH

total rate of sensor
(3)

The proposed FCH approach is used to improve the QoS by 251

reducing packet flow loss and overflow on the FCH flow buffer. 252

The sensor nodes can generate data packets and forwarding 253

data as OpenFlow switches do. 254

. 255

B. Control plane 256

Consider that spike ISDN-IoT is constructed in a homoge- 257

neous network, as shown in Fig. 1, consisting of a number 258

of sensors used to sense data from different devices with 259

different types of traffic. The periodic data are collected from 260

a sensor, e.g., the temperature of a patient or blood pressure. 261

In our case, the sensors can collect patient data dynamically 262

to stimulate preventive care, diagnostics etc. and to measure 263

treatment results. The hospital cloud network in Fig. 1 consists 264

of a number of routers, the number depending on the number 265

of considered switches. Each router has its First-come First 266

Served (FCFS) buffer with a predefined capacity. OpenFlow 267

was designed as one of the first SDN standards.It basically 268

defines the communication protocol in SDN environments and 269

enables the SDN controller to combine directly with its data 270

plane.The communication delay between the data plane and 271

control plane is neglected as it is negligible compared to the 272

distance between data plane and cloud. 273

C. The intelligent SDN stack 274

SDN technology can work with WSN to verify the ac- 275

tivation of sensor nodes in real-time to meet application 276

requirements [22]. The intelligent controllers are the brain 277

of the SDN control layer, which manage the traffic flow of 278

spike ISDN-IoT. We propose an SDN intelligent stack that 279

has two intelligent controllers. These controllers are described 280

as follows: 281

1) PRSNN Congestion Controller: The structure of PRSNN 282

consists of one input node, a hidden layer with a number of 283

neurons with self-feedback and one output node, as shown in 284

Fig.3.The presence of many hidden layers decreases the speed 285

of the training process and increases network complexity. The 286

PRSNN controls and estimates the packet flow (pf) for the 287

next round in order to reduce the congestion that could occur 288

in the network. 289

Fig 4 shows the proposed queuing model, where error (t) 290

is the difference between the desired and actual occupancy 291

of the buffer size. The proposed controller is responsible for 292

estimating a suitable amount of packet flow for the next round, 293

with PRSNN training offline to identify the capacity of the 294

buffer size. The total waiting time of the packets in the queue 295

is the sum of the round-trip communication delay in the links 296

and the queuing processing delay in the cloud. To explain 297

the performance of the proposed model, it is taken that we 298

have sensors/switches (IoT patient monitoring zone) to be 299

controlled, as shown in Fig.5. The packet flow is defined as: 300

pf(k + 1) = sat[ff(pf(k) + Tu(k)] (4)
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Fig. 1. Proposed Spike ISDN-IoT Network.

Fig. 2. The internal structure of gateway and sensor node.

Where, pf(k) is the packet flow at time k, T is the301

sampling period, u(k) is the control law signal and sat[·] is the302

saturation function. The nonlinear function ff(·) represents303

the actual packet flow, which is considered as being unknown.304

The ff(·) is also a function of buffer size, traffic input and305

available service capacity at the given sensor nodes. The306

packet flow rate input controller is calculated as:307

u(k) =
1

T
(pfd− f̂(pf(k)) + kve(k)) (5)

where, kv is the coefficient of the proportional integral308

controller (PI) used here to increase the accuracy and to309

eliminate the steady state error as well as keeping the network310

stable throughout the training process, while f̂(pf(k)) is the311

estimated packet flow and the pfd is the desired packet flow. 312

PRSNN in Fig.5 trains on-line to estimate the packet flow. The 313

minimum rate bN at the sensor N, is defined as: 314

bN = QM log(RM ) (6)

where, QM is the size of the queue (buffer) of the (M) FCH 315

node with the corresponding rate RM . The optimization issue 316

assigns link bandwidth in such a way that the overall spike 317

ISDN-IoT network utilization NU is maximized as in the 318

following formula: 319

NU = maximize
∑
M

QM log(RM ) (7)

2) The ANN Controller: The other intelligent controller is 320

based on an ANN (FeedForward Neural Network with one 321

hidden layer), as shown in Fig.6. We are proposing it being 322

used to select the best FCH OpenFlow to carry traffic.The IoT 323

patient monitoring zone is managed based on an ANN, taking 324

the factors described in section III (A) as input to it. While its 325

output is the logical value, where logic 1 is defined as an FCH 326

and logic 0 are cluster members (CM).The back-propagation 327

training algorithm is used to update the weights in an on-line 328

manner. 329

IV. MODIFIED TRAINING ALGORITHM 330

In this section, the modified training algorithm used to 331

learn the PRSNN controller is explained. The negative gradient 332
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Fig. 3. Structure of the partial recurrent spike neural network.

