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Abstract 
The interior point method (IPM) is now well established as a computationaly com-

petitive scheme for solving very large scale linear programming problems. The leading 
variant of the IPM is the primal dual predictor corrector algorithm due to Mehrotra. The 
main computational efforts in this algorithm are the repeated calculation and solution  of a 
large sparse positive definite system of equations. 

We describe an implementation of this algorithm for vector processors. At the heart of 
the implementation is a vectorized matrix multiplication and Cholesky factorization for 
sparse matrices. 

We identify the parts where vectorization can be beneficial and discuss in details the 
merits of alternative vectorization techniques. We show that the best way to utilize a vector 
processor is by exploiting dense computation within the sparse framework and by unrolling 
loop operations. We further present an extended definition of supernodes, and describe an 
implementation based on this new approach. We show that although this approach requires 
more memory it can increase the scope of dense computation substantially    with   out    
adding    extra  operations. 

Performance results on standard industrial test problems and comparison between an 
algorithm that utilizes the extended supernodes and one that utilizes standard supernodes 
are  presented   and   discussed. 

1     Introduction 
In the last few years interior point methods (IPM) for linear programming (LP) have become 
increasingly popular. The growing experience of using these methods has shown that in 
general IPM algorithms complement and do not replace the established sparse simplex (SSX) 
algorithms. 

One of the main differences between the IPM and the SSX is the average convergence 
rate. While the SSX average convergence rate is proportional to the number of constraints,  
the IPM convergence rate is almost independent of the growth in the problem size. As a 
consequence, IPM is increasingly seen as especially well suited for solving very large scale 
sparse  LP  problems. 
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The  concentration  of  numerical  work  in  relatively few steps and the need to solve very 

 large LP problems makes the PM a good candidate for exploiting the power of parallel 
hardware [15]. The efforts of parallelizing IPM have so far concentrated on shared MIMD,        
distributed MIMD and vector computers. Karmarkar et al. [4] implemented the several IPMs        
on an Alliant MIMD computer. Bisseling et al. [3] adopted the dual affine IPM for a 20 X       
20 transputer rack and achieved impressive speedup for a series of computationally difficult 
problems. Other implementations using superscaler, register and vector technology have also        
achieved  a consistent speedup set against  comparable serial  implementations [13, 14, 8, 17]. 

  In this paper we adopt the computationally intensive parts of IPM to a vector computer.        
We have implemented a specially adapted matrix multiplication algorithm and extend the     
Cholesky factorization algorithm to take advantage of dense processing within the sparse 
matrix. 

 The rest of the paper is organized as follows. In section 2 we present the primal dual 
predictor corrector IPM. In section 3 we analyze the computational structures of this IPM 
and provide summary profiling information. We use this information to illustrate why the 
IPM is well suited for parallelization. In section 4 we introduce our target hardware, the 
vector computer, and give some performance information. In section 5 we discuss alternative 
methods for the implementation of the symmetric matrix multiplication algorithm. The 
definition of the extended supernodes together with the Cholesky factorization that is based 
on it are presented in section 6. Finally, in section 7, we test and discuss our vector and 
sequential implementations on a range of industrial test problems. 

2     The    Predictor    Corrector    Interior    Point   Method 

Of the many var iants  of  the  IPM that  have been implemented,  the  pr imal  dual  
algorithms in general, and the primal dual - predictor corrector algorithm in particular, are considered 
to be the most computationally attractive [16, 19]. Our implementation uses this predictor  
corrector  var iant  and we descr ibe below the a lgori thm. 

2.1     The Predictor Corrector IPM 

Consider the primal and dual LP problems in the standard form: 
                                          (primal)                                     (1)xTcmin

                                 ≥=tosubject  
                                                   (Dual)    max                                                                                (2) yTb
                                                                 subject to  ≥=+

                                                                 A ℜ∈ℜ∈×ℜ∈    
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           Our  aim  is to  calculate  an  optimal  point (x*, y*, z*) for this pair of non empty polyhedrons 
 defined by their respective constraints (1) and (2). 

Such   a   point   satisfies  the  primal  and  dual  constraints  and  the  optimality  criterion 

                     (3) ==−

To solve the linear equation systems (l)-(2) and equation (3), we convert the constrained 
optimization problem to that of an unconstrained optimization. We first incorporate the non-
negativity  constraints  in the objective function by introducing a logarithmic barrier function. 

The new problems can be stated as 
 
     min μxC             (4) ∑−

n

=
j

T xln
1j     subject to Ax = b 

     max                (5) ∑
=

+

     subject to AT y + z = c  

      mnnm yb,cz,x,A ℜ∈ℜ∈ℜ∈ ×

We further transform the problem to an unconstrained optimization problem by introducing 
the   Lagrangian   functions. 
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The first order optimality conditions for the problems set out in (6) for given values of μ  

 are 

      0=−bAx  

                   (7) 0=−+ czyAT

      0=− μeXZe  

       0>zx,

where X, Z are diagonal matrices whose diagonals are x,z and e is  a vector of all  1. 
The search directions for the new points are derived from the conditions in (7).  This 

is done by following the Newton direction, the Taylor polynomial direction, or some other 
method.  Since the new point  must  sat isfy the equat ions in  (7) .  A  s imple way to  der ive 
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the predictor corrector  direction  is  to  introduce  a  new  point (x + zz,yy,x Δ+Δ+Δ x, ). The  

new point must satisfy the equations in (7).A proper reduction in the value of the barrier 

parameter  then  gives us the desired improvement. 

