A Class of C^{2} Piecewise Quintic Polynomials By
N. PAPAMICHAEL \& A.J. WORSEY

ABSTRACT

A new class of C^{2} piecewise quintic interpolatory polynomials is defined. It is shown that this new class contains a number of interpolatory functions which present practical advantages, when compared with the conventional cubic spline.

1. Introduction

Given the points

$$
\begin{equation*}
\mathrm{a}=\mathrm{x} \quad<\mathrm{x} \quad<\ldots<\mathrm{x}_{\mathrm{k}}=\mathrm{b} \tag{1.1}
\end{equation*}
$$

and the corresponding values $y_{i}=y\left(x_{i}\right) ; i=0,1, \ldots, k$, let $H_{3}(x)$ be the piecewise cubic Hermite polynomial, with knots (1.1), which is such that

$$
\mathrm{H}_{3}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{y}_{\mathrm{i}} \text { and } \quad \mathrm{H}_{3}^{(1)}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{y}_{\mathrm{i}}^{(1)} ; \mathrm{i}=0,1, \ldots, \mathrm{k}
$$

Denote by s the piecewise polynomial obtained from H_{3} by replacing the derivatives $y_{i}^{(1)} ; i=0,1, \ldots, k$, respectively by suitable approximations $\mathrm{m}_{\mathrm{i}} ; \mathrm{i}=0,1, \ldots, \mathrm{k}$. Let p_{i} be the cubic polynomial interpolating the function y at the points $x_{i}, x_{i+1}, x_{i+2}, x_{i+3}$, define the quadratic polynomials $\mathrm{q}_{\mathrm{i}} ; \quad \mathrm{i}=0,1, \ldots, \mathrm{k}-2$, by

$$
\left.\begin{array}{l}
\mathrm{q}_{\mathrm{i}}=\mathrm{p}_{\mathrm{i}}^{(1)} ; \mathrm{i}=0,1, \ldots \ldots, \mathrm{k}-3 \tag{1.2}\\
\mathrm{q}_{\mathrm{k}-2}=\mathrm{q}_{\mathrm{k}-3}=\mathrm{p}_{\mathrm{k}-3}^{(1)},
\end{array}\right\}
$$

and let the approximations m_{i} satisfy the relations

$$
\left.\begin{array}{l}
\mathrm{m}_{0}=y_{0}^{(1)} \tag{1.3}\\
\begin{array}{l}
\alpha_{i} m_{i-1}+m_{i}+\beta_{i} m_{i+1}=\alpha_{i} q_{i-1}\left(x_{i-1}\right)+q_{i-1}\left(x_{i}\right)+\beta_{i} q_{i-1}\left(x_{i-1}\right) \\
i=1,2, \ldots, k-1
\end{array} \\
m_{k}=y_{k}^{(1)}
\end{array}\right\}
$$

where the α_{i} and β_{i} are real numbers. Then, by the definition of Behforooz, Papamichael and Worsey [3], s is a cubic x-spline with parameters α_{i}, β_{i}; i-1,2,..,k-1. This definition of x-splines is a generalization of an earlier definition due to Clenshaw and Negus [5], and contains the conventional cubic spline s_{I} as the special case

$$
2 \alpha_{i}=h_{i+1} /\left(h_{i}+h_{i+1}\right), \quad 2 \beta_{i}=1-2 \alpha_{i} ; \quad i-1,2, \ldots, k-1,
$$

where $\mathrm{h}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}-1}$.

Clearly, a cubic X-spline s is continuous and possesses a continuous first derivative. In general, however, $s^{(2)}$ has a jump discontinuity at each interior knot, and s_{I} is the only cubic X -spline with C^{2} continuity on (a, b).

Regarding the quality of approximation, it is shown in [3] that for any cubic X-spline s

$$
\begin{equation*}
\| \text { s-y } \|=O\left(h^{4}\right) \tag{1.4}
\end{equation*}
$$

where $\|\cdot\|$ denotes the uniform norm on $[a, b]$ and $h=\max h_{i}$. Since (1.4) gives the best order of uniform convergence that can be obtained by an interpolatory piecewise cubic polynomial, it follows that no cubic X-spline can achieve substantially higher accuracy than s_{I}. However, as it is shown in [33], there are cubic X-splines which produce results of comparable accuracy to those obtained by s_{I}, with much less computational effort.

In the present paper we generalize the results of [3] to the case of piecewise quintic polynomial interpolation. For this we consider the piecewise quintic Hermite polynomial H_{5} with knots (1.1) and, by analogy with the definition of cubic X-splines, we define a quintic X-spline as a C^{2} interpolant derived from H_{5} by replacing the derivatives $y_{i}^{(1)}$ and $y_{i}^{(2)} ; i=0,1, \ldots, k$, by approximations which are determined by solving a certain pair of tri-diagonal linear systems. The motivation for this generalization emerges from considering the
problem of constructing C^{2} interpolants which lead to $0\left(h^{n}\right), n \geq 5$, convergence and whose construction does not involve excessive computational effort, by comparison with the construction of the conventional cubic spline s_{I}. The requirements concerning the order of convergence and computational labour are imposed so that the new interpolants may compete, in terms of computational efficiency, with s_{I}. We show that the class of quintic X -splines, defined in this paper, contains several interpolatory functions which satisfy the above requirements.

2. Interpolatory Piecewise Quintic Polynomials

Given the set of values $y_{i}=y\left(x_{i}\right) ; i=0,1, \ldots, k$, where x_{i}. are the points (1.1), let H_{5} be the piecewise quintic Hermite polynomial which is such that

$$
\mathrm{H}_{5}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{y}_{\mathrm{i}}, \mathrm{H}_{5}^{(1)}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{y}_{\mathrm{i}}^{(1)} \text { and } \mathrm{H}_{5}^{(2)}\left(\mathrm{x}_{\mathrm{i}}\right) \mathrm{y}_{\mathrm{i}}^{(2)} ; \mathrm{i}=0,1, \ldots, \mathrm{k} .
$$

Then if $y \in C^{6}[a, b]$, the following optimal error bound holds

$$
\begin{equation*}
\left\|\mathrm{H}_{5}-\mathrm{y}\right\| \leq \frac{1}{46,080} \mathrm{~h}^{6}\left\|\mathrm{y}^{(6)}\right\| \tag{2.1}
\end{equation*}
$$

where, as before, $\|\cdot\|$ denotes the uniform norm on $[a, b]$, $h_{i}=x_{i}-x_{i-1} ; \quad i^{=} 1,2, \ldots, k$, and $h=\max _{1 \leq i \leq k} h_{i} ;$ see e.g. Birkhoff and Priver [4].

