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Abstract

In the field of machine learning, it is still a critical issue to identify and supervise the
learned representation without manually intervening or intuition assistance to extract
useful knowledge or serve for the downstream tasks. In this work, we focus on super-
vising the influential factors extracted by the variational autoencoder(VAE). The VAE
is proposed to learn independent low dimension representation while facing the prob-
lem that sometimes pre-set factors are ignored. We argue that the mutual information
of the input and each learned factor of the representation plays a necessary indicator
of discovering the influential factors. We find the VAE objective inclines to induce
mutual information sparsity in factor dimension over the data intrinsic dimension and
therefore result in some non-influential factors whose function on data reconstruction
could be ignored. We show mutual information also influences the lower bound of
VAE’s reconstruction error and downstream classification task. To make such indicator
applicable, we design an algorithm for calculating the mutual information for VAE and
prove its consistency. Experimental results on MNIST, CelebA and DEAP datasets
show that mutual information can help determine influential factors, of which some are
interpretable and can be used to further generation and classification tasks, and help
discover the variant that connects with emotion on DEAP dataset.
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1. Introduction

Learning efficient low dimension representation of data is important in machine
learning and related applications. Efficient and intrinsic low dimension representation is
helpful to exploit the underlying knowledge of data and serves for latter tasks including
generation, classification and association. Early linear dimension reduction (Principle
Component Analysis ([1],[2])) has been widely used in primary data analysis and its
variant has been applied in face identification ([3]) and classical linear independent rep-
resentation (Independent Component Analysis ([4],[5]) have been used in blind source
separation ([6]) and EEG signal processing ([7]). Nonlinear dimension reduction (e.g.
Autoencoder [8],[9],[10]) begins to further learn abstract representation([11],[12]) and
has been used in semantic hashing ([13] and many other tasks([14],[15],[16]). Recently,
a new technique, called variational autoencoder ([17, 18]) has attracted much attention
of researchers, due to its capability in extracting nonlinear independent representation.
The method can further model causal relationship, represent disentangled visual variants
([191,[20],[21]) and interpretable time series variants ([23],[24]) and this method can
serve for generating signals with abundant diversities in a “factor-controllable” way
([25]1,[26],[27]). The related techniques enable the knowledge transferring through
shared factors among different tasks ([28]).

However, the usage of VAE on extracting factors are unclear and we lack efficient
methodologies to quantify the influence of each learned factor on data representation.
In application, sometimes some pre-set factors remain unused * ([8],[29]), and the
relation between the learned factors and original data has to be discovered by manually
intervention (visual or aural observation). This leads to the waste on extra factors and
hinders the factor selection for the subsequent tasks such as generating meaningful
image/audio. Besides, some classical influence determination methods including esti-
mating the variance of each factor lose its utility on the VAE. Therefore, identifying

and monitoring the influential factor of VAE becomes a critical issue along this line of

2 According to [22], although the method proves effective at making the disentangled factors not correlated,

the learned disentangled factors are still correlated with each other.
3 Montage (D) in Fig.(1) is a typical traversal of the unused factor.
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Figure 1: Estimated I(X; Zency ) determines the influential factors; 1(X; Zencp), 02 , and qualitative-

ly influential factor traversals of 3(= 10)-VAE on MNIST. The top pulse subgraph: I(X; Zency,) of each
factor. The bottom reverse pulse subgraph: the estimated variance (rfhy of each factor. The A,B,C montages:
influential factor traversals corresponding to factor A,B,C noted in the pulse graph and the whole influential
factor traversals are listed in Fig.(A.7) in Appendix Appendix A. The montages D is the traversal of ignored
factors with little estimated mutual information. According to the four montages, the variance can’t determine

the influential factors as mutual information indicator does.

research.
In order to efficiently determine and supervise the learned factors, this paper has

made the following efforts.

e We first adopt mutual information as the quantitative indicator of assessing the
influence of each factor on data representation in the VAE model. Besides, in
order to analyze the rationality of this indicator, we theoretically prove that how
mutual information influence the lower bound of VAE’s reconstruction error and

subsequent classification task.

e We propose an estimation algorithms to calculate the mutual information for all

the factors of VAE, and then we prove its consistency.

e We substantiate the effectiveness of the proposed indicator by experiments on

MNIST ([30]), CelebA ([31]) and DEAP ([32]). Especially, some discovered
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factors by the proposed indicator are found meaningful and interpretable for
data representation and other left ones are generally ignorable for the task. The
capability of the selected factors on generalization and classification tasks are

also verified.

This paper is organized as the following. We introduce the VAE model for generation
and classification in Section 2. We argue the necessity of mutual information as a
indicator in Section 3. Specifically, we introduce the mutual information of input data
and factors, analyze the cause through the perspective of mutual information and data
intrinsic dimension, discuss the relationship of mutual information and recover as well
as the classification and propose the estimator and prove its consistency. We review the
related work on supervising the factors of VAE in Section 4. The experiments are in
Section 5.

Throughout the paper, we denote a random variable in upper case, e.g., Z; a random
vector in bold upper case, e.g., Z, whose ht" component is denoted as Zj,; a general
vector as bold lower case, e.g., z. More notations appearing in the following contents

are listed in Table 1 for easy reference.

2. VAE model

VAE ([17], [18]) is a scalable unsupervised representation learning model ([33]):
VAE assumes that input X is generated by several independent Gaussian random
variables Z, that is pgec(z) = N (2|0, Iy7). Since Gaussian distribution can be con-
tinuously and reversibly mapping to many other distributions, the theoretical anal-
ysis on it might be also instructive for other continuous-latent VAEs. The generat-
ing/decoding process is modeled as pgec(x|z) and the inference/encoding process
Jenc(2|x) = N (z|p(x), diag(c1(x),- -+ , o (x))) is treated as the approximate pos-
terior distribution. Note that it yields that genc (2]|X) = genc(21]X) * - - genc(21]X). We
assume both of them are parameterized by the neural network with parameter enc and
dec.