descent approach for minimizing the difference between the333

desired and actual packet flow and the modified spiking334

algorithm [31] are the core of the proposed algorithm.335

The internal connection single synaptic of PRSNN is shown336

in Fig. 7 a and the broken line portion of single synaptic337

terminal in Fig.7 b. represents a time delayed synaptic con-338

nection between two neurons. In the Fig.7 b. the neuron i339

is not permitted to spike anymore through the resting period340

of T time interval, when the threshold value θ has been341

overstepped at a specific instant ti and it will be reset in342

the next, ti + dk. The whole single connection amidst the343

layers in PRSNN is constructed of a class with the same344

number of synaptic terminals. It is clear from the Fig.7 a that345

each sub-connection is having a different weight and delay.346

The difference between the time of the postsynaptic potential347

and the firing of presynaptic neurons i can be identified as348

the delay of the synaptic terminals. The time of postsynaptic349

potential starts to grow, as seen in Fig.7b, and there is a350

synapse chain in the connection. The spike-response function ζ351

is affected by the weight of each synapse. The input of PRSNN352

is assigned to the packet flow accumulation rate pf(t), i.e., the353

number of flow packets arriving at the SDN controller from354

the network.The parameters that are trained in the proposed355

algorithm are the weights, threshold, and synaptic delays. The356

number of synapses between the input and hidden layers as357

well as between the hidden and output layers is updated. This358

Fig. 4. The proposed queuing model.

number is generally chosen analytically at the initial phase.At 359

the beginning, the weights are initiated randomly between 360

[-0.5,+0.5] and then, after implementing epochs of training, 361

the weight values and the learning rate η are adapted more 362

efficiently. 363

The desired and the actual packet flows are at first encoded 364

into spike times as demonstrated in the equation below: 365

tfh = tmax − b
tmin(pf(t)− pfmin)(tmax − tmin)

(pfmax − pfmin)
e. (8)

where, pfmax and pfmin represent the maximum and mini- 366

mum real flow, whilst tmax and tmin are the maximum and 367

minimum interval time, respectively. The function be is a 368

round function. 369

The flow packet decoding is explained in the equation: 370

pf(tj) =
(tmax − tj − tmin)(pfmax − pfmin)

(tmax − tmin)
+

pfmin.

(9)

In the training algorithm, there are two phases. The feed- 371

forward phase, where each neuron spikes at each time interval 372

T only once at most. This happens when the value of threshold 373

θ is overstepped the membrane potential m . The feed-forward 374

phase begins from the hidden layer I with neuron (i) being 375
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Fig. 5. The structure of the proposed congestion control.

continuously examined to see whether it is spiked or not. When376

the neuron (i) is spiked,the algorithm uses the next neuron377

(i + 1). The membrane potential mi(t) is computed by the378

training algorithm ,based on (10), according to input spikes tfh379

of neuron h at the input layer.380

mi(t) =

NH∑
h=1

D∑
k=1

wkhiζ(t− tfh − d
k)

+β ∗
NH∑
h=1

D∑
k=1

wkhi ∗ pfkhi(t− 1).

(10)

The self-feedback β in PRSNN structure is a constant value381

between (0-1). The term pfkhi(t − 1) means the past packet382

flow as the input to the PRSNN. The activation function ζ(t−383

tfh − dk) is computed as:384

ζ(t− tfh − d
k) = −σ ∗ exp

−(t− tfh − dk)

τ
. (11)

The output layer J will have the same process, which is385

when the second layer’s neurons have finished, the back-386

propagation phase starts.387

The synapse weights of connection are updated when the388

feed-forward phase has finished. Different to feed-forward,389

back-propagation starts from the output layer and comes back390

to the hidden layer. For clarification, we defined the function391

ζ(t − tfh − dk) as ykh and ζ(t − tfi − dk) as yki . The error E392

Fig. 6. The structure of the artificial neural network selection process .

which is defined as the difference between the target and real 393

spike time of the neuron is expressed as: 394

E = (Tj − tfj ). (12)

