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Abstract

This paper studies the bivariate HEAVY system of daily and intra-daily volatility equations and its

macro-augmented asymmetric power extension. We focus on economic drivers that exacerbate stock

market volatility and can be proved to be major threats for �nancial stability. Our study proves the

in�ammatory e¤ects of UK Policy Uncertainty alongside global credit and commodity factors that

spread across European �nancial markets. This UK-led spillover phenomenon should be considered

by world market participants and recognized, monitored and mitigated by policymakers amid the

Brexit fears and the associated highly probable harm for Europe. Other �ndings are as follows.

First, once we allow for power transformations, asymmetries, and macro-e¤ects in the benchmark

speci�cation, it is found that both powered conditional variances are signi�cantly a¤ected by the

powers of squared negative returns and realized measure, further improving the HEAVY framework�s

forecasting accuracy. Second, the structural breaks applied to the bivariate system capture the

time-varying behavior of the parameters, in particular during the global �nancial crisis of 2007/08.

Third, higher UK uncertainty levels increase the leverage and global macro-e¤ects from credit and

commodity markets on all European stock markets�realized volatilities.
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1 Introduction

The volatility of �nancial returns constitutes a pivotal part of empirical �nance and econometrics research,

with crucial implications for �nancial risk management practices, and �nancial stability oversight. Robust

modeling and reliable forecasting the volatility trajectory of �nancial instruments has been the main task

and objective of �nancial economics applications for business operations, given that volatility constitutes

one of the fundamental input variables in estimations and decision processes of any corporation on

derivatives pricing, portfolio optimization, investment diversi�cation, �rm valuation, and funding choices.

Financial volatility is also closely inspected by policymakers since it entails critical destabilizing threats

for the �nancial system.

Intriguingly, the �nancial econometrics literature on realized volatility dynamics mostly ignores im-

portant macro-factors that a¤ect the volatility pattern in the high-frequency domain. In this vein, we

examine the role of uncertainty, besides other macro-proxies, in volatility modeling using the news-based

Economic Policy Uncertainty Index, the sole uncertainty metric provided in daily frequency by Baker

et al. (2016) for the United States and the United Kingdom and considered as the most comprehensive

one, including both economic and policy-related constituents of uncertainty. Our motivation to explore

the uncertainty e¤ects on �nancial volatility derives from the recent resurgence of research interest in

uncertainty, partly stimulated by the global crisis of 2008 and primarily re�ected in the de�nition and

measurement debate of this �amorphous�concept by economists (Bloom, 2014). Following the Knightian

de�nition (Knight, 1921) and the early studies on uncertainty by Bernanke (1983) and Dixit and Pindyck

(1994), academics and practitioners have attempted to objectively quantify this latent variable to re�ect

the prevailing uncertainty in the process of decision making by economic agents. Consumers�spending

and saving behavior, �rms�hiring, �nancing and investment choices, investors�asset allocation, central

banks, and government policy decisions are heavily a¤ected by their �inability to forecast the likelihood

of events happening�according to Frank Knight (Bloom, 2014). In principle, the prevailing uncertainty

is evidenced to elicit potent disruptions in the real economy through �nancial and credit markets, damp-

ening the general con�dence and discouraging market participants from doing business. Undoubtedly, in

times of elevated uncertainty, households tend to reduce consumption and increase precautionary savings

and �rms postpone investments (�wait and see�tactics) and refrain from hiring. Similarly, investors in

�nancial markets concerned with uncertainty react, evoking the progressive slowdown or often the steep

fall of asset price returns (either through the discount rate or the cash �ow channel) and synchronously

driving volatility to jump (Pastor and Veronesi, 2013). Simultaneously, in the credit markets uncertainty

commands a risk premium in the cost of capital, foreshadowing the possible meteoric rise of the �nancing

cost for �rms (Alessandri and Mumtaz, 2019) and undermining general trust in the �nancial system.
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This paper examines the HEAVY model of Shephard and Sheppard (2010), which jointly estimates

conditional variances based on both daily (squared returns) and intra-daily (realized variance) data,

by enriching the bivariate system, �rstly, with asymmetries and power transformations, through the

structure of Ding et al. (1993). Motivated by the widely-recognized merits of the APARCH framework,

which considerably improves Bollerslev�s GARCH process by adding leverage and power e¤ects (see, for

example, Karanasos and Kim, 2006), we similarly extend the HEAVY system with these two main features

of asymmetries and power transformations to prove its superiority over the benchmark speci�cation. The

optimal estimation of the power term and the asymmetric response to positive and negative shocks

embedded in the time-varying volatility pattern have already proved to be one of the most pivotal

innovations in the GARCH family of models (see, for example, Brooks et al., 2000). Among others,

Pérez et al. (2009, see the references therein for more details) show that the presence of an asymmetric

response of volatility to positive and negative returns shows up in non-zero cross-correlations between

original returns and future powers of absolute returns. One of our main �ndings is that each of the

two powered conditional variances is signi�cantly a¤ected by the �rst lags of both power transformed

variables, that is, squared negative returns, and realized variance (or, for the latter, its negative signed

values). Secondly, we extend the asymmetric power speci�cation with macro-e¤ects from Economic Policy

Uncertainty, Bond and Commodity market benchmarks, providing a competing framework of volatility

modeling to the well-established practice of �nancial instruments trading and risk measuring based on

economic fundamentals.

We analyze the macro-augmented Asymmetric Power HEAVY model in depth and we investigate its

performance over eleven European stock indices, considering common volatility e¤ects from UK Economic

Policy Uncertainty and global bond and commodity market factors. The UK Economic Policy Uncertainty

is the only daily uncertainty metric provided for European economies and should lie in the epicenter of

academics�and practitioners� interest in European macro-�nancial linkages. Since it nowadays re�ects

the major Brexit fear e¤ects on agents�expectations among other issues related directly to the Anglo-

Saxon and the European and global economy, as well, we anticipate that its e¤ect on �nancial markets

can be proved a critical destabilizing factor across the whole continent. The asymmetric power model for

the returns equation pools information across both low- and high-frequency based volatility indicators.

Similarly, the more richly parametrized HEAVY process for the realized variance equation is bolstered

with low-frequency information as well since the lagged value of the powered squared negative returns

improves the forecasting performance of the model. The realized measure also receives signi�cant positive

impact from all macro-variables included, that is uncertainty, bond and commodity market conditions

with further improvement of the model�s forecasting performance. Moreover, in the presence of structural

breaks, which are apparent in the two power transformed volatility measures, we re-estimate the bivariate
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system including dummy variables, and we present the time-varying behavior of the parameters. Focusing

on the recent global �nancial crisis, we observe that their values increase signi�cantly after the crisis.

Finally, we examine not only the direct destabilizing e¤ect of uncertainty on realized volatility, by using

it as a regressor to the HEAVY process, but also the impact on each parameter of the system, proving

that higher uncertainty levels in�ate the leverage and macro-e¤ects from credit and commodity markets

on the realized measure.

In the advent of the crisis, when volatilities increased sharply and persistently with crucial systemic

risk externalities, we witnessed a reigniting interest of regulators and academics in meaningful volatility

estimates, while, at the same time, practitioners remained alert to improving the relevant volatility

frameworks on a day-to-day basis. Financial economics scholars focused on volatility as a potent catalyst

of systemic risk build-up, which policymakers tried to limit. To the best of our knowledge, we are

the �rst to extend the benchmark HEAVY model with asymmetries, power transformations and macro-

e¤ects, providing a well-de�ned framework that adequately �ts the volatility process. Our framework

contributes to two main strands of empirical macro-�nance literature: the research on volatility modeling

and the macro-�nancial linkages with the investigation of the crucial uncertainty e¤ects on �nancial

market stability. The bivariate system of the two volatility equations, we establish, is ready-to-use not

only on stock market returns but also on further asset classes or �nancial instruments (e.g. exchange

rate, cryptocurrency, commodity, real estate, and bond returns, associating them with alternative macro-

proxies besides uncertainty) and multiple �nancial economics applications of business operations, such as

bonds investing, foreign exchange trading and commodities hedging, core daily functions in the treasuries

of most �nancial and non-�nancial corporations.

Overall, our proposed volatility modeling framework improves the HEAVY model, with major impli-

cations for market practitioners and policymakers on forecasting the �nancial returns�second moment.

Volatility modeling and forecasting are essential for asset allocation, pricing and risk management hedg-

ing strategies. A reliable volatility forecast, exploiting in full the high-frequency domain and the macro-

�nancial linkages, is the input variable of paramount importance for the processes of derivatives pricing,

e¤ective cross-hedging, Value-at-Risk measurement, investment allocation and portfolio optimization with

di¤erent asset classes and �nancial instruments. Moreover, the robust volatility modeling approach we

introduce provides a useful tool not only for market players but also for policymakers. Policymaking

includes continuous oversight duties and prudential regulation practices. In this vein, it is imperative

for the authorities to account for the volatility of �nancial markets across every aspect of the �nancial

system�s policy responses, both post-crisis through stabilization policy reactions and pre-crisis through

proactive assessment of �nancial risks. Focusing, here, on the UK uncertainty e¤ect across the European

stock markets is crucial due to the close inspection by policymakers and the huge concern by market
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players of the �nancial disruption risks contingent on the �nal Brexit outcome and the prevailing Brexit

uncertainty since the 2016 referendum.

The paper proceeds as follows. In Section 2, we detail the HEAVY formulation with our extended spec-

i�cation, which allows for asymmetries, power transformations, and macro-e¤ects. Section 3 describes the

data and Section 4 presents the estimation results for i) the benchmark process, ii) the macro-augmented

asymmetric power models, iii) the multiple-step-ahead forecasts that measure the out-of-sample perfor-

mance of the various speci�cations, and iv) the asymmetric power formulations with structural breaks.

Section 5 focuses on the UK uncertainty e¤ects across the parameters of the HEAVY speci�cations and

Section 6 discusses the policy implications of our �ndings. Finally, Section 7 concludes the analysis.

2 The HEAVY Framework

There are several studies introducing non-parametric estimators of realized volatility using high-frequency

market data. Andersen and Bollerslev (1998), Andersen et al. (2001) and Barndor¤-Nielsen and Shephard

(2002) were the �rst that econometrically formalized the realized variance with quadratic variation-like

measures, while Barndor¤-Nielsen et al. (2008, 2009) focused on the realized kernel estimation as a

realized measure which is more robust to noise. Consequently, a large body of empirical research focuses on

modeling and forecasting the realized volatility. Various studies combine it with the conditional variance

of returns. Engle (2002b) proposed the GARCH-X process, where the former is included as an exogenous

variable in the equation of the latter. Corsi et al. (2008) suggested the HAR-GARCH formulation for

modeling the volatility of realized volatility. Hansen et al. (2012) introduced the Realized GARCH model

that corresponds more closely to the HEAVY framework of Shephard and Sheppard (2010), which jointly

estimates conditional variances based on both daily (squared returns) and intra-daily (it uses the realized

measure - kernel and variance - as a measure of ex-post volatility) data, so that the system of equations

adopts to information arrival more rapidly than the classic daily GARCH process. One of its advantages

is the robustness to certain forms of structural breaks, especially during crisis periods, since the mean

reversion and short-run momentum e¤ects result in higher quality performance in volatility level shifts

and more reliable forecasts. Borovkova and Mahakena (2015) employed a HEAVY speci�cation with a

skewed-t error distribution, while Huang et al. (2016) incorporated the HAR structure of the realized

measure in the GARCH conditional variance speci�cation in order to capture the long memory of the

volatility dynamics.

The HEAVY model of Shephard and Sheppard (2010) can be extended in many directions. We allow

for power transformations, leverage and macroeconomic e¤ects in the conditional variance process. We

run the estimated benchmark speci�cation, enriched with the three key features to improve volatility
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modeling and forecasting further.

2.1 The Benchmark Model

The HEAVY model uses two variables: the close-to-close stock returns (rt) and the realized measure of

variation based on high-frequency data, RMt. We �rst form the signed square rooted (SSR) realized

measure as follows: ]RMt =sign(rt)
p
RMt, where sign(rt) = 1, if rt > 0 and sign(rt) = �1, if rt < 0.

We assume that the returns and the SSR realized measure are characterized by the following relations:

rt = ert�rt; ]RMt = eRt�Rt; (1)

where the stochastic term eit is independent and identically distributed (i.i.d), i = r;R; �it is positive

with probability one for all t and it is a measurable function of F (XF )t�1 , that is the �ltration generated

by all available information through time t � 1. We will use F (HF )t�1 (X = H) for the high-frequency

past data, i.e., for the case of the realized measure, or F (LoF )t�1 (X = Lo) for the low-frequency past data,

i.e., for the case of the close-to-close returns. Hereafter, for notational convenience, we will drop the

superscript XF .

In the HEAVY/GARCH model eit has zero mean and unit variance. Therefore, the two series have

zero conditional means, and their conditional variances are given by

E(r2t jFt�1 ) = �2rt, and E(]RMt

2
jFt�1 ) = E(RMt jFt�1 ) = �2Rt, (2)

where E(�) denotes the expectation operator. The returns equation is called HEAVY-r and, similarly,

the realized measure equation is denoted as HEAVY-R.

2.2 The Macro-augmented Asymmetric Power Speci�cation

The asymmetric power (AP) speci�cation for the HEAVY(1; 1) model consists of the following equations

(in what follows, for notational simplicity, we will drop the order of the model if it is (1; 1)):

(1� �iL)(�2it)
�i
2 = !i + (�ir + irst�1)L(r

2
t )

�r
2 + (�iR + iRst�1)L(RMt)

�R
2 ; (3)

where L is the lag operator, �i 2 R>0 (the set of the positive real numbers), for i = r;R, are the power

parameters, and st = 0:5[1�sign(rt)], that is, st = 1 if rt < 0 and 0 otherwise; ii, ij (i 6= j) are the

own and cross leverage parameters, respectively1 ; positive ii, ij means a larger contribution of negative

�shocks� in the volatility process. In this speci�cation the powered conditional variance, (�2it)
�i=2, is a

linear function of the lagged values of the powered transformed squared returns and realized measure.

