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Abstract 

The paper analyses  the convergence of  sequences  of  control  polygons 

produced by a binary subdivision  scheme of  the  form 
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The convergence of the control polygons  to a Cu  curve  is  analysed  in  terms 

of  the convergence to zero of  a derived scheme for the  differences 

k
1if +  -   .  The analysis of the smoothness of  the limit curve is reduced  to k

if

the convergence analysis of  "differentiated"  schemes  which  correspond  to 

divided differences of { /i ∈Z} with respect to  the  diadic   parameteriz- k
if

ation   = i/2k
it

k . The  inverse process  of  "integration" provides schemes 

with limit curves having  additional  orders  of  smoothness. 
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ANALYSIS OF UNIFORM BINARY SUBDIVISION  SCHEMES FOR CURVE DESIGN 

1. Introduction 
 

   Recursive subdivision is being used increasingly in approximation 

theory and computer aided geometric design as a method for the generation 

and definition of curves and surfaces. Two well-known examples are the 

Chaikin and Catmull-Clark algorithms, which respectively generate quadratic 

and cubic B-spline curves. More recently, an interpolatory subdivision 

scheme with shape control was proposed, see Dyn, Gregory, Levin [4]. Our 

purpose is to provide a convergence theory for such subdivision schemes. 

We define a class of uniform subdivision algorithms and seek conditions 

under which there exist continuous limit curves. Furthermore we wish to 

investigate  the differentiability of the limit curves. 

    The theory of convergence of recursive subdivision curves has been 

investigated in a general setting by Micchelli and Prautzsch [5], [6]. 

Their approach is through the study of control point transformation 

matrices which define the basic subdivision scheme. Our approach is 

similar but we consider subdivision algorithms of a more specific form and 

base the theory on a generalization of the difference analysis used in   [4]. 
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For simplicity of presentation, we consider schemes based on binary, 

i.e. diadic, subdivision. However, the theory presented here can be 

immediately generalized to the case of p-adic subdivision. We begin in 

section 2 by defining a general binary subdivision method and then present 

some  preliminary    results.   In  section 3,  necessary and sufficient 

conditions for the existence of a continuous limit curve are discussed and 

in section 4 the differentiability of this limit curve is considered. 

Finally, in section 5, the theory is illustrated by application to some 

specific  examples. 

2.     The  binary  subdivision  process 

  

Let f  denote a sequence of  points  in Rz,i,NRk
i ∈∈ N , N > 2,  where  k 

is  a  non-negative integer. A binary  subdivision process is  defined  by 
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Here  m > 0 and we assume non-degeneracy in the summations in that 

(2.2)                
0.mbmaand00b0a >+>+

 

Given initial  values  foi ∈ RN , i ∈Z, then in the limit  k  → ∞, the process 

Defines  an   infinite  set of  points  in  RN. Our   purpose  is  to  formulate 

conditions   on  the  coefficients of  the  scheme  (2.1)which  guarantee   the 

existence  of  a  smooth  limit  curve. 

 

We  will  denote the subdivision scheme  (2.1) with coefficients { } 0m
jj

a =  

and{ } 0m
jj

a =  by  S(a,b). The  values  fki are called the  control points for  the 

k'th  stage  of  the  scheme and  the  piecewise linear  interpolant  to   these 
 
values   is   called  the  control  polygon. 
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Two  examples  of  recursive  subdivision  which fit  into  the  class  of 

scheme (2.1) are: 

Chaikin's  algorithm  [3] 
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and  a  4-point interpolatory algorithm [4] 
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The   first example belongs to the class of schemes producing control  points 

{fik+1}  in  the convex  hull of the control points at stage k.For this class 

of schemes a strong criteria for convergence to a continuous limit curve is 

given  in  [5].  The  second  example  belongs to the class of interpolatory 

schemes  which   produce limit curves passing through the control points. 

Hence the convex hull property   is undesired and some of the coefficients 

are  negative.(For   practical application only positive  values  of  w  in 

(2.4)  are  appropriate.) 

For our  analysis  the sequence  of  control points { k
if }will be related, 

in  a  natural  way, with  the  diadic  mesh  points 

(2.5) tik  = i/2k  ,   i  ∈  z   . 

The  process   (2.1) then defines a  scheme  whereby
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is  inserted at the new mesh point at  the  mesh  point
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12ifk
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 2 The control polygon connecting the points {f }  can k

i

now  be  viewed as  a parametric curve fk ( t ) atisfying  f  kif)ki(tk =

For  the  analysis, and for practical implementation, the scheme S(a,b) 

will be considered on a finite domain [0,n] ∈ R. The scheme is well 

defined on this domain, for all k > 0, if the control points at stage k are 

defined on the set {i/2k :i ∈ Zk}, where 
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In  particular  the  initial data must be given on Z0. 

In the  following analysis we assume that b0 ≠ 0. This is justified by 

the  observation: 

Proposition 2.1 The scheme (2.1) produces a limit curve f(t) if and only 

if the related  scheme 
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produces the  limit curve f ( t ) .  

Consider  an  interval [ ] [ ]k1)/2(i,ki/2k
1it,

k
it +=+  

at the k'th stage of 

the  recursion. The control points  which  determine  the future  behaviour of 

the  process   in  this   interval  are  defined  by  the  vector 

(2.8)                        ,
T

k
11nif,....,k
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The  control point vectors 
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12if,1k

2it +
+

+
+

+
+

+ ,are efined by  two inear trans- 

formations on fi,k .To express the transformation matrices  we  introduce 

the "generator matrix" of  order M = n1 + 3: 

In the case am ≠ 0, M = 2(m+l) and the generator matrix is of the form 

(2.9)      A=
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Otherwise,   if  am =  0,  M  =  2m +  1  and the  generator  matrix  A  is  as  above but 

with  the  Last   row  and  column  deleted. 

