

TR/06/93 August 1993

Solving Large Scale Linear Programming Problems

 using an Interior Point Method on

 Vector Processors

 Ron Levkovitz

w9253464

Solving Large Scale Linear Programming Problems using an
Interior Point Method on Vector Processors

Ron Levkovitz *

Abstract
The interior point method (IPM) is now well established as a computationaly com-

petitive scheme for solving very large scale linear programming problems. The leading
variant of the IPM is the primal dual predictor corrector algorithm due to Mehrotra. The
main computational efforts in this algorithm are the repeated calculation and solution of a
large sparse positive definite system of equations.

We describe an implementation of this algorithm for vector processors. At the heart of
the implementation is a vectorized matrix multiplication and Cholesky factorization for
sparse matrices.

We identify the parts where vectorization can be beneficial and discuss in details the
merits of alternative vectorization techniques. We show that the best way to utilize a vector
processor is by exploiting dense computation within the sparse framework and by unrolling
loop operations. We further present an extended definition of supernodes, and describe an
implementation based on this new approach. We show that although this approach requires
more memory it can increase the scope of dense computation substantially with out
adding extra operations.

Performance results on standard industrial test problems and comparison between an
algorithm that utilizes the extended supernodes and one that utilizes standard supernodes
are presented and discussed.

1 Introduction
In the last few years interior point methods (IPM) for linear programming (LP) have become
increasingly popular. The growing experience of using these methods has shown that in
general IPM algorithms complement and do not replace the established sparse simplex (SSX)
algorithms.

One of the main differences between the IPM and the SSX is the average convergence
rate. While the SSX average convergence rate is proportional to the number of constraints,
the IPM convergence rate is almost independent of the growth in the problem size. As a
consequence, IPM is increasingly seen as especially well suited for solving very large scale
sparse LP problems.

*Department of Maths and Stats, Brunei, the University of West London, Uxbridge, Middlesex UBS 3PH,

U.K. (Ron.Levkovitz@brunel.ac.uk)

 1

The concentration of numerical work in relatively few steps and the need to solve very

 large LP problems makes the PM a good candidate for exploiting the power of parallel
hardware [15]. The efforts of parallelizing IPM have so far concentrated on shared MIMD,
distributed MIMD and vector computers. Karmarkar et al. [4] implemented the several IPMs
on an Alliant MIMD computer. Bisseling et al. [3] adopted the dual affine IPM for a 20 X
20 transputer rack and achieved impressive speedup for a series of computationally difficult
problems. Other implementations using superscaler, register and vector technology have also
achieved a consistent speedup set against comparable serial implementations [13, 14, 8, 17].

 In this paper we adopt the computationally intensive parts of IPM to a vector computer.
We have implemented a specially adapted matrix multiplication algorithm and extend the
Cholesky factorization algorithm to take advantage of dense processing within the sparse
matrix.

 The rest of the paper is organized as follows. In section 2 we present the primal dual
predictor corrector IPM. In section 3 we analyze the computational structures of this IPM
and provide summary profiling information. We use this information to illustrate why the
IPM is well suited for parallelization. In section 4 we introduce our target hardware, the
vector computer, and give some performance information. In section 5 we discuss alternative
methods for the implementation of the symmetric matrix multiplication algorithm. The
definition of the extended supernodes together with the Cholesky factorization that is based
on it are presented in section 6. Finally, in section 7, we test and discuss our vector and
sequential implementations on a range of industrial test problems.

2 The Predictor Corrector Interior Point Method

Of the many var iants of the IPM that have been implemented, the pr imal dual
algorithms in general, and the primal dual - predictor corrector algorithm in particular, are considered
to be the most computationally attractive [16, 19]. Our implementation uses this predictor
corrector var iant and we descr ibe below the a lgori thm.

2.1 The Predictor Corrector IPM

Consider the primal and dual LP problems in the standard form:
 (primal) (1)xTcmin

 ≥=tosubject
 (Dual) max (2) yTb
 subject to ≥=+

 A ℜ∈ℜ∈×ℜ∈

 2

 Our aim is to calculate an optimal point (x*, y*, z*) for this pair of non empty polyhedrons
 defined by their respective constraints (1) and (2).

Such a point satisfies the primal and dual constraints and the optimality criterion

 (3) ==−

To solve the linear equation systems (l)-(2) and equation (3), we convert the constrained
optimization problem to that of an unconstrained optimization. We first incorporate the non-
negativity constraints in the objective function by introducing a logarithmic barrier function.

The new problems can be stated as

 min μxC (4) ∑−

n

=
j

T xln
1j subject to Ax = b

 max (5) ∑
=

+

 subject to AT y + z = c

 mnnm yb,cz,x,A ℜ∈ℜ∈ℜ∈ ×

We further transform the problem to an unconstrained optimization problem by introducing
the Lagrangian functions.

 b)(AxyxμxcL T
n

1j
j

T −−−= ∑
=

ln)imal(Pr

 (6)

 c)zy(AxzμybL TT
j

n

1j

T −+−+= ∑
=

ln)Dual(

The first order optimality conditions for the problems set out in (6) for given values of μ

 are

 0=−bAx

 (7) 0=−+ czyAT

 0=− μeXZe

 0>zx,

where X, Z are diagonal matrices whose diagonals are x,z and e is a vector of all 1.
The search directions for the new points are derived from the conditions in (7). This

is done by following the Newton direction, the Taylor polynomial direction, or some other
method. Since the new point must sat isfy the equat ions in (7) . A s imple way to der ive

 3

the predictor corrector direction is to introduce a new point (x + zz,yy,x Δ+Δ+Δ x,). The

new point must satisfy the equations in (7).A proper reduction in the value of the barrier

parameter then gives us the desired improvement.

 Substituting the new point in system (7) leads to the following set of equations.