Factor: Let Zen denote random variables with genc(z) = [ Genc (2|X)Pdata (x)dx

and a factor in the latter literature refers to a dimension of Zgpc.



Notation  Explanation

X random variables representing the data

Y random variables representing the data label

Z random variables with pgec(z) = N (2|0, I)

Zone random variables with genc(z) = [ enc(2|X)Pdata(x)dx

Zench a random variable with index A of Zepnc

Yore random variables with ppre(y) = [ Ppre(¥|2)denc (2]X)pdate (x)dx

X(Zence) afunction named X of Zione, the estimator of X

H(X) E —logp(x)
x~p(x)
I(X;Z) JE D1 (p(2|x)[lp(2))
Xee dec,,(Zenc) where dec, is such that pgec(x|z) = N (x|dec,(z), dec,)
Znajor a major set of Zence wWhere Zene = [Zmajors Zminor)
Zinor a minor set of Zene Where Zene = [Zmajors Zminor)

Xrecc decu(zmajora 0)

Y a random variable, the estimator of Y’

Table 1: Notation Table

2.1. Generation

70 In VAE setting, the approximate inference method is applied to maximizing the
variational lower bound of 10g pgec(x) = 10g [ Pdec(X|2)pdec(2)dz,

Lree = E Ingdec(X|Z) -

Z~Qenc (le)

Dgr ((Zenc (Z‘X) | |pdec (Z))

IN

log pdec(x), ey
with the equality holds iff
D 1.(genc (2[x)||[pdec(z]x)) = 0. 2

In order to limit the information channel capacity ([33]), 8-VAE introduces 5 > 1
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to the second term of the objective,

ACrec—/ﬁ' = E logpdec(z|x) -

Z~({enc (le)

BDk 1.(qenc(2X)||Pdec(2))

< logpdec (X) 3)

After training the objective, by sampling from the pgec(z) = N (2|0, I ) or setting

z with purpose, the learned pgec(x|z) can generate new samples.

2.2. Classification

The genc(2z|x) can further support latter tasks such as classification. Let ppre(y|2)
denote the predicting process, and the classification objective is the following,

£pre = E log Ppre (Y|Z) . “4)

Z~gonc (2[X
Let Ypyre denote the random variables with ppre(y) = [ Ppre(¥|2)genc (2]X)pdata (X)dx.
In real implementation the above objectives should further take expectation on the
data distribution. However, sometimes only part factors are manually found useful for
the generation ([8]), and the factor which is irrelevant to x can not support classification
either. Therefore, some approaches to automatically find the influential factor beneficial

to the latter tasks are demanded.

3. Mutual Information as A Necessary Indicator

By exploring why factors are ignored, we argue that mutual information is a neces-

sary indicator to find the influential factor.

3.1. Ignored Factor Analysis

3.1.1. Low Intrinsic Dimension of Data
One aim of the VAE is to learn the data intrinsic factors but intrinsic dimension

keeps the same under the continuous reversible mapping suggested by Theorem 1.
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Theorem 1 (Information Conservation). Suppose that there are two sets of H and
P(H #P)Z=(Z, - ,Zyg)and Y = (Y1, ,Yp), respectively, independent
unit Gaussian random variables, then these two sets of random variables can not
be the generating factor of each other. That is, there are no continuous functions

f: R = RP and g : RY — R such that
Z=g9Y) and Y = f(Z).

Proof. Proof by Contradiction. Suppose those two function exist, and we will show that
they will be inverse mapping of each other and f is a homeomorphism mapping of R
and R”. Here, f is said to be a homeomorphism mapping if it satisfies the following

three conditions:
e f is a bijection,
e f is continuous,
e the inverse function f ! is continuous.

Since R¥ and R have different topology structures (P # ), the homeomorphism

mapping will not exist.
Z=9(Y)=g(f(Z)VZeR" = gof=1Iy
Y = [(Z) = f(g(Y) VY €R" = fog=Ip

It yields g is the inverse function of f and f is bijection. Since both f and g arc
continuous, f is a homeomorphism mapping between R¥ and R” and it leads to the

contradiction. O

Suppose the oracle data, denoted by random variable X, is generated by Y (with
P independent unit Gaussian random variables) with a homeomorphism mapping
X = ¢(Y). Factors Z (with H independent unit Gaussian random variables) generates
the X with a homeomorphism mapping X = ¢/(Z). It yields Z = 1)~ o ¢(Y) and
Y = ¢! 0¢)(Z). Then according to the information conservation theorem, it must

hold that H = P.
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For example, 10 Gaussian factors and 128 Gaussian factors can not generate each
other. Analogically, if the data are gencrated by 10 intrinsic Gaussian factors, it intu-
itively would not be inferred to 128 Gaussian factors by VAE and some factors would

be independent with data although we may pre-set in this way.

3.1.2. Mutual Information Reflexes the Absolute Statistic Dependence

In order to quantify the dependence and estimate which factor influences the gener-
ating process or has no effect at all, the mutual information of zene and x, I(X; Zency,)
can be taken as a rational indicator([34]) . That is,

I(X§ ZenCh) = E Dk, ((Ienc(zh |X) ‘ |(1enc(zh))~ 5

X~Pdata(X)
The mutual information can reflect the absolute statistic dependence: I(X; Zenep) =
0 if and only if X and Zepcj, are independent. The larger 1(X; Zency) is, the more
information Zeycj, conveys regarding X, and the more influential factor it should be to

represent the data.

