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Abstract. The research in this paper presents a new approach for the modelling of epidemic spread by using a set of 

connected social networks.  The purpose of this work is to simulate the spreading of the well know A/H1N1 pandemic 

virus. The case study analyzed in this paper refers to the spreading of A/H1N1 in Romania. The epidemic is followed 

from its beginning throughout its evolution in Romania, i.e. between May 2009 and February 2010. The evolution is 

performed in a hierarchical way, taking into account the state divisions, the influences among them, national level as well 

as influences from abroad (from other infected countries). Numerical experiments performed analyze the monthly 

evolution of the infection in each county and at the country level and compare the results with the real ones (collected 

during and at the end of the epidemic spread). The simulations results are closer to the reality than the ones provided by 

the Health Ministry in Romania.  

 

I. INTRODUCTION 

 

 

The appearance of the A/ H1N1 virus is dated at the end of April 2009 in Mexico, ever since this virus has spread 

around the globe with an amazing speed. The virus reached Romania only on the 23
rd

 of May 2009. As this virus can 

be contacted by air, the spreading among the countries was facilitated by means of transportation, not only among the 

countries, but also inside them. 

In the case of Romania, the virus has been contacted from abroad, firstly in the main cities of the country, then, 

following the same rule of moving masses of population, in almost each county. In addition to these factors, the time 

in which the spread got a higher speed was in the months when the likelihood of infection was greater and the 

crowding in different areas was much more common. These factors can form a pattern in the spread of the virus at 

any level of community: inside a county or inside a country. However, in Romania the spread did not respect entirely 

the patterns, nor the expectations of the Health Minister of Romania, as some counties, during the pandemic 

development, has no single case of infection with the A/H1N1 virus. 

The current paper exposes a new perspective for the A/H1N1 epidemic spread simulation in Romania. A similar 

purpose has been established by the researchers in Vietnam, but using a different model for their simulation [3]. 

Social networks are a good model for epidemic spread simulations [1], but tend to have no connection to a real case 

and use only the basic definition of social networks, without any modifications according to the requirements of the 

experiment.  

A model that proves appropriate for the requirements of the experiment and suitable for the observed patterns 

consists of a combination of existing models. The new model contains elements from the theoretical social networks, 

statistical network models, hierarchical networks, and epidemiological models. The choice for each of them came in 

a natural way: having insight the evolution of a human formed community in special conditions where the relations 

between the individuals inside the community can influence the future state of the entire group, social networks are 

the solution. The purpose of the application and the algorithm have imposed further theoretical grounds for the 

model: the individuals in a country are structured at an outer level in smaller communities, counties, forming 

themselves a social network and at the same time being decomposable in other smaller social networks; in other 

words, the whole group of individuals in a country is modeled as a hierarchical network with two levels, country 

level and counties level. The impossibility of tracking millions of connections for the individuals brought to the 
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decision of using generative random models based on statistical measures of a network. Aiming to simulate an 

epidemic, clearly, the epidemiological models played a role, being a base for the epidemiological states used in the 

algorithm. 

The paper is organized as follows: in Section 2 the proposed model is presented in detail. Section 3 presents the 

simulations followed by Section 4 dedicated to experiments. Section 5 contains conclusions and future work ideas. 

 
 

II. DESCRIPTION OF THE PROPOSED MODEL 

 

For our case study, the spreading can be simulated over a network modeled at the level of the counties, 

taking into account all their connections with other counties in Romania and other countries affected by this 

epidemic. The final model is formed by a network of networks (or a hierarchical network), each county 

corresponding to a node in the big network, and at the same time it contains an inner network representing the 

network of inhabitants of the county.  

A. Hierarchical networks 

The simulation is performed at two levels, one being the counties level and the other the individual level. The 

individuals are tightly connected to the county they belong to, their individual evolution being influenced by the 

same characteristics as the county is, but in different proportions. One individual can be connected to one county 

only, in this way a more complex network is created (as in Figure 1), although there is no homogeneity of the nodes’ 

types and relevance. The factors of influence in the spreading are transmitted from the county in general, to each 

individual located in it, in particular. This transmission order classifies the network in two hierarchies, corresponding 

to the levels of spreading simulations; in this way the network for spreading fits the model of the hierarchical social 

networks [8]. However, the flow of transmission is bidirectional, not only a county distributes its characteristics, but 

also the mass of individuals contribute to the final statistics computed for a county.  

Having this interdependence, the two hierarchies can be isolated and separated physically, but sharing the 

context of spreading and keeping the exchange of information during the simulation.  

. 

 
Figure 1. The hierarchical network model. 

. 

 

B. Outer network 

The outer network is the network composed of the counties of Romania, which could be visualized as a map 

of the country. Although a social network has usually sole individuals as nodes, a group or an organized formation of 

individuals can be at the basis of a network, in our case the mass of inhabitants of a certain country. The connections 
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between these nodes are created based on many criteria, fact that changes the structure of the network from a simple 

graph – directed or undirected – to a directed multigraph as between two nodes exist more than one type of links: 
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In this way, there are some properties assured to the network, such as general connectivity and, moreover, the 

network fits the model of scale-free networks [1][2][5] and the small-world model [4][12][15].  