   Substituting  the  new  point in system (7) leads to the following set of equations. 

         AxbxA −=Δ  

                                                                         (8) zyACzyA TT +−=Δ+Δ

                                                  ZeXXZeeXeZZeX ΔΔ−−=Δ+Δ μ  

The system of equations in (8) contains nonlinear term, namely , hence we use a ZeXΔΔ

predictor corrector approach to solve it. We first calculate the predicting direction by ignoring the 

nonlinear terms and the μ  term. Then we calculate μ , according to the predicting direction and 

use  it  to  calculate  the  correcting  direction. The   predicting  direction  obtained  from (8) is 

 
                          ])dAD(z[dp)(ADAy D

1T
p +−=Δ −

                                   (9) )dzyD(Ap dp
TX +−=Δ Δ

      x)Zx(zp p
1z Δ+−=Δ −

Where D=XZ . czyAdb,Axdp, T
p

1 −+=−=− and

The barrier parameter p. is calculated as a function of the duality gap after the maximum 

step  is  taken  in  the predicting   direction. 

 
          y))(ybx)(xf(Cμ p

TT Δ+−Δ+= p

The correcting direction  can  then be calculated as. 
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In the k'th iteration:  
(a)Create Hk = ADkAT  

(b)Solve for t   :  k
1

k
1

k
1

k rtH =

(c)Solve for  k
2

k
2

kk
2 rtH:t =

Figure 1: The main computational step of the IPM 

The correcting and predicting directions are added to the current point to advance to the 
next point. 

     )( xxpxx cp Δ+Δα+=  

     Y)yDyy cp Δ+α+= Δ(                  (11) 

     z)zDzz cp Δ+Δα+= (     

where  and  are primal and dual attenuation parameters (0 < ) that ensure pα Dα 1D <αα ,P

that the new point is represented by a vector of strictly positive components. 

2.2     Computational   structure   of   the  IPM   algorithm 

One of the fundamental reasons for the acceptance of the primal dual IPM is the polynomial 
worst case bound on the number of iterations. Indeed, if  L denotes the input size and n 
the largest dimension of the constraint matrix A then the algorithm converges in no more 
then L)nO(  iterations [13. 1]. Practical implementations, however, show that the average 
case convergence rate is closer to O(logn). This means that only rarely will the number of 
iterations grow above 50-60 and most LP problems can be solved in 20-40 IPM iterations. 

The computational work at each iteration of the predictor corrector IPM algorithm is 
concentrated in  the solut ion of  equat ions (9)  and (10) .  I t  i s  easy to  see that  i f  m and n 
are  of  the same order then the repeated calculation of the matrix ADAT and its subsequent 
inversion dominate the computational process. The operations involved in these steps are 
illustrated in Figure 1. 

The   iterative   process   described   above    has  the  following   properties: 

1. If A,D are of full  rank then  the  matrix created in (a) is symmetric positive definite 
(SPD). 

Note that the matrices Hk are only used to generate a search direction and thus, if  
any of  them becomes numerically unstable we can fix it by replacing the appropriate 
diagonal elements. Therefore, we can safely assume that ∀ k,Hk is a positive definite 
matrix. 

2. All the matrices Hk have the same nonzero structure (in the following sections we refer 
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1. Cholesky factorization: Factorize H — LLT 

2. Set LTt = q 

3. Forward solve: Solve for q: Lq = r 

4. Back solve : Solve for t: LTt = q 

Figure 2: The Cholesky algorithm 

to  these matrices  simply  as H).  

3. The  same  matrix  Hk  is  used   in  the  solution  of  steps  (b)  and  (c) 

There is a wide range of algorithms to solve systems of equations that are represented 
by a sparse SPD matrix (SSPD). In general, these algorithms can be divided into direct and 
iterative methods [10]. The above listed properties, especially the fixed structure of H and 
the need to solve the system twice within a single iteration, strongly suggest the use of a direct 
method. In this paper we discuss only the direct solution method known as the Cholesky 
algorithm. The reader is referred to [18] and [22] for the application of iterative methods 
for the IPM. The steps of the Cholesky algorithm are summarized in Figure 2 and the main 
computational steps of the predictor corrector IPM algorithm using the Cholesky algorithm 
are set out in Figure 3. 

3     The   computationally   intensive  parts  of  IPM 

Real life linear programming problems are usually very sparse. The symmetric matrix ADAT, 
however, normally suffers some nonzero growth and can become much denser than the A ma-
trix. The Cholesky factor L, in turn, usually becomes even denser. For example, a single dense 
column in A results in a fully dense ADAT and L. In practical implementations, substantial 
amount of work is spent on reducing the fill-in [7, 9, 13]. To begin with, dense columns are 
either split or calculated separately [25]. The symmetric matrix is then reordered to reduce 
the nonzero fill-in in the factorization. A common reordering strategy is the minimum degree 
algorithm. This method is used in our implementation of the predictor corrector IPM. How-
ever, depending on the nonzero structure of the original A matrix, the amount of fill-in and 
the structure of the Cholesky factor can vary considerably. This affects the distribution of 
computational effort between the different parts of the algorithm as demonstrated in Tables1  
and 2. 

