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ABSTRACT

Exact formulae are derived for certain integrals arising in the 

solution of potential problems by integral equation methods. 
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1.      Introduction

Let ζ0, ζ1 and ζ2 be three collinear points in the complex 

z-plane 

such  that  ζ1  lies  between  ζ0 and  ζ2  with 0 ≤  

|ζ1−ζ0|   <    |ζ2 − ζ0|. 

Let the equation of the line through these three points be 

ζ(s)= ((s2-s)ζ1 + (s-s1)ζ2)/(s2-s1), (1.1) 

where 

|s|    -     |ζ-ζ0|     ,       s1   =     |ζ1-ζ0|    ,     s2   -     |ζ2   -   ζ0|    . (1.2) 

Also, denote the open line segment between the points ζ1 
and ζ2 by 

L   =   {z    :   z   =   ζ   (s)  ,      s1   <   s   <   s2} (1.3) 

and let L be the corresponding closed segment.  This 

report is 

concerned with the derivation of analytical formulae 

for the evaluation  of   the   line   integral 

S(z)   -   S(z;   ζ0 ,  ζ1 ,    ζ2 ,    β  ) 

=    | ζ  −  ζ∫
2ς

ς 1

0 |−1+β  Log (z -

ζ) |dζ  | 

=  s-∫
2

1

s

s
1+β   Log(z –ζ(s))  ds  

(1.4) 

where 

Log(z  -  ζ|   -  log|z - ζ| + i Arg(z - ζ), (1.5) 

ß > ½ is a rational number, ζε L and z is an arbitrary point in the 

plane. The argument function Arg(ζ   −    ζ) in (1.5) is defined to be 

a continuous function for ζ ε L  provided ζ  ǂ  z. This implies that 

Arg(z — ζ ) does not necessarily coincide with the principal argument. 

In this connection we note that the principal argument of any complex 
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number z is defined by 

— π < arg(z) ≤ π 

and that the corresponding principal branch of the complex logarithm 

is  denoted   by   log z  . 

Integrals of the form (1.4) arise in the numerical solution of integral 

equations in potential theory and conformal mapping. For example, the 

methods of Symm (1966) and Christiansen (1971) require the evaluation 

of (1.4) with β = 1, whilst in the method of Hayes, Kahaner and 

Kellner (1972) 3 is an integer ≤3. In such methods the value of ß 

is determined by the type of approximation used for the replacement 

of the unknown boundary function. For more accurate approximations 

than those used in Symm (1966), Christiansen (1971) or Hayes et al (1972) 

ß might be an integer > 3. Furthermore, in order to overcome the 

effects of corner singularities, such approximations might introduce 

fractional values of β; see, e.g., Hough and Papamichael (1980). 

The integrand in (1.4) can have the following singularities: 

(a)      Fractional   Power   Singularity

This type of singularity occurs when β is not an integer and  ζ0   =   ζ1 . 

In this case (1·4) gives 

∫=
28

0
S(z)

   s-1+β  Log (z – ζ(s)) ds , 

and the singularity occurs because the kth derivative of s-1+β , where 

k = [β], becomes unbounded at s = 0. (Here [.] denotes the integer 

part). 
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(b)      Logarithmic   Singularity

This type of singularity occurs if z ∈ L  because, at z = ζ , log | z - ζ | is 

Unbounded and Arg(z  - ζ )  has a finite jump  discontinuity. 

For numerical computations the fractional power singularity is not very 

serious since it can generally be removed by a suitable change of variable; 

see, e.g., Davis and Rabinowitz (1975 , § 2.12.3). However, the log- 

arithmic singularity is much more difficult to deal with in numerical 

work; see, e.g., Christiansen (1971) and Hsiao, Kopp and Wendland (1979). 

For this reason, the ability to evaluate S analytically might be of 

practical importance. 

2.  Integration  Formulae

Let 

ß = p/q , (2.1) 

where p,q are relatively prime integers. The integration formulae 

derived in this section are all given in terms of a function G(z,ζ0,ζ ) 

which, for distinct arguments, is defined by 

(2.2) 
where 

G(z,ζ0, ζ)  = β
|β0 - ςς|   {Log (z- ζ)+ f [

0
0
ςz
ς  ς

−
− ]} 

(2.3) 

 
ωK  =  cos(2kπ/q) + i sin(2kπ/q) , (2.4) 

 
Q =  [(p- l)/q] ,  (2.5) 

f (ξ) = -  ∑
=

0

0k
κ

κ

−β

−ξ  -  ξ-β   ∑
−

=

1q

0k
ω 1R

k
+   log(1 – ξ1/q  ω ), 1

k
−
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R  -   p-  1  -Qq  , (2.6) 

and, as before, [.] denotes the integer part. Although G remains bounded 

at z = ζ , in general G(Z,ζ0Z) is not uniquely difined. For this reason 

we also define 

(2.7) 

                           (2.8)  
 

where ε is real and ε→0+ means that ∈ tends to zero through positive 

values. Using (2.2) -(2.8) it is possible to extend the definition of 

G to the case of coincident arguments. This is done by means of 

elementary limiting processes. The results are contained in the following 

lemma. 

