
Design of a Flexible, User Friendly Feature Matrix
Generation System and its Application on Biomedical
Datasets

M. Ghorbani & S. Swift & S. J. E. Taylor & A. M. Payne

Received: 26 June 2018 /Accepted: 23 March 2020
The Author(s) 2020

Abstract The generation of a feature matrix is the first
step in conducting machine learning analyses on com-
plex data sets such as those containing DNA, RNA or
protein sequences. These matrices contain information
for each object which have to be identified using com-
plex algorithms to interrogate the data. They are nor-
mally generated by combining the results of running
such algorithms across various datasets from different
and distributed data sources. Thus for non-computing
experts the generation of suchmatrices prove a barrier to
employing machine learning techniques. Further since
datasets are becoming larger this barrier is augmented
by the limitations of the single personal computer most
often used by investigators to carry out such analyses.
Here we propose a user friendly system to generate
feature matrices in a way that is flexible, scalable and
extendable. Additionally by making use of The Berke-
ley Open Infrastructure for Network Computing
(BOINC) software, the process can be speeded up using
distributed volunteer computing possible in most insti-
tutions. The system makes use of a combination of the
Grid and Cloud User Support Environment (gUSE),
combined with the Web Services Parallel Grid Runtime
and Developer Environment Portal (WS-PGRADE) to
create workflow-based science gateways that allow
users to submit work to the distributed computing. This

report demonstrates the use of our proposed WS-
PGRADE/gUSE BOINC system to identify features to
populate matrices from very large DNA sequence data
repositories, however we propose that this system could
be used to analyse a wide variety of feature sets includ-
ing image, numerical and text data.

Keywords BOINC . Desktop grid . DNA sequence .

Feature subset selection .Machine learning . High
performance computing .WS-PGRADE . gUSE . DNA
feature identification . DNA sequence . Speedup

1 INTRODUCTION

Machine learning techniques have proved to be important
tools in many research areas to aid knowledge discovery
from complex data sets. Examples of its far reaching
impact and methods have been extensively reported
[1–3]. Machine learning analysis however is preceded by
the important stage of feature matrix generation which
selects the features to be analyzed from these data sets. In
some cases these features can be simply a chosen subset of
features in the data set; chosen using expert knowledge of
the subject arena the data was collected from. Often how-
ever the features are generated by running algorithms
across the data to draw out derived features or values not
in the original data set. It follows therefore that the suc-
cessful outcome of machine learning techniques is highly
dependent upon the feature generation stage [4]. This adds
an additional layer of complexity to an already difficult
analysis for the non-expert.

https://doi.org/10.1007/s10723-020-09518-y

M. Ghorbani : S. Swift : S. J. E. Taylor :A. M. Payne (*)
Department of Computer Science, College of Engineering, Design
and Physical Sciences, Brunel University London, Kingston Lane,
Uxbridge, Middx UB8 3PH, UK
e-mail: annette.payne@brunel.ac.uk

/ Published online: 27 April 2020

J Grid Computing (2020) 18:507–527

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-020-09518-y&domain=pdf

A significant amount of work has been achieved [5,
6] focusing on the algorithms for feature generation
ensuring that the features in the matrix are of high
quality, however we can find no work describing a
system designed to place these algorithms into a kind
of workflow that makes this stage flexible. Thus we
noted a gap in systems design that allowed interchange
of feature generation algorithms so if new or different
features needed to add to the matrix this can be done
with little impact on the original scheme. Currently
feature generation is prepared de novo from first princi-
ples for each particular analysis in a project and there is
no general propose flexible design for this stage of
machine learning. We concluded that one of the best
ways to do the feature generation is the use of workflow
systems [7]. This enables the workflow design to be
later reused or merged with other workflows. Also if
there is a need to focus on a particular class of features,
the workflow system could be enabled to turn off or on
that part of the workflow, and see the resultant outcome.
Current work flow systems include Nextflow
https://www.nextflow.io/, Snakemake, [8] Galaxy [9]
however these systems are either complex to use, not
as flexible as we required or if they are easy to use have
not been implemented on a distributed system important
for the analysis of large datasets. To test our system we
decided to use some of the most complex data sets
currently available namely those in the field of biology
and biomedicine, with particular reference to molecular
genetics. In choosing this field we were also driven to
provide not only a flexible system but a very user
friendly one since most experts in this filed have little
computational expertise.

Today’s studies in biology and biomedicine involve
ever increasing complex and larger data sets which the

investigators wish to data mine for new discoveries and
novel associations. It has been described as the fourth
paradigm of data-intensive science [10, 11] or data-
driven science after the first three paradigms of compu-
tational, experimental and theoretical science. This data-
driven science complements existing paradigms
attempting to link knowledge with observations [12].
This new discipline requires new data management
systems which are distributed in many locations. Dis-
tributed and cloud computing capacity are needed to
cope with the enormity of the data [11]. Further the data
may be in different formats and the experimenter may
wish to make use of many very different software pack-
ages to achieve the analysis required. Cross-
architectural implementation of algorithms and systems
is being attempted to analyse this data (e.g., Grid/Cloud
[13–22]) but these efforts are only achievable with the
help of computer specialists e.g. the HUBzero [17]
cyber grid infrastructure or they are limited to
workflows within a particular topic area e.g. WeNMR
for structural biology with access to a computing grid
offered by the project partners [16]. This poses issues for
the data domain experts as they try to grapple with
unuser-friendly software and the limited computer pro-
cessing capacity of their single computers if they choose
to undertake bespoke analyses. The workflows we have
developed to assist in these analyses try and map
“routes” through the steps need to analyze a particular
data set in the way desired by the experimenter and
assist in creating bespoke successions of processes that
need to be carried out on a data set to analyze it. Further
they allow users to use volunteered distributed systems
to harness greater processing power and to achieve
practical run times [19, 20].

Table 1 methods for grid enabling in BOINC

BOINC API DC-API BOINC Wrapper GenWrapper GBAC

Supported Programming
languages

C/C++/FORTRAN/Python C/C++/Java/Python Control-flow
description in
XML

POSIX shell
scripting

non required

Legacy application No No Yes Yes Yes

Native application Yes Yes Partial Partial Partial

Application level
checkpointing

Yes Yes Partial Partial Partial

Type Native Native Native Native Virtualized

Requires client-side third
party software

No No No No Yes (VirtualBox
predeployed)