Definition 1. Let Q be the piecewise quintic polynomial derived from H_{5} by replacing the derivatives $y_{i}^{(1)}$ and $y_{i}^{(2)} ; i=0,1, \ldots, k$, respectively by suitable approximations m. and $M_{i} ; i=0,1, \ldots, k$. Then Q will be called a piecewise quintic polynomial (p.q.p.) with derivatives
m_{i} and $\mathrm{M}_{\mathrm{i}} ; \quad \mathrm{i}=0,1, \ldots \mathrm{k}$.

It follows at once from the definition that Q can be written as

$$
\begin{gather*}
\mathrm{Q}(\mathrm{x})=\mathrm{s}(\mathrm{x})+\mathrm{Q}\left[\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right]\left(\mathrm{x}-\mathrm{x}_{\mathrm{i}-1}\right)^{2}\left(\mathrm{x}-\mathrm{x}_{\mathrm{i}}\right)^{2} \\
+\mathrm{Q}\left[\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}, \mathrm{xi}, \mathrm{x}_{\mathrm{i}} \cdot\right]\left(\mathrm{x}-\mathrm{x}_{\mathrm{i}-1}\right)^{3}\left(\mathrm{x}-\mathrm{x}_{\mathrm{i}}\right)^{2}, \\
\mathrm{x} \varepsilon\left[\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}\right] ; \quad \mathrm{i}=1,2, \ldots, \mathrm{k}, \tag{2.2}
\end{gather*}
$$

where s is the piecewise cubic polynomial satisfying $s\left(x_{i}\right)=y_{i}$, $\mathrm{s}^{(1)}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{m}_{\mathrm{i}} ; \mathrm{i}=0,1, \ldots, \mathrm{k}$, and, with the usual notation for divided differences,

$$
\begin{equation*}
\mathrm{Q}\left[\mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right]=\frac{1}{2 \mathrm{~h}_{\mathrm{i}}^{4}}\left[-6\left(\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}-1}\right)+2 \mathrm{~h}_{\mathrm{i}}\left(\mathrm{~m}_{\mathrm{i}}=2 \mathrm{~m}_{\mathrm{i}-1}\right)+\mathrm{h}_{\mathrm{i}}^{2} \mathrm{~m}_{\mathrm{i}-1}\right] \tag{2.3}
\end{equation*}
$$

and

The following theorem is a trivial generalization of a result due to Hall [6]. It can be established easily by using (2.1) and the cardinal representations of H_{5} and Q .

Theorem 1. Let Q be a p. q.p. with derivatives m_{i} and $M_{i} ; i=0,1, \ldots, k$. If $\mathrm{y} \varepsilon \mathrm{C}^{6}[\mathrm{a}, \mathrm{b}]$ then, for $\mathrm{x} \varepsilon\left[\mathrm{x}_{\mathrm{i}-1} \quad, \mathrm{x}_{\mathrm{i}}\right] ; \mathrm{i}-1,2, \ldots, \mathrm{k}$,

$$
\begin{align*}
|\mathrm{Q}(\mathrm{x})-\mathrm{y}(\mathrm{x})| \leq \frac{1}{46,080} \mathrm{~h}^{6}\left\|\mathrm{y}^{(6)}\right\| & +\frac{5}{16} \mathrm{hmax}\left\{\left|\mathrm{~m}_{\mathrm{i}-1}-\mathrm{y}_{\mathrm{i}-1}^{(1)}\right|,\left|\mathrm{mi}-\mathrm{y}_{\mathrm{i}-1}^{(1)}\right|\right\} \\
& +\frac{1}{32} \mathrm{~h}^{2} \max \left\{\left|\mathrm{M}_{\mathrm{i}-1}-\mathrm{y}_{\mathrm{i}-1}^{(2)}\right|,\left|\mathrm{Mi}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}^{(2)}\right|\right\} . \tag{2.4}
\end{align*}
$$

The theorem shows that the best order of approximation that can be achieved by an interpolatory p.q.p. Q is

$$
\| \text { Q-y } \|=0\left(\mathrm{~h}^{6}\right) .
$$

More specifically, the theorem shows that if the approximations m_{i} and M_{i} are such that
and

$$
\left.\begin{array}{l}
\mathrm{m}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}^{(1)}=0\left(\mathrm{~h}^{\mathrm{r}}\right) \tag{2.5}\\
\mathrm{M}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}^{(2)}=0\left(\mathrm{~h}^{\mathrm{s}}\right)
\end{array}\right\} \quad \mathrm{i}=0,1, \ldots \ldots, \mathrm{k}
$$

then,
$\left.\begin{array}{ll} & \|Q-y\|=\left(h^{n}\right), \\ & n=\min (r+1, S+2,6 .\end{array}\right\}$

Since one of our requirements is that the interpolants Q satisfy with $n \geq 5$ it follows that, for the purposes of the present paper, the approximations m. and M_{i} must satisfy (2.5) with $r \geq 4$ and $s \geq 3$ respectively.

Clearly a p.q.p. Q is continuous and possesses continuous first and second derivatives. In general, however, $s^{(3)}$ has a jump discontinuity $d_{i}^{(3)}$ at each interior knot x.. Using (2.2) and (2.3) it can be shown that

$$
\begin{align*}
& \mathrm{d}_{\mathrm{i}}^{3}=\mathrm{Q}^{(3)}\left(\mathrm{x}_{\mathrm{i}}+\right)-\mathrm{Q}^{(3)}\left(\mathrm{x}_{\mathrm{i}}-\right) \\
& =\frac{3}{\mathrm{~h}_{\mathrm{i}+1}^{3} \mathrm{~h}_{\mathrm{i}}^{3}}\left\{20\left[\mathrm{~h}_{\mathrm{i}}^{3} \mathrm{y}_{\mathrm{i}+1}-\left(\mathrm{h}_{\mathrm{i}+1}^{3} \mathrm{~h}_{\mathrm{i}}^{3}\right) \mathrm{y}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}^{3} \mathrm{y}_{\mathrm{i}-1}\right]\right. \\
& \left.-2 \mathrm{~h}_{\mathrm{i}+1} \mathrm{~h}_{\mathrm{i}} 4 \mathrm{~h}_{\mathrm{i}}^{2} \mathrm{~m}_{\mathrm{i}+1}+6\left(\mathrm{~h}_{\mathrm{i}}^{2}-\mathrm{h}_{\mathrm{i}+1}^{2}\right) \mathrm{m}_{\mathrm{i}}-4 \mathrm{~h}_{\mathrm{i}+1}^{2} \mathrm{~m}_{\mathrm{i}-1}\right] \\
& \left.+\mathrm{h}_{\mathrm{i}+1}^{2} \mathrm{~h}_{\mathrm{i}}^{2}\left[\mathrm{~h}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}+1}-3\left(\mathrm{~h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}\right) \mathrm{M}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1} \mathrm{M}_{\mathrm{i}-1}\right]\right\} \\
& \mathrm{i}=1,2, \ldots, \mathrm{k}-1 . \tag{2.7}
\end{align*}
$$