The outer network suits the scale-free model as it gathers its most important features. Firstly, the existence of 

hubs is underlined by some counties that tend to have lots of connections with the other nodes; these nodes have 

actually a high importance not only in the network but also in the country (collegial centers, main city, tourism 

nodes, etc). Secondly, the connectivity of the network is easily assured only by one type of connection: the 

neighborhood between counties, which makes the multigraph underlying it strongly connected.  

The small-world property is fulfilled not by taking into consideration a possible increase of the network (over 

the entire process of simulation the size of the network will remain constant) but by the relative “closeness” of each 

nodes, following the “six degree of separation” [10], again, through the multi-typed set of edges.  The size of 41 (the 

number of counties in Romania) is constant and relatively small, encouraging the property to preserve its validity 

throughout the simulation, regardless of the operations on the network. 

As it was stated before, the nodes forming the network will be the counties of Romania and besides them, 

some countries with which Romania has common borders or to which Romania has various kinds of connection and 

exist many air routes between them. The last type of nodes have a small but vital role in the network as there will be 

no spreading simulation over them, but they will be taken into account at the time the computation of some indexes 

will be made for the inner nodes (see Figure 2).  

 
Figure 2 Types and distribution of nodes. 

 

In order to avoid simulating the spread over other nodes than those corresponding to the national counties, a 

more adequate separation has been used, introducing a characteristic of graph node: type. The inner country nodes 

are called “internal” and all other ones are called “external”. 

Although the mathematical approach deals more with the connections between nodes [7][16], the case 

considered keeps a small part of the former sociologically approach of social networks by storing inside the nodes 

some characteristics which, during the simulation, will influence the evolution of the nodes in their neighborhood. 
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The most important attribute of a node is the number of already infected people inside the county. Based on the 

theory of moving masses of population, the number of infected people represents a percentage of the population and 

it can be part of the flow of moving individuals between nodes; this is why this value will be included in the 

computations not only for a current node, but also for all the surrounding nodes.

 

The population characteristics of an internal node (these characteristics are not considered for the external 

nodes) have an indirect influence on the evolution of the network during a simulation. The population size and 

population density give important information for constructing the corresponding inner network which recursively 

affects the inner evolution respecting the standards imposed by the entire network.  

The links between the vertices are formed on some pre-established conditions that imply only characteristics 

taken from reality. The most important reasons for putting an edge between two nodes are: 

 geographical closeness  

 collegial surroundings 

 nodes of means of transportation – railway, airport 

 tourist attractions 

 poverty level. 

However, these are not the only connections; further connections can be established on the base of 

commercial centers, economical attraction (working places in relative nearby counties) and others.  

 

As it can be seen from Figure 3, the edges have different characteristics, described in detail in what follows. 

Internal Neighborhood type of edge appears between two internal nodes which are geographical neighbors – 

have a common border. The structure of the network is a directed multigraph and the relation of neighborhood is 

characterized by reciprocity, consequently, for one relation of this type, there will be two edges: one starting from 

node X to node Y and one starting from node Y to node X. This type of edge has been chosen as it is a well-known 

fact that between nearby counties there is a constant movement of masses; this means that a certain percentage of 

healthy or infected population can cross the border between the two counties, facilitating the spread of the virus.  The 

properties of this type of edge remain consistent regardless of the time of the year.  

External Neighborhood type of edge appears between one internal node and one external node situated at the 

border of Romania. Although the relation between these two nodes is reciprocal, there is one edge directed from the 

external node E to the internal node I as there is no interest for the evolution of the external node in the current 

situation. The influence of this type of edges if proven by taking into account the fact that, in some of the external 

nodes, the evolution of this virus had a more rapid evolution and there is, again, a common thing to have individuals 

passing the borders from one side to another.  

Collegial Neighborhood type of edge appears between two internal nodes, one being a collegial center and 

the other being situated, usually, in the geographical closeness of that node. There is just one edge attached to this 

relation as during studies, the individuals from outside the collegial county come, so the edge is oriented from one 

nearby node towards the collegial node. In this case of population movement there is a greater percentage of 

population involved, but it is taken into consideration only in the months when the college courses are held. 

Railroad Node type of edge appears between two internal nodes having more developed rail connections (rail 

hubs). The relation is characterized by reciprocity so there are two edges associated to this connection, one starting 

from one side and one from the other side.  In bigger train stations the number of passengers is higher, but, on the 

other hand, the connection time (in the case of a stopover) gives passengers the chance to gain contact with the 

surrounding group of individuals around the station. There is no temporary limit of this connection, regardless of the 

time of the year. 
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Figure 3 Edge types  

IN – Internal Neighborhood, EN – External Neighborhood, CN – Collegial Neighborhood, 

RN – Railroad Node, PL – Poverty Level, AN – Air Node, TN – Tourism Node 

 

Poverty Level is rather a characteristic of a county – an internal node – but its influence is general, at the level 

of the entire group of individuals, affecting the power of the spread in the node. The influence of this type of edge is 

done recursively, and it forms a loop, an edge from vertex V to vertex V, this being allowed by the multigraph 

structure. The choice of this type of edges is motivated by the way the virus affects individuals with less decent living 

standards, who cannot protect themselves properly. This edge has a weight attached to it that represents the percentage 

of population affected by poverty in a county and further affects the change of the evolution inside the county. This 

type of edge is the only one that does not involve the movement of masses. 