508 M. Ghorbani et al.

https://doi.org/http://creativecommons.org/licenses/by/4.0/

Many bioinformatics software packages and algo-
rithms exist for the identification of biological features.
Some of them are available as user friendly web-based
software with a GUI interface such as MEME which
identifies DNAmotifs (meme-suite.org/) or those on the
NCBI hub (https://www.ncbi.nlm.nih.gov/). However,
the vast majority are only available as command line
tools and so are inaccessible to the non-computationally
trained biologist. This work details the design of a
system that uses volunteer distributed computing to
query and explore biological data using a user-friendly
and form-based workflow as a way to make these pack-
ages and algorithms more accessible for the non-
computer coding expert. The user can easily interact
with the application like any other web-based

application without the need to know the details of the
workflow, making it easy to use by non-programmers.
The gUSE workflow portal was selected as the
workflow management service as it can be connected
to a diverse range of distributed computing infrastruc-
tures. The advantage of using gUSE are an application
specific API (Application Program Interface) which
enables the developer to develop a form-based interface
for workflows therefore the user can easily interact with
the application without the need to know the details of
the workflow. WS-PGRADE/gUSE [18] was chosen as
it offers a complete, customizable web-based generic
portal framework system to run applications. Different
applications, each representing a function to be executed
on the data, can be joined to create customized

Fig. 1 Interaction between different BOINC processes, database processes and the server side components (shown in the rectangles) [29].

wspgrade
Liferay-

portal-6.1.0
dci_bridge_service

wfs storage

Information

Liferay

Database

gUSE

Database

stataggregator

Fig. 2. gUse server architecture.

509Design of a Flexible, User Friendly Feature Matrix Generation System and its Application on Biomedical...

https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/

workflows. Details of the WS-PGRADE/gUSE
workflow concept is described in Balasko (2014) [23].

In our experience many biologists do not have access
to clusters or dedicated High Performance Computing
facilities which offer the ability to speed up the extended

3G BRIDGE
gUSE

BOINC

Virtual machine

BOINC

GenWrapper

Banana btwisted

Debian server

Virtual machine

BOINC

GenWrapper

Banana btwisted

Fig. 3 The different software used in the client and server side of the system showing their interaction with each other

510 M. Ghorbani et al.

complex processes they wish to run. We therefore
wanted to extend our workflow approach by using com-
monly available commodity PCs or desktop grids to
offer not just grid computing capability but volunteer
grid computing. The workflow management service
provides a modular way of feature generation, then by
connecting the workflow to a volunteered distributed
system it provides the facility to speedup feature gener-
ation and feature subset selection tasks. There have been
many advances in recent years in the organized provi-
sion of computing resources for computationally de-
manding applications. Cloud computing, Grid comput-
ing and e-Infrastructures, for example, bring together
multiple computing resources over multiple domains, or
distributed computing infrastructures [24]. One area of
interest within this is the use of volunteer grid comput-
ing and the multiple desktop computers of an enterprise.
There are several middlewares available for desktop grid
computing. These include e.g. gLite [http://glite.cern.
ch], ARC [25], HTCondor [26], Globus [27] or and
BOINC [28]. However, many of these require
advanced computing skills and are difficult for non-
expert users to use. A way around this issue is to make
use of science gateways [29–33]. These are user-friend-
ly, easy-to-use web interfaces that enable end-user sci-
entists to run their experiments quickly and without the
need to learn the particular features of the distributed
infrastructure. WS-PGRADE/gUSE is an example of

one of these gateways which offers a complete
workflow-based framework which has flexible custom-
ization methods and enables job submission to a variety
of distributed computing infrastructures. Bioinformatics
applications have applied a volunteer desktop grid ap-
proach for solving computation intensive tasks previ-
ously: The project Folding@Home simulates protein
folding and molecular dynamics. Folding@Home
claimed that it is the largest distributed computing pro-
jects with over 8,300,000 CPUs participating in the
project [34]. Part of the software is proprietary and part
is open-source. Similar to this project is the
Rosseta@Home project which uses the BOINC plat-
form to submit jobs and download the results
(https://boinc.berkeley.edu/). BOINC has also been
shown to be effective with the bioscience application
GPUGrid.net [34–36]. This work therefore investigates
how BOINC could be leveraged with WS-
PGRADE/gUSE so that jobs could be submitted to a
volunteer desktop grid to offer that processing speed up
required to make analyses not only possible but
additionally completed in realistic time frames.
BOINC has proved to be a useful resource for analyses
that require a relatively fast turnaround time so we sort
to utilise it in this study [35].

The contribution of this work is the creation of a
novel gateway system that is truly non-expert user
friendly to generate feature matrices in a way that

Installed applica�on in virtual machine

JAVA EMBOSS

GitBox

GenWrapper Lanucher (pa�erncount)

BOINC client

Fig. 4 The client side view of program used for feature generation and feature subset selection

511Design of a Flexible, User Friendly Feature Matrix Generation System and its Application on Biomedical...

https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/

is flexible, scalable and extendable. Additionally by
making use of BOINC software, to propose that the
processes can be easily and affordably speeded up
to allow execution in realistic timeframes by
utilising a volunteer distributed computing network,
available in most institutions.

In order to demonstrate the system it was trialed by
undertaking the task of feature identification from re-
positories of DNA sequences. The system generates
features or can query the sequence around existing
features in DNA sequences. We demonstrate the system
is scalable and editable, so if new features need to be
investigated, the whole system does not need to be
altered. Similarly, we show how the system could equal-
ly be used to analyze RNA or protein sequences.

With the advent of the genome sequencing projects
and the ENCODE project the amount of sequence data
has grown exponentially. A large amount of this data is
stored in public and private databases and most is freely
available. For example, the European Bioinformatics
Institute (EBI) stores 75 petabytes of data and its data-
bases are being added to on a daily basis [37]. One
challenge is now to determine novel features and their

roles, investigate known features, determine what the
significance is of these features, how they influence
gene expression and how they interact with each other.
Understanding these features is crucial to the under-
standing of the biology of living things in both health
and disease. Thus mass analysis of sequence data is now
crucial to identify trends, motifs, commonality and dif-
ferences between features, individuals and species. Nov-
el features need to be identified de novo by their prox-
imity to known features or their association with bio-
logical phenomenon. Known features are studied for
associations with phenomenon or other known features
to better understand their significance and role. Well
known examples of known features are transcription
factor binding site consensus sequences. Phenomenon
that such features can affect include methylation, DNA
condensation and modifications which ultimately lead
to differences in gene expression and thus phenotypic
differences.