The problems we use come from two sources. The first source is the set of NETLIB models, 
the second is a set of industry generated LP problems. The models of the second set, named 
CARxx and RAT1, originate  from  medical  resolution  enhancement of PET (positron emission 
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1.  Initialize set k = 0, calculate (xk,yk
,zk) 

2.  Check for termination criteria 

STOPthenG))ybxc)/(ybx((candD)(dandp)(d  if kTkTkTkTk
D

k
p <∈−−<∈<∈

 

3.    Factorize  Lk (Lk)T =  ADkAT

4.    Compute the predicting direction   by using forward and back substi- 

      tution 

5.     Compute the barrier parameter  Kμ

6.     Compute the correcting direction   by using forward and back substi- K
C

K
c

K
c zyx ΔΔΔ ,,

        tution 

7.     Calculate  k
D

k
p ,αα

8.    Move to the new point 

9.   Set k=k+l, goto 2. 

Figure 3: The IPM primal dual predictor corrector algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              Table 1: Characteristics of the test problems 

Matrix MatrixAA T 

Model Rows Cols Nonz Nonzeros 

Cholesky 

Nonzeros 

 

Iter. 

CAR2 400 1200 38890 58805 61411 15 

25FV47 793 1849 10566 11715 32291 24 

PILOT 1439 4655 42296 60977 205230 30 

CAR11 2025 6075 767804 1162527 1550510 24 

BNL2 2280 4442 14952 15688 89601 31 

RAT1 3136 9408 88267 219086 1251702 21 

CRE_A 3422 7242 18142 24107 35924 29 

DFL001 6071 12230 35632 44169 1567825 50 

CAR4 16335 33652 63724 107696 169950 24 

CAR8 32768 67678 1183660 3276351 6280471 27 



Model Build 
ADA  T

 
Cholesky 

Triag. 
solves 
 

 
Other 

CAR2 33.6% 45.8% 1.5% 19.1% 
25FV47 13.0% 51.4% 5.3% 30.3% 
PILOT 13.1% 62.4% 3.3% 21.2% 
CAR11 18.0% 65.3% 0.6% 16.1% 
BNL2 4.0% 66.4% 5.1% 24.5% 
RATI 2.9% 90.5% 2.5% 4.1% 
CRE_A 28.4% 24.6% 4.6% 42.4% 
DFL001 0.3% 95.4% 1.4% 2.9% 
CAR4 16.1% 56.3% 1.2% 26.4% 
CAR8 12.1% 75.7% 0.6% 11.6% 

Table 2: Distribution of computational effort in a single sequential IPM iteration 

 

tomography) images [24]. In choosing these models we have attempted to reflect the variety 
and size of real life LP models. The model CRE-A, an American Air Force airlift model [4], 
for instance, has relatively small nonzero fill-in during factorization while the model PILOT 
suffers a large amount of fill-in (see Figure 4). 

The model PILOT represents a large class of problems whose Cholesky factor is fairly 
dense and requires a considerable amount of work. For these problems, large speed gains can 
be made by improving the efficiency of the matrix multiplication and factorization steps; 
either by improving the algorithms or by taking advantage of novel hardware features. In 
fact, some implementations of the IPM have been especially adapted to shared memory [23], 
distributed memory [3], and massively parallel [11] computers. All the above mentioned 
investigations are characterized by the close interaction between the implementation and the 
target architecture. An important aspect is that whichever method is used, some problems are 
less appropriate for the implementation than others. This is an inevitable consequence of the 
large variation in the models. In many cases, however, the matrices that suffer most from the 
advance methods are those that are easily solved in the naive sequential way. For a very 
sparse matrix with evenly distributed non zeros and limited fill-in (such as the problem 
CRE_A [4] ) the overhead in utilizing an advance architecture paradigm is almost always 
greater then the benefits. This type of problems can be recognized in advance and solved by 
using the serial implementation. Our main target is to speedup the solution process for those 
problems that are not solved in a reasonable time on standard sequential computers. 

As the problem becomes more computationally intensive, the Cholesky factorization step 
becomes more dominant. There are several alternative schemes for the implementation of 
this step; the major ones being the column Cholesky, the row Cholesky, and the submatrix 
Cholesky [9]. Although the number of operations required by all these schemes is the same, 
they use different elimination sequences and therefore fit different computational approaches. 
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CRE_ACHOLESKY PILOT CHOLESKY 

Figure 4: Symmetric matrix and Cholesky factor or the models CRE_A and PILOT 

For our implementation, the column Cholesky algorithm proved to be the most suitable. It 
is convenient to represent the column Cholesky factorization as a sequence two procedures: 
cmod(j, k) (factorize column j using column k, equivalent to the BLAS routine axpy [5]) and 
cdiv(j) (scale column j, equivalent to the BLAS routine scal ). 

  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

mj

jj

jj

mj

jj

mk

jk

mj

jj

mj

jj

h

.

.

.
h

h
l

.

.

.
l

cdiv(j)

l

.

.

.
l

l

h

.

.

.
h

h

.

.

.
h

:k)cmod(j, 1:jk  

In Figure 5 we use the cmod and cdiv definitions to describe the column Cholesky algo- 
rithm. 