Air Node type of edge is set between an external node and an internal node between which there are a 

significant number of flights. The edge is directed from the external nodes towards the internal nodes, as only for the 

last one the simulation is performed. This type of edge relies on the transportation of groups of individuals from the 

firstly affected countries in the world, this way being actually the one in which the virus was brought to Romania. The 

internal node is characterized by the existence of an important international airport that makes the movement of a 

considerable part of population easier. 

Tourism Node type of edge implies only one internal node, being, from one point of view, a property of the 

node, but from another point of view it facilitates a certain movement of masses. There is only one edge from the node 

N to node N forming a loop. For this type of edge it is assumed that tourists that impacts on the virus actions over the 

node form a percentage of the healthy or infected population. The connection is taken into account as a factor of 

influence during the holiday months only. 

Besides the normal components of a social network, nodes and edges, a new component – the time of the year 

(represented as months) – is considered. For a more accurate simulation, this temporal component is required, as in the 

autumn and winter months the infection likelihood rises. However, there is another reason for implying some 

characteristics according to the current month: in the final months of the epidemics, the vaccine against the virus has 

been used worldwide, consequently, the pandemic no longer spread at the same rate. 

 

C. Inner network 
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The inner network is developed from one internal node of the outer network, inheriting simulated and/or 

original attributes from it. The creation of this type of network is quite difficult as tracking the connection at the 

individual level is complicated. This is mostly the reason for which a random model [13] for generating a network 

involving only the information available from the upper level will be used. We chose the Erdos - Renyi [4] model as it 

suits the requirements with the minimum amount of computation and analysis.  

The nodes of the social network will represent the individuals of a county without containing any extra 

information. The edges will be simple connections between individuals, generated according to the chosen model. The 

two parameters required for the construction of the network are received from the corresponding node in the outer 

network and are: 

 the number of nodes in the network and  

 the probability that any two nodes are connected.  

The probability received is not of much help, but using one of the properties of the Erdos – Renyi model it will 

be translated into clustering index [4], clusters being the point of interest in the simulation. Seeing clusters as crowds 

of individuals makes a logical connection with the population density that is known from the very beginning. 

However, the domains of definition of the two functions are different; consequently the population density must be 

scaled to the domain of the clustering index which is the interval [0, 1]. A scale of the density will be assumed as 

follows: the county with the highest density will have the highest clustering index and the rest will be proportional 

with this one; this implies that the maximum clustering index will be 1 but the highest clustering index between all 

counties will be in fact around 0.6 as any higher value will transform the network into an almost complete graph [4], 

situation which is mostly uncommon for large real-world social networks (like a county): 
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where: 

M denotes maximum density, 

di is the density of node i, 

C is the maximum clustering index and 

ci represents the clustering index of node i.  

 

The other parameter, the number of nodes in the network, is the size of the population of that particular county. 

We scale this parameter according to the maximum size allowed and the maximum size of population among all 

counties [17]. Applying this theory, an individual will actually represent n individuals and this could cause problems 

during simulations when scaling the number of already infected individuals. For example: there is one infected 

individual, but following the scaling rule, one real individual is 0.2 of one individual in the network, therefore there 

will be 0.2 individuals infected. Obviously, this method will fail in most of the input cases. 

 Thus, each inner network will be split into m smaller inner network that can be considered to be independent 

communities or clusters of individuals inside a county. The number of communities in a county will be equivalent with 

the population density in that county. However, not all the inner-inner networks will be used for the simulation, but a 

percentage of them, the same percentage as the number of already infected people represents from the entire 

population of the county: 
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The infected individuals will be distributed almost equally among these communities (see an example in Figure 4). In 

order to have a distinction between all the clusters, the probability for creating the connections between individuals, 

received from the upper level, will suffer minor transformations, being considered as a random number in the interval 

of a small neighborhood of the initial clustering index. Following this theory, we are assured that the infected 

individuals will be all distributed and the simulation will not be affected by the limitation of the programming 

environment. 
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Figure 4 Infected individuals in an inner network. A network with 5 infected nodes. 

 

Having a vast random network, the problem of placing the infected individuals in the network occurs. This 

issue can be solved either by selecting randomly n individuals to carry this special property, or by picking them 

according to a ranker of size n. The ranker can classify the nodes according to some criteria such as: 

 betweeness centrality 

 closeness centrality or  

 degree centrality [9].  

We opted for the possibility of selecting the first n individuals with the highest degree. In this way, the highest 

number of acquaintances and a relatively larger power of spreading the infection have been assigned to infected 

individuals. 

 

III. DETAILS ABOUT SIMULATIONS 

 
The simulations are intended to approximate the evolution of the infected individuals in each county over the 

course of a month. The complex model used is populated with real data collected from the national health repositories. 

However, the formulas used do not assure the same accuracy in computing, as they were developed from separate 

mathematical theoretical foundations and the connections to the subject in cause – viral spreading – were made with 

some modification over the social network epidemic spreading model [6]. This reasoning over the used formulas and 

other unwillingly ignored factors are sources of errors that oscillate during the tests. 

 

A. Factors of influence 

 

An epidemic is characterized firstly by the way the virus can be contacted; the easier the virus is contacted, the 

more factors encourage the epidemic. In the case of A/H1N1 virus, the spreading is done by air, a common and 

successful medium for an epidemic to pass to a pandemic spreading. The influence of the continuous movement of 

population masses is sustained by the multiple means of transportation between communities of individuals and, 

moreover, by the increase of the crowding coefficient that traveling with most of those means involves.  