The  control  point  vectors   are   transformed  by 

(2.10) f2 i,k+l  =  A0f i,k  and f2 i+l, k+l   =   A1f i,k

where 
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(Here A  is the matrix  comprised  of  the  elements  of   the  matrix  A 
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at  rows i1  < ... < ip and columns j1 < . . .<jp). 

Furthermore, let 

(2.12)                ]k2n[0,j2ji
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be the diadic expansion of i/2k,where i0 = [i/2k] is the integer part of 

i/2k and ij ∈ {0,1}, j - l,...,k. Then the history of the process up to 

generation  k  of   the  control  point  vector  fi,k   is  given  by 

(2.13) f i, k =  Ai k  . . .Ai 1 f i 0 ,0 ' 

where 
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is the control point vector of initial values for the interval [i0,io+l]. 

Example  2.1.  To make the  exposition more  concrete, consider the  scheme 

defined  by 
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(Here m = 2 and a2 = 0.)  Then the generator matrix is 
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(2.16)                                        
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  . 
Micchelli and Prautzsch [6]  consider  subdivision  schemes  with  general 

control  point matrices  A0  and  A1 .  In our  case,  however,   the   matrices 

clearly  have an inter-related  structure, a study of  which    reveals    the  

following:  

Proposition  2.2.  Denote  the  spectrum  of  A  by 

(2.18) λ(A)  =  {λ1 ,...λM} , 

where  λM  = 0 and  A M -1 =  am  if  am ≠ 0or  λM =1  b if  a m = 0 (see ( 2 . 9 ) ) .  

Then 

(2.19)     λ(Ao ) = {λ1 ,..., λM - 1} and λ(A1) = {λ1,...,λM_2 , b0 }.  

We  conclude this section ith some introductory observations  concerning 

the convergence of  the recursive subdivision process. Since  the smoothness 

properties of the limit curve are at  least as  strong as its components  we 

assume from now on that  ∈ R. We  say that the process converges uniform- k
if

ly on the dyadic points, to a continuous limit function f ∈ C[0,n], if, 

given ε > 0, there exists an integer K ≥ 0  such that 

(2.20)   | f (i/2 k ) - k
if

 | ≤ ε U i = 0 , . . . , 2 k n  and U k ≥ K. 

(This  is equivalent to the uniform convergence of  f k (t) to a continuous 

limit  function   f(t) on  [ 0 , n ] . )    The  following  proposition  now  applies: 
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Proposition 2.3.   A necessary condition for the uniform convergence of the 

subdivision   process  (2.1)  on  the  dyadic  points,  to  a   continuous 

(non-degenerate) limit curve on [0,n] (for arbitrary initial data),is that 

 (2.21)                       1.jb
m

0jja
m

0j
=∑

=
=∑

=
 

One  consequence  of  this  Proposition  is  that A,  A0  and  A1  must  have  

e =[1,,..,1]T as an  eigenvector  with  corresponding  eigenvalue 1, denoted  

hereafter as λ1 = 1 of Proposition 2.2. 

3.   Convergence  analysis-continuity 

we will assume in all  subsequent  work  that the necessary conditions 

(2.21) of Proposition 2.3 apply. Define the sequence of differences 

(3.1)      }.1
1nnk{0,1,...,2(1)

kZi,
k
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k
1if

k
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We  then  have  the  following  lemma: 

Lemna 3.1. Suppose  there exist  an  integer  L > 0 and  an  a, 0 ≤ α < 1, 

such  that 
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iΔ(1)
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∈
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   Then the subdivision process(2.1)converges uniformly to a continuous 

function  f  on   [0,n]. 

Proof. Consider the  piecewise  linear  control  polygon  f k on [0,n]to the 

values fki I =0 . . . . . 2 k n and let  ║.║∞  denote the uniform norm on C[O.n]  We 

will  show  that defines a Cauchy  sequence on  C[0,n].Since the  max- { }∞=0kkf
 
imum  difference  between  f k+1  and  f k is  attained at  a  point  on  the  k+l'st 

mesh,  then 

(3.3)                    ║fk+1 - fk║∞≤ max {Mk,Nk} , 

where
 



8 

(3.4)            
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where  
^
a j and 

^
bj are appropriately defined constants.  From  (3.3)  and  (3.4) 

we  thus  have 

(3.5)                        .kiΔ(1)
kAi

maxγkf1kf
∈

≤
∞

−+    

Here,   and  in the following, y denotes  a generic constant, independent of k. 

Using   (3.2)   recursively  gives 

(3.6)                         [k/L]αγk
iΔ(1)

kZi
max ≤
∈

 

and  thus 

(3.7)                         .[k/l]γαkf1kf ≤
∞

−+  

Since  0  ≤ α < 1  it follows that { }∞=0k
kf  defines a  Cauchy sequence on  

C[0,n] 
and  this  completes  the  proof. 

Lemma 3.1  suggests  an  investigation of the difference process denoted 

by ∆S(a,b) = S(c,d) which is defined in the following proposition, where to 

define such a process we need he  necessary condition  of  Proposition  2.3: 

Proposition  3.1.  (The  1st difference process.) The differences ∆ki , 

(1)
kZi ∈   , satisfy the recursive relations 
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(Hence dj = aj-cj.)  

Proof.  From (2.2), 

(3.10)        
∑
= +−=+−+

+=+ m

0j
k
j,i)fjaj(b1k

2if1k
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2iΔ
                       

(3.11)        .k
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k
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Since the sums of coefficients in (3.10) and (3.11) are zero, by the 

necessary conditions (2. 2 1), it follows that the summations can be written 

in terms of differences.   For  example,  writing 

k
mlf

k
viΔ

1m

jv
k
jif +++∑

−

=
−=+  

and substituting in (3.10) leads to the first  relation in  (3.8). 

