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Abstract 

The predominant application of positron emission tomography (PET) in the field of oncology and radiotherapy and the significant amount 
of medical imaging research have led to an imminent need for effective approaches for PET volume analysis and the development of 
accurate and robust volume analysis techniques to support oncologists in their clinical practice, diagnosis procedure, arrangement of the 
right radiotherapy treatment and evaluation of patients’ response to the provided therapy. This paper proposes an efficient optimised 
ensemble classifier to tackle the analysis problem of squamous cell carcinoma in patients’ PET volumes. This optimised classifier is based 
on an artificial neural network (ANN), fuzzy C-means (FCM), an adaptive neuro-fuzzy inference system (ANFIS), K-means and a self-
organising map (SOM). Four ensemble classifier machines are proposed in this study. The first three are built using a voting approach, an 
averaging technique and weighted averaging, respectively. The fourth novel ensemble classifier machine is based on the combination of a 
modified particle swarm optimisation (PSO) approach and a weighted averaging approach. Experimental national electrical manufacturers 
association and international electrotechnical commission (NEMA IEC) body phantom and clinical PET studies of participants with 
laryngeal squamous cell carcinoma are utilised for the evaluation of the proposed approach. Superior results are achieved using the new 
optimised ensemble classifier when compared with the results from the investigated classifiers and the non-optimised ensemble classifiers. 
The proposed approach can identify the region of interest class (tumour), with an average accuracy of 98.11% achieved in the studies of 
participants with laryngeal tumour. This system underpins the expertise of clinicians for PET tumour analysis.  

 

Keywords: Medical Imaging; Tumour; Committee Machine; Particle Swarm Optimisation; Squamous Cell Carcinoma.  
 

 

 

 

 

1. Introduction  

The investigation and analysis of the volume of positron 
emission tomography (PET) is crucial for different clinical 
and diagnosis procedures, such as decreasing noise, artefact 
evacuation, tumour evaluation in the management stage and 
helping to plan the right radiotherapy treatment for  patients 
[1]. PET is dynamically consolidated for the administration 
of patients. The outcomes of clinical investigations utilising 
fluorodeoxyglucose (FDG)-PET have shown its advantage 
in the analysis, organising and assessment of patient 
reactions to treatment [2–4]. The use of cutting-edge elite 
programming evaluation methodologies is valuable in 
helping clinicians with clinical findings and radiotherapy 
arrangement. In spite of the fact that the undertaking of 

therapeutic volume examination seems basic, insightful 
knowledge of the organs and information about physiology 
is necessary for achieving such an assignment on clinical 
restorative images. Basically, the clinical expert monitors 
each slice, decides outskirts among the image districts and 
characterises every area. This is generally finished image by 
image (2D) for a 3D volume and requires a re-slicing of 
information into the transaxial, sagittal and coronal planes. 
Also, recognition of thinner image features and difference 
changes is frequently required. Despite the fact that, for a 
commonplace 3D informational index, the comprehensive 
clinical expert manual investigation can take a few hours to 
finish, this methodology is possibly the most dependable 
and precise technique for restorative image examination. 
This is because of the monstrously multifaceted nature of 
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the human visual framework, a framework appropriate to 
this assignment [5–8].  

The systems based on a combination of classifier 
frameworks can regularly provide viable answers for 
identifying different patterns and performing classification 
requirements. These can be identified by using distinctive 
terms, such as combined decisions, different expert 
combinations, blends of specialists, ensemble classifiers, 
fusions of different approaches, accord conglomerations, 
dynamic classifier determinations, composite classifier 
frameworks, half-and-half strategies, smart agents, 
frameworks supposition pools and board-of-committee 
ensemble machines [9–17]. The inspiration for such 
frameworks might be gotten from an exact perception that 
particular classifiers are prevalent in various circumstances, 
or it might follow from the idea of the application in 
question. In addition, endeavours may be concentrated on 
improving their speculation capacity and upgrading the 
precision of the classification.  

Ensemble classifiers have different structures and are 
employed in a variety of applications [18]. Ensemble 
classifiers significantly outperformed the other approaches 
used for data of microwave breast screening acquired in the 
clinical trial presented in [9]. Another study presented a 
neural network ensemble design for image classification 
purposes, but this work only used neural networks; the 
ensemble we developed, in contrast, deals with the image as 
whole and use a combination of techniques [19]. Fusion of 
contextual information for the purpose of image recognition 
has been presented in [20], which shows that fusing the 
information can lead to better outcomes. Multicategory 
classification problems have been addressed using 
ensembles of binary classifiers in [21]. A gas-recognisable 
committee machine that joins different gas identification 
approaches to get a bound-together choice with improved 
precision was presented in [22]. The ensemble classifier was 
executed by amassing the yields of five gas-recognisable 
proof approaches through a cutting-edge casting ensemble 
with very good outcomes. A casting ensemble for spoken-
influence classification was employed in [23], and the 
achieved committee precision was contrasted with the 
correctness of each separate classifier. In another study, a 
weighted casting committee machine was employed for 
recognising the human face and voice [24]. A hierarchical 
ensemble classifier was proposed in [25] based on multiple 
Fisher’s linear discriminant classifiers, where each one 
embodied different facial evidence for face recognition. 

An ensemble classifier was used in [26] to identify 
tissue in black and white. A group of multilayer perceptrons 
(an essential form of neural system) was set to learn data 
inputs comprising of different surface patterns, and the data 
outputs comprised of tissue type classes that were controlled 
by clinical specialists. At that point, an ensemble classifier 
was developed via preparing a Bayesian classifier to join the 
classification approaches of the neural systems. Results 
were contrasted among comparable AI based techniques, 
such as support vector machine and multiclass Bayesian 
ensemble classifier. The designed methodology was 
employed to identify the weight ulcer, which is a clinical 
pathology of restricted harm to the skin and basic tissue 
brought about by weight, shear or contact. It employed a 

mean move methodology and a locale-developing procedure 
for productive region division. Analysis, treatment and care 
of weight ulcers are exorbitantly expensive for wellbeing 
administrations. The right injury assessment is a basic 
errand for enhancing the adequacy of treatment and care. 
Physicians normally assess each weight ulcer by visual 
investigation of the harmed tissues, which is an inadequate 
methodology for assessing the dimension of the injury. 