The types of edges represent the ways in which individuals change their current node location to another, 

carrying along the virus from one infected community to another one still uninfected. Among the percentage of 

individuals that move from one node to another there might exists infected individuals, and, as the virus is transmitted 

by air, any short or long contact of that individual can add a new victim to the general statistics. However, this theory 

is not totally real, depending actually on the particular characteristics of the individual, e.g. the power of its immunity 

system.  

The weather (or season) is another positive factor of influence for the spreading. In the cold months when it is 

often raining, snowing of wind blowing, the human immunity system fails to keep the same properties as in the 

warmer months, so the probability of viral infection is increased for the majority of the population.  
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One factor that independently rises from the context is the apparition of a vaccine against this virus. The 

factors of influence remain valid for all the cases, but the number of susceptible individuals to the disease decreases 

drastically as an enormous part of the population of Romania has taken this vaccine. Consequently, in the final months 

of the epidemic, the spreading has reached the lowest level of activity and finally became inactive.      

 

B. Spreading in the outer network 

 

The purpose of the simulation is to estimate the number of newly infected individuals in a month and in a 

county, therefore, one part of the outer simulation will succeed to do this for each internal node in the network. A 

probability of infection is computed and transmitted to the successor inner network in order to perform the right 

simulation. 

The computations for approximating the number of cases of infection are done only on the basis of the factors 

that encourage the spreading through the movement of masses. In other words, from the outer network there are taken 

into consideration the weights attached to the types of edges. Each type of edge has a fixed weight that can express 

either the percentage of population involved in the movement action, or a probability of movement of the infected 

individuals towards another node. The one exception from the rule, the PL edge type, carries two types of weights, one 

variable representing the percentage of poverty in the county, and the other one fixed representing the probability of 

movement of the infected people.  

The number of newly infected individuals in one internal node “inherited” from one of the connected (by any 

type of edge) nodes is computed as a simple product between the number of infected individuals in the neighbor node 

and the weight attached to the corresponding weight: 
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For the PL edge the product will have the variable weight as an extra factor: 
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 This product is computed for a number of times equal to the number of existing type of edges between any two nodes. 

Consequently, the entire number of infected individuals in a node is computed as a sum of all products for each edge 

connected to the node: 
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The final result is sometimes affected, positively or negatively, by the external factors.  

When the index for the infection likelihood increases, so should the general number of infected individuals: 

indexlikelihoodInfectionInfectednewInfectednew ____   

When a cure (or vaccine) has been found, the number of infected individuals should decrease drastically: 

 

indexfoundcure

Infectednew
Infectednew

__

_
_   

Also, a probability of infection must be delivered for the inner network as standard for the infection spreading. 

The product described above has as factors an integer number – the number of already infected individuals –, and a 

sub-unitary factor – the probability of movement of the infected individuals. For the number of newly infected people 

we take only the integer part (whole individuals) and the factionary part will be used in the computation of the 

infection probability.  



 

 9 

The probability to be set for the inner network as standard infection probability is used as a bound: if the 

infection probability for one node is equal to or greater than the bound, then the node is considered infected. 

Consequently, for having infected individuals, the probability must be as small as possible. The translated connection 

with the computations at the level of the outer network is that if a node has many connections with other infected 

nodes, then the probability of infection decreases, although logically it should increase.  A fixed upper bound is set for 

the probability. For each edge connected to the internal node the probability will decrease, as explained above: 
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The infection probability is affected in an indirect proportion by external factors, infection likelihood and the 

existence of a cure. When the infection likelihood increases, the probability decreases in a reverse proportion and when 

a cure is found the probability increases considerably.  

These two values are transmitted as parameters for the spreading simulation in the corresponding inner 

network.  

 

C. Spreading in the inner network 

 

The spreading simulation inside the inner network has a structure quite similar to the one of the epidemic 

spreading over cellular automata [11]: one node becomes infected when a defined number of neighbors are known to 

being infected. However, the simulation is considered to be over social networks as the number of neighbors is distinct 

among the components of the network and the number of edges from a node has a greater importance than the node 

itself. The relative similarity is underlined at the moment of infection when the probability of local infection is 

compared with the general probability of the network. 

For each node in the network, the number of neighbors already infected is computed and is considered a local 

infection probability, determined as the ratio between the number of infected neighbors and the total number of 

neighbors. This local infection likelihood is compared with the one received from the upper level. If the local one is 

equal to or greater than the general one, then the current node becomes infected, otherwise, the node remains healthy: 
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The inner network size is considerable and testing whether each node becomes infected or not involves an 

exponential parsing of the network. Thus, the checking will start with a set of already infected nodes by parsing their 

non-infected neighbors for computing the local probability. Whenever a node gets infected, it is added to the set for 

checking its neighbors further. 

 

D. Algorithm outline 

 

The main core of the simulation theory can be described using the algorithm below: 
 
 SimulationAlgorithm(pastMonth)  

beginAlgorithm 

 M(V, E)  getMonthSituation(pastMonth) 

 currentMonth  next(pastMonth) 

 for v  V do 

  noInfected  getNoInfected(M,v) 

  generalProbability  computeProbability(M,v,currentMonth) 

  newInfected  computeNewInfected(M,v,currentMonth) 

  noInfected  noInfected+newInfected 

  noClusters ( noInfected*100/ getPopulation(v)) * getDensity(v) 

  clusteringIndex  scaleDensityToClusteringIndex(M,v) 
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  simulatedRes  0 

  for i  1 , noClusters do 

   if  noClusters=i then 

network  createInnerNetwork(MAX_SIZE, 

generateAround(clusteringIndex), 

 (noInfected mod noClusters), generalProbability ) 

   else 

network  createInnerNetwork(MAX_SIZE, 

generateAround(clusteringIndex), 

 (noInfected div noClusters), generalProbability ) 

   endif 

   simulatedRes  getSimulated(network) + simulatedRes 

  endfor 

  simulatedRes  simualtedRes – noInfected + newInfected 

  storeResult (v, simulatedRes) 

endfor 

endAlgorithm 

 

where: 

getMonthSituation(pastMonth) returns the multigraph having in its nodes the required information for the 

pastMonth 

getNoInfected(M,v) returns the number of infected individuals for node v in the structure M 

computeProbability(M,v,currentMonth) computes the probability for the node v 

computeNewInfected(M,v,currentMonth) computes the new infected individuals for node v 
createInnerNetwork(MAX_SIZE, generateAround(clusteringIndex), (noInfected mod 

noClusters), generalProbability) builds the inner network 

scaleDensityToClusteringIndex(M,v) scales the density  
 

and generalProbability refers to the probability received from the outer network and is set as standard for the 

inner networks. 

 

IV. NUMERICAL EXPERIMENTS 

 

Numerical experiments are performed in Romania, over a hierarchical network with two layers corresponding to the 

country level (this network has 41 nodes corresponding to the 41 counties) and the county level (for each of the 41 

counties, the network has a variable number of nodes according to the population size of each of them. 

The results are simulated over 9 months, between May 2009 (the starting months which is not taken into consideration 

for simulations) and February 2010.  

A. The Data 

The data collected includes the monthly situation of newly infected individuals for each county from Romania and of 

the countries included in the network with which our country has stronger connections.  

 

Table 1 contains the number of newly infected people in each county and for each month between May 2009 and 

February 2010. The data in this table has been collected from the Romanian Health Ministry official website; the 

section of press communicates [14]. 

 
Table 1. The number of newly infected individuals in each county and for each month between May 2009 and February 

2010. 

County 

Country 

Number of newly infected individuals 

May 

2009 

June 

2009 

July 

2009 

August 

2009 

September 

2009 

October 

2009 

November 

2009 

December 

2009 

January 

2009 

February 

2010 

Alba 0 0 0 0 0 0 22 44 13 0 

Arad 0 0 0 0 0 0 80 50 10 0 

Arges 0 0 0 1 1 0 29 54 23 1 

Bacău 0 0 0 2 0 0 130 111 29 1 
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Bihor 0 0 0 0 0 1 10 4 2 0 