 AxbxA −=Δ

 (8) zyACzyA TT +−=Δ+Δ

 ZeXXZeeXeZZeX ΔΔ−−=Δ+Δ μ

The system of equations in (8) contains nonlinear term, namely , hence we use a ZeXΔΔ

predictor corrector approach to solve it. We first calculate the predicting direction by ignoring the

nonlinear terms and the μ term. Then we calculate μ , according to the predicting direction and

use it to calculate the correcting direction. The predicting direction obtained from (8) is

])dAD(z[dp)(ADAy D

1T
p +−=Δ −

 (9))dzyD(Ap dp
TX +−=Δ Δ

 x)Zx(zp p
1z Δ+−=Δ −

Where D=XZ . czyAdb,Axdp, T
p

1 −+=−=− and

The barrier parameter p. is calculated as a function of the duality gap after the maximum

step is taken in the predicting direction.

 y))(ybx)(xf(Cμ p

TT Δ+−Δ+= p

The correcting direction can then be calculated as.

− −−=

)10()]ZeXeμ(XyD(Ax pp
1

c
T

c ΔΔ−−Δ=Δ −

)μc
x1

pp
1 cZXZe)Xe(xz Δ−ΔΔ−=Δ −−

 4

In the k'th iteration:
(a)Create Hk = ADkAT

(b)Solve for t : k
1

k
1

k
1

k rtH =

(c)Solve for k
2

k
2

kk
2 rtH:t =

Figure 1: The main computational step of the IPM

The correcting and predicting directions are added to the current point to advance to the
next point.

)(xxpxx cp Δ+Δα+=

 Y)yDyy cp Δ+α+= Δ((11)

 z)zDzz cp Δ+Δα+= (

where and are primal and dual attenuation parameters (0 <) that ensure pα Dα 1D <αα ,P

that the new point is represented by a vector of strictly positive components.

2.2 Computational structure of the IPM algorithm

One of the fundamental reasons for the acceptance of the primal dual IPM is the polynomial
worst case bound on the number of iterations. Indeed, if L denotes the input size and n
the largest dimension of the constraint matrix A then the algorithm converges in no more
then L)nO(iterations [13. 1]. Practical implementations, however, show that the average
case convergence rate is closer to O(logn). This means that only rarely will the number of
iterations grow above 50-60 and most LP problems can be solved in 20-40 IPM iterations.

The computational work at each iteration of the predictor corrector IPM algorithm is
concentrated in the solut ion of equat ions (9) and (10) . I t i s easy to see that i f m and n
are of the same order then the repeated calculation of the matrix ADAT and its subsequent
inversion dominate the computational process. The operations involved in these steps are
illustrated in Figure 1.

The iterative process described above has the following properties:

1. If A,D are of full rank then the matrix created in (a) is symmetric positive definite
(SPD).

Note that the matrices Hk are only used to generate a search direction and thus, if
any of them becomes numerically unstable we can fix it by replacing the appropriate
diagonal elements. Therefore, we can safely assume that ∀ k,Hk is a positive definite
matrix.

2. All the matrices Hk have the same nonzero structure (in the following sections we refer

5

1. Cholesky factorization: Factorize H — LLT

2. Set LTt = q

3. Forward solve: Solve for q: Lq = r

4. Back solve : Solve for t: LTt = q

Figure 2: The Cholesky algorithm

to these matrices simply as H).

3. The same matrix Hk is used in the solution of steps (b) and (c)

There is a wide range of algorithms to solve systems of equations that are represented
by a sparse SPD matrix (SSPD). In general, these algorithms can be divided into direct and
iterative methods [10]. The above listed properties, especially the fixed structure of H and
the need to solve the system twice within a single iteration, strongly suggest the use of a direct
method. In this paper we discuss only the direct solution method known as the Cholesky
algorithm. The reader is referred to [18] and [22] for the application of iterative methods
for the IPM. The steps of the Cholesky algorithm are summarized in Figure 2 and the main
computational steps of the predictor corrector IPM algorithm using the Cholesky algorithm
are set out in Figure 3.

3 The computationally intensive parts of IPM

Real life linear programming problems are usually very sparse. The symmetric matrix ADAT,
however, normally suffers some nonzero growth and can become much denser than the A ma-
trix. The Cholesky factor L, in turn, usually becomes even denser. For example, a single dense
column in A results in a fully dense ADAT and L. In practical implementations, substantial
amount of work is spent on reducing the fill-in [7, 9, 13]. To begin with, dense columns are
either split or calculated separately [25]. The symmetric matrix is then reordered to reduce
the nonzero fill-in in the factorization. A common reordering strategy is the minimum degree
algorithm. This method is used in our implementation of the predictor corrector IPM. How-
ever, depending on the nonzero structure of the original A matrix, the amount of fill-in and
the structure of the Cholesky factor can vary considerably. This affects the distribution of
computational effort between the different parts of the algorithm as demonstrated in Tables1
and 2.

The problems we use come from two sources. The first source is the set of NETLIB models,
the second is a set of industry generated LP problems. The models of the second set, named
CARxx and RAT1, originate from medical resolution enhancement of PET (positron emission

6

1. Initialize set k = 0, calculate (xk,yk
,zk)

2. Check for termination criteria

STOPthenG))ybxc)/(ybx((candD)(dandp)(d if kTkTkTkTk
D

k
p <∈−−<∈<∈

3. Factorize Lk (Lk)T = ADkAT

4. Compute the predicting direction by using forward and back substi-

 tution

5. Compute the barrier parameter Kμ

6. Compute the correcting direction by using forward and back substi- K
C

K
c

K
c zyx ΔΔΔ ,,

 tution

7. Calculate k
D

k
p ,αα

8. Move to the new point

9. Set k=k+l, goto 2.

Figure 3: The IPM primal dual predictor corrector algorithm

 Table 1: Characteristics of the test problems

Matrix MatrixAA T

Model Rows Cols Nonz Nonzeros

Cholesky

Nonzeros

Iter.