Many features can influence DNA, RNA and protein
structure, modification or gene expression and many new
features are being discovered as technology and science
progresses. Identifying novel or known features within

cpg_id banana_be
nd_structu
re

banana_cu
rve_structu
re

btwisted_t
urn_struct
ure

btwisted_t
wist_struct
ure

btwisted_stack
energy_structu
re

A
T
C
G

T
T
G
C

T
T
G
G

T
C
T
A

T
T
G
A

>ExprA_GRCh37_11__4741
6487_cg10511890_199680_
CpG

17.4049 6.76311 4140.8 11.5 -1038.28 0 1 0 0 0

>ExprA_GRCh37_11__6073
9005_cg27284288_475867_
CpG

17.4615 3.16885 4102.4 11.4 -1025.16 0 0 1 0 0

>ExprA_GRCh37_11__6073
9172_cg07380416_144123_
CpG

15.7279 4.12377 4096.1 11.38 -1003.81 1 0 1 0 1

Fig. 5 Input FASTA sequence file and Output feature file output of the banana program which is a profile file and has a value for each base
in the sequence

Algorithm 5. Sequential feature generation algorithm
Input: DNA sequences
1. For each DNA sequence
2. For each feature generation program
3. Run the feature generation program on the

Sequence
4. Store the result in the feature matrix
5. End For
6. End For
Output: Feature matrix

Fig. 6 Sequential feature generation algorithm

512 M. Ghorbani et al.

sequences de novo remains a challenge due to the large
amount of sequence data now deposited in the databases.
As a research project case study for the system we used it
to identify features in the DNA sequence surrounding the
thousands of CpG sites in genomic DNA. CpG sites are
regions ofDNAwhere a cytosine nucleotide is followed by
a guanine nucleotide in the linear sequence of bases along
its 5′→ 3′ direction. They are of great interest to biologists
as they are implicated in gene expression andmany disease
mechanisms. This study was ideal because generating
features for each CpG site is independent of other CpG
sites, these tasks can be distributed overmultiplemachines.

The main purpose of feature generation is to define
characteristics of data based on some measurement. So, if
there are n different data points and m different features for
each data item, tabular data matrix of size n × m can be
generated. This table then will be used in data mining
methods. This data matrix can be later used to find out
how well all features can classify objects or which feature
subset better classifies data items. Sometimes features can
be categorized into different groups based on defined
criteria. These groups can be independently used in the
classifier. Classification performance for each group can
indicate the importance of each feature group in the study.

In the case of CpG sites for example, each CpG site
represents one data item and the sequence around the
CpG site is used for generating features. This approach
has been used for identifying features around CpG islands
in different cell and tissue types [38]. Features can be
divided into different groups. Examples of these feature
groups include structural, regulatory (i.e., transcription fac-
tor), or those based on the sequence alone (i.e., motifs and
“words” in the sequence). The methods and software used
in this project for feature generation are outlined below,
however any desired software may be added to the job
flow.

Thus to summarise this work had the following
objective:

To create a scalable, fast, user friendly system for
feature matrix generation executed in a timeframe that is
realistic by connecting the workflows to a desktop grid.

2 Methods

2.1 Software and Algorithms Used in this Study

2.1.1 BOINC

BOINC is an open-source software that was first devel-
oped for the SETI@HOME project and later became
available as a general purpose software for projects that
need computing power. BOINC can be classified as a
client-server system. Many research projects that require
intensive computing resources use BOINC as it can be
used for volunteer computing and grid computing. It has
several subsystems which can be classified into two main
groups, client side and server side. BOINC projects are
then created to solve specific computational problems. In
the past these projects cover many fields of science among
them astrology, physics, chemistry, biology, mathematics
[39]. Client machines are connected to BOINC using the
URL of the project with workunits containing the neces-
sary binaries and input files for achieving a specific task

Base Bend Curve
C 0.0 0.0
A 19.5 0.0
C 17.7 0.0
C 17.3 0.0
T 11.7 0.0
T 6.8 0.0
A 9.0 0.0
G 14.3 0.0
Con�nued ….

Fig. 7. banana profile file.

>ExprA_GRCh37_11__70211531_cg25574765_447292_CpG
CACCTTAGACCACAGGAAATGTCTGGTTAACACACGAAGAGATGGAAACGCTCGCAGCCACGCCGCAAACGGTTAGTCACGCC
CCACAGCCTGCACTCCTCCCAGCGCGTTTTCCACTTAAG

cpg_idbanana_bend_structure banana_curve_structure
>ExprA_GRCh37_11__70211531_cg25574765_447292_CpG 16.1475 7.67295

Fig. 8 Grid Enable banana input and output files

513Design of a Flexible, User Friendly Feature Matrix Generation System and its Application on Biomedical...

and generating output files. Workunit specifications are
stored in two xml files which contain a list of input and
output files.

The generator program creates workunits, however
there are other methods for creatingworkunits. They can
be created by BOINC API, DC – API, Generic master
programs or 3G bridge [40]. Further details can be found
in the BOINC project website [39]. Running a program
under BOINC has some requirements. The binary code
of a program should be able to communicate with
BOINC, either using API or other techniques which is
summarised in Table 1.

Jobs are described in template files which are in
XML format and describe input, output and other job
parameters. Fig. 1 shows BOINC component relation-
ship both for the client side and the server side. The
components in the rectangles are the server side
components.

2.1.2 WS-PGRADE/gUSE

gUSE is a distributed computing infrastructure gateway
framework which uses the MySQL database manage-
ment system. It provides the user with the access to the
distributed computing infrastructure. WS-PGRADE
[41] is a workflow management system implemented
as portlets in the Liferay portal and benefits from the
features provided by Liferay. From the architectural
perspective, these fseatures are web applications de-
ployed in a web container. Liferay itself is an open
source portal developed in java which can be deployed
in the Tomcat servlet container. Fig. 2 shows the sim-
plified architecture of the system.

2.2 Emboss

EMBOSS is a set of different binaries commonly used
to analyze DNA, RNA and protein sequences.

Four applications were used in this case study namely
Banana, btwisted, wordcount and Jaspscan. “Banana”
can predict bending of a normal DNA double helix and
has used by Previti et al. for feature generation.
“btwisted” calculates overall twist of the DNA sequence
and the stacking energy. Similar to Banana, “btwisted”
was used by Previti et al. for structural feature genera-
tion [36]. In this study, “Jaspscan” is used to generate a
feature matrix based on transcription factor binding sites
in the JASPAR database [37 and 42] and “wordcount” is
used for generating the number of “words” in the DNA
sequence. Each of these programs’ outputs can be mod-
ified by an external application to make them usable for
classification.

2.3 Hillclimbing

In executing this case study it became apparent that
often a further algorithm is needed to search for
features in such large data sets. The hill climbing
algorithm was therefore employed to the workflow
which made use of the BIONC distributed system.
It is a method for searching a large search space
which cannot be searched exhaustively. It was
employed here to identify the best features for
classifying a DNA sequence. With this feature sub-
set selection problem, a potential solution is defined
by a binary string. The length of the string shows
total number of features. Selected features are

Output from BTWISTED
Twis�ng calculated from 1 to 122 of ExprA_GRCh37_11__70211531_cg25574765_447292_CpG
Total twist (degrees): 4110.2
Total turns : 11.42
Average bases per turn: 10.69
Total stacking energy : -1013.25
Average stacking energy per dinucleo�de: -8.37

Fig. 9 Btwisted output

cpg_id btwisted_turn_struc
ture

btwisted_twist_struc
ture

btwisted_stackenergy_stru
cture

>ExprA_GRCh37_11__70211531_cg25574765_44
7292_CpG

4110.2 11.42 -1013.25

Fig. 10 Btwisted output file

514 M. Ghorbani et al.

represented by a one. Non-selected features are
represented by a zero. For example, if there is one
at a position two it means that feature number two
is selected. Since choosing a single starting point
can trap the hill climbing algorithm at local optima,
the starting point for the algorithm can be any
random point in the search space, since different
starting points may lead to better solutions. These
starting points were run in parallel and the results
were compared. Finally the maximum value of the
results was selected. Due to the nature of the fea-
ture selection problem it was a good candidate for
distributing over multiple computing nodes.