As mentioned before, the elimination process starts with the restructuring and reordering 
of the symmetric matrix to reduce fill-in. The new elimination order determines the structure 
of the Cholesky factor. Thereafter, only the numerical values for the symmetric matrix and 
the Cholesky factor need to be calculated. These last calculations have to be carried out in 
very iteration. 

In Figure 6 we list the actual operations involved in executing the computationally inten- 
sive parts of the IPM. These are grouped in two phases. The preprocessing phase contains 
all  the operations that  are done only once,  that  is ,  al l  operations that  are concerned with 
structure only. The iterative phase contains all the operations that need to be done at every 
iteration, that is, the numerical operations.                   
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       do j — 1, m 
do k = 1 to j – 1 
  thenlif jk 0≠  

    cmod (j, k) 
  endif 
enddo 
 cdiv(j) 

           enddo 

Figure 5: The column Cholesky factorization scheme 

•  Preprocessor  Phase 

i. Create the symbolic structure of the symmetric matrix (Lower tr iangular only)  

i i .  F ind  a  r eo rde r i ng  o f  H u s i n g  t h e  mi n i mum d e g r e e  a l g o r i t h m

i i i .  C o mp u t e  t h e  s y mb o l i c  f a c t o r i z a t i o n  o f  t h e  C h o l e s k y  ma t r i x

iv. Analyze the symbolic Cholesky factor for special structures 

• Iterative Phase 

i .  Use the solution vectors of the previous iteration to compute the new diagonal 
matrix D  

i i .  Compute  the  numer ica l  va lues  of  the  symmetr ic  mat r ix  H — ADA T

iii. Compute the numerical values of the Cholesky factor L using the column 
Cholesky scheme 

iv .  Compute the f i rs t  r ight  hand s ide vector  

v.  Perform triangular forward and back solves to retrieve the predicting direction 

vi.  Compute the second right hand side vector 

vii .  Perform triangular forward and back solves to retrieve the correcting direction 

 

    Figure 6: Phases of computation 
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4    Vector processors and their properties 
 
Within the various parallel architectures that emerged in the last few decades, the vector 
architecture is distinguished by its wide acceptance [12]. Nowadays, vector processors are 
used in the majority of supercomputers (e.g. CRAY-XMP), mainframes (e.g. 
IBM3090), and even in some workstations (e.g. DEC6000). Recently, single chip vector 
processors have become increasingly popular. These processors are designed for general 
use and are therefore much cheaper then their larger counterparts. Although these 
processors can execute any sequential code, a substantial speedup of an application is 
achieved only if the cache memory and vector  capabi l i t ies  are  proper ly  ut i l ized.  
 
4.1     utilizing the vector unit 
 
In utilizing the vector unit, we have to consider the following points: 
• The computation has to be rearranged such that it mostly consists of simple loops    of 
    elementary operations (e.g. multiplication loop). 

• Indirect memory access should be minimized 

• The use of conditionals within loops should be avoided 

•  Loops  should  be  rear ranged  to  remove  da ta  dependencies  

• The vectorized loops should be as long as possible to reduce the effects of the startup 
    overheads. 

For  example,  the  dense axpy(x,y ,α , )  operat ion [5]   i s  ),,y( nℜ∈ℜ∈+= yx,xx αα
ideal for vectorization. Sparse implementation of the axpy is less suitable due to the 
indirect memory access involved in the computation. To speed up dense computation and 
reduce indirect memory access, techniques such as loop unrolling are useful. 

Loop unrolling in dense computation: consider for instance three separate axpy 
operation axpy  axpy  axpy  For every axpy operation, the    ),,( 1

1 αyx, ),,( 2
2 αyx, ),,( 3

3 αyx,
elements of x and yi have to be fetched from the memory, the elements of yi have to be scaled 
and added to x. All in all, the three axpy operations require 3(2n)  fetch, 3n multiplication, 
3n addition and 3n store operations. If, on the other hand, we where to construct a 
multiple axpy operation, that is  then, instead of fetching and )( 3

3
2

2
1

1 yyyxx ααα +++=
storing x for every axpy separately we fetch and store it only once thus saving 2n fetch 
and 2n store operations. 

Loop unrolling in sparse computation: the advantage of loop unrolling become more 
evident when sparse operation is involved. Consider the sparse axpy operation where The 
sparse vectors are all packed. Due to the inability to vectorize operations where indirect 
memory addressing is involved, it  is common to use gather and scatter operations. The 
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scat ter  operat ion t ranslates  the  packed vector  to  a  temporary dense work area (a  dense 
vector with explicit zero components). The gather operation re-packs and stores the work 
area. For every sparse axpyS operation, in addition to the dense operations, we also need to 
scatter the yi and x vectors and to gather the x vector. In the above case, loop unrolling 
will save two gather and two scatter operations. Further, if the vectors y1, y2, y3 all have the 
same nonzero structure then it is possible to combine them by using dense axpy. Only the 
combined vector is scattered thus saving more scatter operations. It is obvious that the more 
vectors we can combine in such a way, the higher our savings are likely to be. 

Operations such as gather and scatter are in most cases a part of standard primitives 
library provided by the hardware manufacturer. Other operations like axpy and seal are 
based on the basic linear algebra subprograms (BLAS) definitions [5] and provide optimized 
building blocks for the programmer. Arranging the application around these primitives and 
definitions usually results in a very efficient implementation. 

4.2 Utilizing the cache unit 

The cache is a small unit of high speed memory which maps the main memory. Every element 
that is fetched from the main memory to the processor is stored in the cache unit until a new 
element replaces it. If an element is required for computation while it resides in the cache then 
we have a cache hit. The cache is 2-5 times faster than the main memory and thus a large 
speedup can be achieved if elements are mostly fetched from the cache instead of the main 
memory. One of the main considerations of the algorithm designer is to maximize cache hits. 
This is done by blocking the data in such a way that enables the reuse of certain elements. 
Consider for example several sequential axpy operations where all the vectors are added to 
the same summation vector x: 

1. axpy(x,y1,α1) 

2. axpy(x,y2,a2) 

3. axpy(x,y3,a3) 

If the vectors are short enough then the summation vector elements remain in the cache 
memory and can be reused. If,  on the other hand, the vectors are too long, the elements 
are replaced and all the operations are done by using the main memory. In such a case, the 
vectors can be divided to subvectors of the appropriate length. For example, let the cache 

size be n then if we divide the vectors to 4 parts:  the [ ] ⎥⎦
⎤

⎢⎣
⎡==

axpy  opera t ions  can  be  schedu led  as  fo l lows :  

1. axpy ,  i= 1,..,3, ),,( i
i
11 αyx

2. axpy ,  i = 1,..,3                     ),,( i
i
22 αyx
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3.   axpy , i= 1,..,3, ),,( i

i
33 αyx

4.   axpy , i = 1,..,3. ),,( i
i
44 αyx

In this way, the elements of  remain in the cache while needed and main 4321 ,,, xxxx
memory access is minimized. Dividing vectors into subvectors that fit into the cache memory 
is always a good strategy for a serial processor. The vector processor, however, is more 
efficiently utilized when the vectors are the longest. Therefore, an extra care has to be taken 
not to divide the vectors to too small units that can increase the vectorization overhead. 

In the next sections we show how the matrix multiplication and Cholesky factorization 
are scheduled to enable vectorized computation and to maximize cache hits.  

5 Vector implementation of the symmetric matrix creation 

The matrix H = ADAT is created in two stages, namely, symbolic and numeric multiplica- 
tion. The symbolic multiplication is a simple algorithm that finds the off-diagonal nonzero in 
the symmetric matrix (lower triangular only) by using the following criterion: 

                              00:0 ≠≠∃≠≠ jliljiij, aandaliffh                                   (12) 

After the symbolic symmetric matrix has been constructed the location of all the nonzeros      
is known. Thereafter, to calculate the actual value of a nonzero hi j ,  the only operation that 
is needed is the multiplication of  where  denote the i ' th and j ' th rows of              *j*i ADA )( *j*i A,A
the constraint matrix A. 

In most implementation reports,  surprisingly lit t le is said about this operation which 
typically takes around 15% of the iteration time. Bisseling et al. [3] and Marsten et al. [17] 
use a pre-calculated multiplication list for each nonzero in the symmetric matrix. As can be 
seen in equation (13), the couples  (where both are nonzeros) are multiplied in advance jlil aa
and stored. Then, at every iteration, they are scaled by  and summed to create the nonzero k

lld

k
ijh  

      k
lljlaila

a,an,1,..,l

k
ij dh

jlil

][
0

∑
≠=

=                      (13) 

The advantage of this method is the ability to perform the multiplication in a single dense loop with 
minimal indirect memory access. Although in this scheme a vector processor can be optimally 
utilized, it is rarely used due to the high memory requirements. These are especially high for LP problems 
whose H matrix is fairly dense. 

In our implementation we use two methods which attempt to utilize dense computation 
without  the memory overhead of  keeping the mult ipl icat ion l is ts .  
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Consider a packed sparse row of the constraint matrix A. The packed row can be viewed 
as a collection of two dense vectors: a vector of real numbers which holds the numerical data 
and a vector of integers which holds the positions of the nonzero elements within the sparse 
row. The two most obvious ways to multiply these rows are l isted below: 

1. Fully dense computation: the row  is scattered and multiplied with the matrix D. 
The result is multiplied using dense multiplication with the scattered rows  that 
create a nonzero element hi j  with  

2. Fully sparse computation: a loop traces the collision points between  and any row  
that need to be multiplied with it. When such a collision point is found, the elements 
are multiplied. 

Both methods have serious drawbacks. Typically, the nonzeros account for only a fraction 
of the row size and thus, the first method can have large overheads in scattering the vectors 
and in redundant multiplications. The second method, on the other hand, results in many 
conditional operations. If the vectors have many nonzeros few collision points, the overheads 
will be very large. In addition, due to the conditional computation, this method is particularly 
bad for vector implementation.  

Instead, we implement the following two alternative schemes: 

1. For the nonzeros of Hi* the row Ai* is scattered and multiplied with D. The rows 
Ai* that are multiplied with it are not scattered; instead, the loop passes on the loca- 
tion vector of the packed rows and multiply every element in the packed row with its 
counterpart in the scattered row regardless if it was originally a nonzero. 

Although this method results in redundant multiplications, they are limited to the 
number of the nonzeros in the packed row. For the whole multiplication, only n scatter 
operations are needed. The method completely avoids using conditional computation 
but still uses indirect memory access. 