CAR2 400 1200 38890 58805 61411 15

25FV47 793 1849 10566 11715 32291 24

PILOT 1439 4655 42296 60977 205230 30

CAR11 2025 6075 767804 1162527 1550510 24

BNL2 2280 4442 14952 15688 89601 31

RAT1 3136 9408 88267 219086 1251702 21

CRE_A 3422 7242 18142 24107 35924 29

DFL001 6071 12230 35632 44169 1567825 50

CAR4 16335 33652 63724 107696 169950 24

CAR8 32768 67678 1183660 3276351 6280471 27

Model Build
ADA T

Cholesky

Triag.
solves

Other

CAR2 33.6% 45.8% 1.5% 19.1%
25FV47 13.0% 51.4% 5.3% 30.3%
PILOT 13.1% 62.4% 3.3% 21.2%
CAR11 18.0% 65.3% 0.6% 16.1%
BNL2 4.0% 66.4% 5.1% 24.5%
RATI 2.9% 90.5% 2.5% 4.1%
CRE_A 28.4% 24.6% 4.6% 42.4%
DFL001 0.3% 95.4% 1.4% 2.9%
CAR4 16.1% 56.3% 1.2% 26.4%
CAR8 12.1% 75.7% 0.6% 11.6%

Table 2: Distribution of computational effort in a single sequential IPM iteration

tomography) images [24]. In choosing these models we have attempted to reflect the variety
and size of real life LP models. The model CRE-A, an American Air Force airlift model [4],
for instance, has relatively small nonzero fill-in during factorization while the model PILOT
suffers a large amount of fill-in (see Figure 4).

The model PILOT represents a large class of problems whose Cholesky factor is fairly
dense and requires a considerable amount of work. For these problems, large speed gains can
be made by improving the efficiency of the matrix multiplication and factorization steps;
either by improving the algorithms or by taking advantage of novel hardware features. In
fact, some implementations of the IPM have been especially adapted to shared memory [23],
distributed memory [3], and massively parallel [11] computers. All the above mentioned
investigations are characterized by the close interaction between the implementation and the
target architecture. An important aspect is that whichever method is used, some problems are
less appropriate for the implementation than others. This is an inevitable consequence of the
large variation in the models. In many cases, however, the matrices that suffer most from the
advance methods are those that are easily solved in the naive sequential way. For a very
sparse matrix with evenly distributed non zeros and limited fill-in (such as the problem
CRE_A [4]) the overhead in utilizing an advance architecture paradigm is almost always
greater then the benefits. This type of problems can be recognized in advance and solved by
using the serial implementation. Our main target is to speedup the solution process for those
problems that are not solved in a reasonable time on standard sequential computers.

As the problem becomes more computationally intensive, the Cholesky factorization step
becomes more dominant. There are several alternative schemes for the implementation of
this step; the major ones being the column Cholesky, the row Cholesky, and the submatrix
Cholesky [9]. Although the number of operations required by all these schemes is the same,
they use different elimination sequences and therefore fit different computational approaches.

 8

CRE_ACHOLESKY PILOT CHOLESKY

Figure 4: Symmetric matrix and Cholesky factor or the models CRE_A and PILOT

For our implementation, the column Cholesky algorithm proved to be the most suitable. It
is convenient to represent the column Cholesky factorization as a sequence two procedures:
cmod(j, k) (factorize column j using column k, equivalent to the BLAS routine axpy [5]) and
cdiv(j) (scale column j, equivalent to the BLAS routine scal).

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

mj

jj

jj

mj

jj

mk

jk

mj

jj

mj

jj

h

.

.

.
h

h
l

.

.

.
l

cdiv(j)

l

.

.

.
l

l

h

.

.

.
h

h

.

.

.
h

:k)cmod(j, 1:jk

In Figure 5 we use the cmod and cdiv definitions to describe the column Cholesky algo-
rithm.

As mentioned before, the elimination process starts with the restructuring and reordering
of the symmetric matrix to reduce fill-in. The new elimination order determines the structure
of the Cholesky factor. Thereafter, only the numerical values for the symmetric matrix and
the Cholesky factor need to be calculated. These last calculations have to be carried out in
very iteration.

In Figure 6 we list the actual operations involved in executing the computationally inten-
sive parts of the IPM. These are grouped in two phases. The preprocessing phase contains
all the operations that are done only once, that is , al l operations that are concerned with
structure only. The iterative phase contains all the operations that need to be done at every
iteration, that is, the numerical operations.

 9

 do j — 1, m
do k = 1 to j – 1
 thenlif jk 0≠

 cmod (j, k)
 endif
enddo
 cdiv(j)

 enddo

Figure 5: The column Cholesky factorization scheme

• Preprocessor Phase

i. Create the symbolic structure of the symmetric matrix (Lower tr iangular only)

i i . F ind a r eo rde r i ng o f H u s i n g t h e mi n i mum d e g r e e a l g o r i t h m

i i i . C o mp u t e t h e s y mb o l i c f a c t o r i z a t i o n o f t h e C h o l e s k y ma t r i x

iv. Analyze the symbolic Cholesky factor for special structures

• Iterative Phase

i . Use the solution vectors of the previous iteration to compute the new diagonal
matrix D

i i . Compute the numer ica l va lues of the symmetr ic mat r ix H — ADA T

iii. Compute the numerical values of the Cholesky factor L using the column
Cholesky scheme

iv . Compute the f i rs t r ight hand s ide vector

v. Perform triangular forward and back solves to retrieve the predicting direction

vi. Compute the second right hand side vector

vii . Perform triangular forward and back solves to retrieve the correcting direction

 Figure 6: Phases of computation

10

4 Vector processors and their properties

Within the various parallel architectures that emerged in the last few decades, the vector
architecture is distinguished by its wide acceptance [12]. Nowadays, vector processors are
used in the majority of supercomputers (e.g. CRAY-XMP), mainframes (e.g.
IBM3090), and even in some workstations (e.g. DEC6000). Recently, single chip vector
processors have become increasingly popular. These processors are designed for general
use and are therefore much cheaper then their larger counterparts. Although these
processors can execute any sequential code, a substantial speedup of an application is
achieved only if the cache memory and vector capabi l i t ies are proper ly ut i l ized.