Bistrita- 

Nasaud 

0 0 0 0 0 0 0 1 3 3 

Botoşani 0 0 0 0 0 0 269 133 111 0 

Braşov 0 0 27 9 3 1 29 43 14 4 

Brăila 0 0 0 6 0 0 2 11 14 1 

Buzău 0 0 0 0 0 0 25 121 5 0 

Caras- 

Severin 

0 0 0 0 0 0 19 63 14 1 

Calarasi 0 0 1 2 0 0 3 0 5 0 

Cluj 0 0 0 6 1 3 58 84 45 1 

Constanţa 0 0 5 2 1 0 21 55 48 4 

Covasna 0 0 0 0 0 0 5 22 11 4 

Dâmboviţa 0 0 0 2 0 0 94 107 52 1 

Dolj 0 0 8 0 0 1 148 98 8 0 

Galaţi 0 0 1 4 0 0 85 33 22 1 

Giurgiu 0 0 0 0 0 0 20 16 8 0 

Gorj 0 0 0 0 0 0 0 0 0 0 

Harghita 0 0 0 0 0 0 52 39 23 0 

Hunedoara 0 0 0 8 0 0 94 40 27 0 

Ialomiţa 0 0 0 0 4 0 16 22 5 0 

Iaşi 0 7 8 6 8 40 171 58 39 3 

Ilfov 5 15 62 63 9 12 725 612 260 15 

Maramureş 0 0 0 0 0 0 18 19 3 0 

Mehedinţi 0 0 2 1 1 0 11 12 1 0 

Mures 0 0 7 7 0 1 27 66 56 3 

Neamţ 0 0 0 0 0 0 56 33 24 1 

Olt 0 0 0 0 0 0 10 24 40 0 

Prahova 0 0 1 4 0 41 51 83 72 0 

Satu Mare 0 0 0 0 0 0 0 0 3 1 

Sălaj 0 0 0 0 0 0 3 3 1 0 

Sibiu 0 0 1 3 0 1 24 79 16 0 

Suceava 0 0 0 2 0 0 10 70 30 1 

Teleorman 0 0 0 3 1 0 10 10 3 0 

Timiş 0 5 2 8 0 0 23 62 38 3 

Tulcea 0 0 0 0 0 0 6 23 5 1 

Vaslui 0 0 0 0 0 0 45 27 4 0 

Vâlcea 0 0 0 3 3 0 22 11 6 0 

Vrancea 0 0 0 0 0 0 62 43 4 0 

Ukraine 0 1 1 0 6250 850000 11005 1230 301 22 

Hungary 0 7 11 138 1250 1877 1107 203 70 3 

Bulgaria 0 5 10 47 470 100000 2307 967 111 25 

SUA 2254 20000 33902 6700 3200 1050 320 115 67 5 

Canada 280 5438 7983 2060 986 320 98 20 0 0 

UK 40 1540 7447 5957 8960 17325 6015 2000 200 0 

Spain 93 430 760 838 2600 17303 1230 700 183 7 

Mexico 1626 4957 10262 2350 1739 600 121 67 21 0 

France 12 171 300 825 3024 7017 659 226 105 0 

Turkey 0 27 40 50 180 625 303 29 15 0 

Greece 0 58 109 1340 2506 2030 270 37 25 0 

Germany 11 291 470 12320 1445 4445 750 217 32 12 

Italy 9 86 130 1138 7213 21207 3070 375 93 31 
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Portugal 1 6 27 1960 1530 1248 625 123 75 1 

Netherlands 3 100 134 1368 1020 2364 950 99 65 5 

 

 

 Another set of data that remains constant during the simulation contains the characteristics of each internal 

node in the outer network. These data consist of the population size and population density, as seen in Table 2. 

 

 

Table 2. Population size and density of each county. 

County Name Population 

Size 

Population 

Density 

County 

Name 

Population 

Size 

Population 

Density 

Alba 382.747 61 Hunedoara 485.712 69 

Arad 461.744 60 Ialomiţa 296.572 67 

Argeş 652.625 95 Iaşi 826.552 150 

Bacău 706.623 113 Ilfov 2.221.860 389 

Bihor 600.223 84 Maramureş 510.110 81 

Bistriţa-Năsăud 317.254 58 Mehedinţi 306.732 62 

Botoşani 452.834 91 Mureş 580.851 86 

Brăila 373.199 78 Neamţ 557.000 99 

Braşov 596.140 110 Olt 489.274 89 

Buzău 495.325 81 Prahova 829.945 183 

Călăraşi 324.617 64 Sălaj 248.015 64 

Caraş-Severin 333.219 39 Satu Mare 367.281 83 

Cluj 692.316 105 Sibiu 421.724 78 

Constanţa 715.151 101 Suceava 688.435 80 

Covasna 222.449 60 Teleorman 436.025 75 

Dâmboviţa 541.763 134 Timiş 659.512 76 

Dolj 734.231 99 Tulcea 265.349 31 

Galaţi 619.556 139 Vaslui 455.049 72 

Giurgiu 297.859 84 Vâlcea 413.247 86 

Gorj 387.308 69 Vrancea 391.833 80 

Harghita 326.222 52    

 
The simulation does not take into account the population information (size and density) for the countries with which 

Romania has connections. Among the data sets that remain unchanged and are collected from different sources, we 

also have the connections between the nodes of the outer network. Each node in the outer network – the multigraph – 

has a set of connections with the other nodes. These connections represent the edges for all multigraphs created for 

each month, although not always all of them are taken into consideration (an example is given in Figure 5). Table 3 

contains the degree distribution for the internal nodes of the outer network, including both the indegree and the 

outdegree. 

 
Table 3. The degree distribution of the internal nodes. 

Internal Node Outdegree Indegree Internal Node Outdegree Indegree 

Alba 10 3 Hunedoara 4 5 

Arad 4 3 Ialomita 3 4 

Arges 6 2 Iasi 11 17 

Bacau 7 4 Ilfov 13 27 

Bihor 4 6 Maramures 4 2 

Bistrita-Nasaud 5 0 Mehedinti 3 5 

Botosani 4 2 Mures 4 6 

Brasov 9 9 Neamt 3 5 

Braila 9 1 Olt 2 2 

Buzau 5 2 Prahova 1 7 

http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Hunedoara
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Ialomi%C5%A3a
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Ia%C5%9Fi
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Ilfov
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Maramure%C5%9F
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Mehedin%C5%A3i
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Mure%C5%9F
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Neam%C5%A3
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Olt
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Prahova
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_S%C4%83laj
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Satu_Mare
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Sibiu
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Suceava
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Teleorman
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_D%C3%A2mbovi%C5%A3a
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Timi%C5%9F
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Tulcea
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Vaslui
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Giurgiu
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_V%C3%A2lcea
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Gorj
http://ro.wikipedia.org/wiki/Jude%C5%A3ul_Vrancea
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Caras-Severin 5 0 Satu Mare 3 2 

Calarasi 5 1 Salaj 1 4 

Cluj 10 23 Sibiu 5 5 

Constanta 4 15 Suceava 9 11 

Covasna 3 3 Teleorman 1 4 

Dambovita 3 3 Timis 1 18 

Dolj 9 5 Tulcea 1 3 

Galati 8 4 Vaslui 3 4 

Giurgiu 2 3 Valcea 2 7 

Gorj 4 2 Vrancea 3 6 

Harghita 5 3    

   

 

B. Parameter setting for the algorithm 

 

The simulation involves a number of parameters. The numerical ones are described in Table 4 together with their 

values. 

      
Table 4. The numerical parameters involved in the simulation. 