3.1.3. Sparsity in Mutual Information

Actually, mutual information is implicitly involved in the VAE objective. The
following theorem further suggests the VAE objective induces the sparsity in mutual
information. It then explains why factors are ignored from the perspective of mutual

information.

Theorem 2 (Objective Decomposition). If genc(2|X) < pdec(z)?, for any X, genc(z|x) =
Genc(21]X)  * + Qonc (21 |X) and pacc(z) = N (2|0, I) then it yields the following de-

composition:

e [ 1 norm expression of the KL-divergence term in VAE:

4That is the support of genc(z|x) is contained in support of pgec(z).



E Dy (Qenc(z|x)||pdec(z>)

X~Pdata(X)

= Y E  Dii(genc(2n[%)||pace(zn))

= X b (%)

= H( E DKL(qenc(Zl|X)||pdec(zl))v

X~Pdata (X

E Dk, ((Ian(z2|X)deec(z2))7 Y

X~Pdata(X)

E  Dkr(genc(2n]%)||pdec(2n)))|1- (6)

X~Pagta (X

o Further decomposition of an entity in the L norm expression’

E DKL(C]enc(Zh|X)‘|pdec(zh))

X~Pdata(X)

= I(X7 Zench) + Dk, (Qenc(zh)deec(Zh))- (7

135 Proof. The Ly norm expression is obvious. We prove the further decomposition of an

entity in the L; norm expression:

Genc (Zh |X)pdata (X)
DPdec (Zh )pdata (X)

E DKL(Qenc(Zh|X)||pdec(zh)) :/Qenc(2h|x)pdam(x)

X~Ddata(X)

ddec (Zh |X)pdata (X) Genc (Zh)
= nc(2n|X X dx
/qe C( h| )pdata( ) Qenc(zh)pdata (X) Pdec (Zh)

= I(X§ Zench) + DKL((IenC(Zh)deeC(Zh))' (3
|
140 The theorem demonstrates that the expectation of the second term in variation

lower bound in Eq. (1) can be represented in the form of L; norm which inclines
to induce the sparsity of I(X; Zency) and Dx 1, (Genc(2n)||Pdec(2r)) together in h,
clipping down the non-intrinsic factor dimension to some extent. The sparsity of
Expectation E  Dxkr1(genc(2n|X)||pdec(2n)) actually leads to sparsity of both
145 itS summarizil:i%i:ié’;ms I(X; Zenen) and Dk, (genc(2n)||pdec(2n)) together in h,

since both of them are non-negative. For any zero value summarization, both of its

elements should also be zero. Thus this regularization term inclines to intrinsically

STt is similar to the result in [35].



150

155

?TT i Ll Tile 1 15 XT? J ) T TT

B, 06z ;)(nats)
s N

“© 2 100 120

L]
Generating Factor Index

(A) I(X; Zencp), 02, plot of B(= 40)-VAE on CelebA.

i L X A
ST

dor 62 paS)

Y] 4 6
Generating Factor Index

(B) I(X; Zench). 02, plot of 3(= 6)-VAE on DEAP.

Figure 2: Mutual information sparsity occurs on CelebA and DEAP.

conduct sparsity of mutual information I(X; Zencp, ), which have been comprehensively
substantiated by all our experiments, as can be easily seen in Fig.(1) and Fig.(2).

Therefore VAE objective inclines to induce mutual information sparsity in factor
dimension over the data intrinsic dimension and the factor ignored phenomenon occurs.
On the one hand, with increase in the KL divergence regularization, even when the
number of latent factors is set large, unlike auto-encoder, the over-fitting issue still tends
not to occur. On the other hand, this helps us get influential factors to represent the
variants of data, and facilitate an efficient generalization of data by varying these useful
factors while neglecting others.

By the way, the following theorem suggests the condition that we can use I(x; zy,)

to estimate the whole mutual information.

Theorem 3 (Mutual Information Scparation). Let Zy,--- , Zy be independent unit

10



w0 Gaussian distribution, and Z1, Z, - - - , Z 1 be conditional independent given X. Then

H
I(X: 21, Zu) = Y I(X:Zp)

I
=
>
N
=
s
&
~
s
N
=

)

Proof.

p(xazlv"' aZH)

dz1 - dzgdx
p(Zh"' 7ZH)p(X) ! "

I(szlv aZH):/p(Zl,"' 7ZH,X)10g

H
= /p(x’z17... 7ZH)10g Md21"‘d2HdX

HhH=1 p(zn)
S p(aal%) U
- };/p(x, z) log (o) dzpdx = ;I(X; Zr).

|

This theorem suggests that if the learnt genc(2z) can factorize and the genc(z|x) can
factorize, then we could use the sum of /(X; Zency,) to direct estimate the whole mutual

information.

w5 3.2. Reconstruction and Classification Theoretical Supports

According to [36], the mutual information can also provide a lower bound for the

best mean recover error.

Theorem 4. Suppose X is with differential entropy H(X), then let X(Zenc) be an

estimation of X, and give side information Zeync5, and then it holds that

N 1 . .
E(X — X(Zenc))? > = 2(H(X)=1(X;Zenc)) (10
2me
170 Therefore, if we set paec(x|z) = N (x|dec,(z), dec, ), then X, = dec,(Zenc)

has Lez(H(X)_I()QZenc))
2me

® Notice that Zenc are random variables with genc(2z) = [ genc(z|%)Pdata (x)dx. X(Zenc) is a

function named X of Zenec.

11

as the lower bound for recovering. Let Zene = [Zmajor: Ziminor)-
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Let us only use a major set of factors Zi,qj0r, that is to construct a new estima-
tor X,ece = decy(Zpmajor, 0) with setting Z,,inor = 0. With the assumption that
denc(2z) can factorize, it yields the separation of mutual information I(X; Zenc) =

I(X; Zninor) + I(X; Zpngjor). It yields the following bound,

]E(X - Xrecc)2

> L 2(HX) - I(XiZmasor)
— 2me

s> L ) I(XiZagor) g 2L (KiZoinor) an
~  2rme

The theorem implies that the mutual information carried by the selecting factors
directly influences on the lower bound of the best reconstruction and we may select
some top influential factors carrying the most information to represent and generate the
data with less reconstruction distortion.

We further provide some theoretical supports for the proposed mutual information
as the factor indicator in classification.

Suppose that Markov chain condition, Y — X — Zenc —+ Y pre, holds.” Accord-
ing to the Fano’s inequality ([36]) and the information processing inequality the mutual

information also correlates with the classification error.

Theorem 5 (Fano’s inequality). For any estimation Y such that Y — Zene — Y,
with P, = Pr(Y #Y), we have

H(Pa) + PclOg|y| > H(Y) - I(Yv Zenc) > H(Y) - I(Xv Zenc) (12)

where ) is the alphabet of Y. Since the number of class is no smaller than 2, it naturally

holds that log(|Y|) > 0. This inequality can then pbe weakened to
1+ Plog|Y| > H(Y) — I(Y;Zene) > H(Y) — I[(X; Zenc)- (13)

. H(Y) = I(Y; Zone) =1 _ H(Y) = I(X; Zonc) — |

P. > >
log| Y| log|Y|

(14)

7 This condition implies Y — X — Zenc Which guarantees that genc (z]X,y) = genc(z|x). It also
implies Y — Zenc — Y pre which guarantees that Ypre can be then taken as a rational estimator of Y

based on Theorem 5.

12



190 Note that according to information processing inequality I(X; Zencn) = I(¥; Zench)-
I(X; Zenen) = 0 = I(YV; Zenep) — 0, and If I(y; Zenep,) — 0 the h'" factor will not
influence the prediction. Let we regard Y, as Y. With the assumption that genc(2)
can factorize, since Y — Zgnc — Ypre, the theorem suggests the mutual information
carried by the selecting factors directly influences the lower bound of the classification

15 error and therefore we can remove minor factors according to the mutual information

1(X; Zencp,) without significantly lifting the lower bound of the prediction error.

3.3. Algorithms to Quantitatively Calculate the Proposed indicators
In order to calculate I(X; Zenc ), we assume that ¢*(z) = N (2|0, diag(os, -+ ,0%))
is a factorized zero mean Gaussian estimation for genc(2).
200 We can then list the indicators to be estimated as:
Definition 1 (Estimation for I(X; Zenc): the information conveyed by whole factors).
M

> Dir(genc(zlx™)/q" (2)). (15)

m=1

1

Iest(X; Zenc)]\{ = M

This estimation uses M sample according to the empirical form of Corollary 1.

Definition 2 (Estimation for I(X; Zency,): the information conveyed by a factor).

M
Z DKL(Qenc(Zench|Xm)||q*(zench))~ (16)

m=1

1

Iest(X; Zench)M = M

This indicator quantifies mutual information of a specific factor and input data.
Note that the above indicators need the value of ¢*(z), and thus we need to design
205 algorithms to calculate this term. Based on Theorem 2 through the minimization

equivalence, we know that

min E DKL(Qenc(Z|X)||Q(Z))

4 x~pata(x)

& mqinDKL(qenc(z)Hq(z))dz, a7n

and then we can prove the following result:

13



Corollary 1. if genc(z|X) < ¢*(2) then

E  Dkr(¢enc(zx)|l¢"(2))

X~Pdata (X

= I(Xv Zenc) +DKL(QenC(Z)||q*(Z))' (18)

210 The proof of Corollary 1 is the same as that of Theorem 2. This corollary suggests
that the estimation defined in Definition 1 provides another upper bound for the capacity
of the encoder network. Empirically, this estimation is a much tighter estimation than
the second term of the Objective (1).

¢*(z) can then be obtained by solving the following optimization problem:

1 M
q*( )_ argmm— Z DKL Qenc( |X )HQ( )) (19)

m=1

The above minimization problem can be solved with a closed-form solution as follows®:

o Domet Gi(X7) (™)
K3 M °

215 The proof is as follows:
Notice that suppose we have two multivariate normal distributions, with means

Lo, 1 and with non-singular covariance matrices >g, >; and the two distributions have

the same dimension H, then it yields[37]

det 21 )) (20)

1 B _
Dy, (No||N7) = 5(”(21 '%0)+ (11— po) " E; 1('ul_m))_H_|—lIl(de‘c Yo

Note that we assume ¢(z) = N (2|0, diag(o1,--- ,0p)) and

220 Jenc(2z|x) = N (z|pu(x), diag(o1(x), -+ ,o0u(x))). Thus, we have

s
WE

Dk 1.(qenc(2x™)|lq(2))

m=1
M H
1 T oi(x™)  pi(x™)2 o
- — —1+1
M Z 2 Z o + nai(xm)
m=1 =1
H M
1 Ui(xm) ﬂz(xm)Q %
= — —14+In————.
2 ;mzzl g * o, - no—i(xm)

8The above minimization problem can also be solved by gradient descent.