Hence, if $y \varepsilon C^{7}[a, b]$,

$$
\begin{gather*}
d_{i}^{(3)}=\frac{3}{h_{i+1}^{2} h_{i}^{2}}\left\{h _ { i + 1 } h _ { i } \left[h_{i}\left(M_{i+1}-y_{i+1}^{(2)}-3\left(h_{i}+h_{i+1}\right)\left(M_{i}-y_{i}^{(2)}\right)+h_{i+1}\left(M_{i-1}-y_{i-1}^{(2)}\right)\right]\right.\right. \\
\left.\left.-2\left[4 h_{i}^{2}\left(m_{i+1}-y_{i+1}^{(1)}\right)+6\left(h_{i}^{2}-h_{i+1}^{2}\right) m_{i}-y_{i}^{(1)}\right)-4 h_{i+1}^{2}\left(m_{i-1}-y_{i}^{(1)}\right)\right]\right\} \\
+\frac{1}{5!}\left(h_{i}^{3}+h_{i+1}^{3}\right) y_{i}^{(6)}+0\left(h^{4}\right) ; i=1,2, \ldots . ., k-1 . \tag{2.8}
\end{gather*}
$$

Equation (2.8) follows from (2.7) by using the result

$$
\begin{gathered}
20\left[h_{i}^{3} y_{i+1}-\left(h_{i}^{3}+h_{i+1)}^{3} y_{i}+h_{i+1}^{3} y_{i-1}\right]-2 h_{i+1} h_{i}\left[4 h_{i}^{2} y_{i+1}^{(1)}+6\left(h_{i}^{2}-h_{i-1}^{2}\right) y_{i}^{(1)}-4 h_{i+1}^{2} y_{i-1}^{(1)}\right]\right. \\
+h_{i+1}^{2} h_{i}^{2}\left[h_{i} y_{i+1}^{(2)}-3\left(h_{i} h_{i+1}\right) y_{i}^{(2)}+h_{i+1} y_{i-1}^{(2)}\right]=\frac{2}{6!}\left(h_{i}^{3}+h_{i+1}^{3}\right) y_{i}^{(6)}+0\left(h^{10}\right) ; \\
i=1,2, \ldots, k-1,
\end{gathered}
$$

which is established by Taylor series expansions about the point x_{i}. Thus the magnitude of $d_{i}^{(3)}$, like the order of convergence of Q, depends only on the quality of the approximations m_{i} and M_{i}. More specifically, if the derivatives m_{i} and M_{i} of Q satisfy (2.5) then

$$
\left.\begin{array}{l}
\mathrm{d}_{\mathrm{i}}^{(3)}=0\left(\mathrm{~h}^{\mathrm{n}}\right), \tag{2.9}\\
\mathrm{n}=\min \{\mathrm{r}-2, \mathrm{~s}-1,3\}
\end{array}\right\}
$$

3. Quintic X-splines

Let q.; $i=1,2, \ldots, k-2$, be the quadratic polynomials defined by (1.2). Then, by analogy with the definition of cubic X-splines of Behforooz et al [3], we define the class of quintic X-splines as follows.

Definition 2. Let $a ., \beta_{i}$ and $\gamma_{i}, \delta_{i} . ; i=1,2, \ldots, k-1$, be $4 \mathrm{k}-4$ real numbers. Then, a p.q.p. Q whose derivatives m. and $\mathrm{M} . ; \mathrm{i}=0,1, \ldots, \mathrm{k}$ satisfy respectively the relations

$$
\left.\begin{array}{l}
\mathrm{m}_{0}=y_{0}^{(1)}, \\
\alpha_{i} m_{i-1}+m_{i}+\beta_{i} m_{i+1}=\alpha_{i} q_{i-1}\left(x_{i-1}\right)+q_{i-1}\left(x_{i}\right)+\beta_{i} q_{i-1}\left(x_{i-1}\right) \tag{3.1}\\
i=1,2, \ldots, k-1
\end{array}\right\}
$$

and

$$
\begin{align*}
& \mathrm{M}_{0}=\mathrm{y}_{0}^{(2)}, \\
& \begin{array}{l}
\gamma_{\mathrm{i}} \mathrm{M}_{\mathrm{i}-1}+\mathrm{M}_{\mathrm{i}}+\delta_{\mathrm{i}} \mathrm{M}_{\mathrm{i}+1}=\gamma_{\mathrm{i}}{ }_{q_{\mathrm{i}-1}}^{(1)}\left(\mathrm{x}_{\mathrm{i}-1}\right)+{ }_{q_{\mathrm{i}-1}}^{(1)}\left(\mathrm{x}_{\mathrm{i}}\right)+\delta_{\mathrm{i}}{ }_{q_{i-1}}^{(1)}\left(\mathrm{x}_{\mathrm{i}-1}\right) ; \\
\\
\mathrm{i}=1,2, \ldots, \mathrm{k}-1,
\end{array} \tag{3.2}\\
& \mathrm{M}_{\mathrm{k}}=\mathrm{y}_{\mathrm{k}}^{(2)},
\end{align*}
$$

will be called a quintic X-spline with parameters α_{i}, β_{i} and γ_{i}, δ_{i}; $\mathrm{i}=1,2, \ldots, \mathrm{k}-1$.

By Definition 2 the derivatives m_{i} and M_{i}; $\mathrm{i}-1,2, \ldots, \mathrm{k}-1$, of a quintic X -spline Q are determined by solving the two $(\mathrm{k}-1) \mathrm{x}(\mathrm{k}-1)$ tri-diagonal linear systems defined by (3.1) and (3.2). Thus, a sufficient condition for the unique existence of Q is that its parameters α_{i}, β_{i} and γ_{i}, δ_{i} satisfy respectively the inequalities

$$
\begin{equation*}
\left|\alpha_{\mathrm{i}}\right|+\left|\beta_{\mathrm{i}}\right|<1 ; \quad \mathrm{i}=1,2, \ldots, \mathrm{k}-1 \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\gamma_{i}\right|+\left|\delta_{i}\right|<1 ; I=1,2, \ldots, k-1 . \tag{3.4}
\end{equation*}
$$

It follows at once from the definition that, in the representation of a quintic X-spline Q, s is a cubic X-spline with parameters α_{i}, $\beta_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{k}-1$ - The convergence properties of such an s are discussed fully in [3]. In particular, it is shown that if $y \varepsilon C^{6}[a, b]$ and (3.3) holds then the derivatives m_{i} of s satisfy

$$
\mathrm{m}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}^{(1)}=0\left(\mathrm{~h}^{\mathrm{r}}\right) ; \quad \mathrm{i}=1,2, \ldots, \mathrm{k}-1
$$

where in general $r=3$. However, there are several choices of α_{i}, β_{i}, for which $r=4$ and one choice for which $r=5$. Keeping in mind our requirements concerning the order of $\|$ Q-y \| and the amount of labour involved in computing Q, we conclude from [3: Section 4] that there
are two choices of α_{i}, β_{i}, which are of particular interest. These are the values,

$$
\begin{align*}
& \alpha_{\mathrm{i}}^{(1)}=\frac{\mathrm{h}_{\mathrm{i}+1}\left(\mathrm{~h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right)}{\left(\mathrm{h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}\right)\left(\mathrm{h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right)}, \quad \beta_{\mathrm{i}}^{(1)}=0, \mathrm{i}=1,2, \ldots \ldots ., \mathrm{k}-2, \tag{3.5}\\
& \alpha_{\mathrm{k}-1}^{(1)}=0, \beta_{\mathrm{k}-1}^{(1)}=\frac{\mathrm{h}_{\mathrm{k}-1}\left(\mathrm{~h}_{\mathrm{k}-1}+\mathrm{h}_{\mathrm{k}-2}\right)}{\left(\mathrm{h}_{\mathrm{k}-1}+\mathrm{h}_{\mathrm{k}}\right)\left(\mathrm{h}_{\mathrm{k}-2}+\mathrm{h}_{\mathrm{k}-1}+\mathrm{h}_{\mathrm{k}}\right)}
\end{align*}
$$

and

$$
\begin{array}{r}
\alpha_{i}^{(2)}=\frac{\mathrm{h}_{\mathrm{i}+1}^{2}\left(\mathrm{~h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right)}{\left(\mathrm{h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right)\left(\mathrm{h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}\right)^{2}}, \beta_{\mathrm{i}}^{(2)}=\frac{\mathrm{h}_{\mathrm{i}}^{2}\left(\mathrm{~h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right)}{\mathrm{h}_{\mathrm{i}+2}\left(\mathrm{~h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}\right)^{2}} \\
 \tag{3.6}\\
\mathrm{i}=1,2, \ldots, \mathrm{k}-1
\end{array}
$$

The values $\alpha_{i}^{(1)}, \beta_{i}^{(1)}$ reduce the three-term recurrence relation in (3.1) to a two-term relation. Thus, in this case, the derivatives m_{i} are determined from (3.1) by forward substitution. It is shown in [3: Section 4.5] that these m_{i} satisfy

$$
\begin{equation*}
\mathrm{m}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}^{(1)}=0\left(\mathrm{~h}^{4}\right) ; \quad \mathrm{i}=1,2, \ldots, \mathrm{k}-1 \tag{3.7}
\end{equation*}
$$

In particular, when the knots are equally spaced then

$$
\begin{aligned}
& \alpha_{\mathrm{i}}^{(1)}=1 / 3, \beta_{\mathrm{i}}^{(1)}=0 ; i=1,2, \ldots \ldots \mathrm{k}-2 \\
& \alpha_{\mathrm{k}-1}^{(1)}=0, \quad \beta_{\mathrm{k}-1}^{(1)}=1 / 3
\end{aligned}
$$

and, if $\mathrm{y} \varepsilon \mathrm{C}^{7}[\mathrm{a}, \mathrm{b}]$,

$$
\begin{array}{r}
\left|m_{i}-y_{i}^{(1)}\right| \leq \frac{1}{40} h^{4}\left\|y^{(5)}\right\|+\frac{1}{240} h^{5}\left\|y^{(6)}\right\|+0\left(h^{6}\right) \\
i=1,2, \ldots, k-1 \tag{3.8}
\end{array}
$$

The values (3.6) are the only choice of parameters α_{i}, β_{i} for which the derivatives m_{i} satisfy

$$
\begin{equation*}
\mathrm{m}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}^{(1)}=0\left(\mathrm{~h}^{5}\right) ; \mathrm{i}=1,2, \ldots ., \mathrm{k}-1 ; \tag{3.9}
\end{equation*}
$$

see [3: Section 4.6]. It should be observed that, in this case, the conditions (3*3) which ensure that the tri-diagonal linear system (3.1) has a unique solution are satisfied only if

$$
\begin{aligned}
\left.\left(h_{i}+h_{i+1}\right)\right)\left(h_{i}-h_{i+2}\right)<2 h_{i+2}\left(h_{i+1}+h_{i+2}\right) & ; \\
i & =1,2, \ldots, k-1 .
\end{aligned}
$$

When the knots are equally spaced then

$$
\begin{aligned}
& \alpha_{\mathrm{i}}^{(2)}=1 / 6, \quad \beta_{\mathrm{i}}^{(2)}=1 / 2 ; \quad \mathrm{i}=1,2, \ldots, \mathrm{k}-2 \\
& \alpha_{\mathrm{k}-1}^{(2)}=1 / 2, \quad \beta_{\mathrm{k}-1}^{(2)}=1 / 6,
\end{aligned}
$$

and, if $\mathrm{y} \varepsilon \mathrm{C}^{7}[\mathrm{a}, \mathrm{b}]$,

$$
\begin{equation*}
\left|m_{i}-y_{i}^{(1)}\right| \leq \frac{1}{120} h^{5}\left\|y^{(6)}\right\|+0\left(h^{6}\right) ; \quad i=1,2, \ldots, k-1 \tag{3.10}
\end{equation*}
$$

We consider now the effect that the parameters γ_{i}, δ_{i} have on the quality of the second derivatives of a quintic X -spline Q . For this we assume that the parameters satisfy (3.4), let

$$
\begin{array}{r}
\varepsilon_{i}=\gamma_{i}\left\{\mathrm{q}_{\mathrm{i}-1}^{(1)}\left(\mathrm{x}_{\mathrm{i}-1}\right)-\mathrm{y}_{\mathrm{i}-1}^{(2)}\right\}+\left\{\mathrm{q}_{\mathrm{i}-1}^{(1)}\left(\mathrm{x}_{\mathrm{i}}\right)-\mathrm{y}_{\mathrm{i}-1}^{(2)}\right\}+ \\
\delta_{\mathrm{i}}\left\{\mathrm{q}_{\mathrm{i}-1}^{(1)}\left(\mathrm{x}_{\mathrm{i}-1}\right)-\mathrm{y}_{\mathrm{i}+1}^{(2)}\right\} ; \tag{3.11}\\
\mathrm{i}=1,2, \ldots, \mathrm{k}-1
\end{array}
$$

and denote by A the matrix of the $(k-1) x(k-1)$ linear system defined by (3.2). Then, using a result of Lucas [7, p.5763,

$$
\begin{equation*}
\left\|\mathrm{A}^{-1}\right\|_{\infty} \leq \mathrm{v} \tag{3.12}
\end{equation*}
$$

where $v \geq 1$ is such that

$$
\left|\gamma_{\mathrm{i}}\right|+\left|\delta_{\mathrm{i}}\right|+1 / \mathrm{v} \leq 1 ; \quad \mathrm{i}=1,2, \ldots, \mathrm{k}-1 .
$$

Hence, from (3.2),

$$
\begin{equation*}
\left|\mathrm{M}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}^{(2)}\right| \leq v \max _{\mathrm{i}}\left|\varepsilon_{\mathrm{i}}\right| ; \quad \mathrm{i}=1,2, \ldots, \mathrm{k}-1 \tag{3.13}
\end{equation*}
$$

Also, by Taylor series expansion about the point x_{i} we find that if $\mathrm{y} \varepsilon \mathrm{C}^{6}[\mathrm{a}, \mathrm{b}]$ then,

$$
\begin{equation*}
\varepsilon_{\mathrm{i}}=\frac{1}{12} \mathrm{~F}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{(4)}+\frac{1}{60} \mathrm{G}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{(5)}+0\left(\mathrm{~h}^{4}\right) \mathrm{i}=1,2, \ldots, \mathrm{k}-1 \tag{3.14}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{i}}= \gamma_{\mathrm{i}}\left\{-\mathrm{h}_{\mathrm{i}+1}\left(\mathrm{~h}_{\mathrm{i}+1}+4 \mathrm{~h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+2}\right)-\mathrm{h}_{\mathrm{i}}\left(2 \mathrm{~h}_{\mathrm{i}+2}+3 \mathrm{~h}_{\mathrm{i}}\right)\right\} \\
&+\left\{\mathrm{h}_{\mathrm{i}+1}\left(2 \mathrm{~h}_{\mathrm{i}}-\mathrm{h}_{\mathrm{i}+2}-\mathrm{h}_{\mathrm{i}+1}\right)+\mathrm{h}_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}+2}\right\} \\
&+\delta_{\mathrm{i}}\left\{\mathrm{hi}+1\left(2 \mathrm{~h}_{\mathrm{i}+2}-\mathrm{h}_{\mathrm{i}+1}-\mathrm{h}_{\mathrm{i}}\right) \mathrm{h}_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}+2}\right\}, \\
& \mathrm{G}_{\mathrm{i}}= \gamma_{\mathrm{i}}\left\{-\left(\mathrm{h}_{\mathrm{i}+1}+2 \mathrm{~h}_{\mathrm{i}}\right)\left(\mathrm{h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}-\mathrm{h}_{\mathrm{i}}\right)\left(2 \mathrm{~h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right)\right. \\
&\left.+\mathrm{h}_{\mathrm{i}}\left(7 \mathrm{~h}_{\mathrm{i}}^{2}-3 \mathrm{~h}_{\mathrm{i}+1}^{2}\right)\right\} \\
&-\left(\mathrm{h}_{\mathrm{i}+1}-\mathrm{h}_{\mathrm{i}}\right)\left(\mathrm{h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}-\mathrm{h}_{\mathrm{i}}\right)\left(2 \mathrm{~h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right) \\
&+ \delta_{\mathrm{i}}\left\{\left(2 \mathrm{~h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}}\right)\left(\mathrm{h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}-\mathrm{h}_{\mathrm{i}}\right)\left(2 \mathrm{~h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right)\right. \\
&\left.+\mathrm{h}_{\mathrm{i}+1}\left(3 \mathrm{~h}_{\mathrm{i}}^{2}-7 \mathrm{~h}_{\mathrm{i}+1}^{2}\right)\right\} ; \\
& \quad \mathrm{i}=1,2, \ldots . ., \mathrm{k}-1
\end{aligned}
$$

and, as in (3.6),

$$
\begin{equation*}
\mathrm{h}_{\mathrm{k}+1}=-\left(\mathrm{h}_{\mathrm{k}-2}+\mathrm{h}_{\mathrm{k}-1}+\mathrm{h}_{\mathrm{k}}\right) \tag{3.16}
\end{equation*}
$$