The synapses of the hidden layer and output layer will be 395

updated according to (13-18). 396

wkij(t+ 1) = wkij(t)−∆wkij(t). (13)

where, 397

∆wkij(t) = η.δj .y
k
h. (14)

δj =
E∑In

(i=1)

∑D
(k=1) w

k
ij
∂yki
∂t

. (15)

398

δi =

∑(In)
(i=1) δj

∑D
(k=1) w

k
ij
∂yki
∂t∑Hn

(i=1)

∑D
(k=1) w

k
hi
∂ykh
∂t

. (16)

399

wkhi(t+ 1) = wkhi(t)−∆wkhi(t). (17)

where, 400

∆wkhi(t) = η.δi.y
k
i . (18)

401

The synaptic delay and neuron thresholds updating are 402

defined in the following formulas: 403

∆k
hi = −ρd

(NI)∑
(i=1)

∂E

∂tfj

∂tfj
∂ykh(t)

∂ykh(t)

∂dkhi
|(t=Tj). (19)
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TABLE I

Parameters of the partial recurrent spike neural network training algorithm

Symbol Meaning
σ Constant of the activation function
η Learning rate
θ The threshold value
ρd Learning rate of the synaptic delay
ρθ Learning rate of the synaptic thresholds
τ The time constant
δ The delta function
dk delay of the connection
mi Membrane potential of neuron i at the hidden layer
mj Membrane potential of neuron j at the output layer

wkhi Sub-connection weight between the input and hidden layers

wkij Sub-connection weight between the hidden and output layers
∆t Step time
D Number of delayed synapses per connection
H Input layer
I Hidden layer
J Output layer
Tj Target spike time of the output neuron

tfj The real spike time of output neuron

NH Number of neurons in the input layer
NI Number of neurons in the hidden layer
ykh The output of the hidden layer
yki The output of the output layer
T Time interval

max. epoch Maximum number of epochs
h Neuron sequence in the input layer
i Neuron sequence in the hidden layer
j Neuron sequence in the output layer

404

∆θj = −ρθ
(NI)∑
(i=1)

∂E

∂tfj

∂tfj
∂ykh(t)

∂ykh(t)

∂θj
|(t=Tj). (20)

Table I explains all the symbols and parameters of equa-405

tions.The parameters are updated in the training algorithm406

with the initial values are chosen by trial and error. PRSNN407

is adaptive according to the traffic dynamics and the data408

plane performance, such that the proactive controller keeps409

a balance between the buffer sizes and traffic flow of the410

network.PRSNN achieves both data plane efficiency (high411

traffic flow rate) and stability. The flow chart of the proposed412

model is shown in Fig. 8 and the training algorithm of PRSNN413

is shown in Figs. 9 and 10.414

V. EVALUATION SETUP415

We consider scenarios with N sensors that are placed in a416

random way in a sensing square area of (150× 150) meters,417

with the transmission range of each sensor being fixed at 25m.418

We vary the number of sensors (80 and 120) to control the419

density of the network and the implementation for the area is420

shown in Fig.11. The sensors generate traffic at the beginning421

of each scheduling period.That is, they implement low to high422

flow and then, this traffic is routed to the FCH. The PRSNN423

controller contributes to minimizing the congestion level. That424

Fig. 7. a: Internal connection single synaptic of the PRSNN. b: Single synaptic
terminal.

Fig. 8. Flowchart of the proposed model.
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Fig. 9. The proposed training algorithm.

TABLE II
PARAMETERS OF THE SIMULATION

Coverage area 150 meters × 150 meters
Number of nodes 80,120

Buffer size of FCH 250 packets
Buffer size of each sensor node 50-100 packets

Data packet size 800 byte
Simulation time 250 msec

Data packet generating for each node 5(packet/msec.)

is, the FCHs are classified as congestion, if this percentage425

exceeds a threshold level. In this paper, the threshold level is426

set at 90% of the queue buffer size and it is selected based on427

experiential evaluation.428

The simulation is run with the parameters described in Table429

II and with the Python programming language and Mininet430

simulator.431

The following assumptions are applied for the network:432

1. All stationary active sensor nodes generate static flow per433

unit of time;434

2. There are two activities for the sensor node, the first being435

to generate flow traffic and the second is forwarding this traffic436

to the FCH;437

3. The connection between the cloud, FCH and its member438

nodes comprises bidirectional single hop wireless links with439

an OpenFlow SDN switch;440

Fig. 10. Continue:The proposed training algorithm.