4.1 utilizing the vector unit

In utilizing the vector unit, we have to consider the following points:
• The computation has to be rearranged such that it mostly consists of simple loops of
 elementary operations (e.g. multiplication loop).

• Indirect memory access should be minimized

• The use of conditionals within loops should be avoided

• Loops should be rear ranged to remove da ta dependencies

• The vectorized loops should be as long as possible to reduce the effects of the startup
 overheads.

For example, the dense axpy(x,y ,α ,) operat ion [5] i s),,y(nℜ∈ℜ∈+= yx,xx αα
ideal for vectorization. Sparse implementation of the axpy is less suitable due to the
indirect memory access involved in the computation. To speed up dense computation and
reduce indirect memory access, techniques such as loop unrolling are useful.

Loop unrolling in dense computation: consider for instance three separate axpy
operation axpy axpy axpy For every axpy operation, the),,(1

1 αyx,),,(2
2 αyx,),,(3

3 αyx,
elements of x and yi have to be fetched from the memory, the elements of yi have to be scaled
and added to x. All in all, the three axpy operations require 3(2n) fetch, 3n multiplication,
3n addition and 3n store operations. If, on the other hand, we where to construct a
multiple axpy operation, that is then, instead of fetching and)(3

3
2

2
1

1 yyyxx ααα +++=
storing x for every axpy separately we fetch and store it only once thus saving 2n fetch
and 2n store operations.

Loop unrolling in sparse computation: the advantage of loop unrolling become more
evident when sparse operation is involved. Consider the sparse axpy operation where The
sparse vectors are all packed. Due to the inability to vectorize operations where indirect
memory addressing is involved, it is common to use gather and scatter operations. The

 11

scat ter operat ion t ranslates the packed vector to a temporary dense work area (a dense
vector with explicit zero components). The gather operation re-packs and stores the work
area. For every sparse axpyS operation, in addition to the dense operations, we also need to
scatter the yi and x vectors and to gather the x vector. In the above case, loop unrolling
will save two gather and two scatter operations. Further, if the vectors y1, y2, y3 all have the
same nonzero structure then it is possible to combine them by using dense axpy. Only the
combined vector is scattered thus saving more scatter operations. It is obvious that the more
vectors we can combine in such a way, the higher our savings are likely to be.

Operations such as gather and scatter are in most cases a part of standard primitives
library provided by the hardware manufacturer. Other operations like axpy and seal are
based on the basic linear algebra subprograms (BLAS) definitions [5] and provide optimized
building blocks for the programmer. Arranging the application around these primitives and
definitions usually results in a very efficient implementation.

4.2 Utilizing the cache unit

The cache is a small unit of high speed memory which maps the main memory. Every element
that is fetched from the main memory to the processor is stored in the cache unit until a new
element replaces it. If an element is required for computation while it resides in the cache then
we have a cache hit. The cache is 2-5 times faster than the main memory and thus a large
speedup can be achieved if elements are mostly fetched from the cache instead of the main
memory. One of the main considerations of the algorithm designer is to maximize cache hits.
This is done by blocking the data in such a way that enables the reuse of certain elements.
Consider for example several sequential axpy operations where all the vectors are added to
the same summation vector x:

1. axpy(x,y1,α1)

2. axpy(x,y2,a2)

3. axpy(x,y3,a3)

If the vectors are short enough then the summation vector elements remain in the cache
memory and can be reused. If, on the other hand, the vectors are too long, the elements
are replaced and all the operations are done by using the main memory. In such a case, the
vectors can be divided to subvectors of the appropriate length. For example, let the cache

size be n then if we divide the vectors to 4 parts: the [] ⎥⎦
⎤

⎢⎣
⎡==

axpy opera t ions can be schedu led as fo l lows :

1. axpy , i= 1,..,3,),,(i
i
11 αyx

2. axpy , i = 1,..,3),,(i
i
22 αyx

 12

3. axpy , i= 1,..,3,),,(i

i
33 αyx

4. axpy , i = 1,..,3.),,(i
i
44 αyx

In this way, the elements of remain in the cache while needed and main 4321 ,,, xxxx
memory access is minimized. Dividing vectors into subvectors that fit into the cache memory
is always a good strategy for a serial processor. The vector processor, however, is more
efficiently utilized when the vectors are the longest. Therefore, an extra care has to be taken
not to divide the vectors to too small units that can increase the vectorization overhead.

In the next sections we show how the matrix multiplication and Cholesky factorization
are scheduled to enable vectorized computation and to maximize cache hits.

5 Vector implementation of the symmetric matrix creation

The matrix H = ADAT is created in two stages, namely, symbolic and numeric multiplica-
tion. The symbolic multiplication is a simple algorithm that finds the off-diagonal nonzero in
the symmetric matrix (lower triangular only) by using the following criterion:

 00:0 ≠≠∃≠≠ jliljiij, aandaliffh (12)

After the symbolic symmetric matrix has been constructed the location of all the nonzeros
is known. Thereafter, to calculate the actual value of a nonzero hi j , the only operation that
is needed is the multiplication of where denote the i ' th and j ' th rows of *j*i ADA)(*j*i A,A
the constraint matrix A.

In most implementation reports, surprisingly lit t le is said about this operation which
typically takes around 15% of the iteration time. Bisseling et al. [3] and Marsten et al. [17]
use a pre-calculated multiplication list for each nonzero in the symmetric matrix. As can be
seen in equation (13), the couples (where both are nonzeros) are multiplied in advance jlil aa
and stored. Then, at every iteration, they are scaled by and summed to create the nonzero k

lld

k
ijh

 k
lljlaila

a,an,1,..,l

k
ij dh

jlil

][
0

∑
≠=

= (13)

The advantage of this method is the ability to perform the multiplication in a single dense loop with
minimal indirect memory access. Although in this scheme a vector processor can be optimally
utilized, it is rarely used due to the high memory requirements. These are especially high for LP problems
whose H matrix is fairly dense.

In our implementation we use two methods which attempt to utilize dense computation
without the memory overhead of keeping the mult ipl icat ion l is ts .