14
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The optimization can be divided into H optimization sub-problems as the following,

M [~ (T2 .
a;‘:argminzgl(x )—I—'UZ(X ) —1+IHL2‘:1,--~,H. 1)
7i m=1 Ti .

o oi(x™)’
M M
oi(x™) | pa(x™)? Ji oy (x™) + pi(x™)* 1
Vo, + ~1+41In =y - + =
(mz::l o o Z(xm)) mz:; o? o
(22)
Since
(™) p(x™)? 1
> - 2 +— =0, (23)
m=1 g gi
it yields
M [~ (M2
o = Zm:l O-Z(XJW) + pa(x™) . (24)

The above procedure is summarized and presented in Algorithm 1 to calculate the

proposed indicators.

Algorithm 1 Mutual Information Estimation
1: Input: Sampled Data {x™}M_,

Encoder Network genc (2]x) = ' (z]2(x), diag(01(x), -+ ,711(x)))
2: Obtain: ¢*(z) = argmin, ﬁ Z%zl Dicr.(Genc(2x™)|q(2))-
3: fori = h to H do

4: O';c = DN Ui(’]‘\;)*'ﬂ,?(xm).

5: end for
6: Calculate: Iest(X; Zench)M = ﬁ Efq\/{zl DKL(Qenc(Zench|Xm)||q*(zench))
7: for i = h to H do

M « 2 (x™) 4 p2 (x™
8  Iest(X; Zench)m = % Zm:l log Uh((r,}zm) + 2 (x ;Ufl;h(x )-

9: end for

10: Calculate: I, (X; Zene) M

1 Togt (Xs Zene)ns = Yoy Lest (Xs Zencn) -

12: Output: 1.5 (X; Zenc) s Lest (X5 Zencn) s ¢°(2)

The following definition and theorem clarify the consistency of the estimation on

mutual information.

15
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Definition 3 (Consistency). The estimator Ios;(X; Zenc ) v is consistent to I(X; Zenc)
if and only if: Ve > 0V > 0, AN, and q*(z), VM > N, with probability greater than
1 — 6, we have

|Iest (X7 Zenc)]\[ - I(X7 Zenc)| <EeE. (25)

Theorem 6. The estimator Ios;(X; Zenc) pr is consistent 1o I(X; Zienc ). That is, if the
choice of ¢* (z) satisfied the condition that D 1,(qenc(2)||¢*(2)) < €/2, then ¥§ > 0,
dN, VM > N, with probability greater than 1 — §, we have

|Iest(X§ Zenc)]\f - I(X7 Zenc)| <e. (26)

Proof. Let I[q*] = E  Dxkr1.(genc(z|x)||g*(2)). According to the law of big
X~PdatalX

number, we have V§ > 0, AN, VM > N, with probability greater than 1 — §, we have

[ Tost(X; Zenc)mr — I[q7]] < £/2, 27

|Iest (X7 Zenc)]bf - I(X7 Zenc)‘
< |Iest(X§ Zenc)]ﬂ - f[q*” + |I~[q*] - I(X7 Zenc)|

< S+ IDkL(gene(2) 4" ()] < & 28)
O

This theorem suggests the estimation under a high probability could be arbitrary
close to the real mutual information provided that the estimation ¢*(z) is arbitrary close
to the learned genc(2z) and the number of the sample is bigger enough. Besides, the

minimization of Dx 1, (¢enc(2)||¢*(2)) in theorem 6 inspires the derivation of ¢*(z).

4. Related Work

There are not too many works on such indicator designing issue to discover influ-
ential factors in VAE. A general and easy approach for determine the VAE’s factor
influence is through intuitive visual ([8], [33]) or aural ([23]) observation. However, it

might be labor-intensive to select factors for latter tasks.
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In ([38]), genc(z|x) are visualized by plotting the 95% confidence interval as an
cllipse to supervise the behavior of network and it reflects the factor influence directly.
However, it still needs human to interpret the plot.

In classical PCA, it’s common to select factor with high variance and ([26]) suggests
that the variance of factor may indicate the usage of the factors. However, the variance
could not always represent the absolute statistical relationship between the factors and
data, which can be easily observed by Fig.(1) and Fig.(2).

Our work emphasizes mutual information which conveys the absolute statistical
relationship between the factors and the data and uses it as an indictor to find the
influential factors, substantiated with the relationship of the total information of selected
factors and the reconstruction and relationship of mutual information and classification.
All our experiments substantiate that designed indicator can discover the influential

factors significantly relevant for data representation.

5. Experimental Results

5.1. Datasets

MNIST is a database of handwritten digits ([30]). We estimate all mutual information
of factors learned from it and then use different ratio of top influential factors for the
latter generation task.

CelebA ([31]) is a large-scale celebfaces attributes datasets and we only use its
images to sustain influential factor discovery.

DEAP is a publicly famous multi-modalities emotion recognition dataset proposed
by ([32]) and we use the transformed the signal -to-video sequence for 4-class emotion
prediction by using different ratio of top influential factors and for emotion relevant
influential factor extraction.

More details are presented in Appendix A.

5.2. Influential Factor Discovery Tests

According to Fig.(1), the proposed mutual information estimator effectively deter-

mines the influential as well as the non-influential factors. The factors with small values
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Factor 7: 1 (X; Zenc7) = 3.1, Factor 8: 1 (X; Zencg) = 0.8, Factor 12: 1(X; Zenec12) = 2.1,

Background Brighten Smile Turn Right
—— —— —

Figure 3: CelebA: Generating Factors Traversal of 5(=40)-VAE. We present the first 3 influential factors

determined by estimated mutual information. The whole influential factor traversals are listed in appendix A.6.

of estimated mutual information can be found with little generation effects and factors
with large values of mutual information can be found with influential generation effects.
Comparatively, it can be observed that the variance as used in classical methods can not
significantly indicate the usage of factors.