An ensemble classifier of neural systems was presented 
in a paper identifying the masses found in mammograms as 
dangerous or benign [27]. This ensemble was employed to 
group masses into two classes, malignant and benign, 
without arranging the images into the correct number of 
classes. This study used twenty areas of intrigue identified 
with harmful tumours and thirty-seven others belonging to 
benign tumours. A set of multilayer perceptrons was utilised 
as a complete ensemble of neural systems. The outcomes 
were achieved by consolidating the reactions of the 
individual classifiers. The research study proposed in [28] 
investigated several AI techniques for the purpose of 
identifying harmful and amiable bunched 
microcalcifications. This study’s kernel-based approach 
methodology accomplished a performance of 85%.  

A committee machine of neural systems intended to 
enhance the precision and vigour of identifying samples of 
gene information was developed in the research of [29]. 
Another committee machine, based on a voting framework 
for identifying multiclass protein creases, was presented in 
the research of [30]. These studies are crucial because 
identifying the protein structure is a critical for knowing the 
relationship and arrangement between sequence structures 
and conceivable practical transformative connections. 

The study presented in this paper investigates the 
efficiency of different committee machines and proposes an 
efficient optimised committee machine to tackle the analysis 
problem of squamous cell carcinoma in patients’ PET 
volumes. This optimised classifier is based on an artificial 
neural network (ANN), fuzzy C-means (FCM), an adaptive 
neuro-fuzzy inference system (ANFIS), K-means and a self-
organising map (SOM). This study includes four committee 
machines. The first is based on a voting approach, where 
every single participated technique should generate a 
specific outcome. The second is based on an averaging 
technique, where the class outcome revealing the biggest 
average weight will be selected as the most accurate one. 
The third is based on weighted averaging, where the 
generated outcomes from all the techniques are timed with 
the archived predicted weights. The fourth novel committee 
machine depends on the combination of a modified particle 
swarm optimisation (PSO) and weighted averaging 
approaches. The proposed optimised committee machine is 
evaluated using experimental national electrical 
manufacturers association and international electrotechnical 
commission (NEMA IEC) body phantom and clinical PET 
studies of 7 participants diagnosed with laryngeal squamous 
cell carcinoma. Very promising outcomes are achieved 
using the new optimised committee machine (CM4), as 
illustrated in the following sections.  
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2. Theoretical Background 

2.1 Voting Based Ensemble 
 

Voting technique is one of the famous methodologies for 
consolidating the outcomes of different classifiers. In this 
method, every single classifier should generate a decision 
rather than a weight. The chosen class is the one 
predominantly selected by the various classifiers. Hence, the 
yield forecast (Vp) is resolved as pursues: 

 

𝑉𝑉𝑝𝑝 = �
𝑥𝑥1  𝑤𝑤ℎ𝑒𝑒𝑒𝑒  ∑ 𝑥𝑥𝑖𝑖 > 𝑇𝑇𝐾𝐾

𝑖𝑖=1
𝑥𝑥2  𝑤𝑤ℎ𝑒𝑒𝑒𝑒  ∑ 𝑥𝑥𝑖𝑖 < 𝑇𝑇𝐾𝐾

𝑖𝑖=1
𝑡𝑡𝑡𝑡𝑡𝑡  𝑤𝑤ℎ𝑒𝑒𝑒𝑒  ∑ 𝑥𝑥𝑖𝑖 = 𝑇𝑇𝐾𝐾

𝑖𝑖=1

                            (1) 

 

where K is the quantity of classifiers and T is a turning limit. 
If 50% of the involved classifiers vote in favor of one class 
and the remaining 50% vote in favor of the other class; then 
a tie status is reached. This occurs when an evenly divisible  
number of classifiers is employed in the ensemble. 
Nevertheless, in the proposed ensemble, an odd number of 
classifiers is conveyed to stay away from this issue. 
Moreover, the most well-known technique among median, 
least and greatest techniques is the preponderance vote 
technique [31–33]. 

 

2.2 Averaging Based Ensemble 
Averaging based ensemble carries out an averaging 

technique on the outcome of every single classifier for every 
representative class across the whole ensemble. The class 
outcome with the largest amount is then selected. The 
outcome is shown in Equation 2: 

 

𝑄𝑄(𝑥𝑥) = argmax
𝑗𝑗=1… 𝑁𝑁

�
1
𝐾𝐾
�𝑦𝑦𝑖𝑖𝑖𝑖(𝑥𝑥)
𝐾𝐾

𝑖𝑖=1

�                                            (2) 

 

where N is the classes quantity, yij(x) is the outcome value of 
the ith classifier for the jth class of the input x; K is the 
classifiers quantity employed in the whole ensemble [32]. 

 

2.3 Weighted Averaging Based Ensemble 
Weighted average technique is similar to the past 

averaging technique; nevertheless, the classifiers’ outcomes 
are timed with archived predicted weights. The outcome is 
shown in following equation [32]: 

𝑄𝑄(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗=1… 𝑁𝑁

�∑ 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖(𝑥𝑥)𝐾𝐾
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
𝐾𝐾
𝑖𝑖=1

�                    (3) 

 

wi are the weights where i=1,… , K, are inferred by reducing 
the classifiers’ error for the training group. In the application 

in question “positron emission tomography”, the predicted 
classifier’s precision of every single relating class is 
employed as a practical weight for that individual class. 
Every ideal classifier’s outcome ydi can be generated as the 
real outcome yi in addition to a generated error ei. This is 
illustrated in following equation:    

𝑦𝑦𝑑𝑑𝑑𝑑(𝑥𝑥) = 𝑦𝑦𝑖𝑖(𝑥𝑥) + 𝑒𝑒𝑖𝑖(𝑥𝑥)                  (4) 

 

2.4 PSO Particle Swarm Optimisation 
Particle swarm optimisation approach is set up 

dependent on the behaviour of social swarm. It can control 
convergence [34–36]. That behaviour in PSO can be be 
portrayed as pursues: In the event that a swarm of feathered 
creatures is considered, at that point their goal is to locate a 
warm spot to travel to. Having no earlier learning of that 
place, the winged creatures start in arbitrary ways with 
irregular speeds searching for the spot. Each feathered 
creature can recollect the discovered area, and by one way 
or another knows the headings where different winged 
animals found a legitimate spot. The reluctant flying 
creature, between the course found and those detailed by 
different winged creatures, quickens in the two headings 
modifying its bearing to fly somewhere close to the two 
known headings. Amid flying, a winged creature may locate 
a superior course (place) than the one found beforehand. It 
would then be attracted to this new area just as the other 
best area found by the entire swarm. Sporadically, one 
winged animal may fly preferable way over had been 
experienced by any flying creature in the swarm. The entire 
swarm would then be drawn toward that area in extra to 
their very own revelation. In the long run, the feathered 
creatures' flight guides them to the best spot they are 
searching for [37, 38]. 