When the knots are equally spaced then (3.14) simplifies considerably and, if $\mathrm{y} \varepsilon \mathrm{C}^{7}[\mathrm{a}, \mathrm{b}]$, it gives

$$
\begin{array}{r}
\varepsilon_{\mathrm{i}}=\frac{1}{12}\left\{-\widetilde{\gamma}_{\mathrm{i}}+1+\widetilde{\delta}_{\mathrm{i}}\right\} \mathrm{h}^{2} \mathrm{y}_{\mathrm{i}}^{(4)}+\frac{1}{12}\left\{\delta_{\mathrm{i}}-\gamma_{\mathrm{i}}\right\} \mathrm{h}^{3} \mathrm{y}_{\mathrm{i}}^{(5)} \\
+\frac{1}{360}\left\{16 \widetilde{\delta}_{\mathrm{i}}+1-44 \widetilde{\gamma}_{\mathrm{i}}\right\} \mathrm{h}^{4} \mathrm{y}_{\mathrm{i}}^{(6)}+0\left(\mathrm{~h}^{5}\right) \\
\mathrm{i}=1,2, \ldots, \mathrm{k}-1 \tag{3.17}
\end{array}
$$

where

$$
\left.\begin{array}{l}
\widetilde{\gamma}_{\mathrm{i}}=\gamma_{\mathrm{i}}, \quad \widetilde{\delta}_{\mathrm{i}}=\delta_{\mathrm{i}} ; \quad \mathrm{i}=1,2, \ldots, \mathrm{k}-2 \tag{3.18}\\
\widetilde{\gamma}_{\mathrm{k}-1}=\delta_{\mathrm{k}-1}, \quad \widetilde{\delta}_{\mathrm{k}-1}=\gamma_{\mathrm{k}-1} .
\end{array}\right\}
$$

The results (3.13) and (3.14)- (3.15) show that if the parameters $\gamma_{i}, \delta_{i} ; i=1,2, \ldots, k-1$ of a quintic X-spline satisfy (3.4) then

$$
\mathrm{M}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}^{(2)}=0\left(\mathrm{~h}^{\mathrm{s}}\right) ; \quad \mathrm{i}=1,2, \ldots, \mathrm{k}-1
$$

where, in general $s=2$. However, if the γ_{i}, d_{i}, are such that $F_{i}=0 ; i-1,2, \ldots, k-1$ then $s=3$, and if $F .=G_{i}=0 ; i=1,2, \ldots, k-1$ then $s=4$.

Corresponding to the two choices (3.5) and (3.6) of the parameters $\alpha_{i}, \beta i$, there are two choices of the γ_{i}, d_{i} which are of particular interest. These are the values

$$
\begin{aligned}
& \stackrel{(1)}{\gamma_{\mathrm{i}}}=\frac{\mathrm{h}_{\mathrm{i}+1}\left(2 \mathrm{~h}_{\mathrm{i}}-\mathrm{h}_{\mathrm{i}+1}-\mathrm{h}_{\mathrm{i}+2}\right)+\mathrm{h}_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}+2}}{\mathrm{~h}_{\mathrm{i}+1}\left(4 \mathrm{~h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right)+\mathrm{h}_{\mathrm{i}}\left(3 \mathrm{~h}_{\mathrm{i}}+2 \mathrm{~h}_{\mathrm{i}+2}\right)}, \quad \delta_{\mathrm{i}} \quad, \quad(1)=0 ; \\
& \mathrm{i}=1,2, \ldots, \mathrm{k}-2, \\
& (1)=0, \quad(1)=\frac{\mathrm{h}_{\mathrm{k}-1}\left(2 \mathrm{~h}_{\mathrm{k}}-\mathrm{h}_{\mathrm{k}-1}-\mathrm{h}_{\mathrm{k}-2}\right)+\mathrm{h}_{\mathrm{k}} \mathrm{~h}_{\mathrm{k}-2}}{\mathrm{~h}_{\mathrm{k}-1}\left(4 \mathrm{~h}_{\mathrm{k}}-\mathrm{h}_{\mathrm{k}-1}+\mathrm{h}_{\mathrm{k}-2}\right)+\mathrm{h}_{\mathrm{k}}\left(3 \mathrm{~h}_{\mathrm{k}}+2 \mathrm{~h}_{\mathrm{k}-2}\right)},
\end{aligned}
$$

and

$$
\begin{array}{r}
\gamma_{\mathrm{i}}^{(2)}=\frac{\mathrm{h}_{\mathrm{i}+1} \mathrm{~A}_{\mathrm{i}}}{\mathrm{D}_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}\right)}, \delta_{\mathrm{i}}^{(2)}=\frac{\mathrm{h}_{\mathrm{i}} \mathrm{~B}_{\mathrm{i}}}{\mathrm{D}_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}\right)} \\
\mathrm{i}=1,2, \ldots, \mathrm{k}-1 \tag{3.20}
\end{array}
$$

where

$$
\begin{align*}
& \mathrm{A}_{\mathrm{i}}=\left(\mathrm{h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right)\left(\mathrm{h}_{\mathrm{i}+1}-\mathrm{h}_{\mathrm{i}}\right)\left\{-3 \mathrm{~h}_{\mathrm{i}+2}\left(\mathrm{~h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}\right)+\mathrm{h} \mathrm{~h}_{\mathrm{i}+1}^{2}\right\} \\
& + \\
& +\mathrm{h}_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}+1}\left\{3\left(\mathrm{~h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right)^{2}-\mathrm{h}_{\mathrm{i}+1}\left(3 \mathrm{~h}_{\mathrm{i}}+4 \mathrm{~h}_{\mathrm{i}+1}\right)\right\} \tag{3.21}\\
& \left.\mathrm{B}_{\mathrm{i}}=\left(\mathrm{h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right)\left(\mathrm{h}_{\mathrm{i}+1}-\mathrm{h}_{\mathrm{i}}\right)\left\{\mathrm{h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}\right)\left(\mathrm{h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right)+\mathrm{h}_{\mathrm{i}}^{2}\right\} \\
& + \\
& +\mathrm{h}_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}+1}\left\{3\left(\mathrm{~h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right)^{2}-\mathrm{h}_{\mathrm{i}}\left(4 \mathrm{~h}_{\mathrm{i}}+3 \mathrm{~h}_{\mathrm{i}+1}\right)\right\}, \\
& \begin{aligned}
& \mathrm{D}_{\mathrm{i}}=\left(\mathrm{h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right)^{2}\left\{\left(\mathrm{~h}_{\mathrm{i}}+2-\mathrm{h}_{\mathrm{i}+1}\right)\left(4 \mathrm{~h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}\right)+\mathrm{h}_{\mathrm{i}+2}\left(3 \mathrm{~h}_{\mathrm{i}+2}+\mathrm{h}_{\mathrm{i}+1}\right)\right\} \\
&+ 3 \mathrm{~h}_{\mathrm{i}} \mathrm{~h}_{\mathrm{i}+1} \mathrm{~h}_{\mathrm{i}+2}\left(\mathrm{~h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}+\mathrm{h}_{\mathrm{i}+2}\right),
\end{aligned}
\end{align*}
$$

and h_{k+1} is given by (3.16).