2. For the nonzero hij the row Ai* is scattered and multiplied with D. It is then gathered 
again but this time according to the index vector of the row  This allows dense 
multiplication between the vectors to be performed. The scheme utilizes dense compu- 
tation and completely removes the need for indirect memory access. The price for this 
is the additional gather operations. The number of multiplication, however, it the same 
as in the first method. 

In Table 7, section 7, we compare the performance of these two schemes on a serial and 
vector processors for several NETLIB and industrial problems. 

æ 
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6 Vectorized Cholesky factorization 

Our implementation of the column Cholesky factorization algorithm is targeted towards uti- 
lizing dense computation and minimizing main memory usage. We attempt to reorganize 
the elimination such that most operations take place within large and dense blocks. If large 
enough dense blocks are identified, a multiple dense cmod (axpy) operation can be carried out 
instead of using several sparse operations. In addition, the dense vectors can be partitioned 
to blocks that fit the cache size (see section 3). 

An important feature in increasing the scope of dense computation is the identification of 
structurally indistinguishable columns (supernodes). 

Definition 1: Supernodes For a given SSPD matrix ordering, a supernode is made of 
a group of columns that in the Cholesky factor L create a dense triangular block just below 
the diagonal and have the same nonzero structure elsewhere. 
Here, we extend the above definition in to further increase the scope of dense computation. 

Definition 2: Extended Supernodes For a given SSPD matrix ordering the extended 
supernode associated with the column L*j is made of all columns L*j, i < j whose nonzero 
structures in the Cholesky factor in positions j,. .., m is the same as that of the column L*j. 
In other words,  the vectors [ l j i ,…,lm i] and [ l j j ,… lm j] have the same nonzero structure.  

It is clear that if the Cholesky factor L is fully dense then there is only a single supernode 
which includes all  the columns. In such case, the extended supernode of any column L* j  is 
simply the group of all preceding columns. In sparse matrices, however, the extended 
supernodes are larger than the supernodes. On the negative side, the extended supernodes  
are defined per column and therefore the effort of finding and storing them is higher. 

The Cholesky factor in Figure 7 demonstrates the difference between supernodes and 
extended supernodes. Columns 1,2 and 3 can be grouped into a supernode as well as 5,6 and  
7. For column 6, however, all preceding columns are members of the extended supernode, 

Supernodes and extended supernodes are used in a similar fashion during the Cholesky 
factorization. 
   1.  Assume that the column L*j is currently being factorized. If L*j is factorized by a 
        column L* j  which is a member of the same (extended) supernode then the cmod(j, i) 
         operation can be done using dense mode. 

       2. If the column L* k factorizes L* j  then all the columns L* t , t < j in L*k’s (extended) 
            supernode must also factorize it. The contributions of all these columns can be collected 
              together and added to L* j  in one cmod step. These columns all have the same nonzero 
             structure from the j'th place and onwards. Thus, the number of indirect memory oper- 
             ations is reduced and loop unrolling and cache hit techniques can be used (see section 
              3). 
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F i g u r e  7 :  T h e  C h o l e s k y  F a c t o r  

Dense Window:  a commonly used approach for utilizing dense computation is the 
creation of a dense window. Here, we take advantage on the fact that most fill-in usually 
takes place in the lower part of the Cholesky factor creating an almost dense matrix (see for 
example Figure 1 in section 2). In such a case, when the percentage of nonzeros per column 
grows above a certain value (50-70%, say) then the rest of the matrix is treated as fully dense. 

Consider, for example, the following H matrix whose lower part F is dense: 

                                                                                     (15) ⎥
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The Cholesky factorization of H can be scheduled as follows: 

• Sparse 
(i) Factorize H11 = L11   TL11

(ii)Update L21 = H2l
T-1L )( 11  

• Sparse-Dense 

(iii) Update  TLLF 21212222F̂ −=

• Dense 

(iv) Factorize  TLLF 222222
ˆ =

The factorization of the dense part (step (iv)) can be carried out either by using techniques 
similar to those used for the supernodes or by using a hardware optimized dense BLAS 
Cholesky factorization routine [6]. 

We note, however, that for the creation of a dense window we sometimes need to add ex- 
plicit zeros to the lower part of the Cholesky factor  These operations alters the structure .L̂22

of the Cholesky factor and can reduce the scope of utilizing the (extended) supernodes. 
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There are many different methods for speeding up the Cholesky factorization algorithm, 
see for example [9, 7] and [2]. Most methods offer speedup of the actual factorization while 
causing a slowdown or overheads in other parts. For this reason, they are not beneficial for all 
the problems. The two methods we present below fall into this category. The first method is 
an implementation of the Cholesky algorithm using supernodes. This implementation requires 
some extra storage space and perform more operations hence it is clearly unfavourable when 
the number and size of supernodes is small. The second implemenation that utilizes the 
extended supernodes requires larger storage but does not perform more operations. Both 
implementations, however, are beneficial for a large class of problems and computers (see 
section 7). 

6.1 Cholesky factorization using Supernodes 

The identification of supernodes and extended supernodes is done after the order of elimina- 
tion (and therefore the structure of the Cholesky factor) has been determined. 

F o r  t h e  i d e n t i f i c a t i o n  o f  supernodes we use the following criterion: 
      areLLthenllnzllnzandlf j*,j*jm,jjjm,jjjj 111,2,2,1 ,]),...,([]),...([0i ++++++ =≠  

     members of the same supernode 
     where nz(vec] denotes the number of nonzeros in the vector. 