There are numerous points of interest in PSO; for 
example, its algorithmic effortlessness. Moreover, it has one 
straightforward operator, which is the velocity. This element 
prompts the decrease of computational time and intricacy. In 
particle swarm optimisation, there are a definite group of 
elements which must be chosen controlled cautiously as per 
the application in question. These parameters (elements) are 
experimentally investigated and optimised based on the 
proposed application. 

3. Methods and Materials  

3.1 Phantom and clinical studies 
 

3.1.1  Phantom Studies Data  
The main informational index utilized in this research 

investigation is gathered by deploying the NEMA IEC 
image quality body phantom. This phantom comprises of a 
curved water filled cavity which contains 6 spherical inserts 
suspended by plastic rods of volumes 0.5, 1.2, 2.6, 5.6, 11.5 
and 26.5 ml. The The internal measurements of these circles 
are 10, 13, 17, 22, 28 and 37 mm, respectively. The volume 
of the PET has a size of 168×168×66 voxels; each voxel 
has measurements of 4.07×4.07×5 mm3, equal to a voxel 
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volume of 0.0828 ml. The deployed phantom was broadly 
utilized in the literature aiming for the evaluation of image 
quality and the quantitative processes approval [39–42]. In 
the deployed PET volumes,  the PET emission data was 
reconstruct using a CT-based attenuation correction 
performed after the Fourier rebinning and model-based 
scatter correction.  The PET volumes were reproduced 
utilizing two-dimensional iterative standardized normalized 
attenuation weighted ordered subsets expectation-
maximisation (NAW-OSEM). In this experiment, the 
following default parameters were employed: ordered 
OSEM repetitive reconstruction, 4 recurrence with 8 
subsets, pursued by a post-processing Gaussian filter (5 
mm) [43]. The generated phantom volumes were obtained  
using a GE DST clinical PET-CT scanner.   

3.1.2 Clinical Studies Data  
The employed clinical data set in this research consisted 

of clinical data of PET images from 7 patients with T3–T4 
laryngeal squamous cell carcinoma. T3 represents a tumour 
in the larynx that made one of the vocal strings incaplable of 
movement, on the other hand the T4 represents a tumour 
that reached out behind the larynx. Preceding the treatment, 
every patient experienced a FDG-PET examination. Patients 
were immobilized with a tweaked thermoplastic mask 
attached to a flat table top to avert complex neck motions. 
The procedures was as follows: a 10 minute transmission 
scan has been performed using the Siemens Exact HR 
camera (CTI, Knoxville, USA). Afterwards, a 1 hour 
dynamic 3D emission scan was performed instantly after 
intravenous infusion of 185-370 MBq (5-10 mCi) of FDG. 
This scan has 8 frames with variable span running from 90 
to 600s. The acquired volumes have been redressed for dead 
time, arbitrary, disperse, lessening and rot and after that 
recreated utilizing a 3D OSEM approach. The ground truth 
of the tumour was based on the knowledge of expert 
clinicians who use their training and experience to identify 
suspected sites of disease through quantification 
measurement and visual assessment, while the histology 
(through biopsy) confirmed whether a disease was present at 
individual suspected sites and characterised its physical 
distribution and extent in biopsied tissue accordingly. The 
volume of this deployed data set was 128 × 128 × 47 
voxels associated with every participant, where the voxel 
volume is 2.17 × 2.17 × 3.13 mm3 [44, 45, 46].  

 

3.2 The Optimisation Approach 
This research has developed an optimisation algorithm  

built based on the PSO approach [34]. It can be summarised 
as pursues: 

1. The initial step of actualizing the particle swarm 
optimisation approach is to choose the parameters and 
characterize the looking extent for every one of them. 

2. The mean square error fitness function is chosen to 
show the goodness of the optimisation solution. The PSO 
particles are optimised by the fitness function, which is 
formulated as the objective function.  

3. Each Every molecule starts at its very own irregular 
area with an arbitrary speed hunting down the ideal position 

in the arrangement space. As the underlying position of 
every molecule is the main area experienced toward the 
starting, this position ends up particular of every molecule 
(pbest). Every molecule has its very own pbest dictated by 
the way that it has experienced.  

4. The principal worldwide best arrangement found by 
the remainder of the swarm (gbest) is then chosen from 
among these underlying positions. From that point onward, 
the methodology moves every molecule separately just 
barely through the whole swarm, and thinks about gbest and 
pbest. 

5. The particles speed is imperative key in the 
optimisation system. The speed of the molecule is changed 
by the overall areas of pbest and gbest. Every molecule is 
processed as a point in the D dimensional defined space. 
The ith molecule can be shown as Xi = (xi1, xi2, ..., xiD). 

The best past position (the position which gave the best 
wellness esteem) of the ith molecule is monitored and can be 
shown as  Pi = (pi1, pi2, ..., piD). A list of the best molecule 
among every one of the particles in the populace is depicted 
using the symbol g. The range of velocity variation for 
particle i can be shown as Vi = (vi1, vi2, ..., viD). This velocity 
is updated according to the following equation: 

𝑣𝑣𝑖𝑖𝑖𝑖(𝑞𝑞 + 1) = 𝜔𝜔 𝑣𝑣𝑖𝑖𝑖𝑖(𝑞𝑞)  + 𝑐𝑐1. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(1). �𝑝𝑝𝑖𝑖𝑖𝑖(𝑞𝑞) −

𝑥𝑥𝑖𝑖𝑖𝑖(𝑞𝑞)� + 𝑐𝑐2. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(2). �𝑝𝑝𝑔𝑔𝑔𝑔(𝑞𝑞) − 𝑥𝑥𝑖𝑖𝑖𝑖(𝑞𝑞)�       (5) 
 

where 0 ≤ i ≤ (n − 1), 1 ≤ p ≤ D, n is the number of 
particles in a group and D is the dimension of the search 
space. For each particle, there are D number of parameters 
that are used to identify the particle location in the search 
space. For a specific particle, q is the repetition indictor, 
vip(q) is the speed of particle i at repettion q and rand(1) 
and rand(2) are random values within [0..1]. ω is the 
inactivity weight factor, which determined to what degree 
the molecule stays along its unique course unaltered by the 
draw of gbest and pbest. c1, c2 values are the quickening 
constants, where c1 is a factor choosing how much the 
molecule is impacted by the memory of its best area and c2 
is the value choosing how much the molecule is affected by 
the remainder of the particle groups.  