In order to substantiate the validity of our mutual information estimator, we use it to
automatically select influential factors with estimated I(X; Zenep,) > 0.5 of CelebA
shown in the Fig.(A.6) and many of them are possess the interpretable variants such as
background color, smile and face angle etc. This verifies that mutual information is an

effective indicator to automatically determine the influential factors in VAE setting.

5.3. Generation Capability Test for Discovered Factors

Estimated mutual information can instruct the latter generation task with few but
influential factors. We select the different ratios of the top influential factors according to
the quantity of the mutual information to generate the later image. The factors are sorted
according to the values of its mutual information indicators and the other non-influential
factors estimated by the indicator are constantly set to zero in the generating process.
According to Fig.(4), we can find that by on using 10% of the top influential factors
discovered by the proposed algorithm, the VAE model can still generate images almost
similar to the one reconstructed by using whole factors.

Table 2 shows the detailed total information and the reconstruction error corre-

sponding to the different ratio of factor. The top 10% factors contain almost the whole
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Figure 4: Generation plot with different ratio of factors.

Table 2: mutual information and reconstruction error plot

Top(%) factors inused 100 20 10 7 5 4 3 2 1

0

1(X; Zeone, ..., 243 243 243 196 165 147 106 84 58

0

mean square error 5.6 5.6 56 134 150 189 276 313 444

71.7

information and therefore their reconstructions have the almost the same reconstruct
error compared to using all the factors. As suggested by the information and recon-
struction relationship, the less information is contained in the used factors, the higher

minimum reconstruction loss bound is raised.

5.4. Classification Capability Test by Discovered Factors

Estimated mutual information can instruct the latter classification task with few but
influential factors. We select the different ratio of the top influential factors according to
the quantity of the mutual information to predict emotions. The factors are sorted ac-
cording to its mutual information and the estimated non-influential factors are constantly
set to zero in the prediction procedure.

According to Table 3, by only using half of the factors, the model still possesses
the similar prediction accuracy. Besides, the estimated mutual information on the other
side also helps us to determine the several variants which are relevant with the emotion

classification as shown in the following Fig.(5).
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Table 3: Mutual information and EEG-emotion classification with 3(= 6)-VAE

Top(%) factors inused 100 50 10 7 5 4 3 2 1 0
I(X; Zenc,,..,) 538 535 383 280 225 19.6 135 102 7.0 0
mean test accuracy 0.53 052 046 032 034 036 029 029 03 023

Factor 1: I(X; Zenc1) = 2.1,
C4-T8-P4-P§ Block,

Red Turn Green
——

Figure 5: Emotion relevant factors discovery. We present 3 influential factors determined by estimated mutual

Factor26: (X; Zenc104) = 3.2,
PO3-01-Oz & Fpl-Fp2-AF4-AF3 Block,

Turn Dark
——

Factor31: 1(X; Zenc113) = 3.7,
P0O3-01-0z Block,

Turn Green
——

information. The whole influential factor traversals are listed in Fig.(A.8) in appendix.
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6. Conclusion

This paper explains the necessity of using mutual information of the input data and
each factor as the indicator to estimate the intrinsic influence of a factor to represent data
in the VAE model. The mutual information reflects the absolute statistical dependence.
The second term in VAE objective and excess pre-set factors inclines to induce the
mutual information sparsity and helps achieve influential, as well as ignored, factors
in VAE. We have also proved that the mutual information also involves in the lower
bound of the mean square error of the reconstruction and of prediction error of the
classification. We design a feasible algorithm to calculate the indicator for estimating the
mutual information for all factors in VAE and proves its consistency. The experiments
show that both the influential factors and non-influential factors can be automatically
and effectively found. The interpretability of the discovered factors is substantiated
intuitively, and the generalization and classification capability on these factors have
also been verified. Specially, some variants relevant to classification are found. The
experiments also inspire the idea that we can using a small amount of top influential
factors for the latter data processing tasks including generation and classification by
still keeping the performance of all factors, just similar to the dimensionality reduction
capability as classical PCA, ICA and so on.

The VAE combined with mutual information indicator helps automatically find
vairiants and extract knowledge under the data and it can be applied to various variants of
VAE including 8-VAE ([33]), FactorVAE ([39]), 5-TCVAE ([40]) and DIP-VAE ([41]).
It may be beneficial to extensive latter applications including blind source separation,
interpretable feature learning, information bottleneck and data bias elimination. We will

investigate these issues in our future research.

7. Acknowledgments

We would like to thank Zilu Ma and Tao Yu for discussing the information con-
servation theorems. We would like to thank Lingjiang Xie and Rui Qin for EEG data

processing.

21



340

345

350

355

360

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

C. M. Bishop, Pattern recognition and machine learning, springer, 2006.

Q. Zhao, D. Meng, Z. Xu, Robust sparse principal component analysis, Science

China Information Sciences 57 (9) (2014) 1-14.

J. Yang, D. Zhang, A. F. Frangi, J.-y. Yang, Two-dimensional pca: a new approach
to appearance-based face representation and recognition, IEEE transactions on

pattern analysis and machine intelligence 26 (1) (2004) 131-137.

A. Hyviérinen, J. Karhunen, E. Oja, Independent component analysis, Vol. 46, John

Wiley & Sons, 2004.

A. Hyvirinen, P. Pajunen, Nonlinear independent component analysis: Existence

and uniqueness results, Neural Networks 12 (3) (1999) 429-439.