 13

Consider a packed sparse row of the constraint matrix A. The packed row can be viewed
as a collection of two dense vectors: a vector of real numbers which holds the numerical data
and a vector of integers which holds the positions of the nonzero elements within the sparse
row. The two most obvious ways to multiply these rows are l isted below:

1. Fully dense computation: the row is scattered and multiplied with the matrix D.
The result is multiplied using dense multiplication with the scattered rows that
create a nonzero element hi j with

2. Fully sparse computation: a loop traces the collision points between and any row
that need to be multiplied with it. When such a collision point is found, the elements
are multiplied.

Both methods have serious drawbacks. Typically, the nonzeros account for only a fraction
of the row size and thus, the first method can have large overheads in scattering the vectors
and in redundant multiplications. The second method, on the other hand, results in many
conditional operations. If the vectors have many nonzeros few collision points, the overheads
will be very large. In addition, due to the conditional computation, this method is particularly
bad for vector implementation.

Instead, we implement the following two alternative schemes:

1. For the nonzeros of Hi* the row Ai* is scattered and multiplied with D. The rows
Ai* that are multiplied with it are not scattered; instead, the loop passes on the loca-
tion vector of the packed rows and multiply every element in the packed row with its
counterpart in the scattered row regardless if it was originally a nonzero.

Although this method results in redundant multiplications, they are limited to the
number of the nonzeros in the packed row. For the whole multiplication, only n scatter
operations are needed. The method completely avoids using conditional computation
but still uses indirect memory access.

2. For the nonzero hij the row Ai* is scattered and multiplied with D. It is then gathered
again but this time according to the index vector of the row This allows dense
multiplication between the vectors to be performed. The scheme utilizes dense compu-
tation and completely removes the need for indirect memory access. The price for this
is the additional gather operations. The number of multiplication, however, it the same
as in the first method.

In Table 7, section 7, we compare the performance of these two schemes on a serial and
vector processors for several NETLIB and industrial problems.

æ

14

6 Vectorized Cholesky factorization

Our implementation of the column Cholesky factorization algorithm is targeted towards uti-
lizing dense computation and minimizing main memory usage. We attempt to reorganize
the elimination such that most operations take place within large and dense blocks. If large
enough dense blocks are identified, a multiple dense cmod (axpy) operation can be carried out
instead of using several sparse operations. In addition, the dense vectors can be partitioned
to blocks that fit the cache size (see section 3).

An important feature in increasing the scope of dense computation is the identification of
structurally indistinguishable columns (supernodes).

Definition 1: Supernodes For a given SSPD matrix ordering, a supernode is made of
a group of columns that in the Cholesky factor L create a dense triangular block just below
the diagonal and have the same nonzero structure elsewhere.
Here, we extend the above definition in to further increase the scope of dense computation.

Definition 2: Extended Supernodes For a given SSPD matrix ordering the extended
supernode associated with the column L*j is made of all columns L*j, i < j whose nonzero
structures in the Cholesky factor in positions j,. .., m is the same as that of the column L*j.
In other words, the vectors [l j i ,…,lm i] and [l j j ,… lm j] have the same nonzero structure.

It is clear that if the Cholesky factor L is fully dense then there is only a single supernode
which includes all the columns. In such case, the extended supernode of any column L* j is
simply the group of all preceding columns. In sparse matrices, however, the extended
supernodes are larger than the supernodes. On the negative side, the extended supernodes
are defined per column and therefore the effort of finding and storing them is higher.

The Cholesky factor in Figure 7 demonstrates the difference between supernodes and
extended supernodes. Columns 1,2 and 3 can be grouped into a supernode as well as 5,6 and
7. For column 6, however, all preceding columns are members of the extended supernode,

Supernodes and extended supernodes are used in a similar fashion during the Cholesky
factorization.
 1. Assume that the column L*j is currently being factorized. If L*j is factorized by a
 column L* j which is a member of the same (extended) supernode then the cmod(j, i)
 operation can be done using dense mode.

 2. If the column L* k factorizes L* j then all the columns L* t , t < j in L*k’s (extended)
 supernode must also factorize it. The contributions of all these columns can be collected
 together and added to L* j in one cmod step. These columns all have the same nonzero
 structure from the j'th place and onwards. Thus, the number of indirect memory oper-
 ations is reduced and loop unrolling and cache hit techniques can be used (see section
 3).

 15

 (14)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣ ×××××××
××××××

××××
×

×××
×× ⎥

⎤
⎢
⎡×

 1 2 3 4 5 6 7

F i g u r e 7 : T h e C h o l e s k y F a c t o r

Dense Window: a commonly used approach for utilizing dense computation is the
creation of a dense window. Here, we take advantage on the fact that most fill-in usually
takes place in the lower part of the Cholesky factor creating an almost dense matrix (see for
example Figure 1 in section 2). In such a case, when the percentage of nonzeros per column
grows above a certain value (50-70%, say) then the rest of the matrix is treated as fully dense.

Consider, for example, the following H matrix whose lower part F is dense:

 (15) ⎥
⎦

⎤
⎢
⎣

⎡

2221

T
2111

FH
HH

The Cholesky factorization of H can be scheduled as follows:

• Sparse
(i) Factorize H11 = L11 TL11

(ii)Update L21 = H2l
T-1L)(11

• Sparse-Dense

(iii) Update TLLF 21212222F̂ −=

• Dense

(iv) Factorize TLLF 222222
ˆ =

The factorization of the dense part (step (iv)) can be carried out either by using techniques
similar to those used for the supernodes or by using a hardware optimized dense BLAS
Cholesky factorization routine [6].

We note, however, that for the creation of a dense window we sometimes need to add ex-
plicit zeros to the lower part of the Cholesky factor These operations alters the structure .L̂22

of the Cholesky factor and can reduce the scope of utilizing the (extended) supernodes.