1This type of asymmetry was introduced by Glosten et. al. (1993).
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We will distinguish between three di¤erent asymmetric cases: the double one (DA: ij 6= 0 for all i

and j) and two more, own asymmetry (OA: ij = 0 for i 6= j only) and cross asymmetry (CA: ii = 0).

The �iR and iR are called the (four) Heavy parameters (own when i = R and cross when i 6= R).

These parameters capture the impact of the realized measure on the two conditional variances. Similarly,

the �ir and ir (four in total) are called the Arch parameters (own when i = r and cross for i 6= r). They

depict the in�uence of the squared returns on the two conditional variances.

The asymmetric power model is equivalent to a bivariate AP-GARCH process for the returns and the

SSR realized measure (see, for example, Conrad and Karanasos, 2010). If all four Arch parameters are

zero, then we have the AP version of the benchmark HEAVY speci�cation, where the only unconditional

regressor is the �rst lag of the powered RMt.

Next, we provide a comparison between the benchmark HEAVY system and the more general AP

speci�cation. Their di¤erence is captured by the matrix C (see eq. (B.6) of the Supplementary Appendix).

We will examine the bivariate case, which is when N = 2. For the more general DAP speci�cation, C is

a full matrix with: i) diagonal elements given by �i + (�ii + ii=2)zi, i = r;R, where zi = E(jeitj
�i , and

ii) o¤-diagonal elements given by (�ij + ij)zj , i; j = r;R, for i 6= j. For the benchmark model, since

ij = 0, zi = 1, for all i; j = r;R, and �Ri = 0, C is restricted to being an upper diagonal matrix. That

is, we have

DAP Speci�cation: C=

24 �r + (�rr + rr=2)zr (�rR + rR=2)zR

(�Rr + Rr=2)zr �R + (�RR + RR=2)zR

35
Benchmark HEAVY : C=

24 �r �rR

0 �R + �RR

35 :
Figure 1 presents the comparison of the benchmark and DAP-HEAVYmodels�forecasting performance

(see also Section 4.3). We apply the optimal predictor jrtj^� (under Proposition 3 of the Supplementary

Appendix) on FTSE 100 returns and realized variance data and calculate 50-step ahead forecasts. The

more general speci�cation produces forecasts signi�cantly closer to the actual values for both returns

(Fig.1, a & b) and realized measure (Fig.1, c & d). Most importantly, its forecasts are more accurate in

peaks of returns and realized variance actual values. The benchmark model remains behind our proposed

asymmetric power extension in predicting low- and high-frequency volatility indicators. It produces,

mostly, lower volatility forecasts (dotted lines) in comparison with DAP (dashed lines) and actual (solid

lines) values. Therefore, our main contribution, that is the asymmetric power extension, provides a

signi�cant improvement to the HEAVY system of Shephard and Sheppard (2010).

[Figure 1 here]
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Furthermore, we should mention that all the parameters in this bivariate system should take non-

negative values (see, for example, Conrad and Karanasos, 2010). Therefore, we extend the realized

measure equation of the model with the non-negative macro-proxies: the UK Economic Policy Uncer-

tainty, EPUt, the Bonds (the Merrill Lynch MOVE 1 month treasury bonds implied volatility index, the

Moody�s AAA & BAA corporate bonds yields or the Moody�s BAA over AAA corporate bonds spreads),

BOt, and the Commodities (the S&P GSCI index or the Crude oil WTI prices), COt, market benchmark

indices. The macro-augmented (m-) AP-HEAVY system is characterized by the following equation for

the realized measure:

(1� �RL)(�2Rt)
�R
2 = !R + (�Rr + Rrst�1)L(r

2
t )

�r
2 + (�RR + RRst�1)L(RMt)

�R
2 (4)

+�REPUt�1 + �RBOt�1 + #RCOt�1

Eq. (4) incorporates three Macro parameters, �R, �R, and #R, which capture the macro-e¤ects on the

power transformed realized measure. The returns equation remains the same as in the non-augmented

speci�cation, without the direct e¤ect from the macro-variables (�r; �r; #r = 0).

To sum up, the benchmark model (eq. (2)) is characterized by two conditional variance equations, the

GARCH(1,0)-X formulation for returns and the GARCH(1,1) formulation for the SSR realized measure:

HEAVY-r: (1� �rL)�2rt = !r + �rRL(RMt);

HEAVY-R: (1� �RL)�2Rt = !R + �RRL(RMt)

Eq. (4) gives the general formulation of our macro-augmented extension for RMt, which adds asymmetries

and power transformations to the benchmark speci�cation (see also the Supplementary Appendix for our

theoretical considerations). We also use the existing Gaussian quasi-likelihood estimators and multistep-

ahead predictors already applied (Ding et al., 1993) in the APARCH framework (see, for example, He

and Teräsvirta 1999, Laurent, 2004, Karanasos and Kim, 2006). We will �rst estimate both conditional

variance equations in the general form with all Heavy, Arch and Asymmetry parameters given by eq. (4)

and in case a parameter is insigni�cant, we will exclude it and this will result in a reduced form which

is statistically preferred for each volatility process. For example, in the returns and realized measure

conditional variances estimation, the own and cross Arch parameters (�rr and �Rr respectively) prove

to be insigni�cant and are, therefore, excluded (see Section 4.2, Tables 3A and 3B) since this is the way

to reach the returns and realized measure formulations that are statistically preferred.
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3 Data Description

The HEAVY framework is estimated for eleven European stock indices returns and realized volatilities.

According to the analysis in Shephard and Sheppard (2010), the HEAVY formulation improves the

volatility modeling considerably by allowing momentum and mean reversion e¤ects and adjusting quickly

to the structural breaks in volatility. We extend the benchmark speci�cation in Shephard and Sheppard

(2010), by adding the features of power transformed conditional variances, leverage, and macro-e¤ects in

the volatility process. Moreover, in order to identify the possible recent global �nancial crisis e¤ects on

the volatility process and to take into account the structural breaks in the two powered series (squared

returns and realized measure), in Section 4.4, we incorporate dummies in our empirical investigation.

3.1 Oxford-Man Institute�s Library

We use daily data for eleven European stock market indices extracted from the Oxford-Man Institute�s

(OMI) realized library version 0.3 (Heber et al., 2009): FTSE 100 (FTSE) from the UK, EURO STOXX

50 (EU) from the Eurozone, DAX 30 (DAX) from Germany, CAC 40 (CAC) from France, AEX from

the Netherlands, Bell 20 (BELL) from Belgium, IBEX 35 (IBEX) from Spain, the Swiss Stock Market

Index (SSMI), the OMX Copenhagen 20 index (OMXC) from Denmark, the OMX Stockholm All Share

index (OMXS) from Sweden and the Oslo Exchange All Share index (OSE) from Norway. Our sample

covers the period from 2001 to 2019 for most indices. For OMXC and OMXS, the data start from 2005.

The OMI�s realized library includes daily stock market returns and several realized volatility measures

calculated on high-frequency data from the Reuters DataScope Tick History database. The data are �rst

cleaned and then used in the realized measures calculations. According to the library�s documentation,

the data cleaning consists of deleting records outside the time interval that the stock exchange is open.

Some minor manual changes are also needed when results are ineligible due to the re-basing of indices.

We use the daily closing prices, PCt , to form the daily returns as follows: rt = [ln(PCt )� ln(PCt�1)]� 100,

and two realized measures as drawn from the library: the 5-minute realized variance and the realized

kernel. The estimation results using the two alternative measures are very similar, so we present only

the ones with the realized variance (the results for the realized kernel are available upon request).

3.2 Realized Measures

The library�s realized measures are calculated in the way described in Shephard and Sheppard (2010).

The realized kernel, which we use as an alternative to the realized variance (results are not reported

but they are available upon request), is calculated using a Parzen weight function as follows: RKt =PH
k=�H k(h=(H + 1))h, where k(x) is the Parzen kernel function with h =

Pn
j=jhj+1 xj;txj�jhj;t; xjt =
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Xtj;t � Xtj�1;t are the 5-minute intra-daily returns where Xtj;t are the intra-daily log-prices and tj;t

are the times of trades on the t-th day. Shephard and Sheppard (2010) declared that they selected the

bandwidth of H as in Barndor¤-Nielsen et al. (2009).

The 5-minute realized variance, RVt, which we choose to present here, is calculated with the formula:

RVt =
P
x2j;t. Heber et al. (2009) additionally implement a subsampling procedure from the data to

the most feasible level in order to eliminate the stock market noise e¤ects. The subsampling involves

averaging across many realized variance estimations from di¤erent data subsets (see also the references in

Shephard and Sheppard, 2010 for realized measures surveys, noise e¤ects and subsampling procedures).

Table 1 presents the eleven stock indices extracted from the database and provides volatility estima-

tions for each one�s squared returns and realized variances time series for the respective sample period

(see also the FTSE series graphs in Appendix A.2, Figures A.1 �A.2). We calculate the standard devi-

ation of the series and the annualized volatility. Annualized volatility is the square rooted mean of 252

times the squared return or the realized variance. The standard deviations are always lower than the

annualized volatilities. The realized variances have lower annualized volatilities and standard deviations

than the squared returns since they ignore the overnight e¤ects and are a¤ected by less noise. The returns

represent the close-to-close yield and the realized variances the open-to-close variation. The annualized

volatility of the realized measure is between 15% and 20%, while the squared returns show �gures from

18% to 23%.

[Table 1 here]

Next, we examine the sample autocorrelations of the power transformed absolute returns jrtj�r and

signed square rooted realized variance jSSR_RMtj�R for various values of �i. Figures 2 and 3 show the

autocorrelograms of the FTSE 100 index from lag 1 to 120 for �r = 1:5; 1:7; 2:0 and �R = 1:3; 1:6; 2:0

(similar autocorrelograms for the other ten indices available upon request). The sample autocorrelations

for jrtj1:5 are greater than the sample autocorrelations of jrtj�r for �r = 1:7; 2:0 at every lag up to at least

120 lags. In other words, the most interesting �nding from the autocorrelogram is that jrtj�r has the

strongest and slowest decaying autocorrelation when �r = 1:5. Similarly, for the realized measure, the

power with the strongest autocorrelation function is �R = 1:3. Furthermore, Figures 4 and 5 present the

sample autocorrelations of jrtj�r and jSSR_RMtj�R as a function of �i for lags 1; 12; 36; 72 and 96. For

example, for lag 12, the highest autocorrelation values of power transformed absolute returns and signed

square rooted realized variance are calculated closer to the power of 1:5 and 1:0, respectively. These

�gures explain our motivation to extend the benchmark HEAVY through the APARCH framework of

Ding et al. (1993) and con�rm the power choice of our econometric models, which is �r = 1:5 for returns

and �R = 1:3 for the realized measure (see Section 4.2).
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[Figure 2 here] [Figure 3 here]

[Figure 4 here] [Figure 5 here]

3.3 Macroeconomic Proxies

In order to shed light on the macro-�nancial linkages, we augment the �nancial volatility HEAVY process

with non-negative macro-proxies of daily frequency. The extant literature on the economic sources of

stock market volatility mainly uses lower frequency economic variables (monthly or quarterly). From

Schwert (1989) and Hamilton and Lin (1996), who were among the pioneers that related monthly stock

market volatility to the business cycle, until Engle and Rangel (2008) and Engle et al. (2013), who

applied a mixed frequency approach (Spline- and MIDAS-GARCH), the research focus has remained

on lower than daily frequency macro-factors to explain the time-varying behavior of �nancial volatility.

Corradi et al. (2013) further investigated the macroeconomic environment contribution to monthly stock

returns, volatilities, and volatility risk-premia, while Conrad and Loch (2015) explained S&P 500 daily

conditional variance with quarterly economic variables. The principal common �nding across the volatility

determinants studies is the counter-cyclical pattern of volatility for several economic activity variables.

Research on the economic drivers of �nancial volatility lacks evidence on daily macro-factors of the

daily or intra-daily stock index volatility pattern. Motivated by this literature gap, we augment the

HEAVY model of both daily and intra-daily volatility with daily macro-variables that proxy the business

cycle conditions used in the existing monthly or quarterly studies of volatility determinants. In line

with Conrad and Loch (2015), we proxy the macroeconomic environment through economic activity,

monetary and business conditions, and sentiment daily variables that could explain European stock

index realized variance. Since GDP, industrial production, unemployment, in�ation, consumer sentiment

or any available activity, monetary base, and sentiment index is not measured on a daily frequency,

we turn to relevant daily variables. The Economic Policy Uncertainty index is directly related to the

business cycle with signi�cant contractive e¤ects on investment and employment (Baker et al., 2016). It

is used here in place of the activity variables included in all prior studies. We expect the opposite sign

e¤ect from the sign previously observed for economic activity variables since uncertainty is negatively

correlated to activity and higher uncertainty is strongly associated with recessions. The uncertainty index

applied is also considered as an alternative to �nancial uncertainty (VIX index in Corradi et al., 2013),

sentiment, and macroeconomic volatility (Conrad and Loch, 2015). Daily credit conditions variables

are chosen to account for the business and monetary conditions�impact on �nancial volatility, following

Schwert (1989), who uses �nancial leverage variables, interest rate and corporate bond returns volatility.

Lastly, we use daily commodity price indices motivated by the fact that commodity price increases and
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oil, in particular, are often associated with recessions in the macroeconomy (Barsky and Kilian, 2004).

Therefore, we expect a signi�cant surge in stock market volatility following a rise in commodity prices,

which has been proved to be harmful for real economic activity.