T.-P. Jung, S. Makeig, C. Humphries, T.-W. Lee, M. J. Mckeown, V. Iragui, T. J.
Sejnowski, Removing electroencephalographic artifacts by blind source separation,

Psychophysiology 37 (2) (2000) 163—178.

S. Makeig, A. J. Bell, T.-P. Jung, T. J. Sejnowski, Independent component analysis
of electroencephalographic data, in: Advances in neural information processing

systems, 1996, pp. 145-151.
I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, Stacked denoising
autoencoders: Learning useful representations in a deep network with a local
denoising criterion, Journal of Machine Learning Research 11 (Dec) (2010) 3371-
3408.

Y. J. Fan, Autoencoder node saliency: Selecting relevant latent representations,

Pattern Recognition 88 (2019) 643-653.

G. Bhatt, P. Jha, B. Raman, Representation learning using step-based deep multi-

modal autoencoders, Pattern Recognition.

22



365

370

375

380

385

[12] Z. Zhang, D. Chen, Z. Wang, H. Li, L. Bai, E. R. Hancock, Depth-based sub-
graph convolutional auto-encoder for network representation learning, Pattern

Recognition 90 (2019) 363-376.

[13] R. Salakhutdinov, G. Hinton, Semantic hashing, International Journal of Approxi-
mate Reasoning 50 (7) (2009) 969-978.

[14] K. G. Lore, A. Akintayo, S. Sarkar, Llnet: A deep autoencoder approach to natural
low-light image enhancement, Pattern Recognition 61 (2017) 650-662.

[15] G.Liu, L. Li, L. Jiao, Y. Dong, X. Li, Stacked fisher autoencoder for sar change
detection, Pattern Recognition 96 (2019) 106971.

[16] L. Hou, V. Nguyen, A. B. Kanevsky, D. Samaras, T. M. Kurc, T. Zhao, R. R.
Gupta, Y. Gao, W. Chen, D. Foran, et al., Sparse autoencoder for unsupervised
nucleus detection and representation in histopathology images, Pattern recognition

86 (2019) 188-200.

[17] D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint arX-
iv:1312.6114.

[18] D.J. Rezende, S. Mohamed, D. Wierstra, Stochastic backpropagation and approxi-

mate inference in deep generative models, arXiv preprint arXiv:1401.4082.

[19] M. F. Mathieu, J. J. Zhao, J. Zhao, A. Ramesh, P. Sprechmann, Y. LeCun, Disen-
tangling factors of variation in deep representation using adversarial training, in:

Advances in Neural Information Processing Systems, 2016, pp. 5040-5048.

[20] A.B. L. Larsen, S. K. Sgnderby, H. Larochelle, O. Winther, Autoencoding beyond

pixels using a learned similarity metric, arXiv preprint arXiv:1512.09300.

[21] 1. Higgins, L. Matthey, X. Glorot, A. Pal, B. Uria, C. Blundell, S. Mohamed,
A. Lerchner, Early visual concept learning with unsupervised deep learning, arXiv

preprint arXiv:1606.05579.

23



390

395

400

405

410

415

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

F. Locatello, S. Bauer, M. Lucic, S. Gelly, B. Schélkopf, O. Bachem, Challenging
common assumptions in the unsupervised learning of disentangled representations,

arXiv preprint arXiv:1811.12359.

W.-N. Hsu, Y. Zhang, J. Glass, Unsupervised learning of disentangled and inter-
pretable representations {rom sequential data, in: Advances in neural information

processing systems, 2017, pp. 1876—1887.

E. L. Denton, et al., Unsupervised learning of disentangled representations from
video, in: Advances in neural information processing systems, 2017, pp. 4414—

4423.

M. Suzuki, K. Nakayama, Y. Matsuo, Joint multimodal learning with deep genera-

tive models, arXiv preprint arXiv:1611.01891.

I. Higgins, N. Sonnerat, L. Matthey, A. Pal, C. P. Burgess, M. Botvinick, D. Has-
sabis, A. Lerchner, Scan: Learning abstract hierarchical compositional visual

concepts, arXiv preprint arXiv:1707.03389.

7. Hu, 7. Yang, X. Liang, R. Salakhutdinov, E. P. Xing, Toward controlled gen-
eration of text, in: Proceedings of the 34th International Conference on Machine

Learning-Volume 70, IMLR. org, 2017, pp. 1587-1596.

1. Higgins, A. Pal, A. A. Rusu, L. Matthey, C. P. Burgess, A. Pritzel, M. Botvinick,
C. Blundell, A. Lerchner, Darla: Improving zero-shot transfer in reinforcement

learning, arXiv preprint arXiv:1707.08475.

A. van den Oord, O. Vinyals, et al., Neural discrete representation learning, in:

Advances in Neural Information Processing Systems, 2017, pp. 6309-6318.

Y. Lcun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86 (11) (1998) 2278-2324.

Z. Liu, P. Luo, X. Wang, X. Tang, Deep learning face attributes in the wild, in:
Proceedings of the IEEE International Conference on Computer Vision, 2015, pp.

3730-3738.

24



420

425

430

435

440

[32] S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi, T. Pun,
A. Nijholt, I. Patras, Deap: A database for emotion analysis; using physiological

signals, IEEE Transactions on Affective Computing 3 (1) (2012) 18-31.

[33] L. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mo-
hamed, A. Lerchner, beta-vae: Learning basic visual concepts with a constrained

variational framework.

[34] H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy, IEEE Transactions on

pattern analysis and machine intelligence 27 (8) (2005) 1226-1238.

[35] M. D. Hoffman, M. J. Johnson, Elbo surgery: yet another way to carve up the
variational evidence lower bound, in: Workshop in Advances in Approximate

Bayesian Inference, NIPS, 2016.

