
Pârvu and Gilbert BMC Systems Biology 2014, 8:124
http://www.biomedcentral.com/1752-0509/8/1/124

METHODOLOGY ARTICLE Open Access

Automatic validation of computational models
using pseudo-3D spatio-temporal model
checking
Ovidiu Pârvu* and David Gilbert

Abstract

Background: Computational models play an increasingly important role in systems biology for generating
predictions and in synthetic biology as executable prototypes/designs. For real life (clinical) applications there is a
need to scale up and build more complex spatio-temporal multiscale models; these could enable investigating how
changes at small scales reflect at large scales and viceversa. Results generated by computational models can be
applied to real life applications only if the models have been validated first. Traditional in silicomodel checking
techniques only capture how non-dimensional properties (e.g. concentrations) evolve over time and are suitable for
small scale systems (e.g. metabolic pathways). The validation of larger scale systems (e.g. multicellular populations)
additionally requires capturing how spatial patterns and their properties change over time, which are not considered
by traditional non-spatial approaches.

Results: We developed and implemented a methodology for the automatic validation of computational models
with respect to both their spatial and temporal properties. Stochastic biological systems are represented by abstract
models which assume a linear structure of time and a pseudo-3D representation of space (2D space plus a density
measure). Time series data generated by such models is provided as input to parameterised image processing
modules which automatically detect and analyse spatial patterns (e.g. cell) and clusters of such patterns (e.g. cellular
population). For capturing how spatial and numeric properties change over time the Probabilistic Bounded Linear
Spatial Temporal Logic is introduced. Given a collection of time series data and a formal spatio-temporal specification
the model checker Mudi (http://mudi.modelchecking.org) determines probabilistically if the formal specification
holds for the computational model or not. Mudi is an approximate probabilistic model checking platform which
enables users to choose between frequentist and Bayesian, estimate and statistical hypothesis testing based
validation approaches. We illustrate the expressivity and efficiency of our approach based on two biological case
studies namely phase variation patterning in bacterial colony growth and the chemotactic aggregation of cells.

Conclusions: The formal methodology implemented in Mudi enables the validation of computational models
against spatio-temporal logic properties and is a precursor to the development and validation of more complex
multidimensional and multiscale models.

Keywords: Stochastic spatial discrete event system (SSpDES), Probabilistic bounded linear spatial temporal logic
(PBLSTL), Spatio-temporal, Multidimensional, Model checking, Mudi, Computational model, Model validation, Systems
biology, Synthetic biology

*Correspondence: ovidiu.parvu@brunel.ac.uk
Department of Computer Science, Brunel University, Kingston Lane, UB8 3PH
Uxbridge, London, UK

© 2014 Pârvu and Gilbert; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

http://mudi.modelchecking.org
mailto: ovidiu.parvu@brunel.ac.uk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 2 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

Background
Introduction
Computational modelling is a key element of both sys-
tems [1,2] and synthetic [3,4] biology research. In systems
biology models are constructed from biological obser-
vations and are used to generate predictions of system
behaviour under various conditions. Conversely in syn-
thetic biology models are employed as executable proto-
types/designs for engineering useful synthetic biological
systems.
One of the major limitations of the existing models is

that they are restricted to small scale biological subsys-
tems [5]. For real life application areas such as medicine
or biotechnology there is a need to scale up and build
more complex multiscale models which cover multiple
spatial and/or temporal scales [6,7]; the Virtual Physi-
ological Human [8] and High-Definition Physiology [9]
projects are international initiatives attempting to (par-
tially) address this challenge.
Results generated through computational model sim-

ulation can be used for real life applications only if the
model has been validated first. Traditionally this has
been done by comparing time series data generated by
models with biological observations recorded in the wet
lab. If significant inconsistencies are detected the model
needs to be updated and/or the experiments have to be
repeated which is both expensive and time consuming.
In an attempt to detect modelling errors as soon as pos-
sible in silico formal validation methods are additionally
employed [10]. One of the most employed model valida-
tion methods in systems and synthetic biology is model
checking.
In this paper we present a model checking methodology

for the validation of multidimensional (spatio-temporal)
computational models, and its application to two multi-
cellular population based examples from systems biology.

Model checking
Model checking [11,12] is a validation method which
automatically verifies if a model of a system is correct
according to a given formal specification. The general
model checking steps are:

1. Modelling: Creating an abstract representation of
the system (e.g. a computational model);

2. Specification: Encoding the formal specification of
the system.

3. Verification: Automatically validating the model
against the specification.

Models which are validated using model checking
approaches are dynamic i.e. they can be simulated in
order to generate timeseries data which illustrate how they
change over time.

System specifications are usually encoded using formal
languages due to their rigorous syntax and semantics. Tra-
ditionally in model checking the system specification is
formalised using a class of formal languages called tem-
poral logics because they enable reasoning about how the
state of the system changes over time.
Linear time temporal logics assume the structure of

time to be linear which means that at each moment in
time a system state has at most one possible successor
state [13,14]. The first temporal formalism considering a
linear time structure used for model checking (concurrent
systems) was Linear Temporal Logic (LTL) [15,16].
Logic statements written in LTL are composed of

atomic, Boolean and temporal logic propositions.
An atomic proposition is a statement which evaluates

to true/false and cannot be divided into simpler logic
statements. For biological systems specifications the set
of atomic properties usually comprises (but is not lim-
ited to) arithmetic expressions of the form {A} � r,
where {A} denotes the concentration of species/protein
A, � ∈ {<,<=,=,>=,>} and r ∈ R. In addition
{A} can be prefixed with the difference/differential oper-
ator d such that d({A}) represents the rate of change
for concentration {A} from the current to the next time
point.
Conversely a Boolean proposition is a compound state-

ment comprising a Boolean operator and logic proposi-
tion(s) (denoted here by φ):

• ¬φ (not): The negation of logic proposition φ is true
i.e. φ is false.

• φ1 ∧ φ2 (and): logic proposition φ1 is true and logic
proposition φ2 is true.

• φ1 ∨ φ2 (or): logic proposition φ1 is true or logic
proposition φ2 is true.

• φ1 ⇒ φ2 (implication): logic proposition φ1 is true
implies logic proposition φ2 is true.

• φ1 ⇔ φ2 (equivalence): logic proposition φ1 is true
equivalent to logic proposition φ2 is true.

where ¬ is a unary Boolean operator, and ∧,∨,⇒,⇔ are
binary Boolean operators.
Finally temporal propositions are used to reason about

how the system changes over time. They comprise a tem-
poral operator and logic proposition(s):

• F φ (Future): Eventually logic proposition φ holds.
• G φ (Globally): Logic proposition φ holds always.
• φ1 U φ2 (Until): Logic proposition φ1 holds until

logic proposition φ2 holds.
• X φ (neXt): Logic proposition φ holds in the next

time point.

where F , G, U, X are temporal operators.

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 3 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

Bounded Linear Temporal Logic (BLTL) [17,18] is an
extension of LTL where a bounded time interval is associ-
ated to the temporal operators:

• F[a, b] φ: Eventually logic proposition φ holds within
the time interval [a, b].

• G[a, b] φ: Logic proposition φ holds always within
the time interval [a, b].

• φ1 U[a, b] φ2: Logic proposition φ1 holds until logic
proposition φ2 holds within the time interval [a, b].

• X[k] φ: Logic proposition φ holds in the next k-th
timepoint.

The advantage of employing BLTL instead of LTL is
that only a bounded simulation time interval has to
be considered for the evaluation of the temporal logic
propositions.
Considering a model and formal BLTL specifica-

tion a software called “model checker” automatically
verifies if the model is valid or not with respect to the
specification.

Model checking in systems and synthetic biology
In systems biology model checking has been proposed
as a methodology for validation [19,20] and param-
eter synthesis/estimation [21-24], respectively in syn-
thetic biology for efficient design [25,26] and in silico
validation [27].
Probabilistic model checking approaches are employed

for the formal validation of systems which exhibit stochas-
tic behaviour and can be either exhaustive or approximate.
Exhaustive approaches potentially explore the entire state
space (i.e. all possible system states) to decide if a model
is valid and are therefore highly accurate. The disad-
vantage is that their complexity increases with the size
of the state space which means they are not scalable.
Conversely approximate probabilistic approaches decide
if a model is valid based on methods from statistical
theory using only a finite set of simulations. Therefore
they are scalable because the state space is only partially
explored. Although such approaches provide an answer
based on an approximation, which is not guaranteed to
be correct, the user can place an upper bound on the
approximation error.
Due to the stochastic nature, high complexity and mul-

tiscale representation of biological systems approximate
probabilistic model checking approaches are preferred
both for systems and synthetic biology applications; an
extensive review of relevant model checking approaches
is provided in [28], respectively a review of statistical
model checking methods employed in systems biology
is provided in [29]. Two known model checkers which
support both exhaustive and approximate approaches are
MARCIE [30] and PRISM [31].

Traditional model checking approaches in systems and
synthetic biology only capture how non-dimensional
properties (e.g. concentrations) evolve over time, and are
appropriate for small scale systems such as signalling/
metabolic pathway models. The evolution over time of
spatial patterns and their properties has to be addition-
ally considered when building computational models of
more complex systems (e.g. multicellular organisms or
populations of microorganisms). Such multidimensional
(i.e. spatio-temporal) properties cannot be captured by the
traditional non-spatial approach.

Contributions
Since one of the main aims of systems and synthetic biol-
ogy is to scale up the development of computational mod-
els corresponding formal validation methods need to be
in place. In this paper we attempt to address this challenge
by developing and implementing a methodology for auto-
matic spatio-temporal model validation. Due to the high
complexity inherent to spatial computational model only
approximate probabilistic model checking approacheswill
be considered throughout. In the interdisciplinary spirit of
computational biology research this paper covers aspects
ranging from theory development to software implemen-
tation and application to biological case studies. Ourmain
contributions are:

• The definition of a stochastic spatial discrete-event
system (SSpDES) as an abstract representation for
describing how stochastic biological systems evolve
in time and space;

• A formal Probabilistic Bounded Linear Spatial
Temporal Logic (PBLSTL) for specifying
spatio-temporal logic statements;

• The implementation of the methodology in the
multidimensional model checking platform Mudi
which enables validating spatio-temporal models
against PBLSTL properties. Mudi comprises both
Bayesian and frequentist, estimate and hypothesis
testing based validation approaches.

• Parameterised image processing algorithms for
detecting and analysing spatial patterns and clusters
of such patterns in time series data;

• The Spatial Temporal Markup Language (STML) for
representing spatio-temporal properties extracted
from time series data;

Our methodology was validated against two biological
case studies namely phase variation patterning in bacterial
colony growth and the chemotactic aggregation of cells;
see Figure 1 for illustrative real-life images.
The contents of this paper are organised as fol-

lows. All theoretical computer science and software
implementation details are provided in the “Methods”

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 4 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

Figure 1 Real-life images for considered case studies. (A)Multiple bacterial colonies with phase variable genes. Sector-like patterns (highlighted
in black) are an indication of high proportions of “mutant” cells (i.e. cells with switched gene expression). Conversely gray parts of the colony are an
indication of high proportions of wild-type cells. (Reproduced with permission from [32]. Copyright © 1998, American Society for Microbiology).
(B) Population of Dictyostelium discoideum cells chemotactically aggregating in the centre where the chemical attractant concentration is highest
(Reproduced with permission from [33]).

section, while the application of the methodology to
two biological case studies is described in the section
“Results”. The interpretation of the results, limitations,
future work and a comparison to related work are
provided in the “Discussion” section. Finally a sum-
mary of our contribution is provided in the section
“Conclusions”.

Methods
The general workflow for spatio-temporal model con-
struction and validation is depicted in Figure 2 and com-
prises the following steps:

1. Model construction. Building the computational
model from biological observations and/or relevant
references from the literature.

2. Spatio-temporal analysis. The model is simulated
to generate time series data in which spatial patterns
and clusters of such patterns are automatically
detected and analysed. The output of the
spatio-temporal analysis is formatted according to
the STML standard specification.

3. Formal specification.Natural language properties
representing the specification of the system are
translated to formal PBLSTL statements.