Lemma 

Let G be the function defined by (2.2) - (2.8). Then: 

(i)    For any value of z, 

G(z,ζ0,ζ0)    =   0       . 

(ii)   For  ζ ǂ  ζ0

(2.9) 

(2.10) 

(iii)  For   z  ∈  L U ζ 2 

(2.11) 

(iv)  For   Z∈Uζ1    and   z   ǂ   ζ0

(2.12) 

G(z, ζ0, z+) =   G(z,ζ
lim

0ε +→
0,z+ε(z-

ζ0)), 

  G(z, ζ0,z-) =
lim

  G(z,ζ0ε +→
0,z-ε(z-ζ0)), 

G(ζ0, ζ0, ζ)= β

β|ςς| 0−

  {log (ζ0- ζ) - β
I

} 
. 

G(z, ζ0, z-) = β

β|ςz| 0−

  {log |z- ζ0|+c+i Arg (z – 
ζ1)} . 

G(z, ζ0, z+) = β
|ς|ζ β0−

{log|z-ζ0|+c+i(Arg(z-ξ2)-π)}. 
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In   (2.11)   and (2.12) c is a real  constant  which  depends   only   

on β and is given by 

(2.13) 

We now derive the formulae for S(z) by considering separately the 

following  four   cases. 
 

Case   I     Lz ∉       

In this case the integrand in (1.4) does not have a logarithmic 

singularity. 

We first assume that z ǂ  ζ0.  Then  integration by parts followed by the 

change of variable 

gives 

where 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

We   observe   that   the   restriction  z ∉ L   implies   that     ξ  ǂ 1. 

In order to evaluate the integral T we introduce the change of variable 

η   -    ξ 1/q  , (2.19) 

C = log q -  ∑
=

Q

0k
k

1
−β

 -    log(1 - ). ∑
−

=

1q

1k

1R
k

+ω 1
k
−ω

ξ = 
)ςz(2s

)ςς(s

0

02

−

−
   =   

0

0

ςz

ςς

−

−
 , 

S(z) = {  Log (z- ζβ
2s 2)-  Log(z-ζβ

1s 1)+μβT}/β , 

T  =   ∫
2

1

ξ

ξ ξ
ξ β

−1   dξ , 

ξ2 = 
0

02
ςz
ς-ς

−  , ξ1 = 0

01
ςz
ςς

−
−

 = 
2

21
s
ξs

 , 

μ  = 
02

0
ςς

)ςz(s
−
−

 = ξ
s

 . 
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where   the   principal   branch  is   always   chosen.      Then   (2.16)   gives 

(2.20) 

where 

η2 =  ,q/1
2ς η1 = 

q/1
1ξ  = (s1/s2)1/q η 2 , (2.21) 

and wk, Q and R are given by (2.4) - (2.6). The result (2.20) is obtained 

by using the standard technique of long division and separation into 

partial fractions. 

The evaluation of the integrals in the first summation of (2.20) is, of 

course, straight forward. However, some care must be exercised in 

evaluating the integrals in the second summation, in order to ensure 

that the correct branch of each integral is chosen. This is done as 

follows. 

By definition, the principal branch of the complex logarithm is 

(2.22) 

where the integration path is the line segment from 1 to z, not 

containing the origin; see, e.g., Hardy (1963, § 231). Therefore 
 

(2.23) 

Also, using the fact that  η1 is a real positive multiple  of  η2 it  may 

T = q η
η

ηη

η
d

1 q

1qp
2

1 +

−+

∫  

  = -q η
ηω

ωηη
η

η

η

η
dd

k

1R
k

1q

Ok

kqR
O

Ok

2

1

2

1
−

+
+−

=

+

=
∫∑∫∑  , 

Log z =  ∫
z

1 γ
dγ

γ

dγ

ηω

dη μ1)η2)/(ωk(ωω

1k

η2

η1 ∫∫
−−

−=
−  

=  - log [ 1
k

1
k

11

21
−

−

−

−

ωη

ωη
] . 
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be shown, that 

(2.24) 

Finally it follows from (1.2), (2.2) -(2.6) and (2.15) - (2.24) that,  

if Lz ∉  and z ǂ ζ 0 , 

S(z) =  S(z;ζ0,ζ 1,ζ 2 ,β )  

=  G (z ,ζ 0 ,ζ 2 )    -  G(z,ζ 0,ζ 1)    . 
(2.25) 

Since G(Z,ζ 0,ζ ) is continuous at z = ζ0it follows that the results (2.25) 

also applies when z =  ζ 0 ;  i.e. for all Lz ∉ . 
 

Case   II z  ∈    L. 

In this case z is an interior point of the line segment from ζ1 to ζ2 and 

the integrand in (1.4) has a logarithmic singularity. 

To evaluate the integral we take the Cauchy principal value of S(z); i.e. 

S(z) = {S(z ;ζ+→ 0ε
lim

0,ζ1,z-∈(z-ζ0),ß) + s(z;ζ0,z+∈(z-ζ0),ζ2,ß)} .        (2.26)

Then it follows from (2.7), (2.8) and (2.25) that, for z∈L ,  

S(z)  -G(z,ζ0,ζ2)  -G(z,ζ0,ζ1)  + G(z,ζ0,z-)  -G(z,ζ0,z + ), (2-27) 

where, from (2.11) and (2.12), 

G(z,ζ0,z-)  -G(z,ζ0,z+) = i(Arg(z-ζ1)  ~ Arg(z-ζ2)+π). (2.28) 

The right hand side of (2.28) is either 0 or 2πi, depending on the definition 

or Arg(z - ζ). 

Case  III    z  = ζ2 . 

As in case II the integrand has a logarithmic singularity and we 

log[ 1
k1

1
k2

ωη1

ωη1
−

−

−

− ]= log(1-η2ω ) – log(1-η1
k
−

1ω ). 1
k
−
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consider 

S(ζ 2)   = S( ζ 2  ;  ζ 0, ζ 1, ζ 2 -  ε (ζ 2-ζ 0),ß)     . (2.29) +→ 0ε
lim

Then it follows from (2.8) and (2.25) that 

S (ζ 2)  =  G(ζ 2,ζ 0,ζ 2-)   -   G(ζ 2,ζ0 ,ζ1 ) . (2.30) 

Case IV   z   =   ζ 1   . 

Again the integrand has a logarithmic singularity and we consider 

S(ζ 1;ζ 0,ζ 1 +ε(ζ 1−ζ 0 ) ,ζ2 ,ß )  .                                                      (2.31) 
 

Then it follows from (2.7) and  (2.25) that

   S(ζ 1)   =  G(ζ 1,ζ0,ζ 2)   -  G (ζ 1,ζ0,ζ 1+ )  (2.32) 

3.     Discussion

The formulae of section 2 have been used successfully by Hough and 

Pspamichael (1980) for the evaluation of all the integrals that arise 

in the numerical solution of an integral equation method for conformal 

mapping. In this method spline functions of various degrees and 

singular functions involving fractional powers of   |ζ −ζ 0|  are used to 

approximate the unknown source density of the integral equation. 

We point out that if | ξ| is small then, for computational work, care 

must be taken in evaluating f(ξ) from (2.3). The reason for this is 

as follows. Although f(ξ) → 0 as ξ →  0, the evaluation of f(ξ) when 

|ξ| is small involves the cancellation of terms of large magnitude 

+
→
0ε

limS(ζ 1)   =

http://gcd.c0.c2/
http://gcd.c0.c2/
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and opposite sign. This clearly can lead to a loss of significance, 

which becomes more pronounced as ß increases- For practical applications 

this source of numerical inaccuracy might not be very serious. For 

example, no difficulties were encountered in performing the integrations 

needed in the applications of Hough and Papamichael (1980). However, 

in other applications it might be necessary to use an alternative 

formula for the evaluation of f(ξ) when |ξ| is small. For |ξ| << | 

such an alternative is provided by the rapidly converging series 

representation 

f(ξ) = 
β

ξ
+∑

∞

=
k

k

1k

;  |ξ|  < 1 

which does not lead to loss of accuracy. 

Finally we point out that the exact formula for Re {S(z;ζ1,ζ2,1)} is 

derived in Jaswon and Symm (1977, p. 149). Also the exact formula for 

Im {S(z;ζ1,ζ1,ζ2,1)} was derived by Meek (1976). 
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