The parameters $\gamma_{i}^{(1)}, \delta_{i}^{(1)}$ are such that, in (3.14), $\mathrm{F}_{\mathrm{i}}=0, \mathrm{i}=1,2, \ldots, \mathrm{k}-1$. Therefore, in this case,

$$
\begin{equation*}
\mathrm{M}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}^{(2)}=0\left(\mathrm{~h}^{3}\right) ; \mathrm{i}=1,2, \ldots, \mathrm{k}-1 \tag{3.22}
\end{equation*}
$$

Also, since the values (3.19) reduce the three-term recurrence relation in (3.2) to a two-term relation, the M_{i} 's are determined from (3.2) by forward substitution.

When the knots are equally spaced then

$$
\begin{aligned}
& \gamma_{\mathrm{i}}^{(1)}=1 / 11, \quad \delta_{\mathrm{i}}^{(1)}=0 ; \quad \mathrm{i}=1,2, \ldots, \mathrm{k}-2, \\
& \gamma_{\mathrm{k}-1}^{(1)}=0, \quad \delta_{\mathrm{k}-1}^{(1)}=1 / 11,
\end{aligned}
$$

and, since $V=11 / 10$, (3.13) and (3.17) give

$$
\begin{array}{r}
\left|\mathrm{M}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}^{(2)}\right| \leq \frac{1}{120} \mathrm{~h}^{3}\left\|\mathrm{y}^{(5)}\right\|+\frac{11}{1200} \mathrm{~h}^{4}\left\|\mathrm{y}^{(6)}\right\|+0\left(\mathrm{~h}^{5}\right) \\
\mathrm{i}=1,2 \ldots, \mathrm{k}-1 \tag{3.23}
\end{array}
$$

The values $\gamma_{i}^{(2)}, \delta_{i}^{(2)}$ are the only values of γ_{i}, δ_{i} for which $\mathrm{F}_{\mathrm{i}}=\mathrm{G}_{\mathrm{i}}=0 ; \quad \mathrm{i}=1,2, \ldots, \mathrm{k}-1 . \quad$ This implies that (3.20) is the only choice of parameters γ_{i}, d_{i}, for which

$$
\begin{equation*}
\mathrm{M}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}^{(2)}=0\left(\mathrm{~h}^{4}\right) ; \mathrm{i}=1,2, \ldots, \mathrm{k}-1 \tag{3.24}
\end{equation*}
$$

Clearly, $\gamma_{\mathrm{i}}^{(2)}, \delta_{\mathrm{i}}^{(2)}$ are defined only if, in (3.20), $\mathrm{D}_{\mathrm{i}} \neq 0 ; \quad \mathrm{i}=1,2, \ldots, \mathrm{k}-1$. A sufficient condition for this to hold is that

$$
\begin{align*}
& \mathrm{h}_{\mathrm{i}+2}\left(3 \mathrm{~h}_{\mathrm{i}+2}+\mathrm{h}_{\mathrm{i}+1}\right)>\left(\mathrm{h}_{\mathrm{i}+1}-\mathrm{h}_{\mathrm{i}+2}\right)\left(4 \mathrm{~h}_{\mathrm{i}}+\mathrm{h}_{\mathrm{i}+1}\right) ; \\
& \tag{3.25}\\
& \mathrm{i}=1,2, \ldots, \mathrm{k}-1 .
\end{align*}
$$

It should be observed however that (3.25) does not imply the conditions (3.4) which ensure that the linear system (3.2) has a unique solution.

When the knots are equally spaced then

$$
\gamma_{\mathrm{i}}^{(2)}=\delta_{\mathrm{i}}^{(2)}=1 / 10 ; \mathrm{i}=1,2, \ldots, \mathrm{k}-1
$$

and, since $v=5 / 4$, (3.13) and (3.17) give

$$
\begin{equation*}
\left|M_{i}-y_{i}^{(2)}\right| \leq \frac{1}{160} h^{4}\left\|y^{(6)}\right\|+0\left(h^{5}\right) ; i=1,2, \ldots, k-1 \tag{3.26}
\end{equation*}
$$

The remainder of this paper is concerned with examining the quality of the four quintic X-splines with parameters taken from the four Possible combinations of the values $\alpha_{i}^{(r)}, \beta_{i}^{(r)}$ and $\gamma_{i}^{(\mathrm{s})}=\delta_{i}^{(\mathrm{s})}$; $\mathrm{r}, \mathrm{s}=1,2$.

4. Quintic X-splines of special interest

We let

$$
\begin{equation*}
E-\|Q-y\| \quad \text { and }(4.1) \quad D^{(3)}=\max _{i}\left|d_{i}^{(3)}\right| \tag{4.1}
\end{equation*}
$$

Where, as in Section 2, $d_{i}^{(3)}$ denotes the jump discontinuity of $Q^{(3)}$ at an interior knot x_{i}. We also let $\mathrm{Q}_{\mathrm{r}, \mathrm{s}}$ denote the quintic X-spline with parameters $\alpha_{i}^{(r)}, \beta_{i}^{(r)}$ and $\gamma_{i}^{(\mathrm{s})}=\delta_{i}^{(\mathrm{s})} ; \mathrm{r}, \mathrm{s}=1,2$. Then, with this notation, the derivatives m_{i} and M_{i} of each of the four $\mathrm{Q}_{\mathrm{r}, \mathrm{s}} ; \mathrm{r}, \mathrm{s}=1,2$, are determined as follows:
(i) The m_{i} of $Q_{1,1}$ and $Q_{1,2}$ by forward substitution, from the lower triangular system defined by (3.1) with $\alpha_{i}=\alpha_{i}^{(1)}$, $\beta_{\mathrm{i}}=\beta_{\mathrm{i}}^{(1)}$, where $\alpha_{\mathrm{i}}^{(1)}, \beta_{\mathrm{i}}^{(1)}$ are the values (3.5).
(ii) The m_{i} of $Q_{2,1}$ and $Q_{2,2}$, by solving the tri-diagonal system defined by (3.1)with $\alpha_{i}=\alpha_{i}^{(2)}, \beta_{i}=\beta_{i}^{(2)}$, where $\alpha{ }_{i}^{(2)} \beta_{i}^{(2)}$ are the values (3.6).
(iii) The M_{i} of $\mathrm{Q}_{1,1}$ and $\mathrm{Q}_{2,1}$, by forward substitution, from the lower triangular system defined by (3.2) with $\gamma_{i}=\gamma_{\mathrm{i}}^{(1)}$, $\delta_{\mathrm{i}}=\delta_{\mathrm{i}}^{(1)}$, where $\gamma_{\mathrm{i}}^{(1)}, \delta_{\mathrm{i}}^{(1)}$ are the values (3.19).
(iv) The M_{i} of $\mathrm{Q}_{1,2}$ and $\mathrm{Q}_{2,2}$, by solving the tri-diagonal system defined by (3.2) with $\gamma_{\mathrm{i}}=\gamma_{\mathrm{i}}^{(2)}, \quad \delta_{\mathrm{i}}=\delta_{\mathrm{i}}^{(2)}$, where $\gamma_{\mathrm{i}}^{(2)}, \delta_{\mathrm{i}}^{(2)}$ are the values (3.20).