We will show, in Proposition 3.2, that the generator matrix of the 

difference scheme S(c,d) can be derived from a similarity transformation on 

the   M × M  generator  matrix A However, we first  make   the    following 

observations: 
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Remark  3.1. 

(i) If  am  ≠  o  then  dm =  am  ≠  0. 

(ii) If  am = 0   then  dm  =  am  =  0  and  cm -1 = bm- am  ≠  0. 

(iii) Since  b0   ≠   0  by  assumption,  then  d0  = b0  ≠  0. 

In  either  case   am  ≠  0  or am = 0, the generator matrix of the  difference 

process  will  be of  order  M-l. 

Proposition 3.2. (Generator matrix) The (M-l)×(M-l)matrix 

 

(3.12)                      
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
−= 1M1,...,

1M1,...,1
MAEMEC  

 
is the generator matrix for the difference process (3.8), where 

(3.13)

.

1

..

...

1..1

1..11
1

ME'

1

1.

..

11

11
M

E

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−
−−−

=−

−

−
−

=

 

Proof.  Equation (3.12)can be verified directly from  (3.8) and  (3.9). 

However,  it is  instructive to  consider  the following argument. Let 

(3.14)                    
T

k
21nif,...,k

ifki,
~
f ⎥⎦

⎤
⎢⎣
⎡

++=  

(cf.  (2 .8)) .  Then 

 (3.15)        .ki,
~
fA1ki,

~
2f =+   

(This transformation contains both control point transformations (2.10) 

Thus 

(3.16)                    ,ki,
~
fME

1
MAEME1k2i,

~
fME

−=+  

where 

(3.17)                    
T

k
21niΔ,...,k

iΔki,
~
fME ⎥⎦

⎤
⎢⎣
⎡

++=  

 
We  now observe that the M ' t h  and M-l'st columns of EM A EM-1  are  given  by 
                                                                        

(3.18)                  (M)eeMEAeME
(M)e1MAEME =−=−=−  

 and 

(3.19)              [ ] ,(M)eeME
T1,...,AME

1)(Me1MAEME =−=−=−−  
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where {e( i ),i =1 , . . . , M } denotes the standard basis in RM .  Condition   (3.18) 

implies   that  the first M-1 relations in (3.16) are unchanged by   deleting 

the  last row and  column  of EM A EM-1 and the last  component  of each vector 

 and 
k
,
i

~
fME   .Thus 

1k2i

~
fME +

(3.20)                             'ki,
~
ΔC1k2i,

~
Δ =+          

where 

(3.21)                           
T

k
11niΔ,...,k

iΔki,
~
Δ ⎥⎦

⎤
⎢⎣
⎡

++=        
 

and C has a final column consisting of zeros by (3.19). Equation (3.20) is 

thus the analogue of (3.15) for the difference scheme, which completes the 

proof. 

Let  an  M-2 control vector for the  difference process S(c,d) be defined 

by 

(3.22)                     
T

k
ni

k
iki ⎥⎦

⎤
⎢⎣
⎡

+ΔΔ=Δ
1

,...,,  

(cf.   ( 2 . 8 ) ) .  Then   the   analogues of  the  transformations   (2.10)  for   

the 

difference  process   are 
(3.23)              ∆2i,k+1  =   C0∆i,k’ ∆2i+l,k+l  = C l ∆i,k’ 

where 

(3.24)                .2M1,...,

1M2,...,
C1C,2M1,...,

2M1,...,
C0C ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
=

−

−
=  

Furthermo  ,   with  i/2k given as the diadic expansion (2.12), we  have 
 

(3.25)                       .
0i

Δ
1i

...c
k
,ickΔi, =  

Example  3.1.   With the  scheme defined by (2.15), and   hence A  defined   by 

(2.16), 

(3.26)E5   A  E5-1   =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

110a00

001d0d0

001c0c0

0001d0d

0001c0c
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where 

(3.27)      .

2b1a1b0a0b0d,0b0d

2b1b1a0b0a1c,0b0a0c

⎪⎩

⎪
⎨

⎧

−=+−==

=−+−=−=

 

As a consequence of Proposition 3.2 we get:  

Corollary  3.1.     Let  the  spectra of A, A0  and A1 be   defined    as     in 

Proposition    2.2  where  λ1 =1  is  defined  by  the  necessary convergence 

condition  of  Proposition  2.3. Then the  spectra of the difference process 

matrices  are 

(3.28)   λ(C) = λ(A)\{λ1},λ(C0) = λ(A0)\{λ1},λ( C 1 )  = λ ( A 1 ) \ { λ 1 } .  

Proof.   From (3.12) and (3.18) it is  clear  that  A(C)  = A(A)\{A1}. 

Moreover,  as in Proposition 2.2,λ(C 0 )   = λ(C)\{0} and λ(C1) differs   from 

λ (C0) by the one  eigenvalue  d0. In view of  (2.19)  and  d0  = b0  we   thus 

conclude (3.28). 

Having defined the control point transformation matrices C0 and C1 for 

the difference process, we are now in a position to state the fundamental 

convergence  result of  the  paper. 

Theorem 3.1. (Convergence) Let the subdivision process (2.1) satisfy the 

necessary convergence condition of Proposition 2.3. Then the following are 

equivalent: 

(a) The  process  S(a,b) defined by(2.1) converges uniformly to a  continuous 

limit curve on [0,n]  for arbitrary initial  data. 