Name Value Description 

MAX_CLUSTERING_ 

INDEX 

0.6 The maximum clustering index over all counties in the network, as 

any higher value will result in an complete graph 

P_INTERNAL_ 

NEIGHBORHOOD 

0.0001 The percentage/probability attached to the IN edge type 

P_EXTERNAL_ 

NEIGHBORHOOD 

0.0003 The percentage/probability attached to the EN edge type 

P_COLEGIAL_ 

NEIGHBORHOOD 

0.002 The percentage/probability attached to the CN edge type 

P_RAILROAD_NODE 0.0005 The percentage/probability attached to the RN edge type 

P_POVERTY_LEVEL 0.007 The percentage/probability attached to the PL edge type 

P_AIR_NODE 0.0003 The percentage/probability attached to AN edge type 

P_TURISM_NODE 0.0001 The percentage/probability attached to the TN edge type 

MAX_PROBABILITY 0.9 The maximum probability allowed for the spreading probability 

transmitted to a corresponding network. 

  
Apart from the numerical parameters, temporal parameters, corresponding to the month for which the simulation is 

performed, are considered (a description of them is provided in Table 5). 
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(a) (c)

(d)

(a) (b) (c)

(e)

(f)

LEGEND

 
Figure 5. The connection set for some selected counties: Alba (a), Bacau (b), Botosani (c), Brasov (d), Cluj (e), Ilfov (f) (the 

capital Bucharest is included in Ilfov county). The blue nodes represent the external node to which a node is connected. For 

Cluj for instance, they are Spain, France, Germany, Italy, and Portugal. 
 

Table 5. The temporal parameters. 

Month Attached Properties Month Attached Properties 

May - school month October - school month 

June - holiday month November - school month 

- infection likelihood month 

July - holiday month December - holiday month 

- school month 

- infection likelihood month 

August - holiday month January - school month 

- infection likelihood month 

September - holiday month February - school month 

- the month were the cure was distributed 
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The values of the numerical parameters have been set based on preliminary experiments. The temporal parameter 

values have been chosen from the real-world context. 

 

C. Errors Measures 

 

The simulation aims at approximating as well as possible the results of the A/H1N1 epidemic spread over the 

duration of a month for each county. The performance of our method is measured by the speed and convergence of the 

errors towards their lower limit (0 or 1, according to the definition interval).                                                                                                                    

We define three error measures, taking into account the following: 

 the distribution between the counties of the extra or the missing infection cases simulated  

 the ration between the real number of infections and the number of infections generated by our 

simulation 

 the distribution of the absolute error value. 

 

1) Missing/extra cases 

This error represents the proportion of the missing/extra cases in comparison with the real number of cases of 

the current month and is given by: 
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where M denotes the real set of nodes and M’ denotes the simulated set of nodes. Values closer to 0 are 

proffered. 

 

2) Ratio between the real and the simulated number of infections 

This error is given by the ratio between the real number of infection per country and the simulated number of 

infection cases per country. In the ideal case, the two numbers would be equal; consequently, the lower bound is 1: 
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For even more accurate error computation, this error can be extended by computing the ration between the real and the 

simulated number of cases for each county in Romania and the final error will be computed as the sum of all ratios 

divided to 41, the number of counties. This error is desired to converge to 1 during the execution as if the sum of all 

ratios, in the best case, is 41 and after the final division will be 1: 
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D. Results of the simulations 

The results of our simulation report the number of infections for each internal node of the outer network from 

June 2009 until February 2010. May 2009 is given as input data, being the month in which the virus has first been 

reported in Romania.  
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1)  June 2009 

We construct the network whose nodes are the counties of Romania and some countries. The nodes contain as 

information name, population size, and population density (as given in Table 2). The situation of the month given as 

input (in this case May 2009) is also incorporated and consists in the number of already infected individuals. 

Once the nodes are defined within the network, the connections are loaded, fulfilling the degree distributions listed in 

Table 3. 

The errors obtained for this simulation are given in Table 6. 

 
Table 6. Errors for month June 2009. 

Error type Value 

err1 1.11 

err2 1.58 

err3 0.36 

 

It can be observed that the distribution of the extra/missing cases error is very small, indicating the fact that 

simulation is getting closer to the reality. err3 indicates that the size of the simulated infected population is 1.58 times 

smaller than the real one.  

 

2) July 2009 

For the month July we have as input the situation June 2009. The CN edge type is not taken into consideration 

as it is a holiday month and for this reason the edge type TN is considered. Results of the simulation are given in Table 

7. 
 

Table 7. Errors for month July 2009. 

Error type Value 

err1 0.76 

err2 2.97 

err3 1.26 

 

err2 indicates that the simulation returned a smaller number of cases than the real situation: 2.97 times smaller. 

There are 9 internal nodes which were reported to have been newly infected and the algorithm returned the 

following ones as newly infected:  Brasov, Constanta, Dolj, Galati, Mehedinti, Mures, Prahova, Sibiu – which means 

that 8 out of 9 were identified by our simulation. 

 

3) August 2009 

August is the month when most of the people go on holiday, consequently there will be slight modifications on 

the computations: the edges having the type CN (Collegial Neighborhood) will not be taken into consideration, while 

the edge with the type TN (Tourism Node) will be used for the simulation, with the results presented in Table 8.  

 
Table 8. Errors for month August 2009. 

Error type Value 

err1 0.72 

err2  0.75 

err3 0.43 

 

The fact that the values for the last two errors are smaller than 1 indicates that the algorithm simulated a higher 

number of infections as they are in reality.  