The supernode information is kept in an array of integers super_n of the size 4m bytes. 
I f  the columns whose numbers  are  k321 i,..,iii <<<  are  members  of  a  supernode then 
super_n(i i)  = super_n (i2 )  =,…,= super-n(ik) = i1 (note that a single column is treated as 
a supernode of length one). 

It is easy to see that a single pass on the data structure is sufficient for identifying all the 
supernode. This takes at most O(m) operations. 

During the Cholesky algorithm, when computing the column L*j, we build an elimination 
stack that contains the columns needed for the elimination. The columns in the stack are 
stored in a descending order (the highest on top). In such a way, when a column is factorized, 
it is enough to find the beginning of its supernode in the super_ n array. The columns in a 
supernode are always consecutive and therefore the preceding columns in the supernode can 
be removed from the stack without further checks. The actual elimination can therefore take 
place by using a dense, multiple cmod operation as described in section 4. 

6.2 Cholesky factorization using extended supernodes 

The identification of an extended supernode is done in a similar way to the identification of 
the supernodes. 

Let L*j be the current column then  is a member of the extended supernode if i≠L
( ])),...,([]),...,([and0and( jm,jj,im,ij,ij, llnzllnzLji =≠<                   
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The extended supernode information is held in an array of integers super_ x of the size 4lnz 

bytes where Inz is the number of nonzeros in the Cholesky factor. In addition, two pointer 
arrays x_group and s_group of the size 4(m+l) bytes each are required. The array x_group 
stores the pointers to the beginning of the extended supernode section and the array s_group 
to the beginning of the single columns section. Thus, for the column L*j, the extended 
supernode members are stored in the positions x_group(j),.,x_group(j + 1) - 1 and the 
columns that factorize L*j but are not members of the extended supernodes are stored in the 
positions s_group(j),.,S_group(j + 1) - 1 of the same array. The complexity of constructing 
the extended supernode data structure is at most O(lnz + 2m). 

During the elimination process, the members of the extended supernode of  factorize 

the current column using multiple dense cmod. If a column  is not a member of the 
extended supernode then sparse elimination must take place. However, all the columns that 
are members of the extended supernode of  also need to factorize . The contributions 
of these columns are combined and only a single sparse cmod is performed. Note that the 
method of keeping explicit elimination list removes the need for construction the elimination 
stack and therefore saves operations. 

7    Experimental results 

The ideas detailed in the previous section were added to our existing IPM code [13]. The test 
are performed on two hardware platforms. An i486/50MHz 16Mbyte PC and an i860/40MHz 
32Mbyte vector computer. On both computers, the programs were compiled and run using 
the Microway NDP environment and Fortran 77 [21]. 

The i860 is representative of a new generation of single chip vector processors. It is a RISC 
processor with vector capabilities. In addition, it has an on-chip cache unit. The processor 
vector and cache capabilities are utilized via a vector primitive library [20]. This library is 
based on the BLAS definitions and includes hardware optimized gather and scatter. 

In Table 4 we present the timings of the symmetric matrix multiplication schemes on 
the i860 vector computer. The first scheme uses indirect memory access and sparse/dense 
multiplication, the second scheme uses scatter-gather and dense multiplication. The second 
and third columns in the table give the number of rows (columns) in the symmetric matrix 
and the average number of nonzeros per row. The forth and fifth columns give the execution 
time in seconds of the two schemes. It  is easy to see that the first  scheme is better when 
the average number of nonzeros per row (column) falls below a certain number (around 8 in 
our case). This behaviour co-insides with the fact that utilizing the vector capabilities for 
less then 10 elements in a loop is likely to result in a slowdown instead of speedup [20]. It 
is, however, inefficient to check the length of any multiplication loop; the 'if question is as 
expensive as the initialization of the vector array. On the other hand, the average number 
of nonzeros per row can be calculated in the initialization phase and the algorithm can be              
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Matrix A Matrix AAT Cholesky factor 

Model Rows Columns Nonz Nonz Nonz 
CAR2 400 1200 38890 58805 61411 

25FV47 793 1849 10566 11715 32291 
PILOT 1439 4655 42296 60977 205230 
BNL2 2280 4442 14952 15688 89601 
RAT1 3136 9408 88267 219086 1251702 

CRE_A 3422 7242 18142 24107 35924 
DFL001 6071 12230 35632 44169 1567825 
CAR4 16335 33652 63724 107696 169950 

 

Table 3: Characteristics of the test problems 
 

AD TA     Timings on i860 (sec)  
Model Rows Nz/row(Av.) Scheme 1 Scheme 2
CAR2 400 147.01 4.15 1.65

25FV47 793 22.33 0.28 0.32
PILOT 1439 42.2 2.52 1.83
BNL2 2280 6.8 0.26 1.01
RAT1 3136 69.86 4.76 5.33

CRE_A 3422 7.04 0.89 2.55
DFL001 6071 7.27 1.37 6.74

CAR4 16335 6.58 4.28 43.90

 
 
 
 
 
 
 
 
 
 

 
Table 4: Symmetric matrix multiplication 

 
chosen according to this number. Although this approach does not guarantee a speedup, it 
is likely to prevent a serious slowdown. 