Our �rst macro-variable is the news-based Economic Policy Uncertainty Index (EPU), established

by Baker et al. (2016) and retrieved from http://www.policyuncertainty.com/. The site, maintained

by Baker, Bloom, and Davis, provides daily EPU data for the UK starting from 2001. The EPU index

e¤ectively captures the broad �amorphous�concept of economic uncertainty (Bloom, 2014). The 2008

global �nancial crisis has brought the previously overlooked notion of economic uncertainty to the frontline

of academics�, policymakers�and practitioners�interest. We are now witnessing an extensive burgeoning

literature having uncertainty as its principal topic and exploring the widely-recognized countercyclical

uncertainty e¤ects on macroeconomic and �nancial indicators across the business cycle. In particular,

for unique crisis events and long-lasting recession periods, academics try to scrutinize all possible factors

from their arsenal of indicators, which could prove to be forces behind the poor economic performance.

Uncertainty in the agents�thoughts has been recently veri�ed as a crucial factor deciphering a substantial

part of economic �uctuations. Our motivation and recognition of the relative merits of the news-based

EPU metric over several other uncertainty measures are further discussed in the analysis of the EPU

e¤ects on realized volatility (Section 5).

Moving to the credit market conditions, we use four alternative Bond market global benchmarks: the

Merrill Lynch MOVE 1 month Index (MOVE), the Moody�s AAA and BAA Corporate Bonds Yields

(AAA & BAA) and the spread of the BAA over the AAA yields (BAA_AAA). The MOVE Index is an

estimate of the Option Implied Volatility of US Treasury bonds. It is the Treasury counterpart of the

�fear�index (VIX) for S&P 500 and captures the sovereign credit market stance. Higher sovereign bond

volatility denotes higher turbulence in the credit channel for sovereigns with direct spillovers to �nancial

and non-�nancial corporations�credit conditions. The Moody�s indices provide daily averages of global

triple-A and BAA corporate bond yields (higher yields and spreads denote higher cost of �nancing and

credit risk pricing for corporations) and are used as alternatives to the MOVE index for the credit channel.

Moreover, the Commodities market conditions are proxied by two alternative global factors: the S&P

GSCI Index (GSCI) and the Crude Oil Prices per barrel (WTI). Both capture the cost of production for

�rms in the economy, where rising commodity values can lead to production and investment deterioration

due to increased cost e¤ects on economic activity. On the one hand, the S&P Goldman Sachs Commodity

Index is the widely-recognized commodity markets performance benchmark. On the other hand, crude

oil is the most important commodity as an energy source across all economies. The crude oil dollar prices

per barrel (crude stream: West Texas Intermediate - WTI) are used as our alternative macro-regressor to

the GSCI, where, besides oil, most liquid commodities are incorporated. The four bonds and commodities
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variables are retrieved from Thomson Reuters Datastream and FRED economic database of the St. Louis

Federal Reserve Bank.

All daily macro-regressors, except for the Moody�s BAA minus AAA spreads, are log-transformed (see

graphs in Appendix A.2, Figures A.3 �A.9) and included in the realized measure equation where they are

proved to be signi�cant2 . In the macro-augmentation of the HEAVY model, we are restricted to using

only non-negative variables with estimated coe¢ cients of positive sign due to the GARCH positivity

constraints. Consequently, we focused our analysis of the macro-�nancial linkages on the EPU index

for uncertainty and the six bonds and commodities variables, which are characterized by non-negative

values only and exert an in�ating impact on realized volatility. Increased uncertainty, bond yields and

volatility, and commodity prices, all contribute to �nancial volatility heightening, apparent especially

during economic downturns. Figures 6-8 clearly show that higher realized volatility is observed in times

of elevated uncertainty, credit market turbulence and commodity prices boost.

[Figure 6 here]

[Figure 7 here]

[Figure 8 here]

Beyond imposing the GARCH constraints, we initially tested an additional non-negative proxy of the

real estate market (the log-transformed Dow Jones [DJ] REIT index). This proved to be highly signi�cant

but we should exclude it since the negative sign of the relevant coe¢ cient violates our econometric

framework constraints3 . Better performance of the real estate sector is associated with higher REIT�s

level mostly in economic growth periods and is consistently negatively related to �nancial volatility.

Finally, the realized variance receives sound negative impact from two economic activity indicators with

values not bounded to the positive territory of real numbers and, therefore, have been excluded. We used

the Aruoba-Diebold-Scotti (ADS) Business Conditions Index (Aruoba et al., 2009) and the Yield Curve

slope, which are among the unique economic activity indicators available on a daily frequency. The ADS

index tracks daily real business conditions based on economic data releases and the Yield Curve slope,

as calculated by the di¤erence of the 10-year minus the 3-month Treasury bond yields, has proved to be

a powerful predictor of future economic activity (Estrella and Hardouvelis, 1991). Financial volatility

receives a signi�cant negative e¤ect from both variables, as expected since lower ADS and term structure

slope values indicate economic worsening associated with higher stock market volatility. This opens

2The log-transformed series are always positive because all series�values are higher than one. Since the lower bound of

our macro-regressors� series is not one but zero, we, alternatively, included the regressors divided by 100 (EPU, MOVE,

WTI), 10000 (GSCI) and 10 (AAA, BAA). This resulted in similar estimated coe¢ cients in terms of level and signi�cance

within the HEAVY framework (results available upon request).
3Further research could consider an exponential HEAVY speci�cation to address the non-negativity limitations.
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several paths for future research on macro-�nancial linkages in the high-frequency domain to connect the

three variables (DJ REIT, ADS, Yield Curve slope), excluded here, with realized variation measures in

the absence of positivity constraints of the econometric framework applied.

4 Estimation Results

4.1 The Benchmark HEAVY Model

Building upon the introduction of the GARCH-X process by Engle (2002b) to include realized measures

as exogenous regressors in the conditional variance equation, Han and Kristensen (2014) and Han (2015)

studied the asymptotic properties of this new speci�cation with a fractionally integrated (nonstationary)

process included as covariate. Moreover, Pedersen and Rahbek (2019) developed likelihood-ratio tests on

the signi�cance of the nonstationary covariate in the above-mentioned model, while Halunga and Orme

(2009) provided some asymmetry and nonlinearity tests. Lastly, Nakatani and Terasvirta (2009) and

Pedersen (2017) focused on the multivariate case, the so-called extended constant conditional correlation,

which allows for volatility spillovers and they developed inference and testing for the quasi-maximum

likelihood estimator (QMLE) parameters (see also Ling and McAleer, 2003 for the asymptotic theory of

vector ARMA-GARCH processes). For the extended HEAVY models, we employ the existing Gaussian

quasi-likelihood estimators and multistep-ahead predictors applied in the APARCH framework (see, for

example, He and Teräsvirta 1999, Laurent, 2004, Karanasos and Kim, 2006).

Within the HEAVY framework, we �rst estimate the benchmark formulation as in Shephard and

Sheppard (2010), that is, without asymmetries, power transformations, and macro-e¤ects, obtaining very

similar results (Table 2). The only unconditional regressor in both equations is the �rst lag of the RMt.

In other words, the chosen returns equation is a GARCH(1; 0)-X process dropping out the own Arch

e¤ect, �rr, from lagged squared returns since it becomes insigni�cant when we add the cross e¤ect of

the lagged realized measure as regressor, with a Heavy coe¢ cient, �rR, high in value and signi�cance

across all indices. The momentum parameter, �r, is estimated around 0:39 to 0:75. For the SSR realized

variance, the best-chosen model is the GARCH(1; 1) without the cross e¤ect from lagged squared returns.

The Heavy term, �RR, is estimated between 0:33 and 0:52 and the momentum, �R, is around 0:47 to

0:66. The benchmark HEAVY system of equations chosen (three alternative GARCH models are tested

for each dependent variable with order: (1; 1), (1; 0)-X, and the most general one, that is, (1; 1)-X) is the

same as in Shephard and Sheppard (2010) with similar parameter values and the identical conclusion that

the realized measure of variation does all the work at moving around the conditional variances of stock

returns and the SSR realized variance. The benchmark�s conclusion, as we show in this study, does not
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hold for the more richly parametrized macro-augmented asymmetric power model. More importantly,

according to the Sign Bias test (SBT) of Engle and Ng (1993), the asymmetric e¤ect is obviously omitted

from the benchmark speci�cation with the sign coe¢ cient always signi�cant (SBT p-values lower than

0:09).

[Table 2 here]

4.2 The Macro-augmented Asymmetric Power HEAVY Model

Moving to our proposed extension of the benchmark HEAVY system, Table 3 presents the estimation

results for the chosen macro-augmented asymmetric power speci�cations. For both returns and real-

ized variance, we statistically prefer the double asymmetric power (DAP) speci�cation since both power

transformed conditional variances are signi�cantly a¤ected by own and cross asymmetries. We estimate

the power terms separately with a two-stage procedure, as follows: We, �rstly, estimate univariate asym-

metric power speci�cations for the returns and the realized measure. The Wald tests for the estimated

power terms (available upon request) reject the hypotheses of �i = 1 and �i = 2 in most cases. In the

second stage, we use the estimated powers, �r and �R, from the �rst step to power transform each series�

conditional variance and incorporate them into the bivariate DAP model. The sequential procedure pro-

duces the �xed power term values, which are the same for both speci�cations (�r and �R are common for

Panels A and B).

For the returns (see Table 3, Panel A), the estimated power, �r, lies between 1:40 and 1:70. The

Heavy asymmetry parameter, rR, is signi�cant and around 0:09 (min. value) to 0:18 (max. value).

Although �rr is insigni�cant and excluded in all cases, the own asymmetry parameter (rr) is signi�cant

with rr 2 [0:07; 0:12]. In other words, the lagged values of both powered variables, that is, the negative

signed realized measure and the squared negative returns, drive the model of the power transformed

conditional variance of the returns. Moreover, the momentum parameter, �r, is estimated to be around

0:86 to 0:90. All eleven indices generated very similar DAP speci�cations without macro-e¤ects since we

statistically prefer to include the macro-regressors in the realized measure equation.

[Table 3, Panel A here]

Similarly, for the realized measure the most preferred speci�cation is the m-DAP one. The power,

�R, is estimated from 1:00 to 1:40 and is consistently lower than the returns power term (see Table

3, Panel B). Both Heavy parameters, �RR and RR, are signi�cant: �RR is around 0:13 (min. value)

to 0:27 (max. value), while the own asymmetry, RR, is between 0:02 and 0:04. Only in the OMXC

15



case, the own asymmetry parameter, RR, is insigni�cant and, therefore, excluded. Moreover, the cross

asymmetry Arch parameter is always signi�cant with Rr 2 [0:04; 0:09]. This means that the power

transformed conditional variance of gRM t is signi�cantly a¤ected by the lagged values of both powered

variables: squared negative returns and realized measure. Further, the momentum parameter, �R, is

estimated to be around 0:64 to 0:77. Table A.1 (in Appendix A.1) provides additional results for the

realized measure equation before including the macro-e¤ects. We, �rstly, estimated the DAP extension

before resulting in our �nal chosen model, that is extending it with all three macro-factors (see also

Appendix A.1, Table A.2, where we statistically prefer MOVE and WTI for the FTSE according to the

Akaike Information Criterion - AIC).

Lastly, the lagged macro-e¤ects are highly signi�cant with the expected positive sign in all cases.

The power transformed realized variance receives the boosting impact from higher UK EPU levels,

�R 2 [0:01; 0:03], in line with Pastor and Veronesi (2013), who were the �rst to associate stock mar-

ket volatilities with EPU, resulting in a positive link. The uncertainty e¤ect also con�rms the �nding

of Conrad and Loch (2015), among others, on the negative e¤ect of consumer con�dence (University of

Michigan Consumer Sentiment Index), which is the opposite sentiment to uncertainty and is estimated

here with the expected opposite sign, as well. The Norwegian index volatility is the sole case without

direct impact from the UK uncertainty. However, for this index, the EPU e¤ect on Heavy, Arch, and

bond factors is signi�cant (see Section 5, Table 9). Regarding the bond and commodity markets, we pre-

fer to use common global proxies for all European indices. Bond market conditions are better captured

by the MOVE index in most cases except for DAX and OMXC, where we prefer the Moody�s triple-A

yields, OMXS with BAA yields and OSE with the spread between BAA and AAA bonds. Increased

US treasury implied volatility or elevated international corporate bond yields and spreads raise realized

volatility in stock markets (�R 2 [0:03; 0:15]), as expected since the turbulence in the credit markets

always gives signi�cant volatility spillover e¤ects to stock markets. Hereby, we con�rm, among others,

Engle and Rangel (2008), who estimate a positive e¤ect of short-term government bond interest rate

volatility on stock market volatility through the Spline-GARCH speci�cation. Turning to commodities,

the realized measure equations of BELL and OMXC do not include the direct impact from a signi�cant

commodities proxy, while for the remaining indices we either prefer the GSCI index or the WTI crude oil

prices (#R 2 [0:01; 0:02]). In Section 5 (see again Table 9), we prove that BELL receives the commodity

price e¤ect when multiplied by the EPU variable. The same applies in the cases where the commodi-

ties parameters are not jointly signi�cant with bond coe¢ cients. Section 5, Table 9 includes estimations

where commodities are estimated jointly signi�cant with bonds when considering the EPU e¤ect on either

commodities or bonds. Lower commodity prices mean decreased cost of supplies for �rms in the econ-

omy, propelling productivity, investment and, more generally, economic growth and, at the same time,
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reducing stock market volatilities. Given that increased oil prices are mostly coincident with recession

periods (Barsky and Kilian, 2004), the positive link of realized variance and commodity prices, captured

by #R, proves the negative association of economic activity with stock market volatility, in accordance

with the existing literature. All prior volatility determinant studies have provided sound evidence on the

negative sign e¤ect of economic activity proxies on stock market volatility (see, for example, the GDP

growth coe¢ cients in Engle and Rangel, 2008).