 16

There are many different methods for speeding up the Cholesky factorization algorithm,
see for example [9, 7] and [2]. Most methods offer speedup of the actual factorization while
causing a slowdown or overheads in other parts. For this reason, they are not beneficial for all
the problems. The two methods we present below fall into this category. The first method is
an implementation of the Cholesky algorithm using supernodes. This implementation requires
some extra storage space and perform more operations hence it is clearly unfavourable when
the number and size of supernodes is small. The second implemenation that utilizes the
extended supernodes requires larger storage but does not perform more operations. Both
implementations, however, are beneficial for a large class of problems and computers (see
section 7).

6.1 Cholesky factorization using Supernodes

The identification of supernodes and extended supernodes is done after the order of elimina-
tion (and therefore the structure of the Cholesky factor) has been determined.

F o r t h e i d e n t i f i c a t i o n o f supernodes we use the following criterion:
 areLLthenllnzllnzandlf j*,j*jm,jjjm,jjjj 111,2,2,1 ,]),...,([]),...([0i ++++++ =≠

 members of the same supernode
 where nz(vec] denotes the number of nonzeros in the vector.

The supernode information is kept in an array of integers super_n of the size 4m bytes.
I f the columns whose numbers are k321 i,..,iii <<< are members of a supernode then
super_n(i i) = super_n (i2) =,…,= super-n(ik) = i1 (note that a single column is treated as
a supernode of length one).

It is easy to see that a single pass on the data structure is sufficient for identifying all the
supernode. This takes at most O(m) operations.

During the Cholesky algorithm, when computing the column L*j, we build an elimination
stack that contains the columns needed for the elimination. The columns in the stack are
stored in a descending order (the highest on top). In such a way, when a column is factorized,
it is enough to find the beginning of its supernode in the super_ n array. The columns in a
supernode are always consecutive and therefore the preceding columns in the supernode can
be removed from the stack without further checks. The actual elimination can therefore take
place by using a dense, multiple cmod operation as described in section 4.

6.2 Cholesky factorization using extended supernodes

The identification of an extended supernode is done in a similar way to the identification of
the supernodes.

Let L*j be the current column then is a member of the extended supernode if i≠L
(])),...,([]),...,([and0and(jm,jj,im,ij,ij, llnzllnzLji =≠<

 17

The extended supernode information is held in an array of integers super_ x of the size 4lnz

bytes where Inz is the number of nonzeros in the Cholesky factor. In addition, two pointer
arrays x_group and s_group of the size 4(m+l) bytes each are required. The array x_group
stores the pointers to the beginning of the extended supernode section and the array s_group
to the beginning of the single columns section. Thus, for the column L*j, the extended
supernode members are stored in the positions x_group(j),.,x_group(j + 1) - 1 and the
columns that factorize L*j but are not members of the extended supernodes are stored in the
positions s_group(j),.,S_group(j + 1) - 1 of the same array. The complexity of constructing
the extended supernode data structure is at most O(lnz + 2m).

During the elimination process, the members of the extended supernode of factorize

the current column using multiple dense cmod. If a column is not a member of the
extended supernode then sparse elimination must take place. However, all the columns that
are members of the extended supernode of also need to factorize . The contributions
of these columns are combined and only a single sparse cmod is performed. Note that the
method of keeping explicit elimination list removes the need for construction the elimination
stack and therefore saves operations.

7 Experimental results

The ideas detailed in the previous section were added to our existing IPM code [13]. The test
are performed on two hardware platforms. An i486/50MHz 16Mbyte PC and an i860/40MHz
32Mbyte vector computer. On both computers, the programs were compiled and run using
the Microway NDP environment and Fortran 77 [21].

The i860 is representative of a new generation of single chip vector processors. It is a RISC
processor with vector capabilities. In addition, it has an on-chip cache unit. The processor
vector and cache capabilities are utilized via a vector primitive library [20]. This library is
based on the BLAS definitions and includes hardware optimized gather and scatter.

In Table 4 we present the timings of the symmetric matrix multiplication schemes on
the i860 vector computer. The first scheme uses indirect memory access and sparse/dense
multiplication, the second scheme uses scatter-gather and dense multiplication. The second
and third columns in the table give the number of rows (columns) in the symmetric matrix
and the average number of nonzeros per row. The forth and fifth columns give the execution
time in seconds of the two schemes. It is easy to see that the first scheme is better when
the average number of nonzeros per row (column) falls below a certain number (around 8 in
our case). This behaviour co-insides with the fact that utilizing the vector capabilities for
less then 10 elements in a loop is likely to result in a slowdown instead of speedup [20]. It
is, however, inefficient to check the length of any multiplication loop; the 'if question is as
expensive as the initialization of the vector array. On the other hand, the average number
of nonzeros per row can be calculated in the initialization phase and the algorithm can be

 18

Matrix A Matrix AAT Cholesky factor

Model Rows Columns Nonz Nonz Nonz
CAR2 400 1200 38890 58805 61411

25FV47 793 1849 10566 11715 32291
PILOT 1439 4655 42296 60977 205230
BNL2 2280 4442 14952 15688 89601
RAT1 3136 9408 88267 219086 1251702

CRE_A 3422 7242 18142 24107 35924
DFL001 6071 12230 35632 44169 1567825
CAR4 16335 33652 63724 107696 169950

Table 3: Characteristics of the test problems

AD TA Timings on i860 (sec)
Model Rows Nz/row(Av.) Scheme 1 Scheme 2
CAR2 400 147.01 4.15 1.65

25FV47 793 22.33 0.28 0.32
PILOT 1439 42.2 2.52 1.83
BNL2 2280 6.8 0.26 1.01
RAT1 3136 69.86 4.76 5.33

CRE_A 3422 7.04 0.89 2.55
DFL001 6071 7.27 1.37 6.74

CAR4 16335 6.58 4.28 43.90

Table 4: Symmetric matrix multiplication

chosen according to this number. Although this approach does not guarantee a speedup, it
is likely to prevent a serious slowdown.

In Table 5 we present the breakdown of the elimination to dense and sparse elimination
for supernodes and extended supernodes. The column named 'cmod' gives the total number of 'cmod'
operations in the factorization. For both supernodes and extended supernodes, the column named 'single
sparse' gives the number of sparse cmod and the column named 'total dense' gives the number of dense
cmod operations. The column marked 'Multiple sparse' gives the number of sparse cmod
operations that were done by a combined elimination vector. This vector which results from
collecting the contributions of columns in the (extended) supernodes is an overhead created by
using dense computation.

From Table 5 it is clear that the contribution of extended supernodes is not only in
increasing the scope of dense computation but also in removing the overheads of using
multiple sparse cmod operations. In addition, the increase in dense computation also
contributes to an increased scope of loop unrolling.

In Tables 6-9 we present the timing results for the supernode and extended supernodes

19

 Supernodes Extended Supernodes
 Total Single Mutiple Total Single Mutiple Total

Model cmod sparse sparse dense sparse sparse dense
CAR2 61011 39690 0 21321 38680 0 22331
25FV47 33498 5442 3195 28056 5401 2913 28097
PILOT 203791 27229 8481 176562 27156 7000 176635
BNL2 87336 14372 4719 72964 14049 4267 73287
RAT1 1242566 61034 21009 1187532 61005 20307 1187561
CRE_A 32512 18811 3544 13701 18600 3258 13912
DFL001 1561754 168032 46395 1393722 163149 33324 1398605
CAR4 153566 30732 1992 122834 27684 1839 125882

Table 5: Dense and sparse cmod operations

implementation on i486 and i860 computers (the models RATl and DFL001 could not be
solved on the i486 due to lack of memory). From the tables we conclude that if the
models involved are fairly dense, the differences between implementations utilizing
supernodes and extended supernodes are not very significant. The extended supernodes
implementation re-quires more memory and it is therefore obvious that standard
supernodes are preferable in this case. For sparser matrices, however, the static
elimination list and the increased dense computation account for large reductions in the
execution time. This is even more so on the vector computer where dense computation is
efficiently utilized. Hence, in problem like CAR4 we experience a 17 fold reduction in
execution time. The sparsity of the Cholesky factor is calculated during the initialization
phase and it is therfore possible to determine which elim- ination method to use
beforehand. This decision is made on the basis of the density of the Cholesky factor and
the amount of the available memory. If the matrix is large and sparse and the amount of
available memory is sufficient then the extended supernode scheme is used. Otherwise,
standard supernodes are utilized.

Acknowledgment

The author gratefully acknowledges the valuable help of Prof. G. Mitra and Dr. H. Hafsteins-
son in writing this paper. We also like to thank Dr. T. Jones and Mr. C. Tong of the MRC
Cyclotron Unit of Hammersmith Hospital for supplying the PET models and for working
closely with us in the solution of those problems.

20

 General Timings (Sec) Iteration Timings (Sec)

Model time Iter. Init Build ADAT Chol Other

CAR2 188.179 17 4.640 4.449 5.710 0.596
25FV47 55.749 25 0.822 0.281 1.480 0.436
PILOT 1006.292 34 8.332 2.363 25097 1.891
BNL2 336.308 34 4.696 0.281 8.562 1.191
RAT1 - - - - - -
CRE_A 180.210 34 7.956 0.707 3.242 1.117
DFL001 - - - - - -
CAR4 1715.761 23 121.095 4.449 59.820 5.064

Table 6: Timings breakdown using supernodes on the i486

 General Timings (Sec) Iteration Timings (Sec)

Model time Iter. Init Build ADAT Chol Other

CAR2 237.339 17 5.839 4.226 8.679 0.72
25FV47 54.046 25 1.069 0.222 1.429 0.434
PILOT 1023.749 34 5.151 2.359 25.601 0.224
BNL2 296.097 34 6.244 0.269 7.359 0.897
RAT1 - - - - - -
CRE_A 102.546 34 11.438 0.769 0.820 1.09
DFL001 - - - - - -
CAR4 856.507 23 153.238 4.613 21.750 17.137

Table 7: Timings breakdown using extended supernodes on the i486

 General Timings (Sec) Iteration Timings (Sec)

Model time Iter. Init Build ADAT Chol Other

CAR2 125.769 17 5.835 4.15 2.539 0.360
25FV47 43.77 30 1.390 0.28 0.799 0.320
PILOT 328.229 33 9.343 2.52 6.260 0.866
BNL2 186.009 40 5.436 0.26 3.580 0.564
RAT1 1425.278 25 64.998 4.76 46.489 3.162
CRE_A 256.549 37 9.092 0.89 5.139 0.659
DFL001 6055.889 48 137.825 1.37 118.010 3.913
CAR4 2334.960 26 110.411 4.28 78.589 2.69

Table 8: Timings breakdown using supernodes on the i860

 21

 General Timings (Sec) Iteration Timings (Sec)
Model time Iter. Init Build ADAT Chol Other
CAR2 124.159 17 6.275 4.15 2.410 0.374
25FV47 29.711 26 2.170 0.28 0.520 0.280
PILOT 298.229 34 10.578 2.52 5.070 0.870
BNL2 90.510 34 7.253 0.26 1.620 0.567
RAT1 1326.090 25 70.330 4.76 42.329 3.143
CRE_A 80.070 34 12.792 0.89 0.430 0.658
DFL001 5003.736 48 151.512 1.37 95.811 3.907
CAR4 439.959 25 148.856 4.28 4.660 2.704

Table 9: Timings breakdown using extended supernodes on the i860

References

[1] I . A D L E R, N. K. K A R M A R K A R, M. G. C. R E S E N D E, A N D G. V E I G A, An implementa-
tion of Karmarkar's algorithm for linear programming, Mathematical Programming, 44
(1989) , pp. 297-335. Errata in Mathematical Programming, 50:415, 1991.

[2] C. ASHCRAFT, R. GRIMES, J. LEWIS, B. PEYTON, AND H. SIMON, Progress in spars
matrix methods for large linear systems on vector supercomputers, Internal. J. Super-
comp. Appl., 1 (1987), pp. 10-30.