2.4 System Design

The BOINC project for this work was created in a
Debian Linux 6.0 machine. The applications were
ported to BOINC by GenWrapper. The gUSE system
was also installed into the same Debian machine and
connected to BOINC via the 3 g-bridge. The client
machines were seven Microsoft Windows virtual ma-
chines on VMware. VMware contained the BOINC
client connected to the project. Figure 3 shows client
and server side of the test system. Figure 4 shows how
the client side subsystems are working with each other.
We used a virtual machine for our BOINC clients and
this system could be easily extended to use a multicloud
system using the methodology described in Previti
(2009) [43] if there was a need to scale the local grid

system. Similarly as it can be seen in the split applica-
tion, our data can follow the MapReduce paradigm and
the methodology described in Gugnani et al. (2016) [32]
which can be used for some part of the workflow we
developed. Inside the virtual machine, when a job is
available, BOINC calls the application and application
calls GitBox to run the shell script provided by the
application. Shell script then runs the programs in the
virtual machine.

The four EMBOSS applications can be used individ-
ually to generate features or merged together if desired.
The ultimate goal of the system was to create modular
system for feature generation using gUSE.

Each of these applications in the WS-PGRADE por-
tal has three main programs:

Generator: This program generates tasks or
workunits which will eventually run on the worker
machines. Some examples of these tasks are 1) splitting
big files into smaller files 2) Processing large number of
files. 3) Generating parameter combinations.

Worker: The workunit generated by generator should
be submitted to the worker machines. The worker pro-
gram processes the workunits and sends the results
back. For example finding the maximum of a function
given some parameters.

Collector: The collector aggregates results returned
from the worker machine. For example, the different
parts of a file processed by a worker should merge to
give the final result, or in another example finding the

CCAC 4
ACGC 3
CACG 3
CAGC 3
CACA 3
CTCC 2
GTTA 2
CGCC 2
GAAA 2
con�nued…..

Fig. 11 wordcount output file.

cpg_id ATCG TTGC TTGG TCTA TTGA TCCT con�nue
d

>ExprA_GRCh37_11__70211531_cg25574765_447292_C
pG

0 0 0 0 0 1 ….

Fig. 12 wordcount output file.

515Design of a Flexible, User Friendly Feature Matrix Generation System and its Application on Biomedical...

maximum of all returned results from evaluated param-
eters on the worker machines.

This system provides the facility to add new feature
generating elements if desired using the gUSE system.
Thus this system can be expanded based on the user
demand. This section starts with a description of the
simplest form of feature generation with one application
and increases by adding all parts to the system. The
input to the workflow is a FASTA file containing the
DNA sequences with their ID and the output is the
feature matrix containing all investigated features. All
the DNA sequences were 122 bp in length and flanked
the CpG in the DNA sequence See Fig. 5 input file.

2.5 The Grid Enabling of DNA Feature Generation
Applications

As mentioned BOINC has been used in many biological
projects and is supported by WS-PGRADE/gUSE. It is
relatively simple to apply to such projects. The decision
to grid enable the work flows was taken in order to
increase the computing power available to the user
rather than to speed up the execution of the program
per se. Many biological and medical data sets are so
large that these programs have in the past either been
implemented on supercomputers/large servers or imple-
mented in the cloud. The ability to analyse and/or ma-
nipulate very large data sets using commonly available
non-dedicated desk top computers by non-technical
users has been unavailable until now. This is the sup-
plementary issue we are addressing in this work. This
study uses the system to generate features from DNA

sets for further analysis as a case study of how this
strategy can be achieved.

The high level algorithm for feature generation is
provided in Fig. 6.

There are two FOR loops in the algorithm because
running feature generation on each sequence is indepen-
dent of the other sequences. We can distribute the tasks
for these two loops onto separate machines to achieve
speedup. The current feature generation programs for
the DNA methylation studies use the sequential non-
modular method of feature generation. Sometimes this
task is done manually in spread sheets and then the
feature matrix aggregated as an input to machine learn-
ing algorithm. This section provides a modular and
distributed example of feature generation. The use of
tools like BOINC and gUSE does not influence the
design of these kinds of systems, any system with sim-
ilar properties can be used to achieve these tasks.

The following section provides details of the grid
enabling of the four EMBOSS applications in this pro-
ject. All of these applications had sequences in FASTA
format as their input. Outputs are tables with the se-
quence ids as rows and the columns are the feature
names.

2.6 Banana

Banana predicts the bending of a normal DNA double
helix [44] and was used for generating two features.
These features are in the class “structural features”.
Genwrapper [45] was used to port the application into
the BOINC desktop grid environment. Banana gener-
ates one file for each sequence which has two values
(one for bend and one for curve) for each base pair in the
sequence (Fig. 7).

The average of these values was used as the feature
for the sequence. Gitbox, which is part of GenWrapper
supports “awk”, which was used to read the profile files
generated by banana to produce data points in table. The
two values are extracted from profile files. The program
is grid enabled by GenWrapper and BOINC worker
machines running this program.

cpg_id MA0039.2 MA0156.1 MA0173.1 MA0057.1 ….
ExprA_GRCh37_11__70211531_cg25574765_447292_CpG 0 1 1 0 …
ExprA_GRCh37_9__140221397_cg13408086_247051_CpG 0 0 0 0 ….

Fig. 13 partial view of grid enabled jaspscan output file.

Table 2 This table shows an example of how many features each
program generated per file which were then used in the hill
climbing search.

Application
name

Number of files
generated

Number of
features

banana 1 per sequence 2

btwisted 1 per sequence 3

wordcount 1 per sequence 256

jaspscan 1 for all sequences 467

516 M. Ghorbani et al.

The input for banana program is FASTA file
such as that shown in Fig. 8. The output of the
banana program is profile file which has value for
each base in the sequence. The program extracts
these values and makes two features and outputs
them in tab delimited file shown in Fig. 8.

2.7 Btwisted

Btwisted is an application which calculates the overall
twist of the DNA sequence and the stacking energy [44].

Similar to banana it generates one file per sequence. In
each file there are five records: total twist, total turns,
average base per turn, total stacking energy and average
stacking energy. Figure 9 shows output of standard
btwisted program.

Similarly GenWrapper [45] was used to port the
application to the BOINC desktop grid computing plat-
form. “awk” was used to read the btwisted file line by
line and to generate the three attributes (turn, twist,
stackenergy). The grid enabled btwisted output is shown
in the Fig. 10.