6. In light of the past phase and after refreshing the 
speed value, the fresh location, to which the particle moved, 
is recognised based on the following: 

𝑥𝑥𝑖𝑖𝑖𝑖(𝑞𝑞 + 1) = 𝑥𝑥𝑖𝑖𝑖𝑖(𝑞𝑞) + 𝑣𝑣𝑖𝑖𝑖𝑖(𝑞𝑞 + 1)      (6) 
 

where xip is the available location of a certain particle i at a 
repetition q. 

7. Afterwards, the process from step four onward is 
repeated once more.  The repeated procedure is iterated 
again and again until the until the end model condition is 
achieved. 

3.3 The Ensemble Optimisation Approach 
In light of the comprehension of the reasonable premise 

of the PSO, an algorithmic methodology is developed in this 
research as a novel enhancement approach method for PET 
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applications to improve the performance of the developed 
ensemble. The PET optimisation approach can be 
summarised as pursues: 

1. Every particle among the group of particles speed up 
toward the best overall position and best settings and keep 
checking its own current available position. 

To implement the developed approach, a specific 
procedure is followed: First, we need to select then optimise 
5 different  parameters—one value for every proposed 
classifier—and provide them a reasonable values, where the 
best solution is searched for and achieved. In view of the 
underlying experiments completed for the application of 
PET volumes, the best-chosen values for all the processed 
data sets is [0 ... 1.5]. The optimised values (R1, R2, R3, R4, 
R5) were employed within the developed ensemble in order 
to obtain  the optimal outcome in light of the following: 

𝑄𝑄(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗=1… 𝑁𝑁

�∑ 𝑅𝑅𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖(𝑥𝑥)𝐾𝐾
𝑖𝑖=1

∑ 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖
𝐾𝐾
𝑖𝑖=1

�       (7) 

where Acci is the classification accuracy of a particular 
classifier i whereas N refers to how many classes are 
processed. 

2. The second step is an essential one to evaluate the  
quality of the achieved solution. The calculation of the 
accuracy method was employed to provide a single figure 
referring to the effectiveness of the provided solution. The 
performance index of this function can be calculated as 
follows: 

𝑃𝑃𝑃𝑃 = 1 −
1
𝑁𝑁
�

𝑡𝑡𝑡𝑡𝑖𝑖
𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑖𝑖 + 𝑓𝑓𝑓𝑓𝑖𝑖

𝐾𝐾

𝑖𝑖=1

                                (8) 

    

where PI is the performance index, fp is false positives, tp is 
true positive and fn is false negatives. These values are 
extracted from the confusion matrix. 

3. Every molecule has its own pbest controlled by the 
way that it has experienced. The main worldwide best 
arrangement found by the remainder of the swarm (gbest) is 
then chosen from among these underlying positions. 

4. Every molecule is moved exclusively just barely 
through the whole swarm, and the pbest and gbest are 
thought about. The exactness work restores an incentive to 
be relegated to the present area. In the event that that esteem 
is more noteworthy than the incentive at the separate pbest 
for that molecule, or the worldwide gbest, at that point the 
proper areas are supplanted with the present areas. 

5. The molecule speed is calculated based on Eq. 
number 5. We have introduced the random parameter in Eq 
number 5 to imitate the lightly unforeseeable behaviour 
element of swarm in nature. Variant empirical parametric 
studies have been performed in the literature to determine 
the optimal amount of the c1 with c2. It has been determined 
before that the best choice for both c1 combined with c2 is 
2.0 [47, 48]. But, the first round of experiments performed 
using every single data sets of PET shows that the optimal 
amount of w is 0.7298 and the best amount of c1, and c2 is 
1.49618. The obtained experimental values are achieved 
throughout the following experimental approach, where 

compels conditions have been connected to these elements, 
for example, constraining the w within the values of [0..1]. 
The proposed approach has set the index performance to a 
value of 0.01. The proposed algorithm has saved, compared, 
and choose the best parameters to be deployed:  

𝑐𝑐1 = 𝑐𝑐2 = 1.49618 

𝑤𝑤 = 0.7298 

1: Determine the constrains for each parameter 
2: The process of Initialising 𝑐𝑐1 
3: The process of Initialising 𝑐𝑐2 
4: The process of Initialising w 
5: As long as PI > 0.01 do 
6: 𝑐𝑐1= 𝑐𝑐1+ 𝑐𝑐1∗ rand(±0.1) 
7: 𝑐𝑐2= 𝑐𝑐2+ 𝑐𝑐2∗ rand(±0.1) 
8: Calculate w = w + w ∗ rand(0.1) 
9: Import PSO Approach 
10: Save the achieved parameters in an array 
11: Finish the cycle 
12: Evaluate the parameters and deploy the best ones. 
Where rand(0.1) was set in the range [0..0.1].  

6. The new location for every single particle based on 
Eq. 6 is calculated. 

7. The proposed approach has performed a significant 
number of experiments which determined the finishing 
paradigm standard at 100 epochs in respect for every single 
data set in the PET application. Where if the ultimate 
number of repetition is significantly big, the algorithm may 
become hanging tight waiting for an adjustment to be made 
for the consistent elements in the process; moreover, 
acquiring just a little number of repetition may lead to no 
adequate time in the swarm particles to comprehensively 
discover all the solution area and subsequently figure out 
what is the optimal answer.  

8. A significant number of experiments were performed 
deploying all the phantom and clinical data sets to achieve 
the optimal correlation among the particles number (NP) 
with the highest number of repition (Nit). Hence, it was 
determined that the complete analysis of such correlation 
maybe described by Eq. 9 ( applicable for both phantom and 
clinical data sets. Moreover, choosing the right number of 
particles is very important for improving the performance of 
the approach in question. Therefore, these initial 
experiments have evaluated the most suitable number of 
particles for the data sets in question. The achieved results 
will be discussed in the results section. 

𝑁𝑁𝑖𝑖𝑖𝑖 ≅
3
2
𝑁𝑁𝑃𝑃          (9) 

3.4 Description of the Optimised Proposed System 
The proposed medical volume ensemble classifier for 

the analysis and classification of PET images is shown in 
Fig 1. Practical NEMA IEC phantom and 
pharyngolaryngeal squamous cell carcinoma data sets are 
used in this research to assess the performance of the 
developed optimised approach. The pre-processed PET 
images obtained from the scanner has gone through the 
initial 5 classifiers as follows: 

1. Feedforward neural network (FFNN) 
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Different parameters have been explored to achieve an 
appropriate architecture for the artificial neural network 
suitable for the PET application. These parameters include 
the training techniques, determining the number of the 
hidden layers employed in the proposed network 
architecture and determining the number of hidden neurons 
in every single layer [6]. Repeated experiments were 
performed 10 cycles associated with every architecture of 
the network. Afterwards, the optimal architecture was 
selected and trained. 

2. ANFIS 

Iterative test were performed to assess the most appropriate 
parameters for ANFIS approach [49]. The experiment 
shows that following selected elements can achieve and 
generate the optimal performance and results. The influence 
value is set to 0.1, the accept ratio is set to 0.1, the squash 
element is determined at 0.25, and the reject ratio is set at 
0.0015.  

3. Self-organising map (SOM) [50]: For PET 
application, the learning rate is chosen at a value of 
0.6, and the number of training epoch is set to 1000 
in the proposed experiments. 

4. Fuzzy C-means (FCM) [51]: The experiments 
determined the pursue parameters to achieve  the 
FCM convergence, which suits the proposed PET 
application: the number of epochs is determined at 
a value of 500, the value m is equal to 2 and the 
least value for improvement is set at a value of 1e-
5. 

5. K-means [52].  

These previously mentioned five classifiers provide the 
following classification predications (Pre): Pre1, Pre2, Pre3, 
Pre4 and Pre5, respectively.  

The target class (class 5) is the tumour in the clinical 
data sets and the spheres (class 4) in the phantom data sets 
(simulated tumour). Each class refers to a different structure 
within the processed data sets. The selection of the most 
appropriate classes number (N) related to each data set in 
the analysed PET images, is made by experimenting and 
evaluating different values of N. The optimum value of N is 
determined based on the Bayesian information criterion 
(BIC) approach. BIC approach obtained a great fame as 
noteworthy methodology for model determination, it was 
employed in different applications e.g. image analysis 
sociological,  biological research activities, etc. The BIC 
weights are determined gradually against the expanding 
estimations of N. The classes number N is selected from a 
range of 2 to 8, whereas in the proposed medical application 
of PET, any extra detachment is pointless, based on the 
analysis of the medical expert. BIC values will in general 
increment inconclusively as the quantity of parts increments 
in its model. An expansion in BIC esteem shows an 
improved model fit, be that as it may, these qualities 
ordinarily balance out on a surmised bend level, the start of 
which is typically taken to demonstrate the ideal N esteem 
for every datum set. The drawing of the BIC values against 
the classes number N of the phantom data set illustrates that 
the optimal N number is achieved at four. However, the 
optimal N value for the clinical data sets is five classes for 

each patients, where class number 5 refers to the region of 
interest (tumour), while the remaining classes are the 
different other structures presented in the image [53–56].  

The generated outcomes from the deployed classifiers are 
sent to three ensemble classifiers at an initial stage. The first 
ensemble (CM1) gathers the five classifiers’ outcomes in 
light of the voting technique. The second ensemble (CM2) 
gathers the five classifiers’ outcomes in light of the 
averaging approach, while the third ensemble (CM3) 
gathers the five classifiers’ outcomes in light of the 
weighted averaging technique. After the initial stage which 
deployed 3 different ensemble classifiers, a novel approach 
for optimisation built in light of the PSO approach is 
introduced and combined with the existing ensemble to 
improve the achievement and enhance the overall accuracy 
of the classification. The developed optimiser intensively 
looks for the most appropriate values for the optimisation 
procedure (R1, R2, R3, R4, R5) for every single classifier. 
After searching for the best optimisation values, they are 
sent and employed in the new ensemble, which in turns  
creates the optimised predication for the classification as 
well as the overall accuracy associated with every single 
data sets. The optimised ensemble/committee machine 
(CM4) benefits from the mixture of supervised and 
unsupervised classifiers as well as from the proposed 
optimisation approach. The most appropriate five 
parameters deployed in the new ensemble CM4 have 
enhance the overall performance as well as the accuracy 
achieved by the new CM4, as discussed in the results 
section. Every single value of the optimisation parameters 
has the ability to represent the most appropriate solution 
related to its own classifier, as long as it was given suitable 
range of values. At the end of the optimisation process, a 
performance pointer is created. This pointer is employed to 
determine  the performance of the optimised ensemble 
CM4. The outputs are evaluated at the following stage, 
whereas a misclassification value (MCV), confusion matrix, 
and Acc are employed  to assess the ensemble performance. 
The MCV represents the number of samples which are 
wrongly classified over the whole number of samples. 

The introduced ensemble classifier has generated  
significant results for all processed data sets including the 
phantom and clinical ones. The developed ensemble 
generated an accuracy of 99.9% for some clinical data sets. 
The results section illustrates the results generated by the 
introduced ensemble system.  

Page 6 of 13

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



       

 
Fig. 1. Novel Optimised Ensemble Classifier for PET Volume 

Classification. 

4. Results 

The achieved results will be organised into two main 
sections for each type of data set (phantom and clinical). 
The first sub-section analyses the results from the first three 
committee machines, CM1, CM2 and CM3. The second 
sub-section discusses the results from the optimised 
committee machine, CM4, with a focus on the accuracy of 
region of interest class (tumour).  