Overall, our results show strong Heavy e¤ects (captured by the rR, �RR, and RR parameters),

as well as asymmetric Arch in�uences (the estimated rr and Rr are always signi�cant) and macro-

impact (measured by �R, �R, and #R). According to the log-likelihood (lnL) values reported, the log-

likelihood is always higher for the m-DAP speci�cations compared to the benchmark one, that is without

asymmetries, powers, and macro-e¤ects, proving the superiority of our model�s in-sample estimation (see

also the comparison of the two models in terms of the FTSE standardized residuals graphs in Appendix

A.2, Figure A.10). The SBT statistics further show that the asymmetric e¤ect is not omitted any more

since the sign coe¢ cients are insigni�cant with p-values consistently higher than 0:16.

From an economic point of view, the macro-e¤ects on European stock markets volatility observed

through the m-DAP-HEAVY framework con�rm prior studies on the upward volatility trajectory during

economic downturns. This counter-cyclical behavior has been mainly proved by the negative sign e¤ect

of economic activity leading or coincident indicators on a monthly or quarterly frequency (Engle and

Rangel, 2008). Turning to the high-frequency domain of the macro-�nancial linkages, the monthly activity

variables should be replaced by possible daily proxies of economic activity to be included as explanatory

variables in the realized variance equation. Given the non-negativity restriction, we could not use, among

others, the daily term spread, a reliable predictor of GDP (Estrella and Hardouvelis, 1991) and signi�cant

in the monthly context as evidenced by Conrad and Loch (2015). Based on the rich empirical evidence

of the adverse uncertainty e¤ects on economic activity (Caggiano et al. 2017, Colombo, 2013, Jones

and Olson, 2013), we select the daily EPU index to associate stock market volatility with a variable

directly linked to economic activity contractive forces. The positive sign consistently estimated here

across all speci�cations for the UK EPU variable is in accordance with prior �ndings on the positive sign

given to macroeconomic uncertainty (Schwert, 1989) and unemployment, and the negative sign of the

real GDP, industrial production, and consumer sentiment growth (Conrad and Loch, 2015). All forces

associated with a positive real economic impact exert a negative in�uence on stock market �uctuations,

while the depressive forces exacerbate volatility and are estimated with a positive sign irrespective of the

speci�cation chosen by the di¤erent scholars. Therefore, it is economically plausible for the daily economic

uncertainty to drive �nancial volatility higher, at the same time weakening the prevailing macroeconomic

conditions.
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Against this backdrop, we also selected the sovereign bond yield volatility (or, alternately, the corpo-

rate bond yield level and default spread) to identify the credit channel e¤ect on stock markets. Increased

volatility in the sovereign bond market (Engle and Rangel, 2008) or corporate debt yields and default

spreads are reasonably correlated with macroeconomic turbulence since they increase the cost of �nancing

for �rms and investors and, consequently, reduce activity. Accordingly, the global bond factor coe¢ cients

are consistently estimated with positive signs across all stock market volatility models (see also Asghar-

ian et al., 2013). Finally, the commodity price index or, alternately, the oil price are included as a third

volatility determinant, which is found positive and highly signi�cant in most cases. Motivated by the

widespread discussion and empirical evidence about the commodity price e¤ects on the macroeconomy

in Kilian�s research works (see, for example, Barsky and Kilian, 2004), we complement the volatility

macro-determinants literature by enriching the set of signi�cant macro-variables for the volatility pattern

with commodities and observe the destabilizing impact of higher daily commodity prices, mostly associ-

ated with economic downturns, on stock market realized variance. Increased commodity cost for �rms�

production supplies impairs economic activity and exacerbates equities�volatility.

Hence, apart from contributing to the realized variance modeling research through the asymmet-

ric, power, and macro-augmentation of the benchmark HEAVY speci�cation, we also contribute to the

economic sources of volatility by exploring the macro-�nancial linkages in the high-frequency domain

with daily macro-proxies. All three daily economic variables that exacerbate stock market volatility are

associated with weak economic conditions: higher economic uncertainty, tighter credit conditions, and

increased commodity prices. Moreover, we bridge the macro-�nance literature with the high-frequency

volatility studies by using, for the �rst time, the sole economic uncertainty index computed daily. The

daily UK EPU is applied in the present European study to reveal the uncertainty spillovers from the

UK across the whole continent�s stock markets. The UK-led spillover is crucial nowadays given its direct

connection to the Brexit fears which trigger agents�uncertainty feelings spread over the whole union.

[Table 3, Panel B here]

4.3 Forecasting Performance

Following the estimation of the m-DAP extension to the HEAVY framework of equations, we perform

multistep-ahead out-of-sample forecasting in order to compare the forecasting accuracy of the enriched

speci�cation proposed in this study with the benchmark model introduced by Shephard and Sheppard

(2010). We compute 1-, 5-, 10-, and 20-step-ahead forecasted (power transformed) conditional variances

for the benchmark model, the DAP and its macro-augmented extension. We apply a rolling window

in-sample estimation using 3000 observations (the initial in-sample estimation period for FTSE spans
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from 2/1/2001 until 28/11/2012). Each model is re-estimated daily based on the 3000-day rolling sample

so that the out-of-sample forecasts of each speci�cation calculated for FTSE are as follows: 1581 one-

step-ahead, 1577 �ve-step-ahead, 1572 ten-step-ahead, and 1562 twenty-step-ahead forecasted variances.

We then use the time series of the forecasted values to compute the Mean Square Error (MSE) and the

QLIKE Loss Function (Patton, 2011) of each point forecast compared to the respective actual value. For

each formulation and each forecast horizon, we calculate the time series average MSE and QLIKE to build

the ratio of the forecast losses for each extended HEAVY speci�cation to the loss of the benchmark one.

A ratio lower than the unity indicates the forecasting superiority of the proposed models relative to the

benchmark one. The lowest ratio means lowest forecast losses, that is the model with the best forecasting

performance. The implications of volatility prediction concern traders, investors, risk managers, and

regulators. Traders are mostly involved in short-term forecasting while regulators need longer-term

predictions. Investors and risk managers can have both short- and long-term interests.

The results, presented in Table 4 for FTSE (similar forecasting results for the other ten indices

are available upon request), clearly show the preference for our macro-augmented asymmetric power

extensions over the benchmark models across all time horizons. For the returns equations (see Table 4,

Panel A), the m-DAP formulation dominates the alternative benchmark one with the lowest MSE and

QLIKE in all forecasting periods. In the realized measure equation (see Table 4, Panel B), we get the

best forecasting performance in the m-DAP speci�cation either with all three macro-factors (5-,10-, and

20-day periods) or the EPU regressor only without Bonds and Commodities (1-day horizon). Overall,

the more general extension proposed in our study performs signi�cantly better than the benchmark one

in the short- and long-term horizons. Considering the stepwise estimation of the �nal m-DAP model,

we evidence, �rstly, the signi�cant improvement in forecasting results with the double asymmetric power

over the benchmark speci�cation, and, secondly, its further enhancement with macro-e¤ects. Investors,

traders and risk managers can bene�t from the superior short-term macro-informed forecasts for one

up to ten days, while policymakers should focus on the longer-term forecasting performance to predict

�safely�the one-month �nancial volatility given the signi�cant macro-determinants.

[Table 4 here]

4.4 Structural Breaks

Following the analysis of the superiority of our macro-augmented DAP extension for the HEAVY system,

in this Section we investigate the impact of structural changes (detected in the two power transformed

time series used as dependent variables) on the Heavy, Arch and Macro estimated parameters. The

time-varying behavior of these parameters can be signi�cant, speci�cally around a �nancial crisis break,
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indicative of the crisis e¤ects on the volatility pattern. The structural breaks of the two volatility series are

identi�ed, focusing mainly on the recent global �nancial crisis, and we study their impact on the HEAVY

framework. The methodology in Bai and Perron (1998, 2003a,b) is employed to test for structural breaks.

They address the problem of testing for multiple structural changes in a least squares context and under

very general conditions on the data and the errors. In addition to testing for the presence of breaks,

these statistics identify the number and location of multiple breaks. So, we identify the structural breaks

in the two powered series (power transformations of squared returns and realized measure) with the Bai

and Perron methodology (see Table 5 and Figures 9-10 for FTSE). We use the breaks identi�ed in order

to build the slope dummies for the various parameters. One break date for the recent �nancial crisis of

2007/08 is detected, so we can focus on the crisis e¤ect. We also detect one break date before and one

after the crisis.

[Table 5 here]

[Figure 9 here]

[Figure 10 here]

We focus on the crisis period e¤ect and present the estimation results for FTSE in Table 6 (similar

results for the other ten indices available upon request). We choose to use the break dates of the power

transformed realized measure series: (1) 01/10/2003: pre-crisis break, (2) 24/07/2007: crisis break and

(3) 21/07/2010: post-crisis break. The crisis dummy variable multiplied by the respective Heavy, Arch

and Macro variables (to construct the slope dummies) is de�ned as follows: D2;t = 1, if T(2) � t < T(3) and

D2;t = 0, if t > T(3) and t < T(2). We, �rstly, apply the slope dummies in the Heavy and Arch coe¢ cients

of the m-DAP-HEAVY-r equation (see Table 6, Panel A). In the returns equation, we estimate two

di¤erent speci�cations with the crisis break: the �rst (I) with the slope dummy on the own asymmetry

(Arch) parameter, rr, and the second (II) with the slope dummy on the cross asymmetry (Heavy)

parameter, rR. Both asymmetries�coe¢ cients increase with the crisis break. Regarding the realized

measure equation (see Table 6, Panel B), the Heavy impact, as captured by the Heavy parameter �RR,

and the own asymmetry RR, and the Arch asymmetric in�uence (captured by Rr) all rise with the

crisis break (Panel B speci�cations: I, II, III). Following the DAP model with crisis structural break on

the Heavy and Arch coe¢ cients, we further focus on the macro-augmented DAP equation of the realized

variance, in order to estimate the slope dummies on the Macro parameters (Panel B speci�cations: IV ,

V , V I). The �rst macro-augmented speci�cation (IV ) presents the equation with the EPU regressor

only, where we observe the positive increment on the EPU coe¢ cient from the crisis break. Lastly, the

augmented equations with Bonds (V ) and Commodities (V I) illustrate once more the positive crisis e¤ect

on each macro-factor.
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[Table 6 here]

Overall, we evidence consistently the same signs of the dummies�coe¢ cients across all speci�cations

with Heavy, Arch, and Macro parameters. The crisis break dummies always increase the relevant coe¢ -

cients, magnifying the macro-e¤ects that destabilize the stock markets during the crisis. The destabilizing

impact of the crisis stance on �nancial volatility either directly through the Heavy and Arch e¤ects or

through the uncertainty, credit market and commodity prices in�uences should raise the concern of poli-

cymakers about the imminent and highly probable Brexit harm to the whole European �nancial system.

5 The Uncertainty E¤ect on Realized Volatility

Following the augmentation of the benchmark HEAVY system with asymmetries, power transformations,

and macroeconomic e¤ects, we investigate the drastic in�uence of UK uncertainty on European �nancial

markets volatility. We, �rst, review the uncertainty measurement approaches in order to discuss the rela-

tive merits of the Economic Policy Uncertainty index and brie�y present the relevant empirical evidence.

Lastly, and most importantly, we prove the signi�cant UK EPU e¤ect on the Heavy, Arch, Bonds, and

Commodities impact on the European stock markets realized variance.

5.1 Uncertainty Measurement and the EPU Index

Since economic uncertainty constitutes one of the most debated factors to explain the recent crisis with

the ensuing persistent slowdown and the unexpectedly sluggish recovery, eminent scholars responded to

the challenge of quantifying such an unobservable variable in order to test its in�uence on economic

activity. They employed a wide variety of econometric forecasting techniques and some more novel

text-mining and machine-learning methods on time series data of economic variables, survey data, news

stories, Google search volumes or even internet-clicks data to compute tangible measures of uncertainty.

Beyond the acknowledged consensus on the use of �nancial markets implied volatility (e.g. VIX) as a

reliable proxy of uncertainty in macro-�nancial modeling (Bloom, 2009, Bekaert et al., 2013), another

rather traditional approach to gauge uncertainty has been the second moment of the time series of

a macroeconomic or �nancial indicator (e.g. GARCH conditional variance in Fountas and Karanasos,

2007). More recently, under the pure econometrics approach, academics have addressed the quanti�cation

problem by formalizing economic uncertainty measures with sophisticated large-scale structural models

on macroeconomic and �nancial datasets (Mumtaz and Theodoridis, 2018, Jurado et al., 2015, Carriero

et al., 2018). A further strand of the well-established uncertainty literature has produced survey-based

uncertainty measures, using among others the Surveys of Professional Forecasters (Scotti, 2016, Rossi
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and Sekhposyan, 2015, Jo and Sekkel, 2017).

In light of the seminal paper of Baker et al. (2016), a considerable number of studies have developed

news-based uncertainty measures, which are gaining enormous popularity. Baker et al. (2016) were

among the �rst scholars that applied textual analysis to construct the Economic Policy Uncertainty

Index by calculating the frequency of references to uncertainty concerning economic policy in leading

newspapers (count of keywords like uncertainty and economic policy). The EPU Index is computed

nowadays for many countries (see the indices publicly available by the majority of EPU authors on

http://www.policyuncertainty.com/) on a monthly frequency (daily EPUs are constructed only for US

and UK) and extended to several categorical subindices (i.e. uncertainty on �scal, monetary, trade policy,

etc.). The motivation behind the news-based indicators lies in the consideration that the press is a reliable

and timely mirror of the agents�expectations and economic sentiment. Common knowledge suggests that

newspapers should outline the economic reality according to readers�information demand, interests and

expectations in order to maintain their audience. Baker et al. (2016) opened up a new strand of research

with a growing body of bibliography which markedly focused on textual search and machine learning

methods to construct similar news-based Policy Uncertainty indices with the mounting interest of many

scholars in improving such methodologies (Brogaard and Detzel, 2015, Larsen and Thorsrud, 2018). In

line with the news-based uncertainty measures extracted through text mining algorithms on newspaper

articles, there are two more approaches in this bibliography part: the sophisticated and ready-to-use news

indicators provided by news agencies like Bloomberg and Thomson Reuters (see, for example, Caporale

et al., 2018) and the internet search engines volume metrics (Google trends in Castelnuovo and Tran,

2017, Wikipedia searches in Vlastakis and Markellos, 2012, and Bitly click data in Benamar et al., 2018).

Several uncertainty indices are derived from internet search intensity of keywords related to uncertainty

or to an economic term, event or variable, indicating that such terms attract the attention of the general

public due to uncertainty.

Within the long stream of literature on news-based indices, the key conceptual di¤erence between the

two main approaches, the news coverage, and the internet search engines or clicks, lies in the information

perspective they employ. The former is applied to the information supply side, while the latter is on

the demand side. We strongly believe that the supply side is more reliable for quantifying uncertainty.

On the one hand, it is commonplace that newspapers as information providers should re�ect the general

mood in order to attract and maintain their audience. Thus, the media content is of immense value for

gauging uncertainty. On the other hand, the demand side, directly connected to economic psychology, is

measured by internet queries and news clicks intensity. Thus, it may create bias on the real uncertainty

level since the clicks volume also depends on people�s free time and internet access, apart from implying

attention or information search as a response to uncertainty. Consistent with our view that news-based
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indices constructed on the information supply side are more appealing, in this paper, we focus on Eco-

nomic Policy Uncertainty. The intuition behind our preference to use the novel news-based EPU index

is straightforward given the numerous attractive features, suggestive of its usefulness. The merits of the

EPU index are summarized as follows: i) the insights derived from real-time news coverage, ii) the time-

liness of news arrival with their sound signaling potential, iii) the availability for major economies, iv)

the policy-sensitive feature included in the uncertainty measurement, and v) the consistency as substan-

tiated in the ample empirical support of its explanatory and predictive power in macro-�nancial models.

Given the facts that i) EPU relies on daily news, ii) political news dominates the markets, and iii) the

construction of the index includes policy-related concerns apart from economic terms alone, we regard it

as a number that �ts all, both macroeconomic and �nancial reality, in a timely manner. The model- and

survey-based uncertainty proxies cannot be as up-to-date as EPU due to their reliance on the history of

economic variables or the non-real-time survey responses by forecasters, whose disagreement or forecast

error dispersion do not necessarily suggest the omnipresence of uncertainty in the economy. Newspapers

can be thought of as the best illustration of the general public�s (households, corporations, investors

and governments) feeling in terms of uncertainty, although they are occasionally criticized in relation to

their objectivity, that they may create news instead of simply transmitting it. In this case, the use of

wide-ranging sources to construct the EPU indices eliminates the possibility of one or more newspapers

attempting to in�ate or conceal the ubiquitous uncertainty.

5.2 Economic Policy Uncertainty and Realized Volatility

It is important to note here that news textual analysis is used broadly in various scienti�c �elds to

quantify societal trends and public opinion. Nowadays, this novel strategy has inevitably come to the

aid of economic science for measuring variables not directly observable, such as uncertainty, leading to

the lengthy catalogue of the renowned EPU indices. These indices have gained remarkable popularity

in numerous applications in economics and �nance. Interestingly, they have recently started showing

up even in media reports and investment recommendations. A voluminous literature has mushroomed

over three axes of research: connecting EPU with macro-aggregates, microeconomic data, and �nancial

variables. The large bulk of EPU literature investigates the explanatory or the predictive power of EPU

on business cycles (with the leading macro-variables included: unemployment in Caggiano et al., 2017,

output and in�ation in Colombo, 2013, Jones and Olson, 2013, Karaman and Yildirim-Karaman, 2019,

economic development in Sche¤el, 2016, monetary dynamics in Aastveit et al., 2017, Tarassow, 2019,

yield curve slope in Connolly et al., 2018, foreign exchange rates in Kido, 2016, bank credit and bailouts

in Bordo et al., 2016, Caliendo et al., 2018), on asset prices, returns, volatilities and correlations (equities
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in Pastor and Veronesi, 2012, Kelly et al., 2016, Dakhlaoui and Aloui, 2016, bonds in Bernal et al., 2016,

stock-bond correlation in Li et al., 2015, commodities in Andreasson et al., 2016, Bakas and Triantafyllou,

2019, real estate in Christou et al., 2017, sovereign credit ratings in Boumparis et al., 2017, CDS spreads in

Wisniewski and Lambe, 2015, cryptocurrencies in Fang et al., 2019), and at the micro-level on corporate

accounting numbers (Gulen and Ion, 2015, Pham, 2019, Zhong et al., 2019), �rm and household decisions

(Nagar et al., 2018, Ben-David et al., 2018). Granger causality tests, Structural VARs, Diebold-Yilmaz

(DY) dynamic interconnectedness (Diebold and Yilmaz, 2009), Quantile regressions, GARCH models

with MIDAS speci�cations in many cases, when variables of mixed frequencies are involved, and with

Dynamic Conditional Correlations (Engle, 2002a), when the dynamic nature of correlations is considered,

are among the most common modeling approaches adopted in the EPU empirical evidence studies.

Despite the substantial advances in the EPU research, proving the adverse EPU impact on economic

activity and its contractive e¤ect on �nancial variables and the functioning of the �nancial system,

the literature on the realized volatility dynamics of high-frequency �nancial variables associated with

uncertainty is still in its infancy. Reviewing the few commendable attempts to explain the behavior

of stock market volatility with EPU, we can trace back this link to Pastor and Veronesi (2013), who

were the �rst to connect stock markets with monthly EPU using simple OLS regressions of monthly

stock returns, volatilities and correlations (unconditional) on the EPU index, whose coe¢ cient sign was

consistently positive for correlations and volatilities and negative for returns. Antonakakis et al. (2013)

further compute the Dynamic Conditional Correlations between EPU, S&P 500 Stock Index returns and

implied volatility (VIX) pairwise on a monthly frequency. The EPU-VIX correlation is positive and

the EPU-returns negative, as expected, since elevated uncertainty depresses stock market performance

and goes alongside higher stock market volatility. More recently, Fang et al. (2018) have related daily

gold futures volatility with the monthly Global EPU index through the GARCH-MIDAS framework.

They evidence the strong positive e¤ect of uncertainty on gold volatility and its power in forecasting

the monthly realized volatility of gold futures. Finally, Cho et al. (2018) highlight the fact that high

exchange rate volatility is linked with elevated EPU leading to carry trade losses.

Despite the rapidly growing EPU literature, it appears that the empirical work on the realized volatil-

ity dynamics driven by EPU is limited, with evidence still scant. Consequently, the present study �lls a

notable gap in the extant EPU literature. We elucidate whether EPU exerts considerable in�uence on

the HEAVY volatility modeling framework and on speci�c parameters of the macro-augmented asym-

metric power speci�cation. Our work di¤ers from the existing literature in the use of the daily EPU

index as a daily realized volatility determinant, with major implications for macro-informed trading in

�nancial markets and policymakers��nancial stability concerns and systemic risk oversight. Obviously,

the particular EPU-volatility link has not yet been assessed.
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Against this backdrop, we have already highlighted the direct positive e¤ect, in line with Pastor and

Veronesi (2013), and forecasting power of daily EPU on realized volatility within the m-DAP-HEAVY

framework in Section 4. In this Section, we �rst investigate the UK EPU e¤ect on the benchmark

realized volatility equation enriched with the lagged bonds and commodities variables. Table 7 presents

the macro-augmented benchmark equation of FTSE with the EPU e¤ect on the Heavy coe¢ cient, bonds,

and commodities. The equation is estimated using ten restricted forms to examine all combinations

of jointly signi�cant macro-factors and each EPU e¤ect separately with the following three interaction

terms: i) �epuRR is the parameter of the lagged EPU multiplied with the lagged realized variance, capturing

the EPU e¤ect on the Heavy coe¢ cient (�RR), ii) �
epu
R and iii) #epuR measure the EPU e¤ect on the bonds�

and commodities�proxies, respectively.

All interaction terms are estimated with highly signi�cant positive signed coe¢ cients. Intriguingly,

within the macro-enriched benchmark speci�cation, we prove that higher uncertainty means a stronger

e¤ect of credit (speci�cations: (5), (8), (9) and (10)) and commodity (speci�cations: (6) and (7)) market

conditions on the realized measure. Since it is widely evidenced that higher uncertainty is associated

with economic worsening, we further deduce the link of tighter credit conditions and elevated commod-

ity prices during the business cycle�s downturns with higher �nancial volatility heavily a¤ected by the

uncertainty channel. It is also remarkable that a signi�cant part of the realized measure arch e¤ect, the

Heavy coe¢ cient (�RR 2 [0:17; 0:23]), is explained by EPU with �epuRR estimated between 0:06 and 0:09

(speci�cations: (1)-(4)). Lastly, EPU partly absorbs the macro-e¤ects from bonds and commodities, with

parameter values �epuR 2 [0:02; 0:04] and #epuR equal to 0:01, respectively. We also observe that although

the commodities e¤ect (#R) in the benchmark model is not signi�cant, when it is multiplied by EPU

(#epuR ) it becomes highly signi�cant jointly with the MOVE index (speci�cations: (6) and (7)).

[Table 7 here]

After proving the EPU e¤ect on the benchmark speci�cation�s parameters, we proceed with the

DAP extension. Table 8 reports the alternative restricted forms for FTSE with bonds, commodities

and �ve interaction terms of EPU with the two Heavy and one Arch coe¢ cients and the other two

Macro parameters. The interaction terms are all positive, signifying the amplifying EPU impact on

each parameter. Heavy e¤ects and cross Arch asymmetries receive a considerable increasing in�uence

from higher uncertainty. Consistently with the macro-augmented benchmark model, the macro-e¤ects

are also signi�cantly in�ated with elevated uncertainty levels. Within the uncertainty literature, the

link between credit conditions tightening and uncertainty has recently been investigated by Alessandri

and Mumtaz (2019), who associate the rising �nancing costs for �rms with credit markets uncertainty,

while the commodities-uncertainty relation is widely explored by Antonakakis et al. (2014), Aloui et al.
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(2016) and Fang et al. (2018) among others. Most notably, Antonakakis et al. (2017) focus on the oil

prices-stock market volatility link. According to our review of the �ourishing research on uncertainty

e¤ects, academics have not yet covered the EPU, credit and commodities macro-e¤ects on intra-daily

�nancial volatility and the EPU amplifying role on the credit and production cost channel impact, which

is plainly visible here through the HEAVY framework.

[Table 8 here]

The UK uncertainty e¤ect is clear not only in the local stock market (FTSE 100) but across all

European stock indices considered in this study, as well. Central, Southern, and Northern European and

Scandinavian �nancial markets are destabilized by higher policy uncertainty in the Anglo-Saxon economy

directly and indirectly. The direct e¤ect on Europe is already evidenced through the �R coe¢ cient of the

m-DAP equation (Section 4, Table 3, Panel B), and the interaction terms on the Heavy, �epuRR and 
epu
RR ,

and Arch, epuRr , parameters for FTSE in Tables 7 and 8. The indirect uncertainty e¤ect is estimated

with the positive and signi�cant bonds and commodities interaction terms, �epuR and #epuR . Table 9,

summarizes the EPU e¤ects on realized volatility of the ten European indices beyond the aforementioned

local (UK) index analysis. We present the uncertainty e¤ect on each Heavy, Arch and Macro parameter

of the model as estimated through alternative restricted forms of the volatility equation including each

EPU e¤ect separately (see also Appendix A.1, Table A.3, where we bring together the EPU e¤ects on

each coe¢ cient of the macro-augmented benchmark equation for the ten European index volatilities).

All indices in the asymmetric power speci�cation receive considerable direct and indirect uncertainty

e¤ects, which is not the case for Copenhagen�s OMX index in the benchmark speci�cation (Appendix

A.1, Table A.3). Interestingly, we observe that for the Norwegian index, the commodities interaction

term is insigni�cant for either the GSCI or the WTI variable and therefore excluded, while the GSCI

alone (without the EPU e¤ect) is a signi�cant determinant of OSE realized volatility (Table 3). Moreover,

the Danish index remains without any commodity e¤ect in any speci�cation, benchmark or asymmetric

power, with or without the EPU multiplier. Overall, we demonstrate that the European stock market

volatilities are consistently exacerbated by economic policy uncertainty generated in the UK, besides

the global commodity and credit market conditions. Our empirical leading-edge results should urge

policymakers to consider and closely investigate the side e¤ects for the whole European �nancial system

of a probable UK turbulence on the way towards Brexit.

[Table 9 here]

All in all, our major contribution to the EPU literature consists of the new empirical evidence we

provide on the positive link between daily EPU and realized volatility and the UK EPU spillovers across
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Europe. Within the HEAVY framework, we �rstly prove the UK EPU destabilizing impact on European

stock markets with �nancial volatility investigated on a daily frequency. Secondly, we show that the

leverage and heavy e¤ects on realized variance are state-dependent, not only based on the realized measure

structural changes (see Section 4.4), but they are also considerably magni�ed under higher prevailing

uncertainty conditions. Thirdly and most interestingly from an economic perspective, the increased

volatility in credit conditions (or higher cost of debt if the Moody�s corporate bond yields and spreads

are applied) and the rising prices in commodities, both phenomena associated with economic downturns,

exacerbate realized volatility to a degree intensi�ed by elevated UK EPU. Finally, we complement the

literature on EPU spillovers (see, for example, Gabauer and Gupta, 2018, Balli et al., 2017, and Klößner

and Sekkel, 2014) by providing evidence of the daily uncertainty spillover e¤ects from the UK to Europe�s

intra-daily stock market volatility. We have proved that policy uncertainty in a speci�c country is not

con�ned to the country�s borders but is propagated across the whole continent immediately (only the

�rst EPU lag is examined in this study).

6 Policy Implications

Over the decade following the global turmoil that sharply sparked the interest in the role of uncer-

tainty and the relevant research increasingly gained momentum following an accelerating pace, the most

widespread metrics documented, or proxies used, have referred to macroeconomic, �nancial and policy

uncertainty. They all share a common and highly plausible stylized fact: their guiding signi�cance with a

detrimental impact on the health of the economy and �nancial markets, which is stage-contingent (damp-

ening economic activity with higher magnitude in shakier times). Therefore, we extend our empirical

analysis by focusing more speci�cally on the �rst volatility macro-determinant of the m-DAP-HEAVY-R

equation, that is the UK uncertainty impact on European indices realized variance. It is generally ac-

knowledged that both �nancial markets and the real economy are at the mercy of feelings of uncertainty.

On the one hand, macroeconomic uncertainty measures concern the macroeconomic variables �uctua-

tions and the associated �lack of con�dence�about their predictability (Knight, 1921, Bloom, 2014), while

�nancial uncertainty pertains to �nancial indicators setting the tone for the dynamics of every asset class

behavior. On the other hand, economic policy uncertainty, as established by Baker et al. (2016), focuses

on the uncertainty surrounding policy implementation and future policy changes by governments, central

banks, and other regulatory authorities since they cannot be presumed as certain by economic agents.

Policy risk concerns play a decisive role in every perspective of the economic behavior of all agents with

a highly unpredictable outcome, no matter the postulated degree of regulators�benevolence (Pastor and

Veronesi, 2012). Besides the policy environment in agents�minds, in the advent of the recent crisis, we
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also witnessed the apparent and striking ine¤ectiveness of policies implemented to stabilize the economy

in-crisis and boost post-crisis (monetary- and �scal-stimulus policies undoubtedly failed to deal with the

2008 �nancial turmoil). Consequently, we consider policy-generated uncertainty as a broader measure,

embracing both macroeconomic and �nancial uncertainty, as well as capturing proxies of risk aversion

attitudes, economic sentiment and con�dence indicators and even political ingredients of country risk

(such as political stability, polarization or partisan con�ict).

Nowadays, regulatory authorities in the UK and the European Union, who design policies to deal

with Brexit and partly contribute to the policy uncertainty generated in the economic agents�minds,

should consider the shocks they exert in �nancial markets �uctuations during their lengthy negotiations

apart from just dealing with the Brexit processes. Turning to the policy implications of the proposed

macro-augmented high-frequency volatility model, our �ndings suggest that policymakers and authorities

supervising and regulating the �nancial system should take into account reliable volatility forecasts in

designing macro- and micro-prudential policy responses. The risk management of the �nancial system

is structured as follows: i) identi�cation of risk sources (both endogenous - �nancial markets volatility -

and exogenous - the macroeconomy), ii) assessment of the nature of risk factors, iii) risk measurement

(micro-prudential metrics in the �nancial institution level and macro-prudential metrics in the system

and markets level), and, iv) risk mitigation with proactive regulation and crisis preparedness plans and

strategies. Thereupon, regulators should employ the macro-informed �nancial volatility forecasts of the

m-DAP-HEAVY model across the whole risk management process and the �nancial stability oversight

tools, such as the early warning systems, the macro stress tests on �nancial institutions and the bank

capital and risk frameworks.

For example, the macro stress test scenario inputs, which include, among others, stock market volatil-

ity predictions for the �nancial institutions� trading books, should consider macro-informed volatility

estimates to account for the macro-e¤ects on �nancial markets. Economic uncertainty in one major

country is proved to play a decisive role across the whole region�s equities. Accordingly, it is essential

for the European Banking Authority (EBA) to add the UK uncertainty factor in the EU-wide stress

tests while facing the Brexit fears over the European banking system. Furthermore, complying with the

capital and risk frameworks set by supervisors (Basel committee and central banks), �nancial institutions

measure their trading portfolio�s market risk (beyond the credit risk of their loan portfolio). They mostly

use internal models with the daily Value-at-Risk (VaR) metric in order to estimate the potential trading

losses over a pre-de�ned holding period for a given con�dence level and de�ne the corresponding capital

charges. The most important input in the VaR calculation is the one-day volatility forecast of the risk

factor relevant to the �nancial instruments under scope. Stock index price volatilities are widely used in

the VaR computation of stock portfolios. Thus, reliable macro-informed volatility forecasts, provided by
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our superior modeling framework, improve the VaR estimates considerably. The potential trading loss in

the lower quantile of the return distribution de�ned by the VaR number should be large enough to cover

the losses to be realized in the future. The higher number of exceptions in the VaR�s backtesting exercise

means higher market risk capital requirements for �nancial institutions since regulators heavily penalize

a bank�s internal models that fail to cover trading losses (Basel tra¢ c light approach). At the same time,

the VaR-predicted loss should be low (in absolute value) enough in order to prevent supervisors from

increasing the capital charges. Given that the market risk capital requirement is calculated on the trad-

ing portfolio total 99% VaR (absolute value, 60-day average) adjusted by the penalty of the backtesting

exceptions (higher than 4 in the 250-day sample), supervisors should encourage banks to improve their

market risk internal models with more accurate macro-informed volatility forecasts that better capture

the loss distribution without in�ating the capital charges.

Beyond our results�implications for policymakers, the volatility forecasts produced by the m-DAP-

HEAVY model are directly applicable to a wide range of business �nance operations. Alongside the

well-established risk management practice of the trading VaR estimation, portfolio managers should rely

on the proposed framework to predict future volatility in asset allocation and minimum-variance portfolio

selection complying with their clients�risk appetite. Risk averse investors�mandates specify low volatility

boundaries on their portfolio positions, while risk lovers allow for higher volatilities on the risk-return

trade-o¤ of their investments. Accurate volatility predictions can also be used in a forward-looking

performance evaluation context, through the risk-adjusted metrics, i.e. the Sharpe or the Treynor risk-

adjusted return ratios. Traders and risk managers focus on the volatility trajectory in derivatives pricing,

volatility targeting strategies and macro-informed trading decisions. Trading and hedging in �nancial

markets depend on risk factors whose predicted volatilities are the main input of any pricing function

applied. Lastly, �nancial chiefs consider volatility forecasts when they decide on investment projects

or funding choices (bond and equity valuation de�ning the cost of capital) given that expected future

cash-�ow variation is a critical factor in business analytics.

7 Conclusions

Our study has examined the HEAVY model and extended it by taking into consideration leverage, power

transformations, and macro-characteristics. For the realized measure our empirical results favor the

most general macro-augmented double asymmetric power speci�cation, where the lags of both powered

variables - squared negative returns, and realized variance - move the dynamics of the power transformed

conditional variance of the latter. Similarly, modeling the returns with a double asymmetric power

process, we found that not only the powered realized measure asymmetry but the power transformed
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squared negative returns, as well, help to forecast the conditional variance of the latter. The macro-

augmentation of the asymmetric power model ensures the superiority of our contribution, which can be

implemented in the areas of asset allocation and portfolio selection, as well as in several risk management

practices. We proved the forecasting dominance of our extensions over the benchmark HEAVY model

through the out-of-sample forecasting across multiple short- and long-term horizons. Moreover, the

detection of structural breaks and the inclusion of break dummies in the asymmetric power formulation

capture the time-varying pattern of the parameters, as the break corresponding to the �nancial crisis of

2007/08, in particular, increases the values of the parameters intensifying the destabilizing e¤ect from

asymmetries and macro-factors on stock markets.

Moreover, we demarcate our study from previous literature by estimating the signi�cant UK uncer-

tainty e¤ect on the power of leverage (Heavy and Arch), global credit, and commodity determinants of

European markets realized variance. The UK-generated uncertainty spillovers shed light on new evidence

for i) volatility modeling and ii) the macro-�nancial linkages literature. Our �ndings�novelty is twofold:

Given higher (lower) daily UK uncertainty levels, mostly associated with economic downturns (upturns),

i) heavy and leverage e¤ects become more (less) acute in realized variance modeling, and ii) credit and

commodity market conditions�impact on �nancial volatility increases (decreases). The latter conclusion

proves, interestingly, that the positive e¤ect of tighter credit conditions (proxied either by higher Treasury

bonds volatility or higher corporate yields and spreads) and higher commodity prices (captured either in

the commodity benchmark GSCI index or the crude oil WTI prices) on European stock market volatility

is ampli�ed given higher UK economic policy uncertainty during a weaker economic stance.

Our empirical �ndings on the nexus between low-frequency daily squared returns, high-frequency

intra-daily realized measures and daily macro-proxies provide a volatility forecasting framework with

important implications for policymakers and market practitioners, from investors, risk and portfolio

managers up to �nancial chiefs, leaving ample room for future research on further HEAVY model exten-

sions. Thereupon, policymakers and market players may use our more general framework to closely track

and forecast �nancial volatility patterns in the process of devising drastic policies, enforcing the �nancial

system�s regulations to preserve �nancial stability, deciding on asset allocation, hedging strategies, and

investment projects. This UK-led uncertainty spillover phenomenon, in particular, should be immedi-

ately recognized, monitored and mitigated by regulators amid the Brexit fears and the associated highly

probable impairments for Europe�s �nancial system. As part of future research, it would be interesting

to extend our study to exchange rate market volatility and several other asset classes using alternative

macro-proxies for each asset volatility. In this vein, it is crucial to develop daily EPU indices also for other

countries, beyond the US and the UK. A further interesting line of future research could be the extension

of the multivariate HEAVY formulation of Noureldin et al. (2012) with leverage, power transformations
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and macro-e¤ects, starting from the recent study of Dark (2018), who has applied the Dynamic Condi-

tional Correlations multivariate GARCH models (Engle, 2002a) to the multivariate HEAVY, or Opschoor

et al. (2018) within the Generalized Autoregressive Score (GAS) process of Creal et al. (2013).
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A APPENDIX

A.1 Realized Measure Equation Analysis

[Table A.1 here]

[Table A.2 here]

[Table A.3 here]

A.2 Stock Index and Macro-variables Graphs

[Figure A.1 here] [Figure A.2 here]

[Figure A.3 here]

[Figure A.4 here] [Figure A.5 here]

[Figure A.6 here][Figure A.7 here]

[Figure A.8 here][Figure A.9 here]

[Figure A.10 here]

Table 1: Data Description

Total Sample period r2t RVt

Index Start date End date Obs. Avol sd Avol sd

FTSE 02/01/2001 01/03/2019 4581 0.182 0.039 0.172 0.028

EU 02/01/2001 01/03/2019 4631 0.227 0.055 0.201 0.032

DAX 02/01/2001 01/03/2019 4609 0.232 0.060 0.203 0.030

CAC 02/01/2001 01/03/2019 4635 0.223 0.053 0.183 0.023

AEX 02/01/2001 01/03/2019 4635 0.221 0.057 0.171 0.020

BELL 02/01/2001 01/03/2019 4633 0.193 0.043 0.147 0.014

IBEX 02/01/2001 01/03/2019 4604 0.229 0.059 0.189 0.021

SSMI 03/01/2001 01/03/2019 4552 0.187 0.043 0.147 0.016

OMXC 04/10/2005 01/03/2019 3338 0.206 0.048 0.181 0.038

OMXS 04/10/2005 01/03/2019 3367 0.209 0.051 0.161 0.030

OSE 04/09/2001 01/03/2019 4363 0.219 0.055 0.180 0.027

Notes: Avol is the annualized volatility and sd is the standard deviation.
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Table 2: The Benchmark HEAVY model.

Panel A. Stock Returns: HEAVY- r Panel B. Realized Measure: HEAVY- R

(1� �rL)�2rt = !r + �rRL(RMt) (1� �RL)�2Rt = !R + �RRL(RMt)

�r �rR SBT lnL �R �RR SBT lnL

FTSE 0:64
(0:045)���

0:38
(0:053)���

2:57
[0:01]

�6067:59 0:62
(0:039)���

0:37
(0:041)���

2:68
[0:01]

�5858:93

EU 0:64
(0:046)���

0:45
(0:061)���

3:32
[0:00]

�7205:94 0:57
(0:036)���

0:41
(0:036)���

2:83
[0:00]

�6653:53

DAX 0:63
(0:050)���

0:46
(0:067)���

3:85
[0:00]

�7271:24 0:58
(0:031)���

0:40
(0:031)���

3:10
[0:00]

�6553:32

CAC 0:43
(0:057)���

0:83
(0:092)���

2:31
[0:02]

�7133:23 0:55
(0:035)���

0:43
(0:036)���

2:29
[0:02]

�6257:72

AEX 0:54
(0:056)���

0:75
(0:094)���

2:32
[0:02]

�6797:87 0:53
(0:034)���

0:45
(0:036)���

2:90
[0:00]

�5780:19

BELL 0:46
(0:057)���

0:86
(0:102)���

2:41
[0:02]

�6410:59 0:54
(0:032)���

0:45
(0:034)���

2:50
[0:01]

�5320:22

IBEX 0:49
(0:082)���

0:71
(0:128)���

1:69
[0:09]

�7347:24 0:54
(0:041)���

0:45
(0:043)���

2:01
[0:04]

�6531:19

SSMI 0:47
(0:062)���

0:87
(0:112)���

2:09
[0:04]

�6133:67 0:47
(0:053)���

0:52
(0:062)���

2:88
[0:00]

�5108:27

OMXC 0:52
(0:121)���

0:57
(0:156)���

2:67
[0:01]

�5085:39 0:66
(0:204)���

0:35
(0:199)�

2:99
[0:00]

�4547:20

OMXS 0:39
(0:100)���

1:11
(0:218)���

3:57
[0:00]

�4967:65 0:52
(0:085)���

0:51
(0:107)���

2:69
[0:01]

�3899:14

OSE 0:75
(0:040)���

0:36
(0:058)���

3:20
[0:00]

�6694:12 0:65
(0:047)���

0:33
(0:046)���

2:49
[0:02]

�5914:80

Notes: The numbers in parentheses are robust standard errors. ���, ��, � denote

signi�cance at the 0:01, 0:05, 0:10 level respectively. SBT denotes the Sign Bias

test of Engle and Ng (1993). The numbers in square brackets are p-values. lnL denotes

the log-likelihood value for each speci�cation.
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Table 3: The m-DAP-HEAVY model.

Panel A. Stock Returns: m-DAP-HEAVY- r4

(1� �rL)(�2rt)
�r
2 = !r + rrst�1L(r

2
t )

�r
2 + rRst�1L(RMt)

�R
2

�r rr rR �r �R SBT lnL

FTSE 0:87
(0:013)���

0:10
(0:014)���

0:11
(0:019)���

1:50 1:30 0:70
[0:49]

�5746:51

EU 0:88
(0:013)���

0:09
(0:015)���

0:14
(0:027)���

1:50 1:30 1:39
[0:16]

�6620:78

DAX 0:89
(0:013)���

0:07
(0:013)���

0:12
(0:025)���

1:40 1:40 1:02
[0:31]

�6585:29

CAC 0:88
(0:012)���

0:09
(0:013)���

0:15
(0:026)���

1:40 1:10 0:67
[0:50]

�6519:87

AEX 0:89
(0:011)���

0:09
(0:012)���

0:12
(0:022)���

1:40 1:20 1:27
[0:20]

�6277:56

BELL 0:87
(0:013)���

0:11
(0:014)���

0:12
(0:023)���

1:40 1:20 0:48
[0:63]

�6001:13

IBEX 0:88
(0:017)���

0:09
(0:015)���

0:17
(0:049)���

1:70 1:20 0:06
[0:95]

�6959:82

SSMI 0:86
(0:011)���

0:10
(0:014)���

0:18
(0:027)���

1:50 1:20 1:00
[0:32]

�5802:58

OMXC 0:86
(0:017)���

0:09
(0:018)���

0:15
(0:031)���

1:60 1:00 0:11
[0:91]

�4759:62

OMXS 0:87
(0:016)���

0:12
(0:020)���

0:16
(0:035)���

1:60 1:00 0:12
[0:91]

�4672:02

OSE 0:90
(0:014)���

0:10
(0:015)���

0:09
(0:025)���

1:60 1:00 0:59
[0:56]

�6271:82

Notes: See Notes in Table 2.

4The returns equation is also estimated with the direct Heavy e¤ect from the power transformed realized measure, �rR,

instead of the Heavy asymmetry, rR (These results are available in Appendix Table A.4).
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Table 3: The m-DAP-HEAVY model.

Panel B. Realized Measure: m-DAP-HEAVY- R

(1� �RL)(�2Rt)
�R
2 = !R + (�RR + RRst�1)L(RMt)

�R
2

+Rrst�1L(r
2
t )

�r
2 + �REPUt�1 + �RBOt�1 + #RCOt�1

�R �RR RR Rr �R �R #R �r �R SBT lnL

FTSE 0:77
(0:022)���

0:13
(0:022)���

0:04
(0:014)���

0:09
(0:008)���

0:02
(0:005)���

0:06
(0:011)���

MOVE

0:01
(0:006)��

WTI

1:50 1:30 1:04
[0:30]

�5744:36

EU 0:72
(0:025)���

0:17
(0:023)���

0:04
(0:013)���

0:08
(0:007)���

0:01
(0:006)��

0:07
(0:015)���

MOVE

0:02~
(0:009)�

GSCI

1:50 1:30 1:40
[0:16]

�6509:33

DAX 0:72
(0:023)���

0:20
(0:021)���

0:03
(0:010)���

0:07
(0:007)���

0:01
(0:006)�

0:06
(0:019)���

AAA

0:02~
(0:008)���

GSCI

1:40 1:40 0:90
[0:37]

�6460:71

CAC 0:69
(0:023)���

0:21
(0:020)���

0:03
(0:008)���

0:06
(0:005)���

0:02
(0:005)���

0:06
(0:012)���

MOVE

0:01
(0:004)�

WTI

1:40 1:10 0:54
[0:59]

�6110:21

AEX 0:67
(0:024)���

0:22
(0:022)���

0:02
(0:010)���

0:07
(0:006)���

0:01
(0:004)���

0:06
(0:011)���

MOVE

0:01~
(0:007)�

GSCI

1:40 1:20 0:96
[0:34]

�5706:58

BELL 0:65
(0:024)���

0:26
(0:022)���

0:02
(0:009)��

0:06
(0:006)���

0:02
(0:004)���

0:04
(0:009)���

MOVE

1:40 1:20 0:20
[0:84]

�5242:64

IBEX 0:66
(0:027)���

0:26
(0:025)���

0:02
(0:011)��

0:04
(0:004)���

0:03
(0:007)���

0:03
(0:013)���

MOVE

0:02
(0:008)��

WTI

1:70 1:20 0:68
[0:50]

�6441:87

SSMI 0:64
(0:033)���

0:27
(0:031)���

0:02
(0:008)���

0:05
(0:005)���

0:01
(0:003)�

0:05
(0:010)���

MOVE

0:01~
(0:003)��

GSCI

1:50 1:20 0:41
[0:68]

�5073:07

OMXC 0:73
(0:044)���

0:20
(0:033)���

0:04
(0:006)���

0:01
(0:006)�

0:04
(0:017)��

AAA

1:60 1:00 1:06
[0:29]

�4492:10

OMXS 0:69
(0:040)���

0:20
(0:033)���

0:03
(0:010)���

0:05
(0:005)���

0:01
(0:007)��

0:15
(0:028)���

BAA

0:02~
(0:008)���

GSCI

1:60 1:00 0:84
[0:40]

�3732:41

OSE 0:72
(0:022)���

0:17
(0:015)���

0:04
(0:009)���

0:04
(0:004)���

0:03
(0:006)���

BAA_AAA

0:02
(0:007)���

GSCI

1:60 1:00 0:87
[0:39]

�5813:53

Notes: See Notes in Table 2. ~ signi�es that the Commodity coe¢ cient is not jointly signi�cant with the Bonds

parameter.
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Table 4: Mean Square Error (MSE) and QLIKE of m-step-ahead out-of-sample forecasts for FTSE

as a Ratio of the benchmark model.

MSE QLIKE

Speci�cations# m-steps ! 1 5 10 20 1 5 10 20

Panel A: Stock Returns (HEAVY-r)

Benchmark 1:000 1:000 1:000 1:000 1:000 1:000 1:000 1:000

m-DAP 0:777 0:793 0:824 0:902 0:751 0:782 0:816 0:929

Panel B: Realized Measure (HEAVY-R)

Benchmark 1:000 1:000 1:000 1:000 1:000 1:000 1:000 1:000

DAP 0:851 0:896 0:933 0:967 0:762 0:801 0:794 0:831

m-DAP (EPU only) 0:813 0:877 0:901 0:915 0:719 0:750 0:787 0:766

m-DAP � 0:836 0:854 0:873 0:902 0:747 0:738 0:781 0:759

Notes: Bold numbers indicate minimum values across the di¤erent speci�cations.

� The m-DAP-HEAVY-R speci�cation includes all three macro-factors: EPU, Bonds & Commodities.

Table 5: The break dates for FTSE.

1st Break 2nd Break 3rd Break

r 03/10/2003 23/07/2007 27/05/2010

R 01/10/2003 24/07/2007 21/07/2010

Notes: Bai & Perron breaks identi�cation: Results selected

from the repartition procedure for 1% signi�cance level

with 5 maximum number of breaks and 0:15 trimming

parameter. Dates in bold indicate that the corresponding

dummy coe¢ cient is used in the HEAVY models.
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Table 6: The m-DAP-HEAVY model for FTSE

with the crisis period break.

Panel A. Stock Returns: m-DAP-HEAVY- r

(1� �rL)(�2rt)
�r
2 = !r + (rr + 

(2)
rr D2;t�1)st�1L(r

2
t )

�r
2

+(rR + 
(2)
rRD2;t�1)st�1L(RMt)

�R
2

I �r rr 
(2)
rr rR

0:87
(0:013)���

0:10
(0:013)���

0:04
(0:014)���

0:10
(0:019)���

II �r rr rR 
(2)
rR

0:87
(0:013)���

0:11
(0:014)���

0:10
(0:019)���

0:04
(0:013)���

Panel B. Realized Measure: m-DAP-HEAVY- R

with EPU, Bonds & Commodities

(1� �RL)(�2Rt)
�R
2 = !R + [�RR + �

(2)
RRD2;t�1

+(RR + 
(2)
RRD2;t�1)st�1]L(RMt)

�R
2

+(Rr + 
(2)
RrD2;t�1)st�1L(r

2
t )

�r
2 + (�R + �

(2)
R D2;t�1)EPUt�1

+(�R + �
(2)
R D2;t�1)BOt�1 + (#R + #

(2)
R D2;t�1)COt�1

I �R �RR �
(2)
RR RR Rr

0:77
(0:021)���

0:13
(0:023)���

0:02
(0:004)���

0:04
(0:015)���

0:08
(0:008)���

II �R �RR RR 
(2)
RR Rr

0:78
(0:021)���

0:13
(0:023)���

0:04
(0:0174)���

0:03
(0:008)���

0:08
(0:008)���

III �R �RR RR Rr 
(2)
Rr

0:77
(0:021)���

0:13
(0:023)���

0:04
(0:015)���

0:08
(0:008)���

0:03
(0:009)���

IV �R �RR RR Rr �R �
(2)
R

0:78
(0:022)���

0:12
(0:023)���

0:05
(0:015)���

0:09
(0:008)���

0:01
(0:004)�

0:01
(0:002)���

V �R �RR RR Rr �R �
(2)
R

0:77
(0:022)���

0:12
(0:024)���

0:04
(0:015)���

0:09
(0:008)���

0:02
(0:009)���

MOVE

0:01
(0:002)���

MOVE

V I �R �RR RR Rr #R #
(2)
R

0:78
(0:021)���

0:12
(0:023)���

0:05
(0:015)���

0:09
(0:008)���

0:01
(0:005)�

GSCI

0:01
(0:001)���

GSCI

Powers �i

�r �R

1:50 1:30

Notes: See notes in Table 2.

Superscripts in parentheses indicate the crisis break date.
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Table 7: The Benchmark HEAVY-R equation for FTSE with the EPU e¤ect on Heavy, Bonds and

Commodities parameters.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1� �RL)�2Rt = !R + (�RR + �
epu
RREPUt�1)L(RMt)+

(�R + �
epu
R EPUt�1)BOt�1 + (#R + #

epu
R EPUt�1)COt�1

�R 0:61
(0:041)���

0:60
(0:042)���

0:60
(0:041)���

0:58
(0:043)���

0:60
(0:042)���

0:60
(0:041)���

0:61
(0:041)���

0:61
(0:040)���

0:61
(0:040)���

0:59
(0:043)���

�RR 0:23
(0:083)���

0:19
(0:088)��

0:17
(0:094)�

0:21
(0:084)���

0:37
(0:041)���

0:37
(0:041)���

0:37
(0:041)���

0:37
(0:042)���

0:37
(0:042)���

0:37
(0:042)���

�epuRR 0:06
(0:038)�

0:08
(0:040)��

0:09
(0:042)��

0:07
(0:038)�

�R 0:06
(0:028)��

MOVE

0:08
(0:041)�

BAA

0:06
(0:018)���

BAA_AAA

0:04
(0:024)�

MOVE

0:08
(0:032)���

MOVE

0:06
(0:027)��

MOVE

�epuR 0:02
(0:006)���

MOVE

0:03
(0:017)�

AAA

0:04
(0:017)���

BAA

0:02
(0:007)���

BAA_AAA

#R

#epuR 0:01
(0:005)���

WTI

0:01
(0:004)��

GSCI

Notes: See notes in Table 2. Superscripts indicate the EPU e¤ect on the respective parameter. � denotes marginal

signi�cance at the 0:15 level (�R in speci�cation (5)).
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Table 8: The m-DAP-HEAVY-R equation for FTSE with the EPU e¤ect on Heavy, Arch, Bonds and

Commodities parameters.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(1� �RL)(�2Rt)
�R
2 = !R + [�RR + �

epu
RREPUt�1+

(RR + 
epu
RREPUt�1)st�1]L(RMt)

�R
2 + (Rr + 

epu
Rr EPUt�1)st�1L(r

2
t )

�r
2 +

(�R + �
epu
R EPUt�1)BOt�1 + (#R + #

epu
R EPUt�1)COt�1

�R 0:76
(0:023)���

0:77
(0:021)���

0:77
(0:020)���

0:77
(0:020)���

0:77
(0:022)���

0:77
(0:021)���

0:77
(0:021)���

0:77
(0:021)���

0:77
(0:021)���

0:76
(0:021)���

�RR 0:05
(0:022)��

0:13
(0:023)���

0:13
(0:022)���

0:13
(0:021)���

0:13
(0:022)���

0:13
(0:022)���

0:13
(0:022)���

0:13
(0:022)���

0:13
(0:023)���

0:12
(0:021)���

�epuRR 0:03
(0:012)���

RR 0:04
(0:014)���

0:04
(0:015)���

0:04
(0:014)���

0:04
(0:015)���

0:04
(0:014)���

0:04
(0:014)���

0:04
(0:015)���

0:04
(0:014)���

epuRR 0:02
(0:006)���

0:02
(0:005)���

Rr 0:09
(0:008)���

0:08
(0:008)���

0:09
(0:008)���

0:09
(0:008)���

0:09
(0:008)���

0:08
(0:008)���

0:09
(0:008)���

0:09
(0:008)���

epuRr 0:04
(0:003)���

0:04
(0:003)���

�R 0:05
(0:011)���

MOVE

0:04
(0:011)���

MOVE

0:05
(0:011)���

MOVE

0:05
(0:011)���

MOVE

0:03
(0:011)���

MOVE

0:05
(0:011)���

MOVE

0:05
(0:010)���

MOVE

0:04
(0:015)���

AAA

0:07
(0:019)���

BAA

0:03
(0:006)���

BAA_AAA

�epuR 0:01
(0:003)���

MOVE

#R 0:01
(0:006)�

WTI

0:01
(0:006)��

WTI

0:01
(0:006)��

WTI

0:01
(0:006)��

WTI

0:01
(0:006)��

WTI

#epuR 0:01
(0:002)���

WTI

0:01
(0:001)���

GSCI

0:01
(0:002)���

WTI

0:01
(0:002)���

WTI

0:004
(0:001)���

GSCI

�r 1:50

�R 1:30

Notes: See notes in Table 2. Superscripts indicate the EPU e¤ect on the respective parameter.
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Table 9: The EPU e¤ect on Heavy, Bonds and Commodities parameters

in the m-DAP-HEAVY-R equation.

(1� �RL)(�2Rt)
�R
2 = !R + [�RR + �

epu
RREPUt�1+

(RR + 
epu
RREPUt�1)st�1]L(RMt)

�R
2 + (Rr + 

epu
Rr EPUt�1)st�1L(r

2
t )

�r
2 +

(�R + �
epu
R EPUt�1)BOt�1 + (#R + #

epu
R EPUt�1)COt�1

�epuRR epuRR epuRr �epuR
MOV E

�epuR
AAA

�epuR
BAA

�epuR
BAA_AAA

#epuR
GSCI

#epuR
WTI

EU 0:03
(0:011)���

0:02
(0:005)���

0:03
(0:003)���

0:01
(0:003)���

0:02
(0:008)���

0:03
(0:008)���

0:02
(0:003)���

0:01
(0:002)���

DAX 0:02
(0:009)��

0:02
(0:004)���

0:03
(0:003)���

0:01
(0:003)���

0:02
(0:007)���

0:03
(0:008)���

0:01
(0:003)���

0:003
(0:002)��

CAC 0:04
(0:008)���

0:01
(0:003)���

0:02
(0:002)���

0:01
(0:003)���

0:03
(0:006)���

0:04
(0:007)���

0:02
(0:002)���

0:01
(0:001)���

0:01
(0:002)���

AEX 0:03
(0:008)���

0:01
(0:004)��

0:03
(0:002)���

0:01
(0:002)���

0:02
(0:006)���

0:03
(0:006)���

0:01
(0:002)���

0:004
(0:001)���

0:01
(0:002)���

BELL 0:03
(0:009)���

0:01
(0:004)��

0:02
(0:002)���

0:01
(0:002)���

0:01
(0:005)���

0:02
(0:004)���

0:01
(0:002)���

0:004
(0:001)���

0:01
(0:002)���

IBEX 0:04
(0:011)���

0:01
(0:004)��

0:02
(0:002)���

0:02
(0:004)���

0:01
(0:007)��

0:03
(0:008)���

0:01
(0:003)���

0:01
(0:002)���

0:01
(0:003)���

SSMI 0:03
(0:009)���

0:01
(0:003)���

0:02
(0:002)���

0:01
(0:002)���

0:02
(0:006)���

0:02
(0:006)���

0:01
(0:002)���

0:003
(0:001)��

0:003
(0:002)��

OMXC 0:02
(0:012)�

0:02
(0:003)���

0:01
(0:003)��

0:02
(0:008)��

0:03
(0:009)���

0:01
(0:004)���

OMXS 0:03
(0:012)���

0:01
(0:004)���

0:02
(0:002)���

0:01
(0:002)���

0:03
(0:009)���

0:03
(0:009)���

0:01
(0:003)���

0:003
(0:002)�

OSE 0:01
(0:003)���

0:02
(0:002)���

0:004
(0:002)�

0:02
(0:006)���

0:02
(0:006)���

0:01
(0:002)���

Notes: See notes in Table 2. Superscripts indicate the EPU e¤ect on the respective parameter.

� denotes marginal signi�cance at the 0:15 level (�epuRR for OMXC, �epuR
MOV E

for OSE).
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Table A.1: The DAP-HEAVY-R equation. (without macro-factors)

(1� �RL)(�2Rt)
�R
2 = !R+

+ (�RR + RRst�1)L(RMt)
�R
2 + Rrst�1L(r

2
t )

�r
2

�R �RR RR Rr �r �R

FTSE 0:77
(0:020)���

0:14
(0:022)���

0:04
(0:014)���

0:08
(0:008)���

1:50 1:30

EU 0:73
(0:023)���

0:18
(0:023)���

0:04
(0:012)���

0:08
(0:007)���

1:50 1:30

DAX 0:72
(0:022)���

0:21
(0:021)���

0:03
(0:010)���

0:07
(0:007)���

1:40 1:40

CAC 0:70
(0:022)���

0:22
(0:020)���

0:03
(0:008)���

0:05
(0:005)���

1:40 1:10

AEX 0:69
(0:023)���

0:23
(0:022)���

0:03
(0:010)���

0:06
(0:006)���

1:40 1:20

BELL 0:66
(0:023)���

0:26
(0:023)���

0:02
(0:009)��

0:05
(0:006)���

1:40 1:20

IBEX 0:67
(0:026)���

0:27
(0:026)���

0:02
(0:011)��

0:04
(0:004)���

1:70 1:20

SSMI 0:65
(0:031)���

0:27
(0:030)���

0:03
(0:008)���

0:05
(0:005)���

1:50 1:20

OMXC 0:73
(0:045)���

0:20
(0:033)���

0:04
(0:006)���

1:60 1:00

OMXS 0:69
(0:037)���

0:22
(0:033)���

0:03
(0:010)���

0:04
(0:005)���

1:60 1:00

OSE 0:74
(0:021)���

0:17
(0:016)���

0:03
(0:008)���

0:04
(0:004)���

1:60 1:00

Notes: See Notes in Table 2.

48



Table A.2: The m-DAP-HEAVY-R equation for FTSE with EPU, Bonds & Commodities.

(stepwise procedure)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1� �RL)(�2Rt)
�R
2 = !R + (�RR + RRst�1)L(RMt)

�R
2

+Rrst�1L(r
2
t )

�r
2 + �REPUt�1 + �RBOt�1 + #RCOt�1

�R 0:77
(0:020)���

0:76
(0:021)���

0:77
(0:021)���

0:77
(0:021)���

0:77
(0:021)���

0:76
(0:021)���

0:77
(0:022)���

0:77
(0:021)���

0:76
(0:021)���

�RR 0:14
(0:021)���

0:13
(0:021)���

0:13
(0:021)���

0:13
(0:022)���

0:13
(0:022)���

0:12
(0:021)���

0:13
(0:022)���

0:13
(0:022)���

0:12
(0:022)���

RR 0:04
(0:014)���

0:04
(0:014)���

0:04
(0:014)���

0:04
(0:014)���

0:04
(0:014)���

0:04
(0:014)���

0:04
(0:014)���

0:04
(0:014)���

0:04
(0:014)���

Rr 0:08
(0:008)���

0:09
(0:008)���

0:08
(0:008)���

0:08
(0:008)���

0:09
(0:008)���

0:09
(0:008)���

0:09
(0:008)���

0:09
(0:008)���

0:09
(0:008)���

�R 0:01
(0:004)���

0:02
(0:005)���

0:01
(0:005)���

0:02
(0:005)���

0:03
(0:005)���

0:01
(0:004)��

0:02
(0:005)���

0:02
(0:005)���

0:01
(0:005)���

�R 0:05
(0:011)���

MOVE

0:04
(0:014)���

AAA

0:07
(0:018)���

BAA

0:03
(0:006)���

BAA_AAA

0:06
(0:011)���

MOVE

0:08
(0:019)���

BAA

0:03
(0:006)���

BAA_AAA

#R 0:01
(0:007)�

GSCI

0:01
(0:006)��

WTI

0:01
(0:006)�

WTI

0:01
(0:007)�

GSCI

�r 1:50

�R 1:30

AIC 2:59901 2:59895 2:59936 2:59926 2:59903 2:59859 2:59829 2:59940 2:59898

Notes: See notes in Table 2. � denotes marginal signi�cance at the 0:15 level (#R in speci�cation (9)).
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Table A.3: The EPU e¤ect on Heavy, Bonds and Commodities parameters

in the Benchmark HEAVY-R equation.

(1� �RL)�2Rt = !R + (�RR + �
epu
RREPUt�1)L(RMt)+

(�R + �
epu
R EPUt�1)BOt�1 + (#R + #

epu
R EPUt�1)COt�1

�epuRR �epuR
MOV E

�epuR
AAA

�epuR
BAA

�epuR
BAA_AAA

#epuR
GSCI

#epuR
WTI

EU 0:08
(0:033)��

0:02
(0:007)��

0:05
(0:019)���

0:04
(0:009)���

0:004
(0:002)��

DAX 0:01
(0:005)�

0:02
(0:016)�

0:03
(0:014)��

0:02
(0:007)���

0:03
(0:016)�

CAC 0:09
(0:028)���

0:02
(0:006)���

0:04
(0:016)���

0:06
(0:016)���

0:04
(0:008)���

0:01
(0:003)���

0:02
(0:005)���

AEX 0:09
(0:024)���

0:02
(0:004)���

0:04
(0:012)���

0:04
(0:011)���

0:02
(0:006)���

0:01
(0:002)���

0:01
(0:004)��

BELL 0:07
(0:025)���

0:01
(0:003)���

0:02
(0:008)��

0:03
(0:008)���

0:02
(0:004)���

0:01
(0:002)���

0:01
(0:003)���

IBEX 0:09
(0:037)���

0:03
(0:010)���

0:03
(0:020)�

0:05
(0:022)��

0:03
(0:011)���

0:01
(0:005)���

0:03
(0:009)���

SSMI 0:01
(0:007)�

0:02
(0:014)�

0:02
(0:013)�

0:01
(0:003)���

OMXC

OMXS 0:10
(0:066)�

0:05
(0:020)��

0:04
(0:018)��

OSE 0:01
(0:006)�

Notes: See notes in Table 2. Superscripts indicate the EPU e¤ect on the

respective parameter. � denotes marginal signi�cance at the 0:15 level

(�epuR
AAA

for DAX and SSMI, �epuRR for OMXS).

50



Table A.4: The m-OAP-HEAVY-r equation.

(1� �rL)(�2rt)
�r
2 = !r + rrst�1L(r

2
t )

�r
2 + �rRL(RMt)

�R
2

�r rr �rR �r �R lnL

FTSE 0:81
(0:025)���

0:15
(0:015)���

0:10
(0:023)���

1:50 1:30 �5747:63

EU 0:82
(0:029)���

0:13
(0:016)���

0:13
(0:036)���

1:50 1:30 �6623:97

DAX 0:78
(0:035)���

0:11
(0:016)���

0:15
(0:037)���

1:40 1:40 �6578:93

CAC 0:67
(0:089)���

0:13
(0:024)���

0:36
(0:132)���

1:40 1:10 �6521:71

AEX 0:75
(0:054)���

0:13
(0:016)���

0:24
(0:075)���

1:40 1:20 �6287:84

BELL 0:73
(0:040)���

0:12
(0:013)���

0:20
(0:045)���

1:40 1:20 �6004:52

IBEX 0:75
(0:075)���

0:14
(0:019)���

0:27
(0:125)���

1:70 1:20 �6961:27

SSMI 0:66
(0:060)���

0:16
(0:020)���

0:35
(0:095)���

1:50 1:20 �5807:50

OMXC 0:73
(0:044)���

0:13
(0:023)���

0:29
(0:071)���

1:60 1:00 �4761:04

OMXS 0:74
(0:059)���

0:16
(0:023)���

0:32
(0:105)���

1:60 1:00 �4673:32

OSE 0:82
(0:025)���

0:13
(0:017)���

0:18
(0:037)���

1:60 1:00 �6277:02

Notes: See Notes in Table 2.
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Figure 1. FTSE 100 Returns and Realized Variance k-step ahead forecasts

Figure 2. Autocorrelation of FTSE 100 jrtj�r for

�r = 1:5; 1:7; 2:0

Figure 3. Autocorrelation of FTSE 100

jSSR_RMtj�R for �R = 1:3; 1:6; 2:0
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Figure 4. Autocorrelation of FTSE 100 jrtj�r at

lags 1; 12; 36; 72; 96

Figure 5. Autocorrelation of FTSE 100

jSSR_RMtj�R at lags 1; 12; 36; 72; 96

Figure 6. UK EPU and FTSE 100 Realized Variance
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Figure 7. UK EPU and the Credit market proxies

Figure 8. UK EPU and the Commodity market proxies
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Figure 9. Power transformed FTSE Squared Returns with breaks

Figure 10. Power transformed FTSE Realized Variance with breaks
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Figure A.1. FTSE 100 Realized Variance Figure A.2. FTSE 100 Squared Returns

Figure A.3. UK Economic Policy Uncertainty

Figure A.4. S&P GSCI Figure A.5. Crude oil WTI
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Figure A.6. Merrill Lynch MOVE 1 Month Figure A.7. Moody�s AAA corporate bonds yield

Figure A.8. Moody�s BAA corporate bonds yield Figure A.9. BAA-AAA corporate bonds spread
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Figure A.10. FTSE 100 Standardized Residuals (Benchmark HEAVY and m-DAP-HEAVY models)
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