4. Model checking. The model checker Mudi takes
the spatio-temporal analysis output and the PBLSTL
statements as input and decides if the model is valid
or not using the validation method chosen by the
user (e.g. frequentist statistical model checking). In
case the model is invalid it is updated and then
checked again.

Model construction
Biological systems are usually modelled as stochastic pro-
cesses which transition from the current state to the
successor state when an event occurs (e.g. a biochemical
reaction). This specific type of stochastic process is called
a stochastic discrete-event system (SDES).

Definition 1. The factored representation of an SDES
M (see [34], Chapter 2) is a 5-tuple 〈S, T, μ, SV, V 〉 where:

• S is the set of all possible states of the system;
• T is the transition rates matrix which records the

probability of the system to transition from the
current state si to the next state sj, ∀si, sj ∈ S;

• μ is a probability measure computing the probability
of the system to reach a certain state along the
sequences of states described by a set of simulation
traces;

• SV is the set of state variables describing the state of
the system;

• V is the value assignment function which computes
the value ∈ R of each state variable for a given
simulation trace and state of the system.

Our aim is to additionally reason about properties of
spatial patterns in such systems, and to quantify how these
properties change over time. The following assumptions
are made regarding the representation of space:

1. Only the discretised version of the 2D, respectively
pseudo-3D Euclidean space is considered. A
pseudo-3D space extends a 2D Euclidean space with
a density measure for each position. The density

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 5 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

Figure 2 Spatio-temporal model validation workflow.Workflow comprising all steps frommodel construction to model validation. The first step
(1) describes the construction of the model from biological observations and/or literature. In the second step (2) the model is simulated to generate
time series data which is passed to the spatio-temporal analysis module for automatic detection and analysis of spatial patterns and clusters of such
patterns. The third step (3) comprises the translation of the natural language specification of the system to a formal probabilistic BLSTL (PBLSTL)
specification. Finally the fourth step (4) describes the validation of the model with respect to the PBLSTL specification using the model checker
Mudi. In case the model is invalid it is updated and the validation procedure repeated.

measure indicates the proportion of occupied
positions on the Oz axis for a fixed (x, y) position.
Compared to a full 3D representation it does not
specify explicitly which positions of the Oz axis are
occupied but only their proportion.

2. The 2D Euclidean space is discretised by splitting it
into m rows and n columns obtaining anm × n
regular grid wherem and n are finite, natural,
positive numbers. The resolution of the results
depends on the values ofm and n. Higher values
guarantee a fine-grained resolution while lower
values account for a coarse-grained resolution.

The evolution of an SDES in space could be represented
using one/multiple collections ofm ·n state variables such
that each state variable represents one discretised position

in space. The main advantage of this is that the structure
of SDES does not change when adding spatial information
to a model. However the main disadvantage is that seman-
tically different state variables (e.g. concentrations, value
of discretised position in space) belong to the same set
without the possibility to explicitly distinguish between
them at the entire set level. In the following we would like
to reason about how subsets of positions in the discre-
tised space (e.g. representing subpopulations of cells) and
their geometric properties (e.g. area) change over time.
Therefore there is a need to define detection and analy-
sis methods which are specific to the collection of state
variables encoding space, and do not apply to state vari-
ables encoding numeric values such as concentrations. For
this reason the state variables encoding spatial informa-
tion will be extracted in a separate set denoted as spatial

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 6 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

state variables (SpSV). Moreover instead of representing
space usingm · n spatial state variables such that the value
of each state variable ∈ R, a single spatial state variable
whose value ∈ R

m×n+ is employed. The evaluation of such
state variables to m × n real-valued non-negative matri-
ces cannot be performed by the existing value assignment
function V whose codomain is R. Thus a corresponding
spatial value assignment function (SpV) is defined.
Considering the above notations we define stochastic

spatial discrete-event systems (SSpDES) as an extension
of SDES with a set of spatial state variables SpSV and a
spatial value assignment function SpV.

Definition 2. An SSpDESM is a 7-tuple 〈S, T, μ, NSV,
SpSV, NV, SpV 〉 where:

• 〈S, T , μ, NSV, NV 〉 is a SDES (see Definition 1);
• SpSV is the set of spatial state variables;
• SpV is the spatial value assignment function.

The set SpSV contains all spatial state variables i.e.
the variables recording the configuration of the discre-
tised space in the current system state. The value of these
variables is computed using the spatial value assignment
function SpV :

SpV : E × S × SpSV → R
m×n+

where E denotes the set of all possible model execution-
s/simulations, S the set of states, SpSV the set of spatial
state variables, and m and n the dimensions of the discre-
tised space. Given a model simulation σ at state s and a
spatial state variable ssv, SpV (σ , s, ssv) = sv such that sv ∈
R
m×n+ returns am × n matrix of real non-negative values,

where each element of the matrix corresponds to a posi-
tion in the discretised space. For explanatory purposes
an illustrative example of a simple SSpDES is provided in
Additional file 1.
The size of the discretised space and the semantics of

the values stored for each spatial compartment depends
on the biological problem one tries to address. For
instance space was discretised in 101×101 compartments
for the phase variation case study because the sector-like
patterns (see Figure 1A) should be easily recognizable.
Employing amore coarse-grained spatial resolutionwould
distort the shape of the sectors, respectively a more fine-
grained resolution would lead to an increased model sim-
ulation time. The values recorded for each position of the
discretised space are the number of wild-type, respectively
“mutant” cells. Conversely in case of the chemotaxis case
study the size of the discretised space was 100 × 100 with
1% of the spatial compartments occupied by cells. The rea-
son for choosing this spatial resolution was to ensure that
the formation of clusters is not an artifact of the inability

of cells to move due to lack of space, but is a consequence
of their chemotactic behaviour (see Figure 1B). In this case
both number of cells and chemical attractant concentra-
tion were recorded for each position in the discretised
space.
Finally one of the main advantages of defining SSpDESs

as an extension of SDESs is backwards compatibil-
ity i.e. existing SDES models can be interpreted as
SSpDESs having an empty set of spatial state variables
SpSV. Moreover SSpDESs enable scaling up the devel-
opment of computational models by extending exist-
ing non-spatial models, typical for subcellular scales
(e.g. intracellular networks), with spatial information rel-
evant to potentially higher scales (e.g. cellular/tissue
level). For instance the computational model employed
for the phase variation case study [35] is an illustrative
example of constructing a spatial stochastic computa-
tional model from an initially non-spatial deterministic
model [36].

Spatio-temporal analysis
Simulations of an SSpDES (see Definition 2) provide time-
series data describing how each position of the discre-
tised space changes over time. In order to reason about
(clusters of) spatial patterns an automatic mechanism for
detecting and analysing the relevant subsets of positions
in the discretised space is required. Two parameterised
mechanisms will be employed for automatically detecting
subsets of the discretised space; one for spatial patterns
denoted in the rest of the paper as regions and the other
for clusters. Depending on the values of the detection
parameters a more fine- or coarse-grained subset of the
discretised space is considered.

Regions
One of the main assumptions of the region detection
mechanism is that subsets and not individual positions of
the discretised space are considered. Secondly the value
of each position of the discretised space records the num-
ber/density of entities of interest. Each position can hold
0 or more entities without pileup. The identity of the ele-
ments forming the region is not relevant. It is assumed
that the type and size of the entities is constant throughout
the entire space. Therefore the region detection mecha-
nism operates in a homogeneous context with respect to
the type of modelled entities. In the case that the system
comprises multiple types of entities, each type is repre-
sented by a different spatial variable. Therefore the regions
defined by groups of different entities can be computed by
repeatedly applying the region detection mechanism for
each spatial variable.
Given a model execution/simulation σ , the i-th state

σ [i], 0 ≤ i ≤ |σ |, where |σ | represents the length of σ , and
a spatial state variable ssv, let SP = SpV (σ , σ [i] , ssv).

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 7 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

Definition 3. A region R with respect to σ [i] and
ssv is a subset of neighbouring positions in SP such
that ∀x ∈ R, value(x) ≥ THRESHOLD and |R| >

εsize, where THRESHOLD, εsize ∈ R are user-defined
parameters.

The problem of finding regions is similar to the seg-
mentation problem in theComputer Vision literature [37].
2D images can be represented as vectors or matrices
where each position records the colour (multi-channel) or
intensity (single channel) of the image. In order to apply
Computer Vision methods for finding regions the matrix
SP is translated to a grayscale image. The value of each
position in the matrix is normalised and converted to the
intensity value of the corresponding pixel in the resulting
image. Examples of grayscale images in which sector-like
patterns (phase variation) have been detected are depicted
in Figure 3.
The parameterised mechanism for detecting regions in

grayscale images is described in Algorithm 1. All men-
tioned subalgorithms are implemented in the open source
Computer Vision library OpenCV [38]; see Table 1 for a
mapping between the subalgorithms described in Algo-
rithm 1 and the OpenCV functions. Detailed descriptions
of the OpenCV function parameters are provided in [39]
and will not be restated here.

Clusters
Given a collection of regions, the cluster detection mech-
anism constructs groups of sufficiently similar regions.
During this procedure no assumption is made regard-
ing the size and type of the regions. In contrast to the
region detection mechanism, the mechanism for detecting

clusters operates in a heterogeneous context where both
fixed and variable size subsets of the discretised space are
considered.
Our assumption is that two regions should belong to the

same cluster if the distance between them is below a cer-
tain threshold. A distance pseudometric d is defined for
this purpose:

d : REG × REG → R,d(A,B) =
√
(xB − xA)2 + (yB − yA)2

where REG is the set of all regions, and d(A,B) com-
putes the Euclidean distance between the centroids of two
regions A,B ∈ REG.

Definition 4. A cluster C with respect to a set of regions
REG, and a pseudometric d, is a subset of regions in REG
such that ∀x, y ∈ C, d(x, y) ≤ εdistance and |C| > εsize,
where εdistance and εsize are user-defined parameters.

The problem of grouping entities into clusters is
addressed by the cluster analysis literature [40]. A pop-
ular algorithm which considers distance (not necessar-
ily Euclidean) as a criterion for grouping objects is
DBSCAN [41]. The original algorithm has a known issue
because the assignment of border objects (i.e. objects
between multiple clusters) to clusters depends on the
order in which the set of objects is iterated. An improved
version of the DBSCAN algorithm was introduced in [42]
for addressing this issue and is employed by our cluster
detection mechanism considering the pseudometric d as
the distance function. Illustrative examples of grayscale
images in which clusters of cells (chemotaxis) are auto-
matically detected are depicted in Figure 4.

Figure 3 Detection of sector-like patterns in bacterial colonies. Grayscale images depicting the final state of two phase variation model
simulations. Sector-like patterns corresponding to high-proportions of “mutant” cells are automatically detected and outlined in blue. Note that the
colour scheme in these images is the inverse of the one in Figure 1A i.e. sector-like patterns are highlighted in white instead of black, respectively
patches of wild-type cells are highlighted in black instead of white (gray). Moreover only one bacterial colony is depicted in each one of these
images while in Figure 1A multiple bacterial colonies are shown.

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 8 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

Algorithm 1 Algorithm for region detection
Require: image is a grayscale image
Ensure: regions defines the set of regions detected in the image

1: ChangeBrightnessAndContrast(image, alpha, beta); � Adjust brightness and contrast
2: MorphologicalCloseOperation(image, morphCloseNrOfIter); � Connect discontinued but close
3: regions and remove noise
4: GaussianBlur(image, kernelSize, standardDev); � Remove remaining noise
5: Threshold(image, thresholdValue); � Apply binary threshold method to image
6:
7: contours = DetectAndApproximateContours(image, approximationLevel); � Detect regions’
8: contours
9:
10: for all contour ∈ contours do
11: if size(contour) < εsize then
12: Mark the region defined by contour as noise;
13: end if
14: end for
15:
16: regions = {r | r ∈ contours, r not marked as noise}; � The set of regions is defined by the
17: subset of contours not marked as noise
18: with size greater or equal to εsize
19:
20: return regions;

Spatial measures
Each detected region/cluster is characterised by the set
of spatial measures SM = {clusteredness, density, area,
perimeter, distance from origin, angle(degrees), triangle
measure, rectangle measure, circle measure, centroid (x-
coord), centroid (y-coord)}. A detailed description of the
semantics specific to regions and clusters is provided
below; see Figure 5 for a graphical illustration.