4. Sensor nodes can verify their mode according to the FCH 441

buffer capacity and its density; 442

5.The amount of flow (traffic generated) sent by the sensor 443

node must be within the capacity of the channel of the 444

network. 445

To show the efficiency of the proposed model, a comparison 446

is made between the it and that with a controller based on 447

CNN. Fig. 12 shows the structure of CNN for a controller with 448

one convolutional layer, a ReLU layer, and a fully connected 449

layer used for the estimated traffic in a spike ISDN-IoT 450

network. The reason behind choosing CNN to compare with it, 451

is that, it is more efficient than the traditional neural network, 452

as explained in section II on related work. 453

The input of the CNN will be the features of the traf- 454

fic flows, including the packet generation rate of every 455

FCH,lengths of the packet queues in the buffers of the FCHs. 456

The output is collected as two binary values, which when set 457

at (1,0) shows that the path mixture will lead to congestion and 458

otherwise (i.e., 0,1), it will not. Clearly, the path mixtures that 459

will not lead to congestion will be chosen. The CNNs will be 460

periodically updated, while they are being used to select the 461

path mixture. Every FCH will keep listing its traffic flow and 462

then send the data to the SDN controller. The controller uses 463

the data for the purpose that the traffic patterns of all FCH 464

will be arranged in a matrix and then used as the input of the 465

CNNs to choose the path mixture for the next time interval. 466
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Fig. 11. The simulation area with 120 sensors nodes.

Fig. 13 shows the minimization of error during the training467

process. It is clear from the Fig. 13 that PRSNN can reach to468

the error goal, which is set to 10−5, faster than CNN. This is469

because not all the neurons will update their weights all the470

time, but just those that exceed the threshold value will be471

spike. So, the modified training algorithm which we propose472

to train PRSNN is more powerful than the back-propagation473

training algorithm used to train CNN.474

Fig.14 shows a comparison of the actual and estimated pf475

forwarded by the network and when the number of sensor476

nodes is 80. It can be seen that the performance of the477

proposed model is better than CNN, which is very clear when478

the network keeps its traffic with a buffer capacity size of479

FCH. In this simulation, we have four FCHs. When all are480

active, the network with the proposed model and CNN can481

operate in high traffic flow, thereby controlling the traffic482

in order to mitigate congestion at the buffer. The proposed483

model has a better ability at estimating the packet flow than484

with CNN. This is because the training algorithm can enhance485

the performance of PRSNN. It works with a high capability486

of estimation of the rate of packet flows. Fig. 15 illustrates487

the performance of the proposed model and CNN when the488

number of sensor nodes is increased to 120.Thus, the proposed489

model can work as accurately as CNN compared with the490

CNN the proposed model can still work accurately. In sum, the491

proposed congestion controller in the spike ISDN-IoT control492

Fig. 12. The Convolutional Neural Network model.

Fig. 13. The minimization of error during training.

plane is able to process all the requests coming from the 493

switches even when the number is increased. 494

VI. PERFORMANCE METRICS 495

The performance of the proposed model, and CNN are 496

explained with respect to QoS in terms of Packet Loss 497

Ratio (PLR), Network Energy Consumption (NEC), Buffer 498

Utilization Ratio (BUR), Network Throughput Ratio (NTR), 499

and Network Lifetime (NLT). 500

A. Packet Loss Ratio (PLR) 501

Fig. 16 presents the PLR in the spike ISDN-IoT network, 502

when the proposed model is implemented. In Fig. 16, a 503

Copyright © 2020 Institute of Electrical and Electronics Engineers (IEEE). Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works by sending a request to pubs-permissions@ieee.org. See https://journals.ieeeauthorcenter.ieee.org/become-an-ieee-journal-author/publishing-
ethics/guidelines-and-policies/post-publication-policies/ for more information. 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: 
DOI10.1109/JSYST.2020.2996185,



IEEE SYSTEMS JOURNAL 10

Fig. 14. Comparison of the estimated PF between the proposed model and
CNN when the number of sensor nodes is 80

Fig. 15. Comparison of the estimated PF between the proposed model and
CNN when the number of sensor nodes is 120

comparison between the proposed model and CNN when the504

number of sensor nodes is 80 is provided. We can observe505

from the figure that the PLR of the proposed model is better506

than that for the CNN, because the congestion controller is507

able to decrease the sending rate of the active clusters during508

the transmission process. It is also clear that whilst the CNN509

performs well, it is not as accurate as the proposed model.510

This means that, the proposed intelligent queuing model has511

good ability to estimate the capacity of the buffer size in the512

network and manage the queue of the packet flow accurately.513

B. Network Energy Consumption (NEC)514

Fig. 17 compares the energy consumption of FCH in the515

network for the proposed model and CNN, with respect to516

time, when the number of sensor nodes is 80. The result of the517

comparison demonstrates that the network energy consumption518

with the proposed model is better than that with CNN. Thus,519

Fig. 16. Comparison of the packet loss ratio between the proposed model
and CNN when the number of sensor nodes is 80.

Fig. 17. Comparison of the network energy consumption between the
proposed model and CNN when the number of sensor nodes is 80.

the proposed model can decrease the energy consumed in 520

dropped packets by overflow to an acceptable value. In the 521

proposed training algorithm, not all the neurons are firing; 522

just those that have reached threshold value. This means that 523

the proposed model does not need as much time for training 524

as with CNN. Also, separating the sensing area in the spike 525

ISDN-IoT network into a number of FCHs, based on an ANN 526

controller, provides the capability of minimizing the energy 527

consumption of the whole network. 528

C. Buffer Utilization Ratio (BUR) 529

Fig 18 denotes the buffer utilization ratio of the network 530

using the proposed model compared with that for CNN, when 531

the number of sensor nodes deployed in spike ISDN-IoT is 532

80. It is clear that the controlled network guarantees a better 533

buffer utilization ratio than for CNN. Clearly, the proposed 534
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Fig. 18. The buffer utilization ratio when the number of sensor nodes is 80

Fig. 19. The network throughput ratio when the number of sensor nodes is
80

model performs well with high accuracy, much more so than535

with CNN. The idea behind using the PRSNN as congestion536

controller is to increase the power of the network in estimating537

the packet flow. The strength of PRSNN is acquired from538

accurate modeling of the synaptic interactions between the539

biological neurons, taking into consideration the time of spike540

firing. The PRSNN computational power, thus, exceeds that541

of CNN which uses sigmoidal or wavelet activation functions.542

Furthermore, PRSNN has the ability for swift adaptation.543

D. Network Throughput Ratio (NTR)544

The NTR is defined as the proportion of the received545

packets by the gateway over the total number of packets546

generated by the FCH during the simulation time. Fig. 19.547

display a comparison between the proposed model and the548

CNN, when numbers of sensor nodes is 80. It is clear from549

the figure that the proposed model outperforms CNN, with550

a higher throughput ratio.The spike ISDN-IoT network with 551

the proposed model is able to keep the throughput ratio to 552

100%, whereas CNN cannot.In the proposed model, all the 553

parameters (which have been described in section III) that 554

have a positive effect on the performance of the network, 555

have been taken into consideration.The performance of the 556

SDN intelligent stack in our proposed model can efficiently 557

manage the traffic load.

Fig. 20. The network lifetime
558

E. Network Lifetime (NLT) 559

This refers to the time required to drain the energy of all 560

the sensors nodes in the network. Fig. 20. shows a comparison 561

of NLT when the proposed model and CNN are used. It is 562

clear that the proposed model prolongs it more than CNN. 563

The concept of FCHs introduced in this paper with an ANN 564

controller successfully increases the lifetime of the network, 565

which means that the sensors can keep their energy for a longer 566

time than with other methods, like CNN. 567

VII. CONCLUSION 568

In this paper, we have proposed spike ISDN-IoT architecture 569

for utilization in health care applications. We have proposed 570

two intelligent controllers in the SDN intelligent stack, which 571

has the capability of estimating the packet flow of the sensing 572

area. One of the proposed controllers works proactively in a 573

Partial Recurrent Spike Neural Network to estimate the packet 574

flow of the sensing area.The other works as a reactive one 575

based on an ANN, being tasked with selecting the cluster 576

head and its members. The simulation results have proven 577

that the QoS is enhanced in the spike ISDN-IoT network. 578

The ANN controller delivers the capability of selecting the 579

cluster head and its members efficiently in the sensing area, 580

which is clearly shown in the results for QoS. The packet flow 581

rate is estimated by the proposed model, which coordinates the 582

available capacity of the buffer with a number of active sensor 583

nodes in the network to prevent buffer overflow. Controlling 584

the network by the proposed model has more accuracy than 585
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with CNN, which is because of the spiking power of the586

proposed training algorithm.587
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