One argument for this could be that during the month of August it is possible that the theory of moving masses 

on the TN edges is not sustained as people can make their holidays abroad, not only within the country. 
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4) September 2009 

For the month September we have as input the situation of August 2009; in this month school starts for 

undergraduates, for the college students the courses have not begun yet, so the CN edge type will not be considered 

and the TN one will. 

  
Table 9. Errors for month September 2009. 

Error type Value 

err1 4.59 

err2 0.191 

err3 0.097 

 

The errors of the simulation (as given in Table 9) are slightly worse for this case due to the fact that the 

number of infected counties has increased considerably and the simulation has been expanded throughout the county. 

The total size of the infected population (as returned by the simulation) is 0.191 times higher than the real one. 

 

5) October 2009 

The month given as input is September. The month October imposes some other limitations over the 

computations for the epidemic simulation. This month is known to be the month when the collegial year begins, so the 

CN edges are “means of transportation” of population from the nodes to the surroundings.  The TN edges will not be 

considered for the computations. Table 10 contains the error values. 
Table 10. Errors for month October 2009. 

Error type Value 

err1 0.89 

err2 1.75 

err3 0.21 

 

 For this experiment, a very good result has been obtained, with 1.21 cases/county being wrongly distributed, 

which, in the country population context, the difference is hardly noticeable.  The second type of error is in the normal 

range, with no spectacular value. The ratio, per the entire country, indicates that the simulation returned a smaller 

number of infection cases than the real situation.  

 One of the most relevant reasons for having these errors is the fact that October is an autumn month when the 

temperatures decrease and the infection likelihood increases, but not that much as in the months to follow.  

 

6) November 2009 

November is a school month; consequently the CN edge type is included in the computations. The 

temperatures in this month decrease drastically and the crowding coefficient (in terms of transportation) increases, 

therefore the likelihood of contacting the virus is greater, so the probability of infection being transmitted within the 

inner networks will be modified accordingly. 

 
Table 11. Errors for month November 2009. 

Error type Value 

err1 0.86 

err2 3.86 

err3 7.87 

 

The errors (see Table 11) may not look that promising (especially the last two ones), but they are not, the 

specifics of the month encourage the real epidemic spreading more than in the months before, although the initial 

values were in a normal range.  The ratio between the real value and the simulated one indicate the fact that the 

evolution of the virus was unexpected, thus the size of the simulated infected population is 3.86 times smaller than the 

real value. The value of error1 is in the normal range, indicating a success of the simulation over this month. 

One of the greatest achievements in this simulation was the infection of the county Botosani, which until this 

month was not infected and now, according to the simulation, was reported to have 267 cases, when the real value was 

269.  
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7) December 2009 

This month is one of the most complex ones. For the first half of this month the courses are held, so it can be 

considered a school month – the CN edge type is considered for computations – but the other half it is a general 

holiday (winter holiday), so the TN edge type is considered as well. Besides these two infection causes, the infection 

likelihood is considerable and it is added to the entire equation. 
Table 12. Errors for month December 2009. 

Error type Value 

err1 10.91 

err2 0.08 

err3 0.65 

 

The results reported in Table 12 show that the number of extra cases is higher than the expected values: the 

simulated infected population size is 1/0.08 times higher than the real size. There are many factors that influence 

positively the probability of infection – it increases the chance for any individual in any inner network to become 

infected. 

 

8) January 2010 

For January, the infection likelihood remains a preset factor (the temperatures are still low) and this month is a 

school month. The inherited set of infections is significant and encourages the spreading.  

 
Table 13. Errors for month January 2010. 

Error type Value 

err1 8.83 

err2 0.101 

err3 0.097 

 

The errors – presented in Table 13 – have an important divergence from the desired value, but smaller than the one 

from the previous month. The explication for these errors has its basis in the algorithm specific characteristics of the 

month. Another reason for having these errors when comparing with the real situation is that, towards the end of the 

month, the vaccine against the virus has already appeared and a percentage of the population has been vaccinated – this 

characteristic being ignored in the simulation. 

 

9) February 2010 

The last month considered in our experiments is February 2010. This month is mostly characterized by the 

fact that during this time the vaccine against the virus A/H1N1 was world-wide distributed, including Romania, 

therefore the simulation of the spreading did not function at the same parameters.  
Table 14. Errors for month February 2010. 

Error type Value 

Error1 1.14 

Error2 1.42 

Error2’ 0.58 

The errors for February – as in Table 14 – seem acceptable. The importance of the proportion of the missing 

cases against the total number of cases is 1.14, taking into account the fact that the number estimated by the algorithm 

is 1.42 times smaller than the real value of the epidemic result during this month. 
 

V. CONCLUSIONS 

 

The paper proposes a new approach for analyzing epidemic spreading over social networks by introducing a new 

model tested against real-world results. The model is based on intensive research in social networks and epidemic 

spreading, viewed from different aspects: the mathematical aspect and the sociologic-statistical aspect. The data 

selected for the model has been restricted to a number of characteristics and supports further extensions.   

 The model developed is general and can be applied to any hierarchical organizational structure similar to the 

one of Romania and it is valid for the simulation of the spreading of any other virus. The simulation algorithm can 
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support modifications to fit any other epidemiological model. The application, although it is presented as a case study, 

can be modified to have a general character: it can suit any country of the world, only with the change of data from the 

database and of the characteristics deduced from the time of year, which rather seem to be specific to Romania. 

 The results of our simulations have been compared to the real data and the real situation in Romania and 

shown to being very promising. 
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