01

Generator

3

20

Search

6 0

Collector

1

2

3

4

1

5

Runs in the server. Waits for all

results to be sent back and find the

maximum fitness among them

Files contain binary

representation Tar file contains the result for

each node

Fig. 14 Hill climbing search workflow graph in the graph editor shows the search node is the worker node, and generator and collector
nodes are master nodes

Fig. 15 BOINC client log snapshot shows details of tasks running on client machines

517Design of a Flexible, User Friendly Feature Matrix Generation System and its Application on Biomedical...

2.8 Wordcount

Wordcount counts the number of times a string pattern
or word occurs in each sequence. Words are made of
base pairs of sequence of specific size. It moves along
the sequence and counts the words. It generates one file
per sequence similar to banana and btwisted. In each file
there are two columns one is the word name and the
other is the number of occurrences of that word. CCAC

occurred 4 times in our input sequence. An example of a
file is shown in Fig. 11.

First the shell script program generates all possible
patterns of the string of 4 characters A, C, G and T. It
then used these files to generate a feature matrix file
containing the frequency of each word in the sequence.
GenWrapper was used here to port the application to the
BOINC. The output of the grid enabled wordcount is
shown in the Fig. 12.

matrixgen

erator

0

1

2

1

0 wordcount

collector

1

0 btwistedco

llector

01

Generator

Btwisted

0 1

2

01

Wordco

unt

2

1

0 Btwistedc

ollector

Btwisted

01

2

1

0 Jaspscanc

ollector

Jaspscan

01

2

2

3

4

Fig. 16 The completed workflow of the feature matrix generator
needs two input files one determining the number of sequences per
file and the other is the fasta file of all sequences. Individual

application results could be downloaded as in the workflow they
were conFig.d as permanent. The final results were generated in
the matrix generator node

518 M. Ghorbani et al.

2.9 JaspScan

Jaspscan scans the sequence for the motifs listed in the
JASPAR transcription factor motif database [46]. This
database contains the collection of known transcription
factor consensus binding sites and is collated from pub-
lished papers and has an open data access policy. It
generates one file for all sequences in the input FASTA
file.

Jaspscan generates one file for all sequences,
unlike other ported applications which generates

one file per sequence. Here we only need to find
the section that has the information for each se-
quence, to generate the matrix file. An example
output is shown in the Fig. 13. Here each section
is marked with “#Sequence”. The string “#===” is
used to distinguish between different sequences. A
full list of transcription factor binding motifs was
provided to the program. In the example in Fig. 13
the value of the feature MA0156.1 is 1 because
there is one entry in the matrix.

Fig. 17 an example of a job Submission page, the “conFig.” button should be used to add input and output files and to define binaries for
each workflow.

Fig. 18. an example of Workflow configuration page.

519Design of a Flexible, User Friendly Feature Matrix Generation System and its Application on Biomedical...

The program extracts this information for each se-
quence from Jaspscan output file.

Each application in the work flow generates a file
with numerous features in each file as exemplified in
Table 2.

2.10 Grid Enabled Hill Climbing Search

The Hill Climbing program was developed as a Java
program, and similar to the previous section,
GenWrapper was used to call the Java program on the
worker machines and also to zip the results in the case of
batching more than one binary in a job. The inputs
consisted of two files; one file contained the string
representations of the starting point solutions, whilst
the second file contained the parameters given to the

program. These parameters defined the number of iter-
ations, classification method, measurement index and
the name of the file that contained starting point’s
information.

The collector application was a shell script that runs
on the server, which extracted the files received; each
received file then contained two files. The first is the
“<FILENAME> Max”, each line of the file contained
information about when the maximum value is updated
in the hill climbing search. Each line in the file
<FILENAME> contained the calculated measurement
and the binary representation of the solution in each
i te ra t ion . Then the scr ip t searched al l the
“<FILENAME> Max” files to find the maximum in
those files. It is then copied this file into a folder that
contained all files. It then tar zipped all the files together

Fig. 19 Details of the status of each job after workflow submis-
sion could be monitored in ws-pgrade portal. This Fig. shows the
workflow submission for an input file which contained 20

sequences. It then indicated that each sequence should be submit-
ted individually so eventually 20 jobs were submitted

520 M. Ghorbani et al.

as the final result. It used the awk program to search
through each line and the maximum field of the file.

In this project the gUSE portal workflow system was
also applied to submit hill climbing jobs to BOINC.

First the workflow topology was defined in the graph
editor of the workflow. Each port in our example is the
representation of the file and each node are the applica-
tions running in the system. The arrows between the

Fig. 20 BOINC result page for job progress

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

20 40 60 80 100

Sp
ee

d

Axis Title

SPEEDUP GAIN BY BATCHING
1 sequence per file 2 sequence per file 3 sequence per file

Fig. 21 speedup improvement by batching of more than 1 sequence per file.

521Design of a Flexible, User Friendly Feature Matrix Generation System and its Application on Biomedical...

ports represent file transitions. Green ports are input
ports and grey ports represent output ports. Fig. 14
shows a completed workflow.

Generator and Collector applications were running in
the server as mentioned in the previous section. In
another setting it is possible to use another machine
other than server to run these programs as long as they
are supported by the gUSE resources for the nodes.

The workflow configuration for the hill
climbing search was similar to the EMBOSS ap-
plication i.e. for the search node with the param-
eter file and for the Generator node with the
“rankedlisttodistribute” file. After submitting jobs
clicking the “details” button should indicate that it
is running.

The log file of BOINC manager in the worker ma-
chine can indicate the progress of the works in the client
side. The following snapshot shows the connection of
the client to the BOINC project and one completed task.
(Fig. 15).

3 Results

3.1 Single Application Feature Generation

The banana application was the first program to be
used for feature generation in the workflow. A
workflow graph was created in the workflow editor.
The generator split the sequence file and then it

generated a defined number of sequences per file.
The number of sequences per file was determined in
“splitnumberfile”. Banana was executed for each file
in worker nodes and generated “tabdelimited” files
similar to the matrix mentioned in the previous
section. The collector pasted each new file, one after
another, except the header of the file, and creates
new file. Because the program created the same
headers for each file in the same order, this does
not create any inconsistency between the values.

3.2 Multiple Application Feature Generation Workflow

Adding btwisted to this workflow needed the additional
step of combining the results of the banana collector with
the results of the btwisted collector. The feature matrix
headers were in order, so each application had its own
collector. The source code for the collectors is similar, but
they were used in separate nodes. This made it possible to
download the results for each individual EMBOSS appli-
cation. Because final results should be in order, they should
be sorted by name in the collector node.