[36] T. M. Cover, J. A. Thomas, Elements of information theory, John Wiley & Sons,
2012.

[37] J. Duchi, Derivations for linear algebra and optimization, Berkeley, California 3.

[38] A. A. Alemi, L. Fischer, J. V. Dillon, K. Murphy, Deep variational information
bottleneck, arXiv preprint arXiv:1612.00410.

[39] H. Kim, A. Mnih, Disentangling by factorising, in: International Conference on

Machine Learning, 2018, pp. 2654-2663.

[40] T. Q. Chen, X. Li, R. B. Grosse, D. K. Duvenaud, Isolating sources of disentangle-
ment in variational autoencoders, in: Advances in Neural Information Processing

Systems, 2018, pp. 2610-2620.

[41] A. Kumar, P. Sattigeri, A. Balakrishnan, Variational inference of disentangled

latent concepts from unlabeled observations, arXiv preprint arXiv:1711.00848.

[42] P. Bashivan, L. Rish, M. Yeasin, N. Codella, Learning representations from eeg with

deep recurrent-convolutional neural networks, arXiv preprint arXiv:1511.06448.

25



445

450

455

460

465

Appendix A. Experiment Details

Appendix A.1. MNIST

We split 7000 data points by ratio [0.6 : 0.2 : 0.2] into training, validation, testing
set. The estimated mutual information and ¢*(z) are calculated on 10000 data points in
the testing set. Seed images from the testing set are used to infer factor value and draw
the traversal.

In traversal figures, each block corresponds to the traversal of a single factor over
the [—3, 3] range while keeping others fixed to their inferred (by 3-VAE, VAE). Each
row is generated with a different seed image.

The 3 setting for 5-VAE is enumerated from [0.1,0.5,1,2: 2 : 18].

Appendix A.2. CelebA

We split randomly roughly 200000 data points by ratio [0.8 : 0.1 : 0.1] into training,
validation (no use), testing set.

The estimated mutual information and ¢*(z) are calculated on 10000 data points in
the testing set. Seed images from the testing set are used to infer factor value and draw
the traversal.

In traversal figures, each block corresponds to the traversal of a single factor over
the [—3, 3] range while keeping others fixed to their inferred (by 5-VAE, VAE). Each
row is generated with a different seed image.

The 3 setting for 5-VAE is enumerated from [1, 30, 40].

Appendix A.3. DEAP

DEAP is a well-known public multi-modalities (e.g. EEG, video, etc.) dataset
proposed by [32]. The EEG signals are recorded from 32 channels by 32 participants
watching 40 videos for 63 seconds each. The EEG data was preprocessed which down-
sampling into 128Hz and band range 4-45 Hz. By the same transformation idea from
[42], we applied fast Fourier transform (FFT) on 1-second EEG signal and convert it to
an image. In this experiment, alpha (8-13Hz), beta (13-30Hz) and gamma (30-45Hz) are

extracted as the frequency band which represented the activities related to brain emotion
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emerging. The next step is similar as [42] work which mentioned in section II [PLEASE
CHECK IT IN THE PAPER], by Azimuthal Equidistant Projection (AEP) and Clough-
Tocher scheme resulting in three 32x32 size topographical activity maps corresponding
to each frequency bands shown as RGB plot. The transformation work conduct the
total of 1280 EEG videos where each has 63 frames. The two emotional dimensions
are arousal and valence, which were labeled from the scale 1-9. For each of them, we
applied 5 as the boundary for separating high and low level to generate 4 classes (e.g.
high-arousal (HA), high-valence (HV), low-arousal (LA) and low-valence(LV)). In this
paper we perform this 4-class classification task as same as the one in [baseline paper].

We split randomly roughly 1280 samples by ratio [0.8: 0.1: 0.1] into training,
validation, testing set. 5(= 6)-VAE is trained on each frame and LSTM was used to
combine all the frames together for each video.

The estimated mutual information is calculated on 100¥63 imagewise(100 videos)
data points in the testing set. Seed images from the testing set are used to infer factor
value and draw the traversal.

In traversal figures, each block corresponds to the traversal of a single factor over
the [—3, 3] range while keeping others fixed to their inferred (by 5-VAE). Each row is

generated with a different seed image.
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Appendix A.4. Network Structure

Dataset | Optimiser Architecture
Adam Input 28x28x1
le—3 Encoder Conv 32x4x4,32x4x4 (stride 2).
FC 256. ReL.U activation.
MNIST
Epoch 200 Latents 128
Decoder FC 256. Linear. Deconv reverse of encoder.
ReL.U activation. Gaussian.
Adam Input 64x64x3
le—4 Encoder Conv 32x4x4,32x4x4,64x4x4,64x4x4 (stride 2).
FC 256. ReLLU activation.
CelebA
Epoch 20 Latents 128/32
Decoder FC 256. Linear. Deconv reverse of encoder.
ReLU activation. Mixture of 2-Gaussian.
Adam Input 32x32x3
le—4 Encoder Conv 32x4x4,32x4x4,64x4x4,64x4%x4 (stride 2).
FC 256. ReL.U activation.
DEAP
Epoch 300 Latents 128/32
Decoder FC 256. Linear. Deconv reverse of encoder.

ReL.U activation. Gaussian.

Input 63x128
Recurrent LSTM dim128. Time-Step 63.
Predictor FC 4. ReLU activation.

a0 Appendix A.5. Experiment Plot

In the following subsection, we present the influential factor (I(X; Zencp,) > 0.7)

traversals, mutual information and variance plot of different data sets.
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Figure A.6: Mutual Information Sparsity in CelebA: Generating Factors Traversal of 8(=40)-VAE
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