(b) The difference process  AS(a,b)  = S(c,d)  defined  by  (3.8) and    (3.9)   

converges uniformly to zero on [0,n] for arbitrary initial data. 

(c) There exists an integer L > 0 and an a, 0 < a < 1, such that 

 

(3.29)  
1ii CC

L
... ∞  ≤ α ,  U ij  ∈{0,1}, j =1,...,L .     

Proof.       We  first show that  (a)  ⇒   (b).     Let 
 

           [ ] [ ] [ ] [ ] ,Kif
k
itf

k
itf

k
1itf

k
1itf

k
1if

k
iΔ −+−+++−+=  

 
Then by the uniform convergence of (2.1)to a continuous limit  curve 
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f  ∈  C[0,n] it follows that  given e > 0 there exists an integer K > 0 such   

that 

(3.30) | | ≤ ε k
iΔ U i = 0 , . . . , 2 k n - l  and U k ≥ K 

(see ( 2 . 2 0 ) ) .  

To  prove that (b) ⇒  (c),observe that (3.30) and 3.25) imply  that 

 (3.31)  
0i

Δ
1i

...C
ki

C  ∞ ≤ ε  U  ij  ∈ {0,1} ,  U k  ≥  K   . 

Here  K depends  on  the   initial data 2MR'00i
Δ −∈

 
However, applying  (3.31) 

to the finite set of initial data e( i )  ∈ RM - 2  i = l , . . . , M - 2 , we conclude 

(3.29) with  α = ε< 1 and L the maximum over the M-2 values of K in (3.30). 

Finally, we show that (c) ( a ) .  Let ⇒

,j2ji
Lk

1j0i
Lki/2 −∑

+

=
+=+  

,j2ji
k

1j0i
k/2i' −∑

=
+=  

  

where 0 ≤ i0 ≤ n-1 and ij ∈{0,1}, j = l,...,k+L. Then 

                     .k,i'Δ
LKi

...C
Lki

CLKi,Δ
++

=+  

 
Hence,  by  (3.29), 

(3.33) ║∆i,k+L ║∞, ≤ α ║ ∆i,k║∞ .  

and  condition  (3.2) of  Lemma  3.1 is   thus  satisfied,  which guarantees 

uniform  convergence  of the  process  S(a,b). 

Using an  equivalent norm argument we can obtain:  

Corollary  3.2.   A necessary and  sufficient condition  for  convergence   is 

that  there  exists   an  L > 0  such  that 

(3.34) 
1i

...C
Li

C  ≤ α, 0 ≤ α < 1  , 

for any matrix norm. 
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We   also  have:  

Corollary  3.3.   A  necessary  condition for convergence  is that the spectral 

radii  of C0 and C1 satisfy 

(3.35) ρ (C0) < 1 and ρ (c1)  < 1 . 

Remark 3.2.   This  last  corollary  together  with Corollary 3.1, implies that 

a  necessary condition for convergence  is  that  the  eigenvalues of A0 and A1, 

except for λ1 = 1, are all of absolute  value  <1.  (See  also   [5]). 

Theorem 3.1  provides  a  tool  for  analysing  the   convergence of   the 

process  S(a,b)  through the  study of  the difference process 

∆S (a,b) = S(c,d). Suppose the  difference  process  can  itself be differenced 

to  give the  process  ∆2 S(a,b) say (for  this it  is required that Σc i = Σdi 

and hence the control point matrices  C0 and C1 have common   eigenvector e). 

We   then  have   the   following: 

Theorem  3.2.  Let the necessary  conditions  for  convergence (3.35) hold and 

assume   that   Σci = Σd i.  Then the  process   ∆S(a,b)  =  S(c,d)   converges 

uniformly  to zero if and only if  the  process  ∆2s(a,b)  converges  uniformly 

to  zero. 
Proof. By  Theorem 3.1, the  process  ∆s(a,b)  converges uniformly to a 

continuous  function  h say, if  and onlyifthe process ∆2(a,b)converges 

uniformly to zero.It remains to show that if AS(a,b)converges uniformly 

to h, then h = 0. For this  it  suffices to show that h vanishes on the 

dense set of diadic points. Consider a fixed  diadic  point  of  the  form 

 

    ].[i/20i,1,...,j{0,1},ji,
j2ji1j0i2

i ll
l

l
==−∑

=
+=  

 
Since 

          ,kk,j10,ji,
j2

k

1j ji0ik2

ik
2

0i
2

i
ll

l

l
≥≥≤+=−∑

=
+

−
+=  

we get from (3.25), 
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l
l

ll ≥−=− k,,00i
Δ

li
...CiC

k
0Cki,

k
2Δ  

 

hus,   by   (3.35), 

 0,
ki,1k2k

lim =
−

Δ
∞→

 

so that h vanishes on the diadic points. 

Corollary  3.4.  Suppose  there exists the process  ∆ l S(a,b)   and  that   the 

necessary   conditions  (3.35)  hold.  Then  S(a,b)  converges  uniformly to a 

continuous  limit  function if and only  if  (a,b) converges  uniformly  to sΔl

zero. 

Corollary 3.4 and Theorem 3.1 suggest that we can analyse the C0 

convergence  of S(a,b) in terms of the two control point matrices of 

∆ℓ S(a,b). To establish convergence condition (3.35) must be satisfied 

together with condition (c) of Theorem 3.1 applied with respect to the two 

control point matrices of ∆ℓS(a,b). Since these matrices are of order 

(M-ℓ)×(M-ℓ),we can expect the analysis to be simplest for the largest 

possible ℓ. Also, following the reasoning of Corollary 3.1 the process 

∆ℓ S(a,b) will have control point matrices with spectra  λ(A0)\{Λ1...,λ} 

and  λ(A1)\{λ1,...,λ,}. 

The above matrix tools  can also be used to extract the limit  values   of 

the subdivision process at  the points {i/2k} using only values at   level   k. 

This fact already appears in [5].  

Theorem 3.3.   (Limit  values)  If the process converges uniformly to f then 

(3.36) f (i / 2 k ) = YTf i ,k
 

where y is a left eigenvector of A0, yTA 0 = yT,yT e = 1. 

Proof. Let e, v2 ,...,v M-1 be the generalized eigenvectors of A0 with  

eigenvalues    1,   λ2 , ..., λ M-1   respectively.    Then 

iviα
1M

2i
e1αki,f ∑

−

=
+=  
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and,   from  (2.10), 

(3.37)         ∑
−

=
+==

+

1M

2i
.iv0Aiαe1αki,f0Ak,i2

f ll
ll

 

Since  |Λi |<1,2< i≤M-l is a necessary condition for convergence. 

 and by the uniform convergence of the process 0iv0Alim =
∞→

l
l

.)/(
,2

flim ekife
ki

2
1

==
+∞→

α
l

ll
 

 
Thus   applying  yT  we  obtain 

YTf i, k   =   α1   =   f(i/2k}    . 

Condition (c)  of  Theorem 3.1 is based on the fact that a transformation 

between the k'th  step  and k+L'th  step can be described as a product of the 

transformation  matrices  C0  and C1.  We must,  however, consider  all permut- 

ations   of  length    L   in   order   to   describe  all  possible  product 

transformations. 

Alternatively   consider  the process of taking L  steps of the difference 

scheme S(c,d) which takes values {∆ki} at level k to values  {∆k+Li } at  level 

k+L.  Now L steps of  he diadic process is equivalent to one step of  a 

2L -adic process S [c1 ,L ..c2L L]  say. Furthermore the coefficient vector 

c i ,L of   this process can be  conveniently computed from row i of the ML × ML

matrix L)L
^
C(   where  

 

(3.38)

      

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−=

....

.....

.....
md1mf..0d

1mc..0c
md1md..0d

1mc..0cL
^
C

and 

(3.39) MT   =  max{2L,M-3}   . 

(The conditions (3.39)  with L =  M-3  may be needed for small L  so  that  CL
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is  a  square  matrix. ) With  this formulation it is not difficult to  obtain 

the following: 

Theorem   3.4.  An  equivalent    convergence   result) A  necessary   and 

sufficient  condition for  uniform convergence   of  the  scheme  (2.1) to   a 

continuous limit function is  the existence of an integer  L > 0  such that 

(3.40)               1.αα,0L)L
^
(CLυ,cυmax <≤≤∞≡

∞
 

 

It  should be noted that under the conditions of Corollary    3.4,     the 

process  AS(a,b)  =  S(c,d) can be replaced by  ∆ℓS(a,b) in Theorem  3.4.  It 

should  also be noted that Theorem 3.4 holds pecifically for  the  ∞-norm.  

4.  Convergence analysis - differentiability 

Assume  that the  subdivision  process (2.2) converges uniformly  to  a 

continuous   limit  curve f   C[0,n].Then  we  wish  to  investigate   the 

differentiability  of  f. Define  the sequence  of divided differences. 

(4.1)                     [ ] (1)
kZi,kif

k
1if

k2k
id ∈−+=  

(c.f.    (3.1)).  Then, by Proposition 3.1, the divided differences   satisfy 

the recursive  relations 

(4.2)              

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+∑
=

=+
+

∑
−

=

+
=+

,k
jid

(1)
jb

m

0j
1k
12id

1m

0j

,k
jia

(1)
ja1k

2ia
 

where 

(4.3)                   j2d(1)
jbandj2c(1)

ja ==

are defined by (3.9). Thus  we  have the divided difference  scheme  DS(a,b):= 

S(a (1) b (1) ) with the generator matrix 

(4.4)                 ⎥⎦
⎤

⎢⎣
⎡

−
−−==
1M1,...,
1M1,...,1

MAEM2E2c(1)A

 
and  control  point  matrices  
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(4.5)                 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

−
−−==

==

2M1,...,
1M2,...,1

MAEM2E12c(1)
1A

2-M1,...,
2-M1,...,

1-

M
AEM2E02C(1)

0A

 

see   (3.12)   and   (3.24). 

   We   will   showin   Theorem.  1   that  the   divided  difference  process 

provides  the key fo r analysing  the  differentiability of the limit function 

f.   For  this, the  following lemma is required: 

Lenma  4.1. If  the divided difference scheme  converges  uniformly   to   a 

continuous  limit  function on  [0,n]  (for arbitrary  initial data), then  the 

basic  scheme  (2.2) converges uniformly to a continuous limit function. 

Proof.  Let   d  C[0,n]  be the limit function of  the divided difference 

scheme for  given initial data d0i i  ∈ Z(1)k . Then, by uniform convergence, 

there   exists  an   integer  K  >   0   such  that 

(4.7)         |dki -(i/2k)|<ε Ui= 0,...,2kn-l , U k≥ K. 

Hence 

    (4.8)                         k.k1,nk0,...,2iεdk
id ≥∀−=∀+∞≤  

Now,   with   i/2 k  given  as   the  diadic   expansion   (2.14), 

 

  (4.9)         ,0,
1i

d
1i

...C
ki

Ck2,00i
d(1)

li
...A(1)

1i
Aki,d ==  

where 

(4.10)                 di,k = 2 k∆i , k , i ∈ z k( 1 )  . 

Hence 

(4.11)                [ ] ,/,... k
iii ddCC

k
20

01
ε+≤

∞∞
 

                                 U ij ∈ {0,1} , j = i,...,k, U k  ≥ K. 

Here, K  and  ║ d ║∞ depend on the initial  data. However, as in the  proof   of 

Theorem  3.1, we can apply (4.11) to the initial data  e(i) ∈ RM -2, 
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i  =  l,...,M-2, and hence conclude that 

(4.12)                      0=

∞
∞→

1
i

...C

k
i
C

k
lim  

 

uniformly  for  all
 
{ } { }0,1.ji,1jj
i ∈∞

=  
Thus, by  Theorem 3.1,   the  basic 

subdivision  process  converges uniformly to a continuous limit curve. 

We  now  have: 

Theorem 4.1. (Convergence) The basic subdivision process S(a,b) converges 

uniformly  to  f  ∈ C1 [0,n] if  the  divided  difference process DS(a,b) 

converges  uniformly  to  d ∈ C[0,n]. Moreover  d =  f’. 

Proof.  Suppose  the  divided  difference  process  converges  uniformly to 

d  C[0,n].Then, by Lemma 4.1, the basic process converges uniformly to a ∈

limit f ∈ C[0,n]. It remains to show that  f' = d and for this we follow 

the  approach  of   [4].  Consider the Bernstein polynomial on [0,n]. 

(4.13)                  ∑
=

==
N

0i
n,k2N,ki(t)fN

iβ(t)kb            

where 

(4.14)                  [ ]
iN

n

t
1

i

n

tN
i(t)N

nβ
−

−= ⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡     

 

Then  its  derivative   is  the  Bernstein  polynomial 
 

(4.15)                   ∑
−

=
−=

1N

0i
.ki(t)d1N

iβ(t)'
kb  

Write 

(4.16)

[ ]

[ ]⎪
⎪
⎩

⎪
⎪
⎨

⎧

−−−∑
−

=
+−−∑

−

=
−=−

−∑
=

+∑
=

−=−

1))d(in/N(Nk
id(t)1N

iβ
1N

0i
1))(t)d(in/(N1N

iβ
1N

0i
f(t)(t)'

kbd(t)

f(in/N)k
if(t)N

iβ
N

0i
(t)f(in/N)N
iβ

N

0i
f(t)(t)kbf(t)

 

 

Then the  uniform  convergence properties of the subdivision processes  and  of 

the  Bernstein  polynomials   imply  that 

(4.17)                  0'
kbd

k
limkbf

k
lim =

∞
−

∞→
=∞−

∞→
 

 

Hence   { }∞=0kkb   
defines  a  Cauchy  sequence on C1[0,n] and thus has limit 

 



 
20 

f ∈ C1 [0,n] , where f ' =  d. 

Theorem  4.2   shows  that, to prove C1 convergence we need only verify the 

C0  convergence  of  the  divided  difference  scheme  S(a(1) ,b(1) ) . As     in 

Proposition  2.3,   we   need   the   necessary   condition   for  the  uniform 

convergence  of  this  scheme  which  then  allows  the  construction  of   the 

difference scheme S(c(1),d (1) )= ∆S(a (1),b(1).   Translating the necessary 

conditions  back  to  the  original  scheme  S(a,b) gives: 

 Proposition 4.1.A necessary condition for uniform convergence of the 

divided difference process on thediadic points,to a continuous limit, is 

that 

(4.18)             ∑
=

=−∑
=

∑
=

==
m

0j
.

2

1
)jajj(b

M

0J

m

0j
and1jbJa  

Proof. The  first  condition  in  (4.18)  is  necessary  for convergence of the 

basic  scheme  S (a,b), see  Proposition 2.1, and is needed for the existence 

of  the  divided  difference  process  S(a (1),b(1)). Applying  Proposition  2.3 

to  this  process  gives a second necessary condition 

(4.19)                        ∑ ∑  == 1(1)
jb

(1)
ja

 

Substituting   for   aj(1) and  bj(1) using (4.3)and (3.9)and rearranging  the 

summations gives the  equivalent  necessary  conditions  (4.18).  

Remark  4.1.  (The   diadic   point parameterization)       Conditions   (4.18) 

means  that the process S(a,b) preserves linear  functions   to  within  a 

translation.   Thus if we  start ith linear  data  f0i = i, hen at stage k  the 

values { }kif  also  linear  in i and  furthermore  they satisfy .k2k
if

k
1if

−=−+  

For any process with this property we argue that the parameterization (2.5) 

is a natural one. Under this parameterization, the geometric smoothness of 

the limit curve is determined by the smoothness of its components. To show 

this it is enough to present data for which geometric smoothness is 

equivalent  to  component  smoothness.  Consider  the curve obtained  by 
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applying the process  to the bivariate data set 

(4.20) f 0i = (i,Yi)   i ∈ Z. 

By condition (4.18) the limit curve can be written as f(t) = (t+c,y(t)) for 

some  constant  c.  Therefore,  if  y (t) is not Cv for some v then f(t) cannot 

be a geometrically  Cv  curve. 

Remark  4.2. A necessary condition for C0 convergence of  the  divided  

difference  process  is   that A0(1) and A1(1) have eigenvalues of bsolute  value 

< 1.  We  then  have  that  the  matrices A0 and A1 for the basic scheme S(a,b) 

must  have  eigenvalues  λ1 = 1, λ2  = ½  other  eigenvalues of absolute 

value <  1/2 (see  Remark  3.2). 

Remark 4.3.   Derivative  limit  values) If the divided difference process 

converges to a C0 limit, then, following Theorem 3.2, 

(4.21)      'ki,d
T(1)Y)ki/2f' =

 

where y( 1 ) is a left eigenvector of A0(1),y(1) TA0 (1)= Y(1) T ,Y(1)Te=1. 