At this stage any other application could be added to
the workflow using the same guidelines, without mak-
ing changes to other parts of the workflow. Similarly,
parts that are not required can be removed from
workflow. The generator node and matrixgenerator
node will be the same for all nodes. The final workflow
designed in this work is shown in the Fig. 16.

number of sequences 1 sequence per file 2 sequences per file 3 sequences per file

20 0.22 0.22 0.20

40 0.27 0.30 0.30

60 0.25 0.31 0.58

80 0.29 0.41 0.53

100 0.29 0.44 0.56

Fig. 22 Performance results for different number of sequences analysed and different number sequence per files

number of jobs number of classifier calls speedup

20 400 1.781782531

40 800 2.33002331

60 1200 2.672673797

80 1600 2.817702607

100 2000 2.442766373

number of jobs number of classifier calls speedup

20 400 1.781782531

40 800 2.33002331

60 1200 2.672673797

80 1600 2.817702607

100 2000 2.442766373

Fig. 23 speedup results for
different number of iterations of
hill climbing for 20 to 100
iterations.

522 M. Ghorbani et al.

MatrixGenerator simply pasted all the files together.
It used the dot product capability of the gUSE system to
collect all the files.

paste allresult_* > matrixfeaturefile.
Workflows were submitted via the portal liferay/

workflow/concrete tab Fig. 17. By choosing the
concrete tab a list of generated workflows could
be seen. In this page users can overview the overall
status of the workflows and take appropriate ac-
tions. For each new instance of the workflow new
files could be uploaded to the system. This task can
be done by choosing the conFig. button in the
actions section. The two input files (number of
sequence per file and FASTA file) could be
uploaded in this page Fig. 18.

The details of each workflow node progress could be
examined in a page similar to that shown in Fig. 19.

Whenever the workflow nodes finished their job, the
results could be downloaded by clicking view all the
“content” buttons.

Another way to check the status of jobs was by
querying the BOINC database. The details of the jobs
running in the BOINC workers and whether or not they
were sent to workers can be checked by querying the
BOINC database. This can be done by examining the
admin webpage of the BOINC project. (Fig. 20) When-
ever the valid results were sent back to the BOINC
server, 3Gbridge daemon uploaded them to the upload
folder and cancel the workunits.

3.3 Performance Testing

Whenever there are a large number of sequences, in the
case of whole genome for example, the running time of

Fig. 24 The graph shows speedup results for two different kinds of configuration. Improvement could be seen as the number of
“wu_in_progreess” was restricted

number of jobs speedup

speedup by

changing

wu_in_progress

parameter

20 1.524378 1.619652152

40 1.993418 3.048756992

60 2.286568 3.380143622

80 2.410645 3.839175472

100 2.089874 4.04913038

Fig. 25 Shows the comparison of
speed-up for different numbers of
jobs and different configurations

523Design of a Flexible, User Friendly Feature Matrix Generation System and its Application on Biomedical...

feature generation will increase dramatically. In order to
assess the running time of the Humethylation450k
Illumina platform data used in this case study, which
has data for nearly half a million DNA sites, we can
estimate the running time: Each job, when all feature
generation programs run takes nearly 68 s (wordcount+
banana+ btwisted+ jaspscan) on Intel Core(TM) 2 Duo
CPU E7400 2.8 GHz. For half million sequences and 2
million work units (without batching), it would take
nearly one year (393 days) to run on one such machine.
Depending on the number of available similar machines
we can get the result much faster. Thus any decrease in
running time would be of considerable interest to users.
We achieved an overall running time for the best

experiment for 653 sequences of 148 min. This is how
we did this using a very modest number of computers:

We had seven such machines at our disposal (CPU
spec Intel Core(TM) 2 Duo CPU E7400 2.8 GHz) run-
ning Microsoft Windows 7 operating system in a LAN
network. Analysis of the initial tests of the grid enabled
workflow showed that because of the short running time
of each sequence there might be a communication over-
head. For example, 100 sequences and one sequence per
file will cause 400 work units submissions for all the
algorithms. Therefore increasing the number of se-
quences per file may improve the performance. To see
if this improvement can be realized using this strategy
we tested the workflow performance for the feature

percent of
work
completed J48 SVM naïve bayes

10 0.973529759 0.985894581 0.9747651
20 1.843049929 1.937272064 1.93653333
30 2.741146292 2.801687764 2.82935065
40 3.586475537 3.719887955 3.67696203
50 4.400751871 4.620737648 4.5672956
60 5.144417694 5.301397206 5.37925926
70 5.931072266 5.781094527 5.37925926
80 4.073423219 3.900146843 3.8990604
90 4.138020416 4.378021978 4.37177258

100 4.441541538 4.754744003 4.84133333

Fig. 26 details of speedup as
programs progress.

0

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

Percent of jobs completed

J48

SVM

naïve bayes

Fig. 27 shows speedup results for different classification methods in feature subset selection.

524 M. Ghorbani et al.

searches whilst increasing the number of the sequences
in each FASTA file. Fig. 21 and Fig. 22 shows the speed
improvement by the batching of more than one se-
quence per file. The graph illustrates that by placing
only 2 or 3 sequences per file instead of having only
one we could achieve better performance. Thus the
batching was proven to reduce the large number of jobs
submitted reducing the communication overhead.
Therefore by putting the sending and receiving jobs
together in this way we can reduce the slowdown.

To observe the effect of running the hill climbing
part of the workflow on a volunteer grid initial tests on
the hill climbing search were done with gradually
increasing iterations for the same number of jobs,
measuring the performance of the system. In order
to compare the run time with the sequential time,
average computation time of one iteration of a model
for 100 iterations was calculated. The initial perfor-
mance test was done using the naïve Bayes classifier.
Fig. 23 shows the performance results for different
number of iterations of hill climbing for 20 to 100
iterations. This data shows that the speedup did im-
prove a little as jobs became more computationally
intensive. The initial performance test gave nothing
better than 2.8 times faster than sequential times, in
the best case, with further investigation of the submit-
ted jobs, it was realised that all jobs were assigned to a
few available hosts, and some hosts didn’t get any
jobs. In order to improve this situation, the number of
jobs per host was limited. This can be done in BOINC
by setting the parameter “wu_in_progress” in the
BOINC configuration file. Applying this restriction
to one job in progress for each host further improved
performance. The results can be seen in the Figs. 24
and 25.

After initial testing, the system was used for the hill
climbing search on each classification method. The
results showed that this system achieved a maximum
of 5.37 speedup out of a possible 7, since we had 7
machines in our test environment. The difference be-
tween the speedup results should be seen as communi-
cation overhead and run times of collector and generator
nodes. Results are shown in Fig. 26 and Fig. 27.

4 Conclusion

This report provides details of the preparation and test-
ing of a system for the tasks of feature generation and

feature subset searching on a volunteer desktop grid in
order to generate feature matrices. This work had two
objectives:

a) The first objective was to create a scalable, fast, user
friendly system for feature matrix generation.

b) The second objective was to accelerate feature gen-
eration and feature subset selection to a degree that
made analysis possible in a timely manner.

The first objective has been completed by creating a
user friendly workflow using gUSE. The workflow
provided modular feature generation, allowing other
software to be added to the work flow with ease. Fur-
thermore in this system the addition of new feature
generating nodes did not change the whole system.