4.1 Phantom Data Set 

4.1.1 The Committee Machines Results 
The MCV, confusion matrix, and Acc, are employed to 

assess the developed ensembles performance. Table 1 shows 
the confusion matrix and Acc for the ensembles CM1, CM2 
and CM3. The confusion matrix for the outputs of the first 
ensembles CM1 shows the following classification details: 
All class 1 voxels are precisely classified, there are 27 
voxels related to class 2 are falsely classified into the first 
class. There are 85 voxels related to class 3 are falsely 
classified into class 1, while 25 voxels  are falsely classified 
into the second class. Class number 4, which represents the 
simulated tumour, has 10 voxels falsely classified in the first 
class, while the remaining 42 voxels are falsely classified in 
the third class. For the region of interest there are 99 voxels 
precisely classified. In the second ensemble CM2 outputs, 
the confusion matrix illustrates the following results 
regarding the falsely classified numbers of voxels: 24 voxels 
related to class 2 falsely classified into class 1, 88 from class 
3 falsely classified into class 2 and 52 from class 4 falsely 

classified into class 3, however all the first class has a 
precise classification.   

Assessing the generated outcomes from the third 
ensemble CM3 in light of the confusion matrix 
demonstrates the following results for the falsely classified 
voxels: 23 voxels related to the second class are falsely 
classified into class 1, 141 voxels from class 3 are falsely 
classified into class 2 and  finally there are 51 voxels related 
to class 4 are falsely classified in class 3, while voxels 
related to the first class is precisely analysed. Among the 
three ensembles CM1, CM2, and CM3; the highest accuracy 
is achieved through the CM3 ensemble.  

CM Class Cl1 Cl2 Cl3 Cl4 Acc 

 

CM1 

Cl1 24939 - - - 0.9951 

Cl2 27 260 - - 0.8333 

Cl3 85 25 2737 - 0.9473 

Cl4 10 - 42 99 0.6556 

 

CM2 

Cl1 27939 - - - 0.9990 

Cl2 24 263 - - 0.7013 

Cl3 - 88 2759 - 0.9517 

Cl4 - - 52 99 0.6556 

 

CM3 

Cl1 24939 - - - 0.9990 

Cl2 23 264 - - 0.6168 

Cl3 - 141 2706 - 0.9337 

Cl4 - - 51 100 0.6622 

Table 1: The prediction analysis using a 4 ×4 confusion 
matrix for the CM1, CM2 and CM3 of phantom data set 
outcomes and the accuracy (Acc) related to every class. 

4.1.2 The Optimised CM Results 
 

Following the evaluation metrics results of CM1, CM2 
and CM3 presented in the previous section, the best 
performance is achieved by CM3. However, higher 
classification accuracy and better performance are still 
required. Therefore, the developed optimised CM4 has been 
deployed within the system to process all the data sets. The 
initial experiments deploying the phantom data set show 
that the most appropriate particles number required for the 
phantom data 66,  this number is associated with training 
epochs equals to 100. This practical value conforms with the 
one generated by Equation 9. Once the training is 
performed, the optimisation error/ performance index 
achieved is PI = 0.0061. The generated error for the 
optimisation procedure is illustrated in Figure 2, where the 
training epochs is set 100, which has a stabilised 
performance and is no longer reduced.  

The experimental phantom data set is then processed 
through the new optimisation approach; CM4. The region of 
interest’s voxels as well as voxels from class 2 are correctly 
classified in the corresponding class, there are 3 voxels 
related to class 1 are misclassified to class 2 and only 2 
voxels related to class 3 are falsely analysed. The MCV = 
0.0002, which is the closest to “0” among all the other 
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classifiers. The MCV values for all classifiers are presented 
in Table 4.  

A significant accuracy improvement is achieved using 
the CM4 to detect and accurately classify the ROI 
(simulated tumour). Figure 3 shows a comparison between 
the new proposed ensemble classifier, CM4, and the 
remaining approaches (FFNN, ANFIS, SOM, FCM, K-
means, CM1, CM2 and CM3) based on the Acc for the 
phantom data set. The simulated tumour (sphere) 
represented by class 4 (Cl4) is accurately classified using 
CM4.  

 

 
 

Fig. 2. The optimisation error model for the phantom data set. 

 

Fig. 3. A comparison between the new proposed ensemble 
classifier, CM4, and the remaining approaches (FFNN, ANFIS, 
SOM, FCM, K-means, CM1, CM2 and CM3) based on the Acc 
for the phantom data set. 

 
 
 
 
 
 
 
 
 
 

4.2 Clinical Data Set 
 

4.2.1 The Committee Machines Results 
 

The proposed ensemble classifier’s performance is 
assessed through the deployment of different assessment 
and analysis metrics for the clinical data sets (Patients 1–7). 
The confusion matrix illustrates the following results related 
to the ensemble CM1 outcomes of the data related to Patient 
1 (Pt 1) as an example of the clinical data sets for patients 

with pharyngolaryngeal squamous cell carcinoma. The class 
2 voxels are precisely classified, there are 62 voxels related 
to class 1 are precisely classified. Moreover, there are 2790, 
162 and 105  voxels related to the third class, fourth and 
fifth class, respectively are correctly analysed. Table 2 
demonstrates the results obtained by the confusion matrix 
and Acc for every single class of Pt 1’s data set. 

The confusion matrix illustrates the following results 
related to the ensemble CM2 outcomes of the data related to 
Patient 1: There are 780 voxels related to class 1 falsely 
classified in class 2, 88 related to class 3 falsely classified in 
class 2, 1509 related to class 3 falsely classified in class 4, 
495 related to classes 4 falsely classified in class 1 and 157 
related to class 5 falsely classified in class 1. Class 2 is 
precisely classified, as illustrated in Table 2.   

The ensemble CM3 precisely classified the voxels in 
class 2; as well as positively classified 230 voxels out of 278 
voxels of the ROI, while CM1 and CM2 have classified just 
105 and 121 voxels, respectively. The ensemble CM3 has 
also generated an accuracy for class 1, which is superior 
than the one obtained through the ensembles CM1 and 
CM2. The detailed of the accuracy and confusion matrix are 
illustrated in Table 2. 

CM Class Cl1 Cl2 Cl3 Cl4 Cl5 Acc 

 

CM1 

Cl1 62 737 - - - 0.0172 

Cl2 0 9353 - - - 0.9204 

Cl3 1968 71 2790 303 - 0.5436 

Cl4 660 - - 162 - 0.1440 

CL5 173 - - - 105 0.3776 

 

CM2 

Cl1 19 780 - - - 0.0130 

Cl2 - 9353 - - - 0.9150 

Cl3 - 88 3535 1509 - 0.6888 

Cl4 495 - - 327 - 0.1402 

CL5 157 - - - 121 0.4352 

 

CM3 

Cl1 530 269 - - - 0.6633 

Cl2 - 9353 - - - 0.9644 

Cl3 - 76 4030 1026 - 0.7852 

Cl4 - - - 563 259 0.2969 

CL5 - - - 48 230 0.4283 

Table 2: The prediction analysis using a 5 × 5 confusion 
matrix for the CM1, CM2 and CM3 generated outcomes for 
Pt 1 data set with laryngeal tumour and the Acc. 
 
Similar results are achieved for Patient 2 (Pt 2). The details 
of the confusion matrix for CM (1–3) and the Acc of each 
class are presented in Table 3. In contrast, for Patient 3 (Pt 
3), the accuracies achieved by ensemble CM3 for the first 
and fourth classes are 0.9225 and 87.66, respectively. 
These accuracy values are better than the ones obtained 
through CM1 and CM2. In the Patient 4 (Pt 4) data set, 
class 2 is detected correctly by CM1, CM2 and CM3. For 
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the Patient 5 (Pt 5) data set, CM3 has detected all the 
classes; however, CM1 and CM2 have only detected 
classes 2, 4 and 5. The CM 3 generated an accuracy of 1 
(100%) for class 1 in Patient 6’s (Pt 6) data set, on contrast,  
the accuracy obtained by CM1 and CM2 are 0.0267 and 
0.0116, respectively. In addition, the CM3 accuracy of 
class 5 is the best among the first-stage committee 
machines (CM1, CM2 and CM3). For Patient 7 (Pt 7), CM 
3 generated an accuracy of 1 (100%) for class 1. The voxels 
related to the second are all correctly classified through the 
ensembles CM1, CM2 and CM3; but only ensemble CM1 
was not able to  determine class 3 voxels. 
 
 
CM Class Cl1 Cl2 Cl3 Cl4 Cl5 Acc 

 

CM1 

Cl1 53 2419 - - - 0.0123 

Cl2 0 8715 - - - 06661 

Cl3 53 1948 1213 - - 0.3177 

Cl4 1022 - - 5 - 0.0042 

CL5 129 - - 147 77 0.2181 

 

CM2 

Cl1 16 2456 - - - 0.0059 

Cl2 - 8715 - - - 0.6392 

Cl3 - 2463 1354 - - 0.2861 

Cl4 105 - 914 8 - 0.0068 

CL5 118 - - 145 90 0.2549 

 

CM3 

Cl1 1931 541 - - - 0.7811 

Cl2 - 8715 - - - 0.7697 

Cl3 - 2066 1751 - - 0.3735 

Cl4 - - 871 156 - 0.1142 

CL5 - - - 339 14 0.0396 

Table 3: The prediction analysis using a 5 × 5 confusion 
matrix for the CM1, CM2 and CM3 outcomes for Pt 2 with 
laryngeal tumour and the Acc related to every class. 

4.2.2 The Optimised CM Results 
 

The patients’ data sets have also been processed using 
the new optimised approach, CM4. Comprehensive 
experiments were performed to make sure the most 
appropriate optimisation elements are employed to 
effectively classify the data sets in question. The optimum 
particle number required for all patients’ data sets is 66 
particles as well as 100 training iterations. Once the training 
procedure is completed, the error/performance indicator for 
the patients’ data sets was PI = 0.0005. These optimisation 
parameters are used for the seven patients’ data sets of 
pharyngolaryngeal squamous cell carcinoma. Figure 4 
shows the performance index achieved for the optimisation 
procedure, which was associated with 100 epochs. The 
achieved model is generalised and validated to fit all the 
patients’ data sets. This model illustrated a stable  robust 
performance to analyse all the data sets with a stabilised 
index performance.  

 
Fig. 4. The optimisation error model for clinical data sets. 

In patient 1’s data set, the processed voxels in classes 1, 
2, 4 and 5 are precisely identified, only 6 voxels related to 
class 3 are falsely classified in class 4. In Pt 2’s data set, in 
contrast, classes 1 and 4 are correctly classified; however, 
there are 2 voxels related to class 2 falsely classified in 
classes 1 and 4, three voxels related to class 3 falsely 
classified in class 1 and just 1 voxel related to class 5 falsely 
classified into class 1. In Pt 3’s data set, the results illustrate 
the whole voxels in class 2 are accurately allocated, while 
only 3 voxels related to the region of interest are falsely 
classified to class 1. In Pt 4’s data set, the results are the 
same, as 5 voxels out of the 1046 region of interest voxels 
are falsely classified in class four. In Pt 4’s data set, only 1 
voxel out of the 1174 region of interest’s voxels are falsely 
classified to class 1. For the region of interest, classes 1 and 
3 voxels in Pt 6’s data set all of them are precisely allocated, 
and 3 voxels related to class 2 falsely classified into class 1 
and two voxels related to class 4 are falsely classified into 
class 3. 

The accuracy achieved for all the classes (Cl1–Cl5) 
using the developed CM4 is very satisfactory, as shown in 
Figure 5. CM4 can accurately classify not only the ROI 
(tumour) but also all the classes in the clinical data sets (Pt 
1–7). This fact shows the robustness of the developed 
approach in identifying different classes in the data sets, 
which helps the radiation oncologist with handling the PET 
volumes and in the clinical diagnosis of squamous cell 
carcinoma patients. 
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Fig. 5. The accuracy obtained by the developed ensemble (CM4) 
for all five classes in the patients’ data sets. 

Figure 6 shows the significant accuracy improvement 
achieved using the CM4 for classifying and detecting the 
ROI (tumour). An improvement of 100% has been achieved 
for class 5 (tumour), as FFNN was not able to detect any 
voxel of the tumour for all seven patients, while CM4 
detected the tumour in all patients, with an average accuracy 
above 98%. CM4 outperformed all eight other approaches 
in detecting all the recommended classes, particularly the 
target ROI class (tumour). 