Semantics of spatial measures for regions
The clusteredness of a set of regions represents the inverse
of the average Euclidean distance between the centroids
of the regions. Conversely the clusteredness of a single
region is computed as follows:

clusteredness(r) = area(r)
area(r) + ∑

h∈holes
area(h)

where r is a region and holes is the set of holes con-
tained by r. As the area of the holes contained by regions
increases the value of the clusteredness degree decreases
and vice-versa.
The density of a set of regions is equal to the average

density of the regions divided by the average Euclidean
distance between the centroids of the regions. Conversely
the density of a single region represents the average
density value of the positions defining the region in the
discretised space.

The area of the region is equal to the area of the polygon
defined by the neighbouring positions in the Euclidean
plane (subtracting the area of holes).
The perimeter of the region is equal to the perimeter

of the polygon defined by the neighbouring positions in
the Euclidean plane. Holes contained by the region are
ignored in this case.
The distance from the origin is equal to the minimum

distance between the polygon defined by the region and
the centre point of the discretised space (origin).
The angle (degrees) is equal to the angle determined by

the centre point of the discretised space P and the points
obtained from the intersection of the line perpendicular
on the line determined by P and the centroid of the region,
and the convex hull of the polygon defined by the region.
The shape of the region is determined in a fuzzy man-

ner by the triangular, rectangular and circular measures.
Each one of these measures computes the likelihood of
the region to have a triangular, rectangular, respectively
circular shape using the following formula:

measures(r)

= area(r)
area(minimum areas-shaped polygon enclosing r)

where r is a region, and the value of measures(r) ∈ [0, 1] ,
∀s ∈ {triangular, rectangular, circular}. Algorithms for
computing the minimal enclosing triangles are provided
in [43], respectively [44,45] for rectangles and [46] for cir-
cles. For the phase variation case study, where the region
detection mechanism is employed, the triangular shape is

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 9 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

Table 1 Mapping between subalgorithms employed by
Algorithm 1 andOpenCV functions

Subalgorithm signature OpenCV function signature

ChangeBrightnessAndContrast(
image, alpha, beta

)

convertTo(
image, -1, alpha, beta

)

MorphologicalCloseOperation(
image, morphCloseNrOfIter

)

morphologyEx(
image, outputImage,
MORPH_CLOSE,
Mat(), Point(-1, -1),
morphCloseNrOfIter

)

GaussianBlur(
image, kernelSize, standardDev

)

GaussianBlur(
image, outputImage,
kernelSize, standardDev

)

Threshold(
image, thresholdValue

)

threshold(
image, outputImage,
thresholdValue,
255 THRESH_BINARY

)

DetectAndApproximateContours(
image, approximationLevel

)

findContours(
image, contours,
contoursHierarchy,
CV_ RETR_CCOMP,
CV_CHAIN_APPROX_NONE,

Point()
)

approxPolyDP(
image, outputImage,
approximationLevel, true

)

The left column describes the signature of the subalgorithms employed by
Algorithm 1. The right column describes the signature of the corresponding
OpenCV function(s).

most relevant because it closely matches the shape of the
sector-like patterns in the bacterial colonies; see Figure 1A
for examples of such patterns highlighted in black.
The x/y-coordinates of the centroid are computed using

moments of the polygon defined by the neighbouring
positions in the Euclidean plane [47].

Semantics of spatial measures for clusters
The clusteredness of a set of clusters represents the inverse
of the average Euclidean distance between the centroids
of the clustersa. Conversely the clusteredness of a single
cluster represents the inverse of the average Euclidean dis-
tance between the centroids of the regions in the cluster.
The density of a set of clusters is equal to the average

density of the clusters divided by the average Euclidean
distance between the centroids of the clusters. Conversely
the density of a single cluster represents the average den-
sity value of the spatial entities defining the cluster in the
discretised space.
The area of a cluster is equal to the area of the poly-

gon defined by the convex hull of all regions in the cluster
(ignoring the holes between regions).
The perimeter, distance from the origin, angle (degrees),

shape and x/y-coordinates of the centroid of the cluster
are determined using the same methods employed for
regions. The main difference is that the polygon used
to determine the outer boundary of the cluster is the
convex hull computed for a group of regions instead of
a single one. Moreover for the chemotaxis case study
the circular and rectangular shapes are most relevant
because they closely resemble the shape of cells clusters,
respectively the shape of cell streams moving towards
the point where the chemical attractant concentration

Figure 4 Detection of clusters in population of cells. Grayscale images representing the distribution of cells at a particular timepoint in two
chemotaxis model simulations. Clusters comprising at least 5 sufficiently close cells are automatically detected and outlined using different colours.
Cells are represented as gray points if they do not belong to a cluster. Otherwise they are represented as coloured points such that the colour of the
cell matches the colour of the cluster it is a member of. Each cluster is enclosed by a polygon whose shape (triangular, rectangular or circular) best
matches the shape of the cluster. Similarly to Figure 1B cells aggregate in the centre where the concentration of chemical attractant is highest.

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 10 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

Figure 5 Visual description of the spatial measures. The clusteredness (A) computes how close regions/neighbouring positions are to each
other in a cluster/region. Density (B)measures the average value (e.g. concentration) of the considered positions in the discretised space. Area (C)
and perimeter (D) have the usual meaning from discrete 2D geometry. Distance from the origin (E) represents the minimum distance between the
point from the centre of the discretised space and the considered region/cluster. The angle (F) associated to a region/cluster is determined by three
points: the origin, and the points found at the intersections of the region/cluster convex hull with the line perpendicular on the line determined by
the origin and the centroid of the region/cluster. The shape (G) is determined by computing the degree of similarity between the shape of the
region/cluster and a triangle, rectangle and circle. The centroid (H) is the geometric centre of the considered region/cluster.

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 11 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

is highest; see Figure 1B for an example of a circular
cluster forming in the middle, respectively streams of cells
moving towards it.

Spatio-temporalmarkup language (STML)
The output of the region/cluster detection mecha-
nism comprises the spatial measures computed for each
region/cluster. A standard data representation format is
employed to describe the evolution of these spatial and
other numeric measures over time. Themain advantage of
such a format is that data is represented in a uniform and
consistent manner which facilitates exchange of data sets
and integration of software tools. We define the Spatial
Temporal Markup Language (STML) as an initial attempt
to standardise the representation of spatio-temporal time
series data.
For portability, structuring and readability purposes

spatio-temporal time series data is stored in eXtensible
Markup Language (xml) files. The rules and constraints
for the structure of these xml files are formalised in XML
Schema Definition (xsd) files with the filename format
STML_LxVy.xsd (Spatial Temporal Markup Language
Level x, Version y); see [48] for the latest version of the
format. An example of an xml file recording experimental
spatio-temporal data is depicted in Listing 1.

Listing 1 An example STML file recording spatio-temporal
data

1 < ?xml vers ion =" 1 . 0 " encod ing= " u t f−8" ?>
2 < exper iment>
3 < t imepo in t>
4 < s p a t i a l E n t i t y >
5 <pseudo3D type= " c l u s t e r " >
6 < c l u s t e r e d n e s s> 0 . 01 </

c l u s t e r e d n e s s>
7 < d en s i t y >5< / d en s i t y >
8 < a re a >15< / a re a >
9 < pe r ime te r>28</ pe r ime te r>

10 <d is tanceFromOrig in >81< /
d is tanceFromOrig in >

11 < ang l e > 10 . 5 </ ang l e >
12 < t r i ang l eMea sure > 0 . 5 < /

t r i ang l eMea sure >
13 < re c t ang l eMea sure> 1 . 0 </

re c t ang l eMea sure>
14 < c i r c l eMea sure > 0 . 1 < /

c i r c l eMea sure >
15 < c e n t r o i d >
16 <x>703 .4999</ x>
17 <y>118 .087< / y>
18 < / c e n t r o i d>
19 < / pseudo3D>
20 < / s p a t i a l E n t i t y >
21 < numer i c S t a t eVa r i ab l e >
22 <name> a vgC l u s t e r e dn e s sC l u s t e r s < /name>
23 < va lue > 0 . 4 </ va lue >
24 < / numer i c S t a t eVa r i ab l e >
25 < / t imepo in t >
26 . . .
27 < / exper iment>

The results of an (in silico/vitro/vivo) experiment are
recorded as a list of time points. The constraint imposed

on experiment elements are that they must contain at
least one time point.
Each timepoint element can be identified by a non-

negative integer value representing when the data was
recorded. In case values are missing (e.g. in silico exper-
iments) the value is determined automatically using the
following formula:

ti =
⎧⎨
⎩

val, if the value val was predefined for ti
0, if no value was predefined for ti and i = 0
ti − 1 + 1, otherwise

The information stored in timepoint elements are a
list of zero or more unique spatial entities, and a list of
zero or more unique numeric state variables.
A spatialEntity element currently comprises only

one element called pseudo3D which stores a pseudo3D
spatial description of the entity. In the future if 2D or
full3D representations are of interest they can be added
as additional child elements to the spatialEntity
element.
Every pseudo3D element has an associated type which

can be either cluster or region. Similarly to the detected
regions/clusters every pseudo3D element is charac-
terised by a set of spatial measures constrained as
described below:

• clusteredness, density, area, perimeter,
distanceFromOrigin, centroidX and centroidY - real
non-negative values;

• angle - a real non-negative value between 0 and 360;
• shape - an optional element which can take the

values “triangular”, “rectangular” or “circular”;
• triangularMeasure, rectangularMeasure and

circularMeasure - real non-negative values between 0
and 1;

The basic shapes considered by the current version
of STML are appropriate to describe simple spatial pat-
terns such as patches which spread outwards as they
develop (triangular), ordered structures/streams (rectan-
gular), and (uniform) groups/clusters (circular). Illustra-
tive real-life examples of such shapes are the sector-like
patches highlighted in black in Figure 1A (triangular), and
the streams of cells (rectangular) depicted in Figure 1B
which chemotactically migrate towards the centre and
form a cluster (circular). In contrast complex patterns
composed of multiple basic shapes cannot be described
appropriately by the current shape similarity measures.
In order to address this issue a potential future version
of STML could include a more complex suite of shape
descriptors.
Finally numericStateVariable elements contain a

name and a value child element where the name is a
string and the value a real number.

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 12 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

All timeseries data are translated to STML using the
region/cluster detection mechanisms and are then pro-
vided to the model checker Mudi for evaluation.

Bounded Linear Spatial Temporal Logic
We define a logic called Bounded Linear Spatial Temporal
Logic (BLSTL) for specifying quantitative spatio-temporal
properties against which STML files are automatically
evaluated. BLSTL is an extension of BLTL, and LTL, with
spatial, arithmetic and statistical functions. The tempo-
ral and Boolean propositions specific to BLTL remain
unchanged, but new functions are introduced enabling to
reason about how (distributions of) regions/clusters and
their spatial properties change over time. For brevity pur-
poses only an informal description of BLSTL is provided
below; see Additional file 2 for more details and the formal
syntax and semantics definition.
The same non-dimensional properties, spatial entities

(regions and clusters) and measures (clusteredness, den-
sity, area, perimeter, distance from origin, angle(degrees),
triangle measure, rectangle measure, circle measure, cen-
troid (x-coord) and centroid (y-coord)) are considered
both by the STML specification and the BLSTL for-
mal language. Therefore BLSTL enables encoding logic
statements with respect to both non-dimensional (e.g.
species/proteins concentrations) and spatial properties,
and correlations between the two.
In order to allow the construction of more complex

logic statements BLSTL additionally enables specifying
how arithmetic expressions comprising non-dimensional
or spatial properties change over time. The considered
functions which enable the construction of complex logic
statements are either unary (e.g. absolute value, round,
square root etc.) or binary (e.g. addition, division, power
etc.).
These arithmetic functions take a single real value

as input and are directly applicable to non-dimensional
properties. However in order to apply the same functions
to collections of regions/clusters, the distribution of spa-
tial measures characterising the regions/clusters has to be
reduced to a single real value. A set of statistical func-
tions is made available in the specification of BLSTL in
order to address this problem. The considered statisti-
cal functions are either unary (e.g. count), binary (e.g.
median with respect to a user specified spatial measure),
ternary (e.g. percentile with respect to a user specified
spatial measure) or quaternary (e.g. covariance between
two potentially different types of spatial entities and mea-
sures). One of the main differences between BLSTL and
traditional BLTL-based formal languages is that the for-
mer enables reasoning about dynamic sets of spatial
patterns whose cardinality changes over time, while the
latter usually only considers fixed sets of non-dimensional
variables.

Although the arithmetic and statistical functions
described above enable the construction of more com-
plex logic statements, there is a need for a mechanism
which enables reasoning about particular subsets of the
detected regions/clusters. For instance it may be the case
that only regions with the area greater than a certain value,
or clusters close to a particular point in space are of inter-
est. In order to address this challenge BLSTL comprises a
constraint-based mechanism which filters out all region-
s/clusters whose spatial measures do not meet a set of
user-defined conditions.
Examples of natural language statements which can be

encoded in BLSTL using the logic constructs defined
above are:

• Considering the time interval [0, 100], at some point
in the future the number of cell clusters emerging in
the environment, when the concentration of cAMP is
less than 20, is greater than zero (Natural language);
F[0, 100] (({cAMP} < 20) ∧ (count(clusters) > 0))
(BLSTL).

• The mean area of all cancerous regions grows
throughout the entire simulation interval [5, 25]
(Natural language);
G[5, 25] (d(mean(regions, area)) > 0) (BLSTL).

• Within the time interval [0, 300] the number of
mutant cell populations emerging at a distance
smaller than 10 from the area of inflammation
(origin) is greater than 0 until the concentration of X
drops below 5 (Natural language);
(count(filter(clusters, distanceFromOrigin < 10)) >
0) U[0, 300] ({X} < 5) (BLSTL).

BLSTL can be employed for specifying properties
of individual simulation traces. However for specifying
properties over a collection of traces we will extend
BLSTL to Probabilistic BLSTL.

Probabilistic BLSTL
Definition 5. A Probabilistic Bounded Linear Spatial

Temporal Logic (PBLSTL) property φ is a logic property of
the form P��θ [ψ] where �� ∈ {<,≤,>,≥}, θ ∈ (0, 1) and ψ
is a BLSTL property.

A PBLSTL property φ ≡ P��θ [ψ] holds for a SSpDES
M (M |= P��θ [ψ]) if and only if the probability of ψ to
hold for an execution of M is �� θ . Therefore in order
to determine the truth value of a PBLSTL property φ the
likelihood of it being true is computed.
Similarly to [17] evaluating the truth value of a PBLSTL

property φ is harder than determining the truth value of
a BLSTL property ψ . One counterexample for a BLSTL
property is sufficient to decide that the property does
not hold. Conversely one counterexample for a PBLSTL

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 13 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

property φ does not necessarily imply that φ is not satis-
fied. A PBLSTL property φ does not hold if the likelihood
of all counterexamples provides sufficient evidence to
invalidate φ.

PBLSTL Model checking
Definition 6. The probabilistic spatio-temporal model

checking problem is to automatically verify if a SSpDESM
satisfies a PBLSTL property φ ≡ P��θ [ψ].

Different approximate probabilistic model checking
algorithms can be employed depending on the method of
constraining the approximation error and the approach
for deciding if a logic property holds. For flexibility and
completeness purposes in our approach both Bayesian
and frequentist, statistical hypothesis test and estimate
based methods are considered. The specific algorithms
which were considered are provided in Table 2.
All methods except probabilistic black-box take a

user-defined (set of) parameter(s) as input representing
the acceptable value of the approximation error. Such
methods request and evaluate a variable number of model
simulations until the approximation error constraints are
satisfied. Conversely the probabilistic black-box model
checking approach decides based on a fixed number of
model simulations if the logic property is satisfied. How-
ever in this case the confidence measure of the provided
result is not specified by the user and varies depending on
the number of available model simulations.
Bayesian approaches should be used when information

about the prior probability distribution of parameters in
the model is available. This could lead to a reduced num-
ber of required samples in order to decide if a logic prop-
erty holds. Conversely if no prior knowledge is available
frequentist methods could be employed instead.
Statistical hypothesis test based approaches should be

employed whenever deciding between two hypotheses
where usually the null hypothesis represents the PBLSTL

Table 2 Considered approximate probabilisticmodel
checking approaches

Frequentist Bayesian

Estimate Chernoff-Hoeffding
bounds [49] Mean and variance [50]

Hypothesis testing
Statistical [51]

Statistical [17]
Probabilistic

black-box [52,53]

Bayesian methods consider prior knowledge about the parameters and
variables in the model when deciding if a logic property holds. Conversely
frequentist approaches assume no prior knowledge is available. All methods
except probabilistic black-box take as input a user-defined upper bound on the
approximation error. They request additional model executions until the result is
sufficiently accurate. Probabilistic black-box model checking takes a fixed
number of model simulations as input and computes a p-value as the
confidence measure of the result.

logic property φ, respectively the alternative hypothesis
¬φ. Conversely if the true probability of φ being true is
computed and then compared to θ estimate based meth-
ods should be considered.
The algorithms provided in the original papers describ-

ing the model checking methods (see Table 2) were
employed for all approaches except frequentist statisti-
cal. An improved version of this model checking method
requiring less input parameters is described in [54]. How-
ever the initialisation step of the improved algorithm
could potentially lead to invalid arithmetic expressions if
extra conditions are not added to the algorithm imple-
mentation (C.H. Koh, personal communication, 2nd of
June, 2014). We propose a variant of the algorithm
described in [54] with amodified initisalisation stepwhich
no longer requires adding extra conditions to the imple-
mentation. A more detailed description of the proposed
solution which we consider in our approach is given in
Additional file 3.
Finally the semantics of all considered approximate

probabilistic approaches is described in Additional file 4.
Moreover we prove in Additional file 5 that the model
checking problem is well-defined; see ([55], Appendix A)
for a similar proof for BLTL.

Implementation
All spatio-temporal model validation algorithms were
implemented in the multidimensional model checking
platform Mudib. For both efficiency and cross platform
compatibility reasons Mudi was implemented in C++.
The current version of the model checker was designed
to be executed only from the command line. The user
chooses the desired model checking algorithm and enters
the required parameters via command line flags; run
Mudi with the “-help” command line argument for more
details.
The modular architecture of Mudi is separated into

the inference engine and the model checking layers as
depicted in Figure 6. The main advantage of this design
choice is that changes at the inference engine layer do not
require updates at the model checking layer and viceversa.
The model checking layer comprises all supported

model checking algorithms. Independently of the chosen
algorithm the same inference engine is used for the logic
statements’ evaluation. Conversely the inference engine
layer comprises the logic statements parsing and evalu-
ation algorithms. The parsing module verifies if a given
logic property is syntactically correct and the evaluation
module determines if the property is true/false consider-
ing a spatio-temporal execution of the model.

Results
We have illustrated the efficiency and expressivity of our
methodology based on two case studies: phase variation

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 14 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

Figure 6 The architecture of the model checker Mudi. The model checking layer is decoupled from the inference engine and comprises all
model checking types supported by Mudi. All model checking types depend on the same inference engine layer which contains the PBLSTL logic
property parser (considering BLSTL syntax) and evaluator (considering BLSTL semantics).

patterning in bacterial colony growth (regions) and the
chemotactic aggregation of cells (clusters). The datasets
employed for both case studies were generated in silico
through model simulation.
In both cases our assumption was that no prior knowl-

edge is available and therefore a frequentist model check-
ing approach was employed. Moreover for simplicity
purposes only the frequentist statistical model check-
ing results will be presented here. However all model
checking approaches have been tested against these
datasets. Relevant comparisons between different approx-
imate probabilistic model checking approaches are given
in the original papers introducing them. Since these
approaches abstract away from particular model repre-
sentations and logic formalisms the comparison results
should not change and therefore will not be restated here.

Phase variation patterning in bacterial colony growth
Phase variation is a stochastic gene expression switch-
ing mechanism employed by microbial populations to
potentially develop variants which adapt to foreseeable
frequent environmental or selective conditions [36,56,57].
In particular it is of interest to better understand how
pathogenic organisms use this mechanism to adapt to
different hosts and evade host defenses and immune
responses. The most readily observable compositional
effect of phase variation in cultures grown in vitro is the
development of sector-like patterns. To study the growth
of bacterial colonies with phase variable genes a compu-
tational model was constructed [35] enabling the inves-
tigation of different parameter sets (e.g. mutation and
fitness rates) and geometries (rectangular and circular).
The model was constructed using Coloured Stochastic
Petri Nets in Snoopy [58] and was executed on a Unix

cluster usingMARCIE [30]; see ([35], Section 5) for details
on how to obtain a copy of the model(s). For brevity
purposes only the rectangular version of the model was
considered here.
All one thousand stochastic simulations which were

executed for the rectangular model during our previous
study [35] will be reused. In order for the simulation out-
put to be processable by Mudi it needs to be translated
into STML format. For this case study the region detection
and analysis module was employed because sector-like
patterns (and not clusters of such patterns) are of inter-
est. An example of the translation steps applied to each
spatio-temporal timeseries is depicted in Figure 7. The
simulation output is visualised as images from which
regions are extracted and analysed. Results corresponding
to each timeseries are stored in a separate STML file.
The generated STML dataset is evaluated against the

formal specification comprising PBLSTL logic properties.
Depending on the modelled microorganism and the asso-
ciated mutation rates the values and/or parameters of
the logic properties will vary. We will describe here a
generic set of logic statements to illustrate the expressivity
of the formal language PBLSTL. Therefore the structure
of PBLSTL statements is emphasized and not partic-
ular parameter values. Moreover the chosen PBLSTL
probability values are approximations relative to their
expected level (e.g. high, medium or low). For simplic-
ity purposes the specification, which partially relates to
Figure 1A, will be described in natural language below; see
Additional file 6 for the equivalent specification written
in PBLSTL.

1. One of the first requirements is that the probability
of the number of sector-like patterns to increase or

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 15 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

Figure 7 Spatio-temporal detection and analysis of a phase variation model simulation. Each column corresponds to a different timepoint
from the simulation (t = 20, 30 and 40). The rows considered from top to bottom represent the stages of translating timeseries data to STML output
files (Visualisation as images, automatic detection and analysis of regions/sector-like patterns, and output in STML format).

stay constant (but never decrease) during the
bacterial colony growth is greater or equal to a
threshold value. In our case we set this threshold to
0.95. The reason for this requirement is that we do
not expect developed sectors to disappear.

2. In case sector-like patterns emerge the probability
that one of them will contain holes is less than 0.05.
This statement can be rewritten using the
clusteredness measure of the regions i.e. the
probability that the minimum clusteredness degree

of all sectors is less than a certain threshold value (in
our case 0.9) is less than 0.05.

3. The average density of the detected sectors,
representing the concentration of “mutant” cells
relative to “normal” cells, should be greater than 0.5
with probability greater than 0.95.

4. Moreover the average area of the sectors oscillates
at least one time during the growth of the bacterial
colony with probability greater than 0.5. By
oscillations we mean an increase of the average area

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 16 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

followed eventually by a decrease or viceversa. In
PBLSTL oscillations can be represented using the
difference operator d. For this particular statement
we will specify that at some point in the future the
rate of change (difference) of the average area will be
positive and then eventually negative or viceversa.
Such oscillations are expected because the relative
density of “mutant” cells with respect to “normal”
cells is considered when detecting sectors. Therefore
as the colony grows it may be the case that at the most
outward edge of a sector initially the “mutant” cells
dominate a position in the discretised space but then
they are overrun by the “normal” cells. In other words
it may be the case that a position which is contained
by a sector will no longer do so in the future.

5. Following the same reasoning we also specify that the
average perimeter value of the sectors oscillates at
least five times during the growth of the bacterial
colony with probability greater than 0.6. From an
implementation point of view this logic statement
was added to check the increase in runtime due to
nesting multiple temporal logic propositions.

6. The maximum angle described by any sector with
respect to the origin is expected to be greater than
120° with probability less than 0.1.

7. Moreover sectors are expected to develop from the
origin outwards. Therefore the minimum distance
from the origin would be expected to be greater than
100 (relative to scale of analysed images) with
probability greater or equal to 0.95.

8. Finally on average most of the sectors should develop
and maintain a triangular-like shape throughout the
entire bacterial colony growth with probability
greater than 0.8.

The natural language specification was translated to
PBLSTL such that the i-th PBLSTL logic statement cor-
responds to the i-th natural language statement. Each
PBLSTL statement (stored in a separate input file) was
individually evaluated against the STML dataset 500 times
using the frequentist statistical model checking approach
implemented in Mudi. The results corresponding to each
PBLSTL statement and execution of the model checker
are described in Additional file 7. Conclusions drawn from
the statistical analysis of the results corresponding to each
PBLSTL statement are summarized in Table 3.
For half of the PBLSTL statements (id = 1, 2, 3, 7) 100%

of the 500 model checker executions concluded with the
answer true. However in case of PBLSTL statements 6
and 8 the percentage was 99.8%, respectively 99.6% for
PBLSTL statement 4 and 75.6% for PBLSTL statement
5. It is important to note that this does not mean that
the model checking results are incorrect. Moreover in the
approximate probabilistic setting if the model checking

result is false for a logic property φ this does not imply
that ¬φ is true. The variation in the results obtained for
PBLSTL statement 4, 5, 6 and 8 are due to the fact the
we executed the model checker with the maximum prob-
ability of type I and type II errors equal to 5%. Under
these assumptions the evaluation result for a PBLSTL
statement depends on the order and number of obtained
true/false evaluations for individual STML files. To reduce
the variation of the PBLSTL evaluations the value of the
probability of type I/II errors needs to be decreased. The
required number of evaluated simulations is indirectly
proportional to the type I/II error probability. Thus more
simulation evaluations are required as the error probabil-
ities are decreased. In the extreme case if the probability
of both type I and type II errors is set to zero the expected
number of evaluated simulations is infinite i.e. the entire
state space of the model would be potentially investigated.
Similarly there is a significant difference in the average

total number of STML files against which the PBLSTL
statement was evaluated. Depending on the compari-
son operator (>,<,>=,<=) and the specificity of the
probability θ corresponding to each PBLSTL statement
more/less evidence is required to prove that the statement
is true/false. In our case the logic statement 6 required on
average more than 950 STML evaluations and most of the
timemore than themaximum number of available simula-
tions 1000 (see Additional file 7 for results corresponding
to each model checker execution). Since no path to an
external model simulator was specified the model checker
did not have enough evidence to decide using the frequen-
tist statistical model checking approach if the PBLSTL
statement holds. Therefore the provided answer was com-
puted using the probabilistic black-box model checking
approach.
The considerable difference in the number of required

STML files is additionally reflected in the average execu-
tion times of the model checker. Thus the highest average
execution time was recorded for the evaluation of PBLSTL
statement 6. Since the formal specification for this case
study comprises all PBLSTL statements the average exe-
cution time for the entire specification is computed as the
sum of all average execution times (see column 9, Table 3):

Execution timespecification= 0 : 2.87 + 0 : 4.40 + 0 : 2.75
+ 0 : 0.22 + 0 : 0.99
+ 0 : 43.71 + 0 : 4.67
+ 0 : 1.33

= 01 : 0.94 (minutes:seconds).

In order to decrease the overall execution time the
model checker was extended such that it can evaluate the
specification comprising all PBLSTL statements in a single
run. In this case each STML file is read into memory only

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 17 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

Table 3 Model checking statistical analysis results for the phase variation case study

id
% true #total STML #true STML #false STML Exec. times

PBLSTL μ σ μ σ μ σ μ σ

1 100 67.95 12.51 67.12 11.52 0.83 0.98 0:2.87 0:0.57

2 100 103.21 57.70 0.81 1.18 102.40 56.56 0:4.40 0:2.60

3 100 63.05 8.43 62.62 7.74 0.43 0.69 0:2.75 0:0.43

4 99.6 3.29 12.79 1.84 7.51 1.45 5.36 0:0.22 0:0.83

5 74.6 15.35 14.17 6.98 5.94 8.36 8.72 0:0.99 0:0.92

6 99.8 982.63 111.18 10.74 1.62 971.88 109.59 0:43.71 0:9.70

7 100 106.21 42.53 102.53 39.42 3.68 3.11 0:4.67 0:2.02

8 99.8 30.04 63.24 24.87 51.40 5.17 11.99 0:1.33 0:2.59

Entries in the “id” column represent the numeric identifiers placed at the right of each PBLSTL statement. The “% true PBLSTL” column describes what percentage of
the 500 executions concluded that the PBLSTL statement is true. “#total STML” represents the total number of STML files evaluated for the PBLSTL statement; columns
“#true STML” and “#false STML” represent the number of STML files for which the PBLSTL statement was evaluated true, respectively false.“μ” and “σ ” represent the
mean and standard deviation. “Exec. times” presents the average model checking execution time for each PBLSTL evaluation using the “minutes:seconds” format.

once and thus reduces the number of required input/out-
put (I/O) operations. Under these conditions the average
execution time for the entire specification considering 500
runs was 0:44.41 (minutes:seconds), compared to 01:0.94
when the PBLSTL statements were evaluated individually.
For reproducibility purposes the dataset of generated

STML files and the file containing the spatio-temporal
PBLSTL statements are made available in Additional
files 6 and 8.

Chemotactic aggregation of cells
Chemotaxis is the process through which cells detect
concentration changes in chemical gradients and move
towards chemical attractants, respectively away from
chemical repellants. It is employed both by prokaryotic
and eukaryotic cells and underpins many biological pro-
cesses (e.g. human leukocytes migrate to sites of inflam-
mation, cancer cells metastasize to other organs) [59,60].
In an attempt to better understand the intracellular mech-
anisms underlying chemotaxis computational models for
various type of cells have been constructed [61]. Although
such models differ at the intracellular level they exhibit
relatively similar behaviours at the population level i.e.
cells aggregate in the area with the highest concentration
of chemical attractants. In this work we were only inter-
ested in the evolution over time of the spatial distribution
of cells and therefore have abstracted away from all the
intracellular details.
A computational model illustrating the chemotactic

aggregation of cells was constructed using the mod-
elling and simulation software Morpheus [62]. The dis-
cretised 2D space was represented using a rectangular
lattice of size 100×100 on which 100 cells were randomly
distributed; cells’ positions are recomputed for each
model simulation. In order to activate the chemotactic

behaviour of the cells a chemical gradient was added
in the environment according to a Gaussian distribution
with parameters μx = μy = 50 and σx = σy = 10.
The cells and their movement in the environment was
represented using a Cellular Potts model [63] and the
distribution of the chemical gradient was encoded using
partial differential equations. A copy of the model is made
available as Additional file 9.
The output of each model simulation was translated

to STML using the cluster detection mechanism because
groups of (and not individual) cells were of interest. Cells
occupied only one position of the discretised space and
therefore their detection in images was straightforward.
Instead of employing the region detection mechanism we
implemented a custom lightweight cell detector which
verifies the presence/absence of cells in each position
(including pileup) considering the average pixel inten-
sity; see Figure 8 for an example of the translation steps
performed by the cluster detection mechanism for each
model simulation.
In order to illustrate the integration of Mudi with a

model simulator the model checker was executed ini-
tially without making available any STML files. Instead
an external script responsible for simulating the model
and converting the output to STML was provided as
a command-line parameter. Thus Mudi executed the
script on demand whenever extra model simulations were
required. In general if a large number of simulations
is required the maximum model checking time can be
bounded via a user-defined parameter.
Considering this scenario the computational model was

validated against a formal PBLSTL specification. Simi-
larly to the phase variation case study the chosen set
of logic statements is generic and was chosen to illus-
trate the expressivity of PBLSTL and not the phenotypic

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 18 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

Figure 8 Spatio-temporal detection and analysis of a chemotaxis model simulation. Each column corresponds to a different timepoint from
the simulation (t = 1, 30 and 195). The rows considered from top to bottom represent the stages of translating timeseries data to STML output files
(Visualisation as images, automatic detection and analysis of regions/sector-like patterns clusters, and output in STML format). The colour employed
in the first row plots represents degree of pileup. “Yellow” positions in the discretised 2D space are occupied by 1 cell, respectively “green” positions
by 2 cells and “teal” positions by 3 cells. The colours employed in the second row plots are used only to distinguish between different clusters. Each
cluster is surrounded by a polygon whose shape (triangular/rectangular/circular) best matches the shape of the cluster.

characteristics specific to a particular type of cells.
Moreover the specification, which partially relates to
Figure 1B, will be described in natural language below; see
Additional file 10 for the equivalent specification written
in PBLSTL.

9. One of the most important properties is that cells
aggregate in the area with highest concentration of
chemical attractant. This means that at least one

cluster is formed at a distance smaller than δ > 0
from the chemical gradient centre. Let us assume
that the cluster centroid is the point (x, y),
respectively the centroid of the chemical gradient is
(703.5, 678.5). Then a cluster is at a distance smaller
or equal to δ from (703.5, 678.5) if and only if:

d[(x, y), (703.5, 678.5)]=
√
(x − 703.5)2 + (y − 678.5)2 < δ

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 19 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

Considering that y ∈ (678.5 − δ, 678.5 + δ) this
means that:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x < 703.5 +
√
δ2 − (678.5 − y)2

x > 703.5 −
√
δ2 − (678.5 − y)2

y < 678.5 + δ

y > 678.5 − δ.

For this particular case study we set the value of δ to
50.

10. In addition the average clusteredness degree of
individual clusters increases at least 5 times during
the simulation time interval [0, 200] with probability
greater than 0.8. This means that the average
distance between cells in the clusters is reduced at
least five times during the specified time interval.

11. In order to quantify the degree of clusteredness
within and between different clusters a cluster
validity index such as the Sillhouette can be
employed. The value of the Silhouette is recorded for
each timepoint by the avgClusterednessClusters
numeric state variable. The probability of the
avgClusterednessClusters to decrease under a
threshold value (in our case 0.5) during the time
interval [0, 50] is less than 0.05. Note that
avgClusterednessClusters could be replaced by any
other numeric state variable representing the
concentration of a species/protein. Therefore our
approach can be employed to reason about both
spatial and non-spatial properties, and how changes
of non-spatial properties reflect on the spatial
properties and viceversa.

12. Similarly the number of clusters is expected to
decrease and remain throughout the entire
simulation less than 5 with probability greater than
0.75. The reason for this is that simulations start with
multiple small clusters which are then expected to

merge and form larger clusters close to the area where
the chemical attractant concentration is highest.

13. The chemical gradient is distributed such that the
areas of approximately equal chemical concentration
have a circular/ring shape. Therefore the shape of at
least one aggregated cells cluster should be eventually
circular with probability greater or equal to 0.6.

14. Finally the probability of the average clusters’ density
to never oscillate is less than 0.1. Oscillations of the
density are expected because sometimes cells pile up.

Similarly to the phase variation case study the natu-
ral language specification was translated to PBLSTL such
that the i-th PBLSTL logic statement corresponds to the
i-th natural language statement. Each PBLSTL statement
(stored in a separate input file) was individually evaluated
against the STML dataset 500 times using the frequentist
statistical model checking approach. The results corre-
sponding to each PBLSTL statement and execution of
the model checker are described in Additional file 11.
The output of the statistical analysis of the results cor-
responding to each PBLSTL statement are reported in
Table 4.
Similarly to the phase variation case study there are

fluctuations in the evaluation results of some PBLSTL
statements. Moreover the number of required STML files
to reach a conclusion differs depending on the specificity
of the logic statement and the distribution of PBLSTL
truth evaluations. In contrast to the phase variation case
study for many PBLSTL statements the variation in the
number of required STML files, respectively the num-
ber of true and false STML evaluations, is equal to zero.
Furthermore although the average number of required
STML files for the evaluation of a PBLSTL statement
(≈ 26) is less than for the phase variation case study
(≈ 171.47), the average execution time is higher (chemo-
taxis: 20.585s, phase variation: 7.6175s). The reason for
this is that most of the execution time of the model
checker is spent on I/O operations. Thus the execution

Table 4 Model checking statistical analysis results for the chemotaxis case study

id
% true #total STML #true STML #false STML Exec. times

PBLSTL μ σ μ σ μ σ μ σ

9 100 28 0 28 0 0 0 0:22.04 0:0.13

10 100 14 0 14 0 0 0 0:11.50 0:0.08

11 100 58 0 0 0 58 0 0:44.87 0:0.44

12 100 10.96 0.18 10.92 0.37 0.03 0.18 0:9.27 0:0.16

13 95.6 17.04 73.33 9.57 40.67 7.46 32.73 0:13.73 0:55.45

14 100 28 0 0 0 28 0 0:22.10 0:0.20

Entries in the “id” column represent the numeric identifiers placed at the right of each PBLSTL statement. The “% true PBLSTL” column describes what percentage of
the 500 executions concluded that the PBLSTL statement is true. “#total STML” represents the total number of STML files evaluated for the PBLSTL statement; columns
“#true STML” and “#false STML” represent the number of STML files for which the PBLSTL statement was evaluated true, respectively false.“μ” and “σ ” represent the
mean and standard deviation. “Exec. times” presents the average model checking execution time for each PBLSTL evaluation using the “minutes:seconds” format.

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 20 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

time depends on both the number and size of STML files
which are read into memory. The average STML file size
for the phase variation case study is 64759.2 bytes, respec-
tively 1397460 bytes for the chemotaxis case study. Thus
the ratio between the file size for the phase variation
and chemotaxis case study is 0.04, respectively the ratio
between their average execution times is only 0.37.
Finally the average execution time for the entire speci-

fication is computed as the sum of all average execution
times (see column 9, Table 4):

Execution timespecification = 0 : 22.04 + 0 : 11.50
+ 0 : 44.87 + 0 : 9.27
+ 0 : 13.73 + 0 : 22.10

= 02 : 3.51 (minutes:seconds).

Similarly to the phase variation case study evaluating
the specification comprising all PBLSTL statements in
the same model checker run leads to a decrease in the
execution time. The average execution time recorded for
the entire chemotaxis specification considering 500 runs
of the model checker was 0:56.18 (minutes:seconds) i.e.
less than 50% of the average execution time when each
PBLSTL statement was evaluated separately.
For reproducibility purposes a subdataset of 250 STML

files generated on demand and the set of PBLSTL state-
ments for the chemotaxis case study are made available in
Additional files 10 and 12. Due to file size constraints the
full dataset of 2500 STML files is made available only on
the “Case studies” subpage of [48].

Discussion
The need for spatio-temporal models and corresponding
analysis and validation methods was mentioned previ-
ously in the literature. An example framework for spatio-
temporal modelling and simulation based on the auto-
matic detection and analysis of biochemical species in
microscopy images is described in [64]. Most of the
existing formal methods employed for the quantitative
validation of such models only consider the evolution
over time of non-spatial properties such as concentra-
tions. To the best of our knowledge the only existing
quantitative spatio-temporal model checking approach
is described in [65] for reasoning about uncertainty in
epidemiological models. The authors define a Bounded
Spatio-Temporal Logic which extends BLTL with two spa-
tial functions P(A,C) for computing the number of type
A entities present in the compartment C and N(A,B, r)
for computing the number of type A entities lying within
a radius r of one or more type B entities. More recently
this work was extended in [66] where a probabilistic
spatio-temporal specification language called EpiSpec is
defined. Compared to the previous approach EpiSpec is
based on first-order logic, defines functions with a similar

semantics to P and N and additionally enables the use of
potentially complex arithmetic

(
e.g. dEdt ,

∫ t2
t1 Edt

)
expres-

sions. From a spatial point of view in both approaches
only the number of entities in a location or the neighbour-
hood of a location are considered. Thus spatial patterns
described by locations or clusters of locations are not
detected and analysed. Moreover geometric properties
(e.g. area, perimeter, angle etc.) are not considered.
Our methodology is an extension of the existing model

checking approaches because it enables the validation of
models with respect to (clusters of) spatial patterns and
how their geometric properties change over time. The
ability to reason about spatial structures and the inter-
actions between such structures proves useful for the
automatic in silico validation of complex spatio-temporal
models. Stochastic biological systems are represented
as SSpDESs and the formal specification is encoded in
PBLSTL.
The presented methodology and the model checker

Mudi have been designed to not place any restrictions
on the relevantly employed modelling formalism. In order
to illustrate the generalisability of our approach the
computational model for the phase variation case study
was formalised as a Coloured Stochastic Petri Net, respec-
tively the computational model for the chemotaxis case
study as a Cellular Potts model integrated with a system of
partial differential equations.
Although Mudi is not dependent on the model type it

does place a restriction on the simulation output format.
All timeseries data need to be translated to the standard
data representation format STML. In our approach this
conversion is carried out automatically by the parame-
terised region (phase variation) and cluster (chemotaxis)
detection mechanisms.
The main reason for choosing image processing func-

tions for the translation of timeseries data to STML
is that images could be generated from in silico sim-
ulations but also recorded during wet-lab experiments.
Therefore our methodology could potentially be used in
the future to automatically determine if certain spatio-
temporal properties hold for both in silico and in
vitro generated datasets. Quantifying how many logic
statements hold for computational models vs wet-lab
datasets could prove to be useful as a measure of sim-
ilarlity/fitness and therefore be employed in automatic
model construction and/or parameter estimation/synthe-
sis algorithms. Although image processing functions were
employed here to translate timeseries data to STML the
system was designed in a modular fashion such that
the model checker Mudi (and the associated binary) is
decoupled from the region/cluster detection mechanism
(and their implementation). Thus potential users of the
model checker could extend our implementation with
their own customized timeseries translators.

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 21 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

In addition Mudi supports validating models based on
pre-generated STML files (phase variation) or it can gen-
erate STML files on demand (chemotaxis). In case STML
files are generated on demand a user-defined script calling
the model simulator needs to be made available. For the
chemotaxis case study a Bash script was created to exe-
cute the Linux version of the Morpheus model simulator
and translate the simulation output to STML. Although
writing scripts for the integration of Mudi with various
model simulators requires expert knowledge, the scripts,
if designed properly, need to be potentially written only
once.
The efficiency and complexity of the methodology

was illustrated for the phase variation and chemo-
taxis case studies by employing only the frequen-
tist statistical model checking algorithm. However
Mudi comprises both Bayesian and frequentist, esti-
mate and statistical hypothesis test based model valida-
tion approaches. Depending on the availability of prior
knowledge and the preferred method to formulate the
model validity problem different algorithms could be
used.
The scalability of the methodology depends (in)directly

on the size and representation of the modelled system. An
increase in the size of the systemwill negatively impact the
model simulation time directly, respectively the spatio-
temporal analysis and the evaluation of logic properties
indirectly. The rate at which the model simulation time
changes, with respect to the system size, can vary consid-
erably depending on the employed model representation
and simulation algorithm. For instance the systems con-
sidered by the phase variation and chemotaxis case studies
were of similar size (discretised space of size 101 × 101
for phase variation, respectively 100×100 for chemotaxis)
and complexity but their simulation time was significantly
different (average model simulation time was 50 minutes
for phase variation, respectively 5 seconds for chemo-
taxis). In contrast both the spatio-temporal analysis and
evaluation of logic properties only depend on the size
of the simulation traces and are expected to scale well
(polynomially) with respect to the size of the system.
Therefore one potential bottleneck, if any, for the scalabil-
ity of the methodology is the model representation and/or
simulation algorithm.
Although the methodology was applied only to uniscale

computational models a certain class of multiscale mod-
els are supported as well. These are models for which the
model checking specification can be decomposed into n
logic properties such that each logic property corresponds
to a single uniscale submodel. In this case the assumption
is that, from a model checking point of view, the interac-
tions between different uniscale models are not relevant
and can be ignored. If this is true the multiscale model
validation task could be executed as a batch of n uniscale

model validation tasks where the results are aggregated
accordingly.
The model checker Mudi and supplementary materials

are made freely available on the official webpage [48].
In spite of the above described features our approach

has the following limitations. First one of the main
assumptions made is that space is represented in pseudo-
3D dimensions. This means that models ranging from 0D
(time only) to pseudo-3D (time and 2D space including
density) are supported without the possibility of explic-
itly referring to positions on the Oz axis. Therefore the
current version of the model checker cannot be employed
for full 3D models and spatial properties of such models
(e.g. volume, 3D shape). The extension of the methodol-
ogy to the full 3D scenario would require defining a set
of 3D specific spatial properties, including them in the
logic PBLSTL and developing algorithms for automati-
cally extracting such spatial properties from 3D images.
Second the presented methodology is limited to spatio-
temporal uni-scale models i.e. it assumes that all spatial
properties correspond to the same spatial scale. How-
ever for real life applications there is a need to build and
integrate models across multiple temporal and/or spa-
tial scales which are not covered here. Multiple spatial
scale models are not currently supported because the
methodology does not include a mechanism to explicitly
distinguish between spatial patterns from different scales.
Finally our approach has been validated only on simu-
lated data but it should be applicable to real life datasets
as well. Moreover the usefulness of our methodology was
illustrated only on biological case studies. However there
is nothing inherent to the methodology which limits it
to the biological and/or medical scenarios. Therefore we
would like to consider applying this approach to non-
biological case studies as well in an attempt to test its
applicability limits and/or discover new features which
should be included. In the future we would like to extend
our methodology and address the limitations presented
above.

Conclusions
In this paper we defined and implemented a methodology
for the automatic in silico formal validation of compu-
tational models using pseudo-3D spatio-temporal model
checking. The advantage of this methodology, in contrast
to the existing ones, is that it enables validating computa-
tional models with respect to both spatial (e.g. area) and
numeric (e.g. concentrations) properties, which means it
can be employed for small (e.g. intracellular) as well as
large (e.g. tissue) scale systems. Implicitly it also enables
verifying correlations between changes in spatial proper-
ties with respect to numeric properties or viceversa.
We implemented themethodology in the freely available

model checking platform Mudi using a cross-platform

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 22 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

programming language. No restriction is placed on the
type and representation of the computational model
because Mudi operates directly on timeseries data. There-
fore it can be potentially integrated with most existing
model construction workflows. For flexibility purposes
Mudi supports both frequentist and Bayesian, esti-
mate and statistical hypothesis testing based probabilistic
model checking algorithms.
The efficiency and applicability of the methodology was

illustrated based on two biological case studies namely
phase variation patterning in bacterial colony growth and
the chemotactic aggregation of cells. Although both mod-
els were uni-scale, Mudi could be employed for multiscale
models by applying it iteratively for each scale with-
out the possibility of relating properties between scales.
We would like to address this limitation in the future.
Our work is a precursor to the development of more
complex multidimensional and multiscale computational
models.

Availability of supporting data
The data sets supporting the results of this article are
included within the article and its Additional files.

Endnotes
aThe clusteredness is usually measured using what is

known in the cluster detection and analysis literature as
cluster validity indices. Although there is no index which
performs best for all scenarios Silhouette [67] obtains
good/best results in the majority of cases according
to [68]. The Silhouette value is computed with respect to
the regions in all clusters. Thus in our case it could be
determined only at cluster detection and analysis time
when the information about individual regions is
available. At a particular timepoint we associate to a set
of clusters a unique Silhouette value which means we
could encode it as a numeric state variable in our model.

bThe name of the model checker is composed from the
uppercase letters in the word MUltiDImensional.

Additional files

Additional file 1: Example of a simple SSpDES. An example illustrating
how to construct a SSpDES model for a simple system.

Additional file 2: Formal BLSTL syntax and semantics definition. A
detailed description of the BLSTL formal language syntax and semantics.

Additional file 3: Improved frequentist statistical model checking. A
brief description of the proposed frequentist statistical model checking
algorithm improvement.

Additional file 4: Semantics of the considered approximate
probabilistic model checking approaches. A description of the
semantics of the considered approximate probabilistic model checking
approaches.