With regard to the second objective, connecting the
small number of the jobs in the feature generating
workflow to BOINC did not in itself provide any improve-
ment in performance; reduction in slowdown seen when a
single desktop computer was achieved when we used
BIONC coupled to the workflow to analyse an increased
number of sequences to the quantity more commonly
analyzed in genomic big data projects. To further achieve
this improvement and reduce communication time, the
number of sequences per work unit was increased. The
grid enabled hill climbing search shows better perfor-
mance by connecting to the BOINC platform in the test
environment. Thus we show that the BOINC system is a
good tool to accelerate the execution time of feature gen-
eration and feature subset selection in large data sets.

Acknowledgements We would like to thank the technical and
administration staff of the Department of Computer Science, Brunel
University for their support and Brunel University for support in kind.

Author Responsibilities MG designed and implemented the sys-
tem, AP provided and designed the biological problem and advised
on the needs of biologists, ST advised on the distributed system and
workflow design, SS advised on the hill climbing technique.

Compliance with Ethical Standards

Competing Interests The authors declare that they have no
competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format,
as long as you give appropriate credit to the original author(s) and

525Design of a Flexible, User Friendly Feature Matrix Generation System and its Application on Biomedical...

the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party
material in this article are included in the article's Creative Com-
mons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article's Creative Com-
mons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of
this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, per-
spectives, and prospects. Science. 349(6245), 255–260
(2015)

2. Q Zou, L Chen, T Huang, Z Zhang and Y Xu Machine
Learning and Graph Analytics in Computational
Biomedicine. Artificial Intelligence in Medicine 83,
November, Page 1 and papers therein; (2017)

3. I.H. Witten, E. Frank, M.A. Hall and C.J. Pal, Data Mining:
Practical machine learning tools and techniques. (Morgan
Kaufmann 2016)

4. W. Cheng, G. Kasneci, T. Graepel, D. Stern and R. Herbrich
Automated feature generation from structured knowledge. In
Proceedings of the 20th ACM international conference on
Information and knowledge management (pp. 1395–1404).
ACM. (2011)

5. H. Paulheim and J. Fümkranz June. Unsupervised genera-
tion of data mining features from linked open data. In
Proceedings of the 2nd international conference on web
intelligence, mining and semantics (p. 31). ACM. (2012)

6. L. Friedman and S. Markovitch Recursive Feature
Generation for Knowledge-based Learning. arXiv preprint
arXiv:1802.00050. (2018)

7. Menezes, J.A., Cabral, G., Gomes, B.T.: Genetic algorithms
for feature generation in the context of audio classification.
World Academy of Science, Engineering and Technology,
International Journal of Computer, Electrical, Automation,
Control and Information Engineering. 10(2), 427–430
(2017)

8. Afgan, E.; Baker, D.; van den Beek, M.; Blankenberg, D.;
Bouvier, D.;Čech,M.; Chilton, J.; Clements, D.; Coraor, N.;
Eberhard, C.; Grüning, B.; Guerler, A.; Hillman-Jackson, J.;
Von Kuster, G.; Rasche, E.; Soranzo, N.; Turaga, N.; Taylor,
J.; Nekrutenko, A.; Goecks, J. (8 July 2016). "The Galaxy
platform for accessible, reproducible and collaborative bio-
medical analyses: 2016 update. Nucleic Acids Res. 44 (W1):
W3–W10

9. Johannes Köster and Sven Rahmann. “Snakemake - A scal-
able bioinformatics workflow engine”. Bioinformatics 2012

10. J Gray. Jim Gray on eScience: A transformed scientific
method. In The Fourth Paradigm: Data-Intensive Scientific
Discovery, Tony Hey, Stewart Tansley, and Kristin Tolle
(Eds.). (Microsoft, xix–xxxiii. 2009)

11. Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm:
Data-Intensive Scientific Discovery. Microsoft Research
(2009)

12. Kell D B and Oliver S G. Here is the evidence, now what is
the hypothesis? The complementary roles of inductive and

hypothesis-driven science in the post-genomic era.
BioEssays 26, 1, DOI:https://doi.org/10.1002/bies.10385
(Jan. 2004)

13. Gorton, I., Greenfield, P., Szalay, A., Williams, R.: Data-
intensive computing in the 21st century. Computer. 41(4),
30–32 (2008)

14. Deelman E, Vahi K, Rynge M, Juve G, Mayani R, and
Ferreira da Silva R. Pegasus in the cloud: science automation
through workflow technologies. IEEE Internet Comput. 20,
1, 70–76. DOI:https://doi.org/10.1109/MIC.2016.15
(Jan. 2016)

15. Kacsuk, P., Kecskemeti, G., Kertesz, A., et al.: Infrastructure
Aware Scientific Workflows and Infrastructure Aware
Workflow Managers in Science Gateways J Grid
Computing. 14, 641 (2016) https://doi.org/10.1007/s10723-
016-9380

16. Wassenaar, T.A., van Dijk, M., Loureiro-Ferreira, N., et al.:
WeNMR: Structural Biology on the Grid J Grid Computing.
10, 743 (2012) https://doi.org/10.1007/s10723-012-9246-z

17. M. McLennan, R. Kennell, "HUBzero: a platform for dis-
semination and collaboration in computational science and
engineering," Computing in Science and Engineering 12(2),
pp. 48–52, March/April, 2010

18. Kacsuk, P., Farkas, Z., Kozlovszky, M., et al.: WS-
PGRADE/gUSE Generic DCI Gateway Framework for a
Large Variety of User Communities J Grid Computing. 10,
601 (2012) https://doi.org/10.1007/s10723-012-9240-5

19. Deelman, E.: Grids and clouds: making workflow applica-
tions work in heterogeneous distributed environments.
International Journal of High Performance Computing
Applications. 24(3), 284–298 (Aug. 2010) https://doi.
org/10.1177/10943420093564322010

20. Kacsuk P (Ed.). Science Gateways for Distributed
Computing Infrastructures: Development Framework and
Exploitation by Scientific User Communities. DOI:
https://doi.org/10.1007/978-3-319-11268-8 (2014)

21. Liew C S, Atkinson M P., Galea M, Ang T F, Martin P, and
Van Hemert J I. Scientific workflows: moving across para-
digms. ACM Comput. Surv.. 49, 4, Article 66 DOI:
https://doi.org/10.1145/3012429 (December 2016)

22. Kacsuk, P.: P-GRADE portal family for grid infrastructures.
Concurrency and Computation: Practice and Experience
Special Issue: IWPLS 2009. 23(3), 235–245 (2011)

23. Balasko, A .: Workflow Concept of WS-PGRADE/gUSE.
Science Gateways for Dis t r ibu ted Comput ing
Infrastructures:Development Framework and Exploitation
by Scientific User Communities, pp. 33–50 doi:https://doi.
org/10.1007/978-3-319-11268-83 (2014)