 
Fig. 6. A comparison between the new ensemble (CM4) and the 
remaining approaches (FFNN, ANFIS, SOM, FCM, K-means, 
CM1, CM2 and CM3) based on the Acc for the tumour class 
(Cl5). 

On the other hand, for Pt 7, 1 voxel related to class 1 is 
falsely classified into class 3 and 4 voxels related to class 4 
are falsely classified into class 1. Table 4 presents the MCV 
generated for the whole patients’ data sets, where the least 
value of MCV=0.0003 is obtained in relation to the Pt 6 and 
Pt 7. The MCV values for all classifiers are presented in 
Table 4. Figure 7 shows representative segmentation results 
for Pt 1’s clinical data set, where the black boundary 
represents the clinical expert estimation. The best match 
with this boundary is achieved by CM4, where the light blue 
boundary is almost overlapping the clinical expert 
boundary.  

 
Fig. 7. Representative segmentation results for Pt 1’s clinical data 
set, where the black boundary represents the clinical expert 
estimation. The light blue boundary is almost overlapping the 
clinical expert boundary. 

5. CM Discussion  

To evaluate the performance of CM4 in general for all 
the classes, not just for the ROI, an average accuracy 
(AAcc) metric has been introduced. This metric considers 
the average of the accuracies of all the subject classes. This 
value provides a general assessment about each one of the 
considered classifiers. The AAcc for the experimental 
phantom data set achieved by CM4 (0.9939) is the best 
among all the classifiers, CM1, CM2 and CM3. The AAcc 
obtained by CM4 for Pt 1’s data set is 99.83%, as a 
significant improvement level of 78% is obtained in 
comparison to the lowest accuracy of 21.71% gained 
through the FFNN approach. The obtained AAccs are 
99.94% and 99.93% for Pt 6 and Pt 7, respectively. The 
AAcc gained in relation to the Pt 6 and Pt 7 data sets are 
higher than the ones obtained for Pt 1, Pt 2, Pt 3, Pt 4 and Pt 
5. This robust result indicates that the developed system has 
a stabilised robust performance with a higher accuracy than 
the other approaches.  

Figure 8 illustrates a complete comparison in light of the 
accuracy of the new ensemble (CM4) and the remaining  
proposed approaches applied for all the analysed clinical 
data sets (Pts 1–7) as well as the phantom one. In addition to 
the previously discussed objective performance evaluations 
for the achieved results by the new system, a comprehensive 
subjective evaluation in light of the clinician’s expertise has 
been carried out to validate the performance of this 
approach. 

 
Fig. 8. A comparison between the new ensemble (CM4) and the 
remaining approaches (FFNN, ANFIS, SOM, FCM, K-means, 
CM1, CM2 and CM3) based on the AAcc. 
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Data Set Phantom Pt 1 Pt 2 Pt 3 Pt 4 Pt 5 Pt 6 Pt 7 

Classifier           MCV 

FFNN 0.0024 0.5692 0.5000 0.4169 0.4662 0.4037 0.5050 0.4741 

ANFIS 0.1384 0.3302 0.3073 0.5333 0.4421 0.5104 0.5539 0.5316 

SOM 0.0080 0.1887 0.3807 0.7536 0.4680 0.2529 0.6279 0.4867 

FCM 0.0139 0.3042 0.2692 0.7891 0.3474 0.2811 0.4064 0.4542 

K-means 0.0076 0.1881 0.3808 0.7548 0.4534 0.2535 0.6271 0.4867 

CM1 0.0066 0.2387 0.3858 0.7621 0.4331 0.2550 0.5993 0.4702 

CM2 0.0058 0.1848 0.3784 0.7174 0.4320 0.2453 0.5915 0.4511 

CM3 0.0076 0.1024 0.2329 0.1611 0.2918 0.1111 0.3535 0.2177 

CM4 0.0002 0.0004 0.0004 0.0013 0.0062 0.0221 0.0003 0.0003 

Table 4: The MCV values for all the approaches and ensembles (CM1, CM2, CM3 and 
CM4) of the phantom data set and clinical data sets (Pts 1–7). 

 

6. Conclusions 

This study proposed an efficient PET volume handling 
approach for a robust PET volume analysis of patients’ 
squamous cell carcinoma. This approach was based on 
FFNN, ANFIS, SOM, FCM and K-means. After the initial 
evaluation of these five classifiers, three ensemble 
classifiers (CM1, CM2 and CM3) were built in light of 
different methodologies such as weighted averaging, voting 
and averaging techniques. As the performance evaluation of 
these three ensemble classifiers did not reveal a significant 
level of accuracy for classifying the ROI (especially for the 
patients’ data sets), an optimised novel approach (CM4) 
based on the combination of the modified particle swarm 
optimisation (PSO) and weighted averaging approaches was 
developed for PET volume analysis. This approach 
overcame the misclassification problem associated with the 
previous approaches (CM1, CM2 and CM3). All the initial 
and developed approaches were evaluated using 
experimental NEMA IEC body phantom and clinical PET 
studies for laryngeal squamous cell carcinoma patients. 
Superior results were obtained through the new optimised 
ensemble/committee machine (CM4) when compared to the 
results from the other explored approaches and the non-
optimised ensembles. The proposed approach can identify 
the region of interest class (tumour) precisely. The average 
accuracy obtained for the clinical studies of all patients (Pts 
1–7) is 98.11%.  

Promising results were achieved in particular for the 
patients clinical studies. Regarding the NEMA body 
phantom data set; the proposed approach gained and an 
overall accuracy of 99.39%. This accuracy was the highest 
in comparison with the accuracy of the other explored 
approaches and the non-optimised ensembles. The best 
improvement achieved by the ensemble CM4 was for the 
patients’ data sets, where the overall voxels of the region of 
interest, tumour, were accurately allocated in the right class.  

Different performance metrics were employed to 
validate the achieved performance. For example, an MCV 
value of 0.0002 was generated in regards to the NEMA 
phantom, and an MCV = 0.0003 was achieved for the 
pharyngolaryngeal clinical studies. The promising results 
achieved using different types of PET data, in particular for 
the patients clinical data, indicated the stability and 
robustness of the proposed approach. On the other hand, 
achieving an average accuracy of around 98% and matching 
the gold standard results fulfilled the aim of this paper, 
which was to assist clinicians in analysing the significant 
volumes of PET images precisely.  
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