[3] R. H. BISSELING, T. M. DOUP, AND L. D. J. C. LOYENS, A parallel interior point
algorithm for linear programming on a network of 400 transputers, Annals of Operations
Research, 43 (1993).

[4] W. C A R O L A N , J . H I L L , J . K E N N I N G T O N , S . N I E M I , A N D S . W I C H M A N N , An empir -
ical evaluation of the KORBX algorithms for military airlift applications, Opera t ions
Research , 38 (1990) , pp . 240-248 .

[5] J. DONGARRA, J. DUCROZ, S. HAMMARLING. AND R. HANSON, An extended set of
fortran basic linear algebra subprograms, ACM Trans. Math. Software, 14 (1988), pp. 1-
17.

[6] J . J . D O N G A R R A , J . R . B U N C H , C . B . M O L E R , A N D G. W. S T E W A R T , LINPACK
User ' s Guide , SIAM, Ph i lade lph ia , 1979 .

[7] I. DUFF, A. ERISMAN, AND J. REID, Direct Methods for Sparse Matrices, Oxford Uni-
versity Press, 1989.

[8] J. J. H. FORREST AND J. A. TOMLIN, Implementing interior point l inear program-
ming methods in the Optimization Subroutine Library, IBM Systems Journal, 31 (1992),
pp. 26-38.

[9] A. GEORGE AND J. W. H. LIU, Computer Solutions of Large Sparse Positive Definite
Systems, Prentice-Hall, 1981.

22

[10] G. H. GOLUB AND C. F. V. LOAN, Matrix Computations, North Oxford Academic,
1983.

[11] H. HAFSTEINSSON, R. LEVKOVITZ, AND G. MITRA, Solving large scale linear pro-
ramming problems using an interior point method on a massively parallel SIMD com-
puter, Technical Report TR/05/93, Department of Maths and Stats, Brunel University,
Uxbridge, Middlesex UBS 3PH, 1993.

[12] R. W. HOCKNEY AND C. R. JESSHOPE, Parallel Computers 2: Architecture, Program-
ming and Algorithms, IOP Publishing, 1988.

[13] R. LEVKOVITZ, An Investigation of Interior Point Methods for Large Scale Linear Pro-
grams: Theory and Computational Algorithms, PhD thesis, Brunel, The University of
West London, 1992.

[14] R. LEVKOVITZ AND G. MITRA, Solution of large sparse symmetric equations on a trans-
puter network, in Proceedings of the Third International Conference on Applications of
Transputers, IOS Press, 1991, pp. 105-110.

[15] ─,Solution of large-scale linear programs: A review of hardware, software and algo-
rithmic issues, in Optimization in Industry, T. A. Ciriani and R. C. Leachman, eds.,
John Wiley & Sons, 1993, pp. 139-171.

[16] I. J. LUSTIG, R. E. MARSTEN, AND D. F. SHANNO, Interior point methods: Compu-
tational state of the art, Technical Report, School of Engineering and Applied Science,
Dept. of Civil Engineering and Operations Research, Princeton University, Princeton,
NJ 08544, USA, December 1992. Also available as RUTCOR Research Report RRR 41-
92, RUTCOR, Rutgers University, New Brunswick, NJ, USA. To appear in ORSA Jour-
nal on Computing.

[17] R. E. MARSTEN AND D. F. SHANNO, Interior point methods for linear programming:
Ready for production use, Workshop at the ORSA/TIMS Joint National Meeting in
Philadelphia, PA, USA, School of Industrial and System Engineering, Georgia Institute
of Technology, Atlanta, GA 30322, USA, October 1990.

[18] S. MEHROTRA, Implementation of affine scaling methods: Approximate solutions of sys-
tems of linear equations using preconditioned conjugate gradient methods, ORSA Journal
on Computing, 4 (1992), pp. 103-118.

[19] ,On the implementation of a primal-dual interior point method, SIAM Journal on
Optimization, 2 (1992), pp. 575-601.

[20] MICRO WAY CORP., i860 Microprocessor Vector Primitive Library Reference Manual,
1990.

[21] , NDP 860 Tool Chain Reference Manual, 1991.

[22] M. G. C. RESENDE AND M. H. W RIGHT, Sixty-six attend interior methods workshop
at Asilomar, SIAM News, 23 (1990), p. 9.

 23

[23] M. J. SALTZMAN, Implementation of an interior point LP algorithm on a shared-memory
vector multiprocessor, in Operations Research and Computer Science: New Developments
in Their Interfaces, O. Balci, R. Sharda, and S. A. Zenios, eds., Pergamon Press, Oxford,
UK, 1992.

[24] C. TONG, S. GROOTOONK, H. BYRNE, T. SPINKS, A. LAMMERTSMA, AND T. JONES, Positron
emission tomography: Recovery of resolution by Finite Elements method, The Journal of
Nuclear Medicine, 34 (1993), pp. 26P-27P.

[25] R. J. VANDERBEI, Splitting dense columns in sparse linear systems, Linear Algebra and Its
Applications, 152 (1991), pp. 107-117.

24

	TR_06_93_01.pdf
	TR_06_93_02.pdf
	TR_06_93_03.pdf
	Abstract

	TR_06_93_04.pdf
	2 The Predictor Corrector Interior Point Method

	TR_06_93_05.pdf
	TR_06_93_06.pdf
	TR_06_93_07.pdf
	TR_06_93_08.pdf
	TR_06_93_09.pdf
	TR_06_93_10.pdf
	TR_06_93_11.pdf
	TR_06_93_12.pdf
	TR_06_93_13.pdf
	TR_06_93_14.pdf
	TR_06_93_15.pdf
	5 Vector implementation of the symmetric matrix creation

	TR_06_93_16.pdf
	TR_06_93_17.pdf
	TR_06_93_18.pdf
	TR_06_93_19.pdf
	TR_06_93_20.pdf
	TR_06_93_21.pdf
	TR_06_93_22.pdf
	Acknowledgment

	TR_06_93_23.pdf
	TR_06_93_24.pdf
	TR_06_93_25.pdf
	TR_06_93_26.pdf