Remark  4.4.  (Higher order continuity)  To  analyse   Cℓ  continuity  of  the 

basic   scheme   S(a,b) the  procedure  is now  clear. The ℓ' th order divided 

difference  scheme  S(a(ℓ),b(ℓ)) = DℓS(a,b) = 2ℓAℓS(a,b) is  constructed   and 

its C0 convergence  is  analysed (applying the   theory  of  section  3).   In 

order to carry out  such an analysis it is necessary that 

(4.22)              1)(
jbij

)(
ja =∑=∑ υυ , 

for each ν'th order scheme, ν = 0, ... ,ℓ. These conditions imply that  the  

control  point  matrices A0  and A1  of the basic scheme S(a(0),b(0))=  S(a,b) 

must  have  eigenvalues  λv +1  = 1/2V, v = 0, ..., ℓ and for convergence it is 

then  necessary  that  the  other eigenvalues  have absolute values <1/2ℓ  (see 

Remark  4.2). 

Remark  4.5.  (Integrating subdivision schemes)  To analyse  the different- 

iability of  the limit curve f(t), we introduced  a  subdivision   scheme 
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DS(a,b) =  S(a(1),b(1)) for the divided differences   {a0i}  which   subsequently 

produced the derivative curve d(t) = f'(t).The scheme S(a(1),b(1)}is  

obtained  from  S(a,b) by 

(4.23)             

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥⎦

⎤
⎢⎣

⎡
≤≤+−∑

−

=
=

−≤≤−∑
=

=

m.j,0jb)iai(b
1j

0i
2(1)

jb

1mj,0)ibi(a
j

0i
2(1)

ja

If DS(a,b)  is uniformly convergent then by applying  it  to  the data  set 

 
{ }0if0

1if −+
  
it converges to f'(t), where f(t) is  the  limit curve of the  

original scheme.  Let us enote by g(t)   the   limit curve obtained by   apply- 

ing  DS(a,b)  to  the data { }0if  
Then  obviously 

(4.24) f'(t) = g(t+l)- g(t). 

Reversing the above argument we may ask, given a subdivision scheme 

S(a(1),b(1), what  is the  scheme S(a,b) for which DS(a,b) = S(a(1),b(1) )? 

Solving  (4.23) we obtain 

 

(4.25)           

[ ]

[ ]⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤≤+−==

∑
−

=
−=−≤≤+=

m.j,1(1)
jb

(1)
1ja2

1
jb;

(1)
0b0b

,ja
1m

0j
1ma1;mj,0(1)

jb
(1)
ja2

1
ja

 

 

Starting  with a  convergent scheme S(a(1), b(1) we  have  ∑
−

=
∑
=

==
1m

0j

m

0j
1(1)

jb
(1)
ja

We thus obtain a new  consistent  scheme  with ∑
=

∑
=

==
m

0j

m

0j
1jbja The  new 

   scheme S(a,b) called the integrated scheme of  the scheme  S(a(1),b(1)) 

By  Lemma 4.1 if the scheme S(a (1),b (1)) is  uniformly convergent  then so  is 

the  scheme   S(a,b). Applying  both schemes to a data set {f0i} we obtain  two 

curves  g(t)   and  f(t) respectively satisfying (4.24) which may be  rewritten 

as 
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(4.26)             1B*g(s)ds1s)Bg(tg(s)ds1tf(t)
t

=−∫
∞=∫

+=
∞−

 

 

where 

  (4.27)                   
[ ]

⎪⎩

⎪
⎨
⎧ −∈

=
otherwise0.

1,0s1,
(s)1B  

(the constant of integration being zero because of local support). Hence 

the process of integrating subdivision schemes provides schemes with  an 

additional order of smoothness (as is to be  expected  from  Theorem 4.1) 

Furthermore, assume S(a(ℓ),b(ℓ) )exists and is uniformly convergent to a C0 

function. Let ψ   C∈ ℓ and j  ∈ C0 be the limit of S(a,b) and S(a(ℓ),b(ℓ) 

respectively  for  the  initial  data  δj , 0 .  Then  by  (4.26) 

(4.28) ψ   = ϕ *B1 *......*B1   =   ϕ *Bℓ
 

where B Bℓ is a B-spline of  order  ℓ  (degree  ℓ-1) supported   on  [-ℓ, 0]. 

(Relation (4.28) was conjectured by C.A. Micchelli.) 

5.  Examples 

5.1 Corner cutting 

A  simple example of  recursive subdivison is  provided  by the   'corner 

cutting' process 

(5.1)                  

⎪
⎪
⎩

⎪⎪
⎨

⎧

−+=+
+

+−+=+

,k
i_1β)f(1k

iβf1k
12if

,k
1iα)f(1k

iαf1k
2if

where  1  ≥  α>b ≥  0, (see also de Boor [1]). We thus have the  subdivision 

scheme  S(a,b), where 

(5.2) a  = [α,l-α] , b  = [ β ,l- β ].  

The difference process is S(c,d), with 

(5.3) c =  [α- β ,0] , d =  [ β ,l-α] 



24 
and hence has  control point matrices 
 

(5.4)                         
C
0
=
    

.

βα0

α1β1C
,

α1β

0βα
⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

−
−=

−
−

 

Now 

 

 (5.5)                 { } 1,β(αβ,1αmax1C0C <−−−=
∞

=
∞

since   1 > a> p > 0, and hence, by Theorem 4.1 the corner  cutting   process 

converges uniformly  to a C0 limit 

The divided difference process is S(a(1),b(1) ), where 

(5.6)            a(1) = 2c = 2[α-ß,0] ,b(1 ) = 2d = 2[ßb,l-α]  

and in order to proceed with a C1 analysis we require that 

(5.7) α -  b = 1/2 

(so  that  the sum of  coefficients is unity). The difference process  for  

S(a(1),b(1)), is then S(c(1),d(1)) where 

(5.8) c(1) = [l-2 β ], d(1) = [2 β b ]    .  