24. S.C. Shah Recent Advances in Mobile Grid and Cloud
Computing. Intelligent Automation & Soft Computing,
pp.1–13. (2017)

25. Ellert, M., et al.: Advanced resource connector middleware
for lightweight computational grids. Futur. Gener. Comput.
Syst. 23, 219–240 (2007)

26. Thain, D., Tannenbaum, T., Livny, M.: Distributed comput-
ing in practice: the condor experience. Concurrency and
computation: practice and experience. 17(2–4), 323–356
(2005)

27. Foster, I.: Globus toolkit version 4: software for service-
oriented systems. IFIP international conference on network

526 M. Ghorbani et al.

https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/bies.10385
https://doi.org/10.1109/MIC.2016.15
https://doi.org/10.1007/s10723-016-9380
https://doi.org/10.1007/s10723-016-9380
https://doi.org/10.1007/s10723-012-9246-z
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1177/10943420093564322010
https://doi.org/10.1177/10943420093564322010
https://doi.org/10.1007/978-3-319-11268-8
https://doi.org/10.1145/3012429
https://doi.org/10.1007/978-3-319-11268-83
https://doi.org/10.1007/978-3-319-11268-83

and parallel computing, Springer-Verlag LNCS. 3779, 2–13
(2005)

28. David, P.: Anderson: Public Computing: Reconnecting
People to Science. Conference on Shared Knowledge and
the Web, Residencia de Estudiantes, Madrid, Spain (2003)

29. , et al.: The DECIDE science gateway. J Grid Comput. 10,
689–707 (2012). https://doi.org/10.1007/s10723-012-9242-
3Ardizzone, V., Barbera, R., Calanducci, A. et al.: The
DECIDE science gateway. J Grid Comput 10, 689
doi:https://doi.org/10.1007/s10723-012-9242-3 (2012), 707

30. Costa, A., Massimino, P., Bandieramonte, M., et al.: An
innovative science gateway for the Cherenkov telescope
array. J Grid Comput. 13, 547 (2015). https://doi.
org/10.1007/s10723-015-9330-2

31. R. Grunzke, J. Krüger, R Jäkel., et al.: Metadata
Management in the moSGrid Science Gateway –
Evaluation and the Expansion of Quantum Chemistry
Support. J Grid Computing. doi:https://doi.org/10.1007
/s10723-016-9362-2 (2016)

32. Gugnani, S., Blanco, C., Kiss, T., Terstyanszky, G.:
Extending science gateway frameworks to support big data
applications in the cloud. Extending science gateway frame-
works to support big data applications in the cloud J Grid
Computing. 14, 589–601 (2016). https://doi.org/10.1007
/s10723-016-9369-8

33. Farkas, Z., Kacsuk, P., Hajnal, Á.: Enabling workflow-
oriented science gateways to access multi-cloud systems.
Journal of Grid Computing. 14(4), 619–640 (2016)

34. C.M. Taylor BOINC user stats https://boincstats.
com/en/stats/-1/user/detail/3531367/overview accessed 9/9
/2016

35. Bazinet, A.L., Cummings, M.P.: Subdividing long-running,
variable-length analyses into short. Fixed-Length BOINC
Workunits J Grid Computing. 14, 429. https://doi.
org/10.1007/s10723-015-9348-5–441 (2016)

36. F. Gutierrez, D. Azevedo, M. Barreto and R. Zucoloto
Support for bioinformatics applications through volunteer
and scalable computing frameworks. In Cluster Computing
(CLUSTER), 2014 IEEE International Conference (pp.
364–370). IEEE. (2014)

37. Cook, C.E., Bergman, M.T., Finn, R.D., Cochrane, G.,
Birney, E., Apweiler, R.: The European bioinformatics in-
stitute in 2016: data growth and integration. Nucleic Acids
Res. 44(D1), D20–D26 (2015)

38. M. Ghorbani, M. Themis, A. Payne Genome wide classifi-
cation and characterisation of CpG sites in cancer and nor-
mal cells. Comput Biol Med. 1;68:57–66. doi: 10.1016/
j.compbiomed.2015.09.023. Epub 2015 Oct 23. (2015)

39. BOINC 2017 https://boinc.berkeley.edu/ accessed 12/09
/2017

40. Marosi, A., Kovács, J., Kacsuk, P.: Towards a volunteer
cloud system. Futur. Gener. Comput. Syst. 29(6), 1442–
1451 (2013)

41. Kacsuk, P., Farkas, Z., Kozlovszky, M., Hermann, G.,
Balasko, A., Karoczkai, K., Marton, I.: WS-PGRADE/
gUSE generic DCI gateway framework for a large variety
of user communities. Journal of Grid Computing. 10(4),
601–630 (2012)

42. C.B. Ries, C. Schroder and V. Grout Approach of a UML
profile for Berkeley Open Infrastructure for network com-
puting (BOINC), Computer Applications and Industrial
Electronics (ICCAIE), 2011 IEEE International
Conference, pp. 483. (2011)

43. Previti, C., Harari, O., Zwir, I., del Val, C.: Profile analysis
and prediction of tissue-specific CpG island methylation
classes. BMC Bioinformatics. 10(1), 116 (2009)

44. Rice, P., Longden, I., Bleasby, A.: EMBOSS: the European
molecular biology open software suite. Trends Genet. 16,
276–277 (2000)

45. A.C. Marosi, Z. Balaton and P. Kacsuk GenWrapper: a
generic wrapper for running legacy applications on desktop
grids, Parallel & Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on IEEE, pp. 1. (2009)

46. Jaspar 2017, http://jaspar.genereg.net/ accessed 12/09/2017

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional
affiliations.

527Design of a Flexible, User Friendly Feature Matrix Generation System and its Application on Biomedical...

https://doi.org/10.1007/s10723-012-9242-3
https://doi.org/10.1007/s10723-012-9242-3
https://doi.org/10.1007/s10723-012-9242-3
https://doi.org/10.1007/s10723-015-9330-2
https://doi.org/10.1007/s10723-015-9330-2
https://doi.org/10.1007/s10723-016-9362-2
https://doi.org/10.1007/s10723-016-9362-2
https://doi.org/10.1007/s10723-016-9369-8
https://doi.org/10.1007/s10723-016-9369-8
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10723-015-9348-5
https://doi.org/10.1007/s10723-015-9348-5
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/

	Design of a Flexible, User Friendly Feature Matrix Generation System and its Application on Biomedical Datasets
	Abstract
	INTRODUCTION
	Methods
	Software and Algorithms Used in this Study
	BOINC
	WS-PGRADE/gUSE

	Emboss
	Hillclimbing
	System Design
	The Grid Enabling of DNA Feature Generation Applications
	Banana
	Btwisted
	Wordcount
	JaspScan
	Grid Enabled Hill Climbing Search

	Results
	Single Application Feature Generation
	Multiple Application Feature Generation Workflow
	Performance Testing

	Conclusion
	References�

