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ABSTRACT

A new class of C? piecewise quintic interpolatory polynomials is
defined. It is shown that this new class contains a number of
interpolatory functions which present practical advantages, when

compared with the conventional cubic spline.






1. Introduction

Given the points
a=x <x <..<x¢ = b, (1.1)

and the corresponding values y; =y(x;); 1=0,1,....k, let Hsz (x) be the
piecewise cubic Hermite polynomial, with knots (1.1), which is such
that

Hy () =yi and  H xp=yiMii=o0,1,.. k.

Denote by s the piecewise polynomial obtained from Hs by replacing the
derivatives yi(l) ;1=0,1, ...,k , respectively by suitable approximations
m;;1=0,1,...k. Let p; be the cubic polynomial interpolating the

function y at the points X, Xir1, Xi+2, Xi+3, define the quadratic

polynomials q;; 1=0,1,..., k-2, by

q; =pi(1);i =0,1,........ k-3,

(1.2)
- —pD
dkx-2 =9k-3 = Pg_3>
and let the approximations m; satisfy the relations
1
my = yé )
oy +my +Pimy g = 0iqi (X)) + 91 (%) +Bidio (Xi-1); (1.3)
i=12,...,k-1,
1
my = Yi)

where the o; and B; are real numbers. Then, by the definition of
Behforooz, Papamichael and Worsey [3], s is a cubic x-spline with
parameters oy, Bi; 1- 1,2,...k-1. This definition of x-splines is
a generalization of an earlier definition due to Clenshaw and Negus [5],

and contains the conventional cubic spline s; as the special case






2(1,1 = hj+1 /(h1 + hi+1) > 2B1 =1- 2(1'1; 1-1 )27 LR Jk_l >

where h; =x; - X1 .

Clearly, a cubic X-spline s is continuous and possesses a continuous

first derivative. In general, however, s®

has a jump discontinuity
at each interior knot, and s; is the only cubic X-spline with C*

continuity on (a,b).

Regarding the quality of approximation, it is shown in [3] that for any

cubic X-spline s
| sy I = 0(h") (1.4)

where || -|| denotes the uniform norm on [a,b] and h=max h . Since

(1.4) gives the best order of uniform convergence that can be obtained

by an interpolatory piecewise cubic polynomial, it follows that no cubic
X-spline can achieve substantially higher accuracy than s;. However,

as it is shown in [33], there are cubic X-splines which produce results
of comparable accuracy to those obtained by sy, with much less

computational effort.

In the present paper we generalize the results of [3] to the case of
piecewise quintic polynomial interpolation. For this we consider the
piecewise quintic Hermite polynomial Hs with knots (1.1) and, by
analogy with the definition of cubic X-splines, we define a quintic

X-spline as a C? interpolant derived from Hs by replacing the

yi(l) and y(z) ;1=0,1,...,k, by approximations which are

derivatives ;

determined by solving a certain pair of tri-diagonal linear systems.

The motivation for this generalization emerges from considering the






problem of constructing C> interpolants which lead to 0 (h"), n>5,
convergence and whose construction does not involve excessive
computational effort, by comparison with the construction of the
conventional cubic spline s. The requirements concerning the order
of convergence and computational labour are imposed so that the new
interpolants may compete, in terms of computational efficiency, with
SI. We show that the class of quintic X-splines, defined in this
paper, contains several interpolatory functions which satisfy the

above requirements.

2. Interpolatory Piecewise Quintic Polynomials

Given the set of wvalues y; =y(xi); 1=0,1,....k, where x;. are the
points (1.1), let Hs be the piecewise quintic Hermite polynomial

which i1s such that

Hs () = yi» HY) )=y and 89 ) v ii=o0.1, k.

Then if y € C°[a,b], the following optimal error bound holds

1 6 . (6)
Hs — <——h , 2.1
| Hs —y| oz I 2.1)
where, as before, || - || denotes the uniform norm on [a,b],
hi =x;-xjy; i~ 1,2,...,k, and h = max h;; see e.g. Birkhoff and
1<i<k
Priver [4].
Definition 1. Let Q be the piecewise quintic polynomial derived
from Hs by replacing the derivatives yi(l) and yi(z) ;1=0,1, ...k,

respectively by suitable approximations m. and M;; i=0,1,... k. Then

Q will be called a piecewise quintic polynomial (p.q.p.) with derivatives






m; and M; ; i=0,1,...k.

It follows at once from the definition that Q can be written as

Q) = s(x) + Q[Xi1,Xii1, Xi1.Xi, Xi] (x-Xi.1)* (x-x;)?

. 3 2
+ Q[Xi-1, Xi-1, Xi-1,Xi,XLX.] (X-Xi_1)” (X-X{)",

X & [xi_1,xi]; 1=1,2,...k, (2.2)
where s 1is the piecewise cubic polynomial satisfying s(Xi) =Yyi,
(xj) = mj; 1 = 0,1,....k, and, with the usual notation for

divided differences,

1 2
Q[xi_1-xj_1.xj.x{]= & [= 6(yj =yj—1)+2hj(mj =2m;_j)+him; ]
i
and

1 2
Q [Xj—1> Xi1> %15 X4 X4 X4 = —% H20j —yj-1) = 6hj(mj +mj_y)+hi7 (M —M;j_1) ;

2hi

The following theorem is a trivial generalization of a result due to

Hall [6]. It can be established easily by using (2.1) and the cardinal

representations of Hs and Q.

Theorem 1 . Let Q be ap.q.p. withderivatives m; and M;; i=0,1,..., k.
If ye C6[a,b] then, for xe& [x;_; Xil;p 1-1,2,....k,

0w -y [= o0y @ |+ 2

— hmax{ ‘m 1 y

_ v
46,080 Vi ‘}

1.2
+ —h “max —
32 (M i-1

vy

The theorem shows that the best order of approximation that can be

achieved by an interpolatory p.q.p. Qs

I1Q-y Il =0(h°).

(2.3)






More specifically, the theorem shows that if the approximations mj
and M, are such that
1
mi—y{) = om")
and i=0,1,..., k, (2.5)
2
M; -y =om®)
then,
[Q=y[=®™,

where (2.6)
n = min(r +1,S + 2,6.

Since one of our requirements is that the interpolants Q satisfy (2.6)
with n>5 it follows that, for the purposes of the present paper, the
approximations m. and M; must satisfy (2.5) with =4 and s>3

respectively.

Clearly a p.q.p. Q is continuous and possesses continuous first and

second derivatives. In general, however, s® has a jump discontinuity

(3)
d at each interior knot x.. Using (2.2) and (2.3) it can be shown

that

3 3
¢} =% xih -0 ;-
3 3 3
=——7 {20 [h Yitl = (h1+1h ) yi+hi {viog]
h?  h;
1+1
2 2 .2 2
—2h lh 4h m;, 1+ 6(h h1+1)m 4hi+1mi_]]
2 .2 .
+h1+1h [h M _3(hi+hi+1)Mi+hi+1Mi—1]}’
i=1,2,..., k-1. (2.7)
Hence, if y8C7[a,b],
3 3 2 2 2
dg ) - 5 5 {hisrhilh; My —Yi(ﬁ =3(hj +hj M —Yi( ))+hi+1(Mi—1 —YQ)]
h? h:
i+11
1 1 1
~2ih 2 (mpyy -y 6?02 my -y —an2 iy -y
13 (6)
+o 7+ 1+1) L 0hYy: i=12 kL 2.8)






Equation (2.8) follows from (2.7) by using the result

3.0 .3 .3 3 Conman2 D 2 2 () 20 (1)
200h Ty — (b Y+ Ry )= 2hgghg[ah Pyl g+ 6t —hi gyt —4hl gy
2 2 ) (2) ) 2 3 3 (6) 10, .
ey bE iy 30 b v ehig viF1 = 2oad el v s 0w
i=1,2,.. ., k-1,
which

is established by Taylor series expansions about the point X;.

Thus the magnitude of di(3)’ like the order of convergence of Q, depends

only on the quality of the approximations m; and M;. More specifically,

if the derivatives m; and M; of Q satisfy (2.5) then

d =om").
where

n=min{r-2, s—1,3} .

(2.9)

3. Quintic X-splines

Let q.; 1= 1,2,...,k-2, be the quadratic polynomials defined by (1.2).
Then, by analogy with the definition of cubic X-splines of Behforooz

et al [3], we define the class of quintic X-splines as follows.

Definition 2. Let a., Biand vi, 8 .; i=1,2,...,k-1, be 4k-4 real

numbers. Then, a p.q.p. Q whose derivatives m. and M.; i=0,1,....k
satisfy respectively the relations
1
1’1’10 = yg ) R

ogmy_y +my +Bimy o =aqi_1 (1) + -1 (X§) +Bai—1 (Xj-1);

(3.1)

1
g~y







and
2
(D (1) (1
VM MM =Yg KD+ i)+ () (3.2)
i=12,... k-1,
2

will be called a quintic X-spline with parameters a;, i and vi,di ;

i=12,...k1.

By Definition 2 the derivatives m; and M;; i-1,2,....k-1, of a quintic
X—spline Q are determined by solving the two (k-1)x(k-1) tri-diagonal
linear systems defined by (3.1) and (3.2). Thus, a sufficient
condition for the unique existence of Q is that its parameters o.,

Bi and vi, Oi satisfy respectively the inequalities
|a1| + |B1| < 1 ; i: 1929"'9]‘(_1 5 (3.3)

and

lvil + 8] < 1;1= 1,2,... k-1 . (3.4)

It follows at once from the definition that, in the representation (2.2)
of a quintic X-spline Q, s is a cubic X-spline with parameters o,

Bi, 1=1,2,....k—1 - The convergence properties of such an s are
discussed fully in [3]. In particular, it is shown that if y & C%[a,b]

and (3.3) holds then the derivatives m; of s satisfy

(1) P
m,—y. =0(h ) i=12..k-1,

where in general r=3. However, there are several choices of ai, Bi,
for which r=4 and one choice for which r=35. Keeping in mind our
requirements concerning the order of || Q-y || and the amount of labour

involved in computing Q, we conclude from [3: Section 4] that there






are two choices of ai, Bi, which are of particular interest. These

are the wvalues,

h: ((h: .1 +h:
ai(l) _ i+1(hj g +hi o) , Bi(1) C0i=12 k2,
(hj +hjy ) +hj+hi o)
(3.5)
oD _opD _ by 1(hg1+hg2)
k-1 k=1 (hy_q +hyO) (g +hy_p +hy)
and
hZ (hiq+hin) hZ(h:.{+hi. )
W@ = i+1 Wi+l T 1i42 BQ)_ i Mg +hie0)
i - 2 s 1 - 2 9
(hj+hj g +hj o)hj+hi ) hij o(hj+hjq)
(3.6)

1=1,2,...,k-1,

hy1 = - (hka + hir + hy).
The values ,® (O reduce the three-term recurrence relation in (3.1)
1 |

to a two-term relation. Thus, in this case, the derivatives m; are
determined from (3.1) by forward substitution. It is shown in

[3: Section 4.5] that these m; satisfy

m:

-y o—om*ty =12k, (3.7)

In particular, when the knots are equally spaced then

oM —13, ) —0im 12 k-2,
(1 _ 1 _
ak_l—O, B _1—1/3 ,
and, if ysC7 [a,b],

M4 O 5O omy -
Imj =y | <= Y I o h [y 400 ;
i=12,...,k-1. (3.8)






The values (3.6) are the only choice of parameters oy, Bi for which

the derivatives m; satisfy
m; —y —omd); i=1,2,00k -1 ; (3.9)

see [3: Section 4.6]. It should be observed that, in this case, the
conditions (3*3) which ensure that the tri-diagonal linear system (3.1)

has a wunique solution are satisfied only if

(hi+hi+1)) (hi-hirz) < 2hia(hivithi);
i=1,2,..,k-1.

When the knots are equally spaced then

o® =16, P -1 i-12,.k-2

(2) _ 2) _
o 7, =12, B =106,

and, if ye¢ C7[a,b],

1
1_yi()

g%thy(@ H+0(h6); i=12,..,k1 (3.10)

‘m.

We consider now the effect that the parameters y;, 8i have on the
quality of the second derivatives of a quintic X-spline Q. For this

we assume that the parameters satisfy (3.4), let

& =i {qﬂ)l (Xi— - yi(%)l} + {qiq)l (xi)— yi(z)l} +9; {qi(l)l (Xj_1)- yi(i)l};

i=12,... k-1, (3.11)

and denote by A the matrix of the (k-1)x (k-1) linear system defined

by (3.2). Then, using a result of Lucas [7, p.5763,

| A<V, (3.12)
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where v>1 1is such that

vil+ |8 [H s i= 2 k-0

Hence, from (3.2),

—yi(‘z) <v max ;o 1=1,2,..., k-1

1

&

P

Also, by Taylor series expansion about the point x; we find that if

y € C°[a,b] then,

1
e = — F

S L 60 1

where
K =i -hip1(hjg +4hj+hi0)—hj(Chij o +3hy);
+{hj 1 2Zhy —hj 5 —h;j )+hihi o)
+8;thi+1(2h 5 —hj 1 —hphihi 0},
Gj =vj{-(hjq +2hj)(hj ; +hj o —hj)(2hj ) +hjn)

2 2

—(hjy1-hjhj g +hjip -hj)(2hj  +hi o)
+8;{(Zhj 1 +hy)(hj 1 +hj p -hj)(2hj g +hj )

2 .2
+hi 1 (3h ~7h?, )k

and, as in (3.6),

hg+1 = - (hg2 +hygy +hy)

yi(4) n L G- y,(s) + 0(h4) 1=1,2,...

(3.13)

(3.14)

(3.15)

(3.16)
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When the knots are equally spaced then (3.14) simplifies considerably

and, ify ¢ C7[a,b], it gives

1 T2 (4 1 3 (5
5 = T+ 1+5h yi()+a{8i—yi}h y)

1 3 ~n4 (6) 5..
#3016 8+ 1= 44 Fipn® i o)

i=1,2,.., k-1, (3.17)
where

and (3.18)
Yk-1=9k—1> Ok—1=Vk-1-
The results (3.13) and (3.14)- (3.15) show that if the parameters
Yi, 0i ; 1=1,2,..,k-1 of a quintic X-spline satisty (3.4) then
M; -y = om®); =12, k-1,
where, in general s=2. However, if the y; , d; , are such that
F,=0; 1- 1,2,...,k-1 then s=3, and if F. =G; =0; 1=1.,2,... k-1
then s =4.
Corresponding to the two choices (3.5) and (3.6) of the parameters
ai, PBi,there are two choices of the vy;,d; which are of particular
interest. These are the wvalues
(D hj@hj —hjy —hjp) +hihjigp M_,.
Ti h1+1 (4h1 +h1_|_1 +h1+2) +h1 (3h1 + 2h1+2) Si
i=1,2,...k=2,
(3.19)
(1) _ (D) _ hy_1(2hy —hy 1 —hy_H)+hyhyH
Yk=1 7 k-1 hy 4 (4hy —hy_j +hy_p)+hy (3hy +2hy_5)
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and
/D hip144 5@ _ hiB; .
: Dithj+hjyp) 1 Dythy+hyyy)
1i=1,2,....k-1 ,
where
\
A; = (hix1 +hivz) (hiv -hi) {-3hi2 (hi+hi+1)+hhi2+l}

+ hihij; {3 (hj++ hi+2)2-hi+1(3hi+4hi+1)}

Bi = (hi+1+hj+2) (hiti-h)) {h i+ hi+1) (hi+ hiy; + hio) + h12} >
+ hihir1 {3(hiri+his2)*-hi(4hi+3hi)},

D; = (hi+; + hi+2)? {(hi + 2-hys ) (4h;+ his1) + hiza(3hio+hi)}
+ 3hihiy1 hiwo (hithiy + hio) ,

and hygy; is given by (3.16).

The parameters yi(l) , Si(l) are such that, in (3.14), F;=0, i=1,2,...

Therefore, in this case,

M:

i—yv@ 0w i=2,0k-1

(3.20)

(3.21)

(3.22)

Also, since the values (3.19) reduce the three-term recurrence relation

in (3.2) to a two-term relation, the Mj's are determined from (3.2) by

forward substitution.

When the knots are equally spaced then

YD i, s —0s 2, k-2,

1  _ 1  _
Yilg =0, 8y =11l
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and, since V= 11/10, (3.13) and (3.17) give

() L 3,.,0 14, () 5y.
M: —y. < —~nh + ——h + 0(h ;
M -y | 20 Iy~ 1200 'y Il + 0th =)
i= 1,2...k-1.
The wvalues yi(z) , 5-(2) are the only wvalues of v; ,0; for which

1
F,=G;=0; i=1,2,...k-1. This implies that (3.20) is the only
choice of parameters vy; , di , for which

M:

et [ RO T I NUR

y.(z) , 6.(2) are defined only if, in (3.20), D; = 0; 1=

Clearly, : :

A sufficient condition for this to hold is that

hii> (3hij+2 + hi+1) > (hit1-hiz2) (4hithiv) ;

i= 1,2,..,k-1 .

(3.23)

(3.25)

It should be observed however that (3.25) does not imply the conditions

(3.4) which ensure that the linear system (3.2) has a unique solution.

When the knots are equally spaced then
y® =@~ 1105i=12, .. k-1,

and, since v=5/4, (3.13) and (3.17) give

| M4

2 1 4 6 5 :
i-yP st y©@ sy s i=n2 ke

160

The remainder of this paper is concerned with examining the quality

of the four quintic X-splines with parameters taken from the four

Possible combinations of the wvalues oci(r) ,Bi(r) and yi(s) Si(s);

r.s=1.,2.

(3.26)
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4. Quintic X-splines of special interest

We let
E- ||Qy| and 4.1) DO - max 1a® (4.1)
Where, as in Section 2, di(3) denotes the jump discontinuity of Q©’
at an interior knot x;. We also let Q. denote the quintic
X-spline with parameters oci(r) ,Bi(r) and yi(s) = Si(s); r,s = 1,2.
Then, with this notation, the derivatives m; and M; of each of

the four Q; s ; r,s=1,2, are determined as follows:

(1) The m; of Q;; and Q;,° by forward substitution, from the

(1)

lower triangular system defined by (3.1) with o; =a;’,
B; = Bi(l) , where ai(l) , Bi(l) are the values (3.5).

(i) The m; of Q,; and Q,,, by solving the tri-diagonal system
defined by (3.1)with a; = a i(2) By o= Bi(z) , where « i(2) Bi(z)
are the wvalues (3.6).

(ii1) The M; of Q;; and Q2 , by forward substitution, from the

lower triangular system defined by (3.2) with y; = yi(l) ,
8; = Si(l) , Where yi(l) ,8i(1) are the wvalues (3.19).
(iv) The Mi of Q;2 and Q2> , by solving the tri-diagonal system

defined by (3.2) with y; = yi(z) , 0f = Si(z) , Wwhere yi(z) ,Si(z)

are the values (3.20).

The results of the previous section in conjunction with (2.5) - (2.6)

and (2.9) show that for each of the X-splines Q;;, Qi and Qg2’

E = 0 and D® = 0(h?) . (4.2)
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These results also show that Q> is the only quintic X—spline for

which
E = 0(h° and D®)=0(h?)

(4.3)

we consider now the case of equally spaced knots and, for each of the

four Qg we list bounds on E and on. These bounds are derived

easily from (2.4), (2.8) and (3.8), (3.10), (3.23) and (3.26).

(1) Quintic  X-spline Q;

31 5 (5) 371 6 (6) 7
E <—h + ——— h + 0(h ,
3.840 [y 230,400 Ty | (th )
3) 7 .2 (5) 131 3 (6) 4
p® <Ly FECLEEN + 0(h
s Iy | 300 Iy Il + 0th ™)
(i1) Quintic  X-spline Q;»
1 5. (5 350 6, (6 7
E <—nh + h + 0(h ,
3 y> | 230,400 Iy~ | (h ™)

3) 6 5 110 6
p® s;hzny() ||+ﬁh3||y() I+ oh*)

(ii1) Quintic X-spline Q2

1 5,05 671 6, .(6) 7
E <—nh + —— h + 0(h ,
210 Iy I 230,400 |y Il (h *)
3) 1. 2. (5 191 3 (6) 4
p® < + —h + 0(h
5 Iy I 200 Iy I (h ™)

(v) Quintic X-spline Q2>

650 6 6 7
E< —— hOy® 4 on’y,
230,400
3 170 3 6 4
p® < L p3y® 4 om?

300

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

4.11)
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5. Numerical results and discussion

In Tables 1 and 2 we present numerical results obtained by taking
y(x) =exp(x),

x. = i/20 ; i=0,1,..,20 , (5.1)

and constructing each of the four quintic X-splines considered in
section 4. The results listed are values of the absolute error

[QX) -y(x)|, computed at various points between the knots, and
the maximum values D of the jump discontinuities in the third
derivative at interior knots. The results of Tables 3 and 4 are
obtained, in a similar manner, by using the same y and the unequally

spaced knots
xi=1/8%; i-0,1,...8 . (5.2)

For comparison purposes, we also include in the first column of each
table the corresponding results obtained in [3] by using the

conventional cubic spline s,

The theoretical results of the previous sections indicate that Q>
is the most 'accurate X-spline. These results also show that in
approximating a smooth function y by a quintic X-spline, the quality
of the first derivatives m. is more critical that that of the second
derivatives M. This follows from the observation that in (2.4),

yi(l) )

the magnitudes of the coefficients associated with the terms (m i~

are larger than those associated With(Mj —yi(z)). For this reason

we expect Qz; to produce more accurate approximations that Q;>.

The numerical results in Tables 1 and 3 show that the X-splines Q2>

and Q; produce the most accurate results. They also show that there
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is no significant overall difference in accuracy between the approxima-
tions due to Q2> and Q:; and between those of Q;» and Q;; This

is in accordance with the theory, since when y(x) =exp (x) and the
equally spaced knots (5.1) are used, then the error bounds (4.4), (4.6),
(4.8) and (4.10), with the O(h’) term ignored, give E <nx 10° where

n takes the values 7.0, 6.8, .35 and .13 respectively for each of the
X-splines Qi1, Qi2, Q21 and Q>3, A similar argument would of
course explain the results corresponding to the unequally spaced knots

(5,2), for which h=max h; =15/64 . Naturally, as h decreases the
1

difference in accuracy between the results due to Q; and Q»; becomes
more pronounced. However, Q.. leads to a marked improvement in

accuracy only if h is very small.

Of the four X-splines considered here the construction of Q;; involves
the least computational effort. The derivatives of this X-spline are
determined by forward substitution from two lower triangular systems
and this involves less computational effort than the determination of
the parameters of the conventional cubic spline s;. Also, Qi is the
only X-spline in Section 4 whose unique existence is guaranteed for

any distribution of the knots. For this reason, we consider Q;; to
be of greater practical interest that the other three X-—splines

considered in Section 4.

By Definition 2, the construction of a quintic X-spline requires
knowledge of y and y® at the two endpointsxg, xx and, in an
interpolation problem, this information is not usually available.
However, by using techniques similar to those of Behforooz and

Papamichael [1 and 2], the end conditions

mo = vg)  mi =y (53)
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Mg = ygz) , My = yg) , 5.4

can be replaced by conditions which use only the available function
values of y at the knots whilst retaining the order of the X-spline
approximation. For example, if m (X) 1is the quartic polynomial
interpolating y at the points X., Xi+1, Xi+2, Xi+3 and X4 ; J= 0,k-4,
then the following end conditions can be used, instead of (5.3), for

the construction of Q;; and Q ;>

) - (5.5)

Similarly, the end conditions

mgy + ogmy = ngl) (XO) + =0 n%) (Xl) ,

(5.6)
1 1
“kmk—1+mk:akn§<-)4 X _p+ ”i-)4 X )
can be used for the construction of Qj; and Q,> , where, in (5.6)
oj = (1 +u; +vi +w; +u;v; v wi +wju +uviwj) / ujviw; ; j =0,
with

Up— hz/ h1’ Vo = (h1UQ + h3) / hl, Wo = (h1 Vo + h4/ h1 N

and

uc hig, vie(haxthio) /he,  wi = (hgvithies) /hy.

By analogy, the second derivative end conditions (5.4) can be replaced
by
2 2
Mg = 2 (o) My = 2 (x,), (5.7)
for the construction of Q;; and Q»; and

Mo +vgM; = n(()2) xg)+ Y n(g) xq)

(5.8)

2 2
TeMyg 1 My = Yk’fi_)4 X+ n’i_)4 (x3) s






-19-

for Q;, for Q >, where in (5.8)

[hy(7h ~3h3) + (hy +2hy)(h3 +hy —~hy)(hy +h3 +hy —hp)+hy (hy +2h3 +3hy —hy)(Shy +3hy)]
YO - [(hl —h2)(h2 +h3)(h4 +h3 +h2)+h1h2 (h4 +2h3 +2h2)]

and v is obtained from vy, by replacing h; by hi+i; j=1,2,3,4,

throughout.
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Table 1
Values of |QXx)—y(x)]. (Knots as in 5.1)

X St Qi Qi Q2.1 Q2,2
0.01 674x1078 .114x107° .120x107° .733x10™!! .803x10712
0.02 .151x1077 .564x107° .593x10° .334x1071° 402x10™1!
0.09 .705x1078 .497x107° .529x10° 364x1071° 472x10™1
0.22 .189x1077 446x107° .366x107° 797x1071° .519x107!2
0.36 .990x1078 .840x107° 799x107° .369x1071° 412x1071!
0.62 281x1077 . 683x107° .563x107° 117x107° 245x10™1!
0.93 374x107 .152x1078 .148x1078 .102x107° 621x1071°
0.96 .184x1077 213x108 219x1078 .230x1071° .381x1071°

-11
099 | .179x107 | 276x10° | -91x10° | .102x107° ->10x10
Table 2
Values of D@ (Knots as in 5.1)
Sy Qi1 Qi Q21 Q22
D® . 130 .285x107 .186x107 921x107 714x10™
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Table 3
Values of | Q(x)-y (x)]|. (Knots as in 5.2)

X St Qi Qiz Q2.1 Q2,2
0.01 512x107° 252x1071° .380x1 071 227x1071! .105x1071°
0.05 287x10® 200x107® .253x107® .842x107° 315x107°
0.1 .804x1077 .858x1078 .139x1077 341x1078 .194x1078
0.17 297x107° .182x1077 577x107® 172x107 484x1078
0.35 .589x10° .293x10° .352x10° 314x107 277x107
0.5 272x107° 758x10° .960x107° .325x10° 122x10°
0.6 325x107 .964x107° .836x10° 413x1078 .123x10°
0.8 721x107° 233x107° .229x107° .194x107° .154x10°°
0.9 .207x10™ 220x107° 212x107° 227x107 .150x10°

Table 4
Values of D®. (Knots as in 5.2)
St Ql,l QI,Z Q2,l Qz,z
D® 484 433x107! .324x10" 272x10" 423x1072
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	ABSTRACT 
	In particular,   when  the  knots   are  equally  spaced  then 
	Corresponding   to   the   two  choices   (3.5)   and   (3.6)   of   the  parameters 
	A   sufficient   condition   for   this   to   hold   is   that 
	By   analogy,   the   second   derivative   end   conditions   (5.4)   can   be   replaced 