This   leads   to  the  condition 

β  (5.9) 0 < b < 1/2 ,   α = 1/2 +  

for  a C1 limit.  In particular, the  choice  p =  1/4, a - 3/4  gives    the 

Chaikin scheme (2.3). 

Remark   5.1.  Condition  (5.7) was  essential to  prove the existence of a C1 

limit with respect to the diadic point  parameterization.   This does not,  

however,  imply that this condition is necessary  for a geometrically C1  

smooth curve (see also Remark 4.1). 
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5.2  Uniform  B-spline  subdivision 

The  Chaikin   scheme  can  be   viewed  as  the integral of the   divided 

difference  scheme S(a(1),b(1) , where 

(5.10) a(1) = [1,0]  , b(1) -[1/2,1/2]    . 

Thus   it   is   the   integral  of   the   scheme 

(5.11)                   

⎪
⎪
⎩

⎪
⎪
⎨

⎧

++=+
+

=+

.k
1if2

1k
if2

11k
12if

,kif
1k

2if

 

This scheme is simply that  of  piecewise  linear  interpolation  with  the  C0 

limit 

(5.12)        .1n0,..,i1),i(i,t,0
1i1)f(t0

it)f1(ig(t) −=+∈+−+−+=    

From  (4.25)  we can  thus  conclude  the  well  known result that   Chaikin's 

algorithm has  a C1  quadratic   spline  limit. Furthermore, the limit is a 

uniform  quadratic  B-spline  with  control  points  {f0i }. 

A similar  argument applies  if we  now   integrate   Chaikin's  algorithm 

giving, from (4.24), the scheme 

 

(5.13)             
⎪
⎩

⎪
⎨

⎧

++++=+
+

++=+

.k
2if8

1k
1if4

3k
if8

11k
12if

,k
1if2

1k
if2

11k
2if

     

 

This is Catmull-Clark's algorithm [2] with uniform cubic B-spline limit. 

Clearly, repeated integration will produce the algorithm for generating any 

order  uniform  B-spline   curve. 
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5.3   4-point  interpolatory  scheme 

  The interpolatory scheme S(a,b), where 

(5.14)  a = [0,1,0,0] ,  b  = ω]ω,
2
1ω,

2,
1ω,[ −++−  

has  the tension parameter w which can be used to  control  the  shape of the 

limit   curve,  see  [4], (w  - 0 gives piecewise  linear interpolation).   The 

control  point  matrices of  the difference scheme 

(5.15)                   ⎥
⎦

⎤
⎢
⎣

⎡ −++−== ω]ω,
2
1

ω,
2,
1

ω,[Sb)(a,Δs  

have  eigenvalues 

(5.16)               .ω16ω1(1
4

1
16ω1(1

4

1
,,2

2

1

⎭
⎬
⎫

⎩
⎨
⎧ −−−−+ω  

Thus  the  necessary   condition   of   Corollary   3.3 for C0 convergence  is 

satisfied  if |w |<  
2
1
  . The scheme S(a,b) can be differenced twice to  yield 

(5.17)               [ ] ]ω]2ωω
2

1
ω,[,[2ω2ω,2ωSb)S(a,2Δ −−−=  

Thus, by Theorem 3.4 with L=l and using either AS(a,b) or ∆2S(a,b), C0 

convergence is guaranteed if |w | < 
4
1 ¼. With L-2 and ∆S(a,b) we obtain the 

improved  range 

8

171
ω

8

3 +−
<<−  

whilst with s(a,b)we obtain 2Δ

8

171
ω

4

1 +−
<<−

 

(5.18)                      
8

171
ω

8

3 +−
<<− =0.39. 

Hence 

 

In  fact  Michelli  and  Prautzsch  [7]  proved  that 
2
1

− < ω  ≤ 0 guarantees C0 

convergence using the positivity of  the  vectors  a  and  b for this range of 

ω .  Powell [8] using an  ingeneous  transformation  on the control  point 
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matrices obtained the range 0 <w ≤ 
4
19643 −/  ≈0.42 Furthermore,  his 

numerical  calculations  indicate  that  0 <w< 
2
1
 is the correct range for  C0

convergence  for  positive  ω  to. 

To  analyse  C1 convergence,  we  consider  the  difference process    for 

DS(a,b) given by S([ 4w),4w,0], [-2w, l-4w,-2w]). Here, Theorem 3.4 with   L=l 

is  not applicable  since  || [ -2w, 1-4w,-2w] ||∞  ≥1.  With L=2, however,  we 

obtain 

(5.19)               1540
8

510 .=
+−

<< ω   

as  a  sufficient  condition  for  a C1 limit which is an improved range  than 

that  given  in [4]. 

The scheme cannot, in general, have a C2 limit since D2S(a,b) does not 

have  coefficients summing to unity (except in the case w = 1/16, when the 

control  point matrices of  ∆D2S(a,b) have an  eigenvalue 1). This confirms 

the result given  in  [4]. 

Finally,  we  note  that   integrating  the  scheme  gives 

(5.20)        

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

+−++++++−=+

+−++++++−=+

k
3if2

ωk
2if2

ω

4

3k
1if2

ω

4

1k
if2

ω
12if

k
3if2

ω
3if2

ω

4

1k
1if2

ω

4

3k
if2

ω1k
2if

 

We thus have a scheme with a tension parameter w, which is C2 for ω  

satisfying the sufficient condition (5.19) and which has quadratic B-spline 

limit for ω  = 0. 
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