Additional file 5: Well-defined model checking problem. A proof that
the model checking problem is well-defined.

Additional file 6: Input file containing all PBLSTL statements for the
phase variation case study. The input file containing all PBLSTL
statements for the phase variation case study. Any regular text editor can
be used to open this file.

Additional file 7: Model checking results for the phase variation case
study. The results obtained for each model checker execution and PBLSTL
statement considering the phase variation case study. For statistical
analysis of the results the pdf file can be converted to a Microsoft Word
document, using the online converter (http://www.pdfonline.com/pdf-to-
word-converter), from which the table of results can be directly copied in a
spreadsheet-like software such as Microsoft Excel (or LibreOffice Calc). In
case you would like to use statistical software such as R you can save the
results from Excel/Calc in csv format and then import them into R.

Additional file 8: Dataset of STML files for the phase variation case
study. The dataset of one thousand STML files corresponding to the
stochastic simulations of the rectangular model for the phase variation case
study. We recommend using the freely available 7zip software (Download
link: http://www.7-zip.org/download.html) to extract this archive.

Additional file 9: Chemotaxis model. Computational model for the
chemotaxis case study. Please use the morpheus modelling environment
(Download link: http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?
id=download:download) to open this file.

Additional file 10: Input file containing all PBLSTL statements for the
chemotaxis case study. The input file containing all PBLSTL statements
for the chemotaxis case study. Any regular text editor can be used to open
this file.

Additional file 11: Model checking results for the chemotaxis case
study. The results obtained for each model checker execution and PBLSTL
statement considering the chemotaxis case study. For statistical analysis of
the results the pdf file can be converted to a Microsoft Word document,
using the online converter (http://www.pdfonline.com/pdf-to-word-
converter), from which the table of results can be directly copied in a
spreadsheet-like software such as Microsoft Excel (or LibreOffice Calc). In
case you would like to use statistical software such as R you can save the
results from Excel/Calc in csv format and then import them into R.

Additional file 12: Dataset of STML files for the chemotaxis case
study. The subdataset of 250 STML files corresponding to the stochastic
model simulations for the chemotaxis case study. We recommend using
the freely available 7zip software (Download link: http://www.7-zip.org/
download.html) to extract this archive.

Abbreviations
BLSTL: Bounded linear spatial temporal logic; BNF: Backus-Naur form; PBLSTL:
Probabilistic bounded linear spatial temporal logic; SDES: Stochastic discrete
event system; SSpDES: Stochastic spatial discrete event system; STML: Spatial
temporal markup language.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
OP defined and implemented the algorithms for spatio-temporal detection
and analysis, provided the standard format STML for representing
spatio-temporal properties, defined the theoretical model for stochastic
spatial discrete-event systems, defined the formal probabilistic
spatio-temporal logic PBLSTL, implemented the model checking platform
Mudi, and illustrated its effectiveness based on the two biological case studies.
He also wrote the core parts of the manuscript. DG described the need for a
spatio-temporal model checking methodology and supervised the
development and implementation of the entire project. Moreover he helped
draft the manuscript and provided constructive critical reviews which led to its
improvement. All authors read and approved the final manuscript.

Acknowledgements
We would like to thank the anonymous reviewers for providing insightful
comments which helped improve the quality of the manuscript. Moreover we
would like to gratefully acknowledge the support provided by Walter de Back
in using the modelling environment Morpheus. Ovidiu Pârvu is supported by a
scholarship from Brunel University.

http://www.biomedcentral.com/content/supplementary/s12918-014-0124-0-S1.pdf
http://www.biomedcentral.com/content/supplementary/s12918-014-0124-0-S2.pdf
http://www.biomedcentral.com/content/supplementary/s12918-014-0124-0-S3.pdf
http://www.biomedcentral.com/content/supplementary/s12918-014-0124-0-S4.pdf
http://www.biomedcentral.com/content/supplementary/s12918-014-0124-0-S5.pdf
http://www.biomedcentral.com/content/supplementary/s12918-014-0124-0-S6.zip
http://www.biomedcentral.com/content/supplementary/s12918-014-0124-0-S7.pdf
http://www.pdfonline.com/pdf-to-word-converter
http://www.pdfonline.com/pdf-to-word-converter
http://www.biomedcentral.com/content/supplementary/s12918-014-0124-0-S8.zip
http://www.7-zip.org/download.html
http://www.biomedcentral.com/content/supplementary/s12918-014-0124-0-S9.zip
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=download:download
http://imc.zih.tu-dresden.de/wiki/morpheus/doku.php?id=download:download
http://www.biomedcentral.com/content/supplementary/s12918-014-0124-0-S10.zip
http://www.biomedcentral.com/content/supplementary/s12918-014-0124-0-S11.pdf
http://www.pdfonline.com/pdf-to-word-converter
http://www.pdfonline.com/pdf-to-word-converter
http://www.biomedcentral.com/content/supplementary/s12918-014-0124-0-S12.zip
http://www.7-zip.org/download.html
http://www.7-zip.org/download.html

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 23 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

Received: 23 July 2014 Accepted: 28 October 2014

References
1. Ideker T, Galitski T, Hood L: A new approach to decoding life: systems

biology. Annu Rev Genomics HumGenet 2001, 2(1):343–372. PMID:
11701654.

2. Kitano H: Systems biology: a brief overview. Science 2002,
295(5560):1662–1664. PMID: 11872829.

3. Benner SA, Sismour AM: Synthetic biology. Nat Rev Genet 2005,
6(7):533–543.

4. Endy D: Foundations for engineering biology. Nature 2005,
438(7067):449–453.

5. Cvijovic M, Almquist J, Hagmar J, Hohmann S, Kaltenbach H-M, Klipp E,
Krantz M, Mendes P, Nelander S, Nielsen J, Pagnani A, Przulj N, Raue A,
Stelling J, Stoma S, Tobin F, Wodke JAH, Zecchina R, Jirstrand M: Bridging
the gaps in systems biology. Mol Genet Genom 2014, 289:727–734.

6. Dada JO, Mendes P:Multi-scalemodelling and simulation in systems
biology. Integr Biol (Camb) 2011, 3(2):86–96.

7. Weber W, Fussenegger M: Emerging biomedical applications of
synthetic biology. Nat Rev Genet 2012, 13(1):21–35. Accessed
2014-04-08.

8. Kohl P, Noble D: Systems biology and the virtual physiological
human.Mol Syst Biol 2009, 5:292. WOS:000268718900008.

9. Kurachi Y: High Definition Physiology project. [http://hd-physiology.
jp/] Accessed 2014-04-07.

10. Cheng AA, Lu TK: Synthetic biology: an emerging engineering
discipline. Annu Rev Biomed Eng 2012, 14:155–178. PMID: 22577777.

11. Clarke EM, Grumberg O, Peled D: Model Checking. Cambridge: MIT Press;
1999.

12. Baier C, Katoen J-P: Principles of Model Checking. Cambridge, London,
England: The MIT Press; 2008.

13. Emerson EA: Temporal andmodal logic. In Handbook of Theoretical
Computer Science. Edited by Jan van Leeuwen. Cambridge: MIT Press;
1995:995–1072.

14. Konur S. A survey on temporal logics. arXiv e-print 1005.3199,
Department of Computer Science, University of Liverpool May 2010.
[http://arxiv.org/abs/1005.3199] Accessed 2013-07-03.

15. Finkbeiner B, Sipma H: Checking finite traces using alternating
automata. Electron Notes Theor Comput Sci 2001, 55(2):147–163.
Accessed 2013-11-13.

16. Pnueli A: The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science: 31 October-2 November 1977; Providence,
RI, USA. New York: IEEE; 1977:46–57.

17. Jha SK, Clarke EM, Langmead CJ, Legay A, Platzer A, Zuliani P: A bayesian
approach to model checking biological systems. In Computational
Methods in Systems Biology. Lecture Notes in Computer Science. Edited by
Degano P, Gorrieri R. Bologna: Springer; 2009:218–234. [http://link.
springer.com/chapter/10.1007/978-3-642-03845-7_15] Accessed
2013-11-05.

18. Zuliani P, Platzer A, Clarke EM: Bayesian statistical model checking
with application to Simulink/Stateflow verification. In Proceedings of
the 13th ACM International Conference on Hybrid Systems: Computation and
Control.HSCC ‘10. New York: ACM; 2010:243–252. [http://doi.acm.org/10.
1145/1755952.1755987] Accessed 2013-11-05.

19. Chabrier N, Fages F: Symbolic model checking of biochemical
networks. In Computational Methods in Systems Biology. Lecture Notes in
Computer Science. Edited by Priami C. Rovereto: Springer; 2003:149–162.
[http://link.springer.com/chapter/10.1007/3-540-36481-1_13] Accessed
2014-04-14.

20. Kwiatkowska M, Norman G, Parker D: Using probabilistic model
checking in systems biology. SIGMETRICS Perform Eval Rev 2008,
35(4):14–21. Accessed 2014-04-14.

21. Barbuti R, Levi F, Milazzo P, Scatena G: Probabilistic model checking of
biological systems with uncertain kinetic rates. Theor Comput Sci
2012, 419:2–16. Accessed 2014-04-14.

22. Barnat J, Brim L, Sǎfránek D, Vejnár M: Parameter scanning by parallel
model checking with applications in systems biology. In Second
International Workshop on Parallel and Distributed Methods in Verification,
2010 Ninth International Workshop On, and High Performance

Computational Systems Biology: 30 September-1 October 2010; Enschede.
New York: IEEE; 2010:95–104.

23. Jha SK, Langmead CJ: Synthesis and infeasibility analysis for
stochastic models of biochemical systems using statistical model
checking and abstraction refinement. Theor Comput Sci 2011,
412(21):2162–2187. Accessed 2014-04-15.

24. Rizk A, Batt G, Fages F, Soliman S: Continuous valuations of temporal
logic specifications with applications to parameter optimization
and robustnessmeasures. Theor Comput Sci 2011, 412(26):2827–2839.
Accessed 2014-09-23.

25. Madsen C, Myers C, Roehner N, Winstead C, Zhang Z: Utilizing stochastic
model checking to analyze genetic circuits. In 2012 IEEE Symposium on
Computational Intelligence in Bioinformatics and Computational Biology
(CIBCB): 9-12May 2012. San Diego, CA, New York: IEEE; 2012:379–386.

26. Rizk A, Batt G, Fages F, Soliman S: A general computational method for
robustness analysis with applications to synthetic gene networks.
Bioinformatics 2009, 25(12):169–178. Accessed 2014-09-23.

27. Yordanov B, Belta C: A formal verification approach to the design of
synthetic gene networks. CoRR 2011 abs/1109.1275. arXiv:1109.1275
[cs, math, q-bio], 2011. Accessed 2014-04-14.

28. Brim L, Češka M, Šafránek D:Model checking of biological systems. In
Formal Methods for Dynamical Systems. Lecture Notes in Computer Science.
Edited by Bernardo M, Vink Ed, Pierro AD, Wiklicky H. Bertinoro: Springer;
2013:63–112. [http://link.springer.com/chapter/10.1007/978-3-642-
38874-3_3] Accessed 2014-01-08.

29. Zuliani P: Statistical model checking for biological applications. CoRR
2014, abs/1405.2705. arXiv:1405.2705 [cs, q-bio], 2014. Accessed
2014-05-17.

30. Heiner M, Rohr C, Schwarick M:MARCIE – model checking and
reachability analysis done efficiently. In Application and Theory of Petri
Nets and Concurrency. Lecture Notes in Computer Science. Edited by Colom
J-M, Desel J. Milano: Springer; 2013:389–399. [http://link.springer.com/
chapter/10.1007/978-3-642-38697-8_21] Accessed 2014-04-14.

31. Kwiatkowska M, Norman G, Parker D: PRISM 4.0: Verification of
probabilistic real-time systems. In Computer Aided Verification. Lecture
Notes in Computer Science. Edited by Gopalakrishnan G, Qadeer S.
Snowbird: Springer; 2011:585–591. [http://link.springer.com/chapter/10.
1007/978-3-642-22110-1_47] Accessed 2014-04-14.