In Table 5 we present the breakdown of the elimination to dense and sparse elimination 
for supernodes and extended supernodes. The column named 'cmod' gives the total number of 'cmod' 
operations in the factorization. For both supernodes and extended supernodes, the column named 'single 
sparse' gives the number of sparse cmod and the column named 'total dense' gives the number of dense 
cmod operations. The column marked 'Multiple sparse' gives the number of sparse cmod 
operations that were done by a combined elimination vector. This vector which results from 
collecting the contributions of columns in the (extended) supernodes is an overhead created by 
using dense computation. 

From Table 5 it  is clear that the contribution of extended supernodes is not only in 
increasing the scope of dense computation but also in removing the overheads of using 
multiple sparse cmod operations.  In addition, the increase in dense computation also 
contributes to an increased scope of loop unrolling.  

In Tables 6-9 we present the timing results for the supernode and extended supernodes  
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  Supernodes Extended Supernodes 
 Total Single Mutiple Total Single Mutiple Total

Model cmod sparse sparse dense sparse sparse dense
CAR2 61011 39690 0 21321 38680 0 22331
25FV47 33498 5442 3195 28056 5401 2913 28097
PILOT 203791 27229 8481 176562 27156 7000 176635
BNL2 87336 14372 4719 72964 14049 4267 73287
RAT1 1242566 61034 21009 1187532 61005 20307 1187561
CRE_A 32512 18811 3544 13701 18600 3258 13912
DFL001 1561754 168032 46395 1393722 163149 33324 1398605
CAR4 153566 30732 1992 122834 27684 1839 125882

Table 5: Dense and sparse cmod operations 
 

implementation on i486 and i860 computers ( the models RATl and DFL001 could not be 
solved on the i486 due to lack of memory). From the tables we conclude that if the 
models involved are fairly dense, the differences between implementations utilizing 
supernodes and extended supernodes are not very significant. The extended supernodes 
implementation re-quires more memory and it is therefore obvious that standard 
supernodes are preferable in this case. For sparser matrices, however, the static 
elimination list and the increased dense computation account for large reductions in the 
execution time. This is even more so on the vector computer where dense computation is 
efficiently utilized. Hence, in problem like CAR4 we experience a 17 fold reduction in 
execution time. The sparsity of the Cholesky factor is calculated during the initialization 
phase and it is therfore possible to determine which elim- ination method to use 
beforehand. This decision is made on the basis of the density of the Cholesky factor and 
the amount of the available memory. If the matrix is large and sparse and the amount of 
available memory is sufficient then the extended supernode scheme is used. Otherwise, 
standard supernodes are utilized. 
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 General Timings (Sec) Iteration Timings (Sec) 

Model time Iter. Init Build ADAT Chol Other

CAR2 188.179 17 4.640 4.449 5.710 0.596
25FV47 55.749 25 0.822 0.281 1.480 0.436
PILOT 1006.292 34 8.332 2.363 25097 1.891
BNL2 336.308 34 4.696 0.281 8.562 1.191
RAT1 - - - - - -
CRE_A 180.210 34 7.956 0.707 3.242 1.117
DFL001 - - - - - -
CAR4 1715.761 23 121.095 4.449 59.820 5.064

Table 6: Timings breakdown using supernodes on the i486 

 General Timings (Sec) Iteration Timings (Sec) 

Model time Iter. Init Build ADAT Chol Other

CAR2 237.339 17 5.839 4.226 8.679 0.72
25FV47 54.046 25 1.069 0.222 1.429 0.434
PILOT 1023.749 34 5.151 2.359 25.601 0.224
BNL2 296.097 34 6.244 0.269 7.359 0.897
RAT1 - - - - - -
CRE_A 102.546 34 11.438 0.769 0.820 1.09
DFL001 - - - - - -
CAR4 856.507 23 153.238 4.613 21.750 17.137

Table 7: Timings breakdown using extended supernodes on the i486 

 
 General Timings (Sec) Iteration Timings (Sec) 

Model time Iter. Init Build ADAT Chol Other

CAR2 125.769 17 5.835 4.15 2.539 0.360
25FV47 43.77 30 1.390 0.28 0.799 0.320
PILOT 328.229 33 9.343 2.52 6.260 0.866
BNL2 186.009 40 5.436 0.26 3.580 0.564
RAT1 1425.278 25 64.998 4.76 46.489 3.162
CRE_A 256.549 37 9.092 0.89 5.139 0.659
DFL001 6055.889 48 137.825 1.37 118.010 3.913
CAR4 2334.960 26 110.411 4.28 78.589 2.69

Table 8: Timings breakdown using supernodes on the i860        
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 General Timings (Sec) Iteration Timings (Sec) 
Model time Iter. Init Build ADAT Chol Other
CAR2 124.159 17 6.275 4.15 2.410 0.374
25FV47 29.711 26 2.170 0.28 0.520 0.280
PILOT 298.229 34 10.578 2.52 5.070 0.870
BNL2 90.510 34 7.253 0.26 1.620 0.567
RAT1 1326.090 25 70.330 4.76 42.329 3.143
CRE_A 80.070 34 12.792 0.89 0.430 0.658
DFL001 5003.736 48 151.512 1.37 95.811 3.907
CAR4 439.959 25 148.856 4.28 4.660 2.704

Table 9: Timings breakdown using extended supernodes on the i860 
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