32. Appelmelk BJ, Shiberu B, Trinks C, Tapsi N, Zheng PY, Verboom T,
Maaskant J, Hokke CH, Schiphorst WECM, Blanchard D, Simoons-Smit IM,
van den Eijnden DH, Vandenbroucke-Grauls CMJE: Phase variation in
helicobacter pylori lipopolysaccharide. Infect Immun 1998,
66(1):70–76. Accessed 2013-06-12.

33. Weijer C: Dictyostelium discoideumwebpage. [http://www.personal.
dundee.ac.uk/~cjweijer/dictyweb/] Accessed 2014-09-23.

34. Younes HLS: Verification and planning for stochastic processes with
asynchronous events. Doctor of philosophy, Carnegie Mellon, Pittsburgh,
2005.

35. Pârvu O, Gilbert D, Heiner M, Liu F, Saunders N:Modelling andanalysis of
phase variation in bacterial colony growth. In Computational Methods
in Systems Biology. Lecture Notes in Computer Science. Edited by Gupta A,
Henzinger TA. Klosterneuburg: Springer; 2013:78–91. [http://link.springer.
com/chapter/10.1007/978-3-642-40708-6_7] Accessed 2013-09-29.

36. Saunders NJ, Moxon ER, Gravenor MB:Mutation rates: estimating
phase variation rates when fitness differences are present and their
impact on population structure.Microbiology 2003, 149(2):485–495.
PMID: 12624210. Accessed 2013-06-11.

37. Szeliski R: Computer Vision: Algorithms and Applications. 1st edn. New York:
Springer; 2010.

38. Bradski G, Kaehler A: Learning OpenCV: Computer Vision with the OpenCV
Library. Cambridge: O’Reilly; 2008.

39. Itseez: OpenCV documentation. 2013. [http://docs.opencv.org]
40. Jain AK: Data clustering: 50 years beyond k-means. Pattern Recogn Lett

2010, 31(8):651–666. Accessed 2013-07-24.
41. Ester M, Kriegel H-p, S J, Xu X: A Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise. Menlo Park: AAAI Press; 1996.
42. Tran TN, Drab K, Daszykowski M: Revised DBSCAN algorithm to cluster

data with dense adjacent clusters. Chemometr Intell Lab Syst 2013,
120:92–96. Accessed 2013-07-04.

http://hd-physiology.jp/
http://hd-physiology.jp/
http://arxiv.org/abs/1005.3199
http://link.springer.com/chapter/10.1007/978-3-642-03845-7_15
http://link.springer.com/chapter/10.1007/978-3-642-03845-7_15
http://doi.acm.org/10.1145/1755952.1755987
http://doi.acm.org/10.1145/1755952.1755987
http://link.springer.com/chapter/10.1007/3-540-36481-1_13
http://link.springer.com/chapter/10.1007/978-3-642-38874-3_3
http://link.springer.com/chapter/10.1007/978-3-642-38874-3_3
http://link.springer.com/chapter/10.1007/978-3-642-38697-8_21
http://link.springer.com/chapter/10.1007/978-3-642-38697-8_21
http://link.springer.com/chapter/10.1007/978-3-642-22110-1_47
http://link.springer.com/chapter/10.1007/978-3-642-22110-1_47
http://www.personal.dundee.ac.uk/~cjweijer/dictyweb/
http://www.personal.dundee.ac.uk/~cjweijer/dictyweb/
http://link.springer.com/chapter/10.1007/978-3-642-40708-6_7
http://link.springer.com/chapter/10.1007/978-3-642-40708-6_7
http://docs.opencv.org

Pârvu and Gilbert BMC Systems Biology 2014, 8:124 Page 24 of 24
http://www.biomedcentral.com/1752-0509/8/1/124

43. O’Rourke J, Aggarwal A, Maddila S, Baldwin M: An optimal algorithm for
findingminimal enclosing triangles. J Algorithm 1986, 7(2):258–269.
Accessed 2013-07-09.

44. Freeman H, Shapira R: Determining the minimum-area encasing
rectangle for an arbitrary closed curve. CommunACM 1975,
18(7):409–413. Accessed 2014-04-24.

45. Toussaint GT: Solving geometric problems with the rotating calipers.
In Proc. IEEEMelecon. Volume 83; 1983:10. [http://web.cs.swarthmore.
edu/~adanner/cs97/s08/pdf/calipers.pdf] Accessed 2013-07-09.

46. Gärtner B: Fast and robust smallest enclosing balls. In Algorithms - ESA
‘99. Lecture Notes in Computer Science. Edited by Nešetřil J. Prague:
Springer; 1999:325–338. [http://link.springer.com/chapter/10.1007/3-
540-48481-7_29] Accessed 2014-04-24.

47. Steger C: On the calculation of moments of polygons. Technical
Report FGBV–96–04, Forschungsgruppe Bildverstehen (FG BV), Informatik
IX, Technische Universität München, 1996.

48. Parvu O:Mudi. [http://mudi.modelchecking.org/home] Accessed
2014-07-21.

49. Hérault T, Lassaigne R, Magniette F, Peyronnet S: Approximate
probabilistic model checking. In Verification, Model Checking, and
Abstract Interpretation. Lecture Notes in Computer Science. Edited by
Steffen B, Levi G. Venice: Springer; 2004:73–84. [http://link.springer.com/
chapter/10.1007/978-3-540-24622-0_8] Accessed 2013-10-27.

50. Langmead C: Generalized queries and bayesian statistical model
checking in dynamic bayesian networks: Application to
personalizedmedicine. In Proceedings of the 8th International Conference
on Computational Systems Bioinformatics (CSB): 10-12 August, 2009;
California. Edited by Life Sciences Society; 2009:201–212.

51. Younes HL, Simmons RG: Statistical probabilistic model checking with
a focus on time-bounded properties. Inform Comput 2006,
204(9):1368–1409. Accessed 2013-10-28.

52. Sen K, Viswanathan M, Agha G: Statistical model checking of black-box
probabilistic systems. In Computer Aided Verification. Lecture Notes in
Computer Science. Edited by Alur R, Peled DA. Boston: Springer;
2004:202–215. [http://link.springer.com/chapter/10.1007/978-3-540-
27813-9_16] Accessed 2014-04-21.

53. Younes HLS: Probabilistic verification for “Black-Box” systems. In
Computer Aided Verification. Lecture Notes in Computer Science. Edited
by Etessami K, Rajamani SK. Edinburgh: Springer; 2005:253–265. [http://
link.springer.com/chapter/10.1007/11513988_25] Accessed 2014-04-08.

54. Koh CH, Palaniappan SK, Thiagarajan PS, Wong L: Improved statistical
model checking methods for pathway analysis. BMC Bioinformatics
2012, 15(Suppl 17). PMID: 23282174. Accessed 2013-10-31.

55. Jha S, Clarke E, Langmead C Legay, A, Platzer A, Zuliani P: Statistical
model checking for complex stochastic models in systems biology.
[http://repository.cmu.edu/cgi/viewcontent.cgi?article=2244&context=
compsci]

56. Salaün L, Snyder LA, Saunders NJ: Adaptation by phase variation in
pathogenic bacteria. Adv Appl Microbiol 2003, 52:263–301. PMID:
12964248.

57. Salaün L, Ayraud S, Saunders NJ: Phase variation mediated niche
adaptation during prolonged experimental murine infection with
helicobacter pylori. Microbiology (Reading, England) 2005,
151(Pt 3):917–923. PMID: 15758236.

58. Heiner M, Herajy M, Liu F, Rohr C, Schwarick M: Snoopy – a unifying
petri net tool. In Application and Theory of Petri Nets. Lecture Notes in
Computer Science. Edited by Haddad S, Pomello L. Hamburg: Springer;
2012:398–407. [http://link.springer.com/chapter/10.1007/978-3-642-
31131-4_22] Accessed 2013-08-22.

59. Cai H, Devreotes PN:Moving in the right direction: How eukaryotic
cells migrate along chemical gradients. Semin Cell Dev Biol 2011,
22(8):834–841. Accessed 2014-06-03.

60. Jin T: Gradient sensing during chemotaxis. Curr Opin Cell Biol 2013,
25(5):532–537. Accessed 2014-06-03.

61. Jilkine A, Edelstein-Keshet L: A comparison of mathematical models
for polarization of single eukaryotic cells in response to guided
cues. PLoS Comput Biol 2011, 7(4):1001121. Accessed 2014-06-03.

62. Starruß J, Back Wd, Brusch L, Deutsch A:Morpheus: a user-friendly
modeling environment for multiscale andmulticellular systems
biology. Bioinformatics 2014, 30(9):1331–1332. PMID: 24443380.
Accessed 2014-05-30.

63. Graner F, Glazier JA: Simulation of biological cell sorting using a
two-dimensional extended potts model. Phys Rev Lett 1992,
69(13):2013–2016. PMID: 10046374.

64. Stoma S, Fröhlich M, Gerber S, Klipp E: STSE: spatio-temporal
simulation environment dedicated to biology. BMC Bioinformatics
2011, 12(1):126. PMID: 21527030. Accessed 2013-03-10.

65. Jha S, Ramanathan A:Quantifying uncertainty in epidemiological
models. In 2012 ASE/IEEE International Conference on BioMedical
Computing (BioMedCom): 14-16 December 2012. Washington, DC, New
York: IEEE; 2012:80–85.

66. Hussain F, Jha SK, Ramanathan A, Pullum LL: EpiSpec: A formal
specification language for parameterized agent-basedmodels
against epidemiological ground truth. In 4th International Conference
on Computational Advances in Bio andMedical Sciences (ICCABS): 2-4 June
2014; Miami, FL. New York: IEEE; 2014:1–6.

67. Rousseeuw PJ: Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. J Comput Appl Math 1987, 20:53–65.
Accessed 2013-07-24.

68. Arbelaitz O, Gurrutxaga I, Muguerza J, Pérez JM, Perona I: An extensive
comparative study of cluster validity indices. Pattern Recogn 2013,
46(1):243–256. Accessed 2013-07-23.

doi:10.1186/s12918-014-0124-0
Cite this article as: Pârvu and Gilbert: Automatic validation of
computational models using pseudo-3D spatio-temporal model
checking. BMC Systems Biology 2014 8:124.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://web.cs.swarthmore.edu/~adanner/cs97/s08/pdf/calipers.pdf
http://web.cs.swarthmore.edu/~adanner/cs97/s08/pdf/calipers.pdf
http://link.springer.com/chapter/10.1007/3-540-48481-7_29
http://link.springer.com/chapter/10.1007/3-540-48481-7_29
http://mudi.modelchecking.org/home
http://link.springer.com/chapter/10.1007/978-3-540-24622-0_8
http://link.springer.com/chapter/10.1007/978-3-540-24622-0_8
http://link.springer.com/chapter/10.1007/978-3-540-27813-9_16
http://link.springer.com/chapter/10.1007/978-3-540-27813-9_16
http://link.springer.com/chapter/10.1007/11513988_25
http://link.springer.com/chapter/10.1007/11513988_25
http://repository.cmu.edu/cgi/viewcontent.cgi?article=2244&context=compsci
http://repository.cmu.edu/cgi/viewcontent.cgi?article=2244&context=compsci
http://link.springer.com/chapter/10.1007/978-3-642-31131-4_22
http://link.springer.com/chapter/10.1007/978-3-642-31131-4_22

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Introduction
	Model checking
	Model checking in systems and synthetic biology
	Contributions

	Methods
	Model construction
	Spatio-temporal analysis
	Regions
	Clusters
	Spatial measures
	Semantics of spatial measures for regions
	Semantics of spatial measures for clusters
	Spatio-temporal markup language (STML)

	Bounded Linear Spatial Temporal Logic
	Probabilistic BLSTL

	PBLSTL Model checking
	Implementation

	Results
	Phase variation patterning in bacterial colony growth
	Chemotactic aggregation of cells

	Discussion
	Conclusions
	Availability of supporting data
	Endnotes
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7
	Additional file 8
	Additional file 9
	Additional file 10
	Additional file 11
	Additional file 12

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 793.440]
>> setpagedevice