The results of the previous section in conjunction with (2.5)-(2.6) and (2.9) show that for each of the X-splines $Q_{1,1}, Q_{1,2}$ and $Q_{2,1}$,

$$
\begin{equation*}
E=O\left(h^{5}\right) \quad \text { and } \quad D^{(3)}=0\left(h^{2}\right) \tag{4.2}
\end{equation*}
$$

These results also show that $\mathrm{Q}_{2,2}$ is the only quintic X -spline for which

$$
\begin{equation*}
\mathrm{E}=0\left(\mathrm{~h}^{6}\right) \quad \text { and } \quad \mathrm{D}^{(3)}=0\left(\mathrm{~h}^{3}\right) \tag{4.3}
\end{equation*}
$$

we consider now the case of equally spaced knots and, for each of the four $\mathrm{Q}_{\mathrm{r}, \mathrm{s}}$, we list bounds on E and on. These bounds are derived easily from (2.4), (2.8) and (3.8), (3.10), (3.23) and (3.26).

(i) Quintic X -spline $\mathrm{Q}_{1,1}$

$$
\begin{align*}
& \mathrm{E} \leq \frac{31}{3,840} \mathrm{~h}^{5}\left\|\mathrm{y}^{(5)}\right\|+\frac{371}{230,400} \mathrm{~h}^{6}\left\|\mathrm{y}^{(6)}\right\|+0\left(\mathrm{~h}^{7}\right) \tag{4.4}\\
& \mathrm{D}^{(3)} \leq \frac{7}{5} \mathrm{~h}^{2}\left\|\mathrm{y}^{(5)}\right\|+\frac{131}{300} \mathrm{~h}^{3}\left\|\mathrm{y}^{(6)}\right\|+0\left(\mathrm{~h}^{4}\right) \tag{4.5}
\end{align*}
$$

(ii) Quintic X -spline $\mathrm{Q}_{1,2}$

$$
\begin{align*}
& E \leq \frac{1}{128} \mathrm{~h}^{5}\left\|\mathrm{y}^{(5)}\right\|+\frac{350}{230,400} \mathrm{~h}^{6}\left\|\mathrm{y}^{(6)}\right\|+0\left(\mathrm{~h}^{7}\right) \tag{4.6}\\
& \mathrm{D}^{(3)} \leq \frac{6}{5} \mathrm{~h}^{2}\left\|\mathrm{y}^{(5)}\right\|+\frac{110}{300} \mathrm{~h}^{3}\left\|\mathrm{y}^{(6)}\right\|+0\left(\mathrm{~h}^{4}\right) \tag{4.7}
\end{align*}
$$

(iii) Quintic X-spline $\mathrm{Q}_{2,1}$

$$
\begin{align*}
& E \leq \frac{1}{840} h^{5}\left\|y^{(5)}\right\|+\frac{671}{230,400} h^{6}\left\|y^{(6)}\right\|+0\left(h^{7}\right) \tag{4.8}\\
& D^{(3)} \leq \frac{1}{5} h^{2}\left\|y^{(5)}\right\|+\frac{191}{300} h^{3}\left\|y^{(6)}\right\|+0\left(h^{4}\right) . \tag{4.9}
\end{align*}
$$

(iv) Quintic X-spline $\mathrm{Q}_{2,2}$

$$
\begin{align*}
& E \leq \frac{650}{230,400} h^{6}\left\|y^{(6)}\right\|+0\left(h^{7}\right) \tag{4.10}\\
& D^{(3)} \leq \frac{170}{300} h^{3}\left\|y^{(6)}\right\|+0\left(h^{4}\right) \tag{4.11}
\end{align*}
$$

5. Numerical results and discussion

In Tables 1 and 2 we present numerical results obtained by taking $y(x)=\exp (x)$,

$$
\begin{equation*}
\mathrm{x} .=\mathrm{i} / 20 ; \quad \mathrm{i}=0,1, \ldots, 20 \tag{5.1}
\end{equation*}
$$

and constructing each of the four quintic X-splines considered in section 4. The results listed are values of the absolute error $[Q(x)-y(x) \mid$, computed at various points between the knots, and the maximum values $\mathrm{D}^{(3)}$ of the jump discontinuities in the third derivative at interior knots. The results of Tables 3 and 4 are obtained, in a similar manner, by using the same y and the unequally spaced knots

$$
\begin{equation*}
\mathrm{x}_{\mathrm{i}}=\mathrm{i}^{2} / 8^{2} ; \quad \mathrm{i}-0,1, \ldots, 8 \tag{5.2}
\end{equation*}
$$

For comparison purposes, we also include in the first column of each table the corresponding results obtained in [3] by using the conventional cubic spline s_{I},

The theoretical results of the previous sections indicate that $\mathrm{Q}_{2,2}$ is the most 'accurate' X-spline. These results also show that in approximating a smooth function y by a quintic X -spline, the quality of the first derivatives m . is more critical that that of the second derivatives M_{i}. This follows from the observation that in (2.4), the magnitudes of the coefficients associated with the terms $\left(\mathrm{m}_{\mathrm{j}}-\mathrm{y}_{\mathrm{i}}^{(1)}\right)$ are larger than those associated with $\left(\mathrm{M}_{\mathrm{j}}-\mathrm{y}_{\mathrm{i}}^{(2)}\right)$. For this reason we expect $\mathrm{Q}_{2,1}$ to produce more accurate approximations that $\mathrm{Q}_{1,2}$.

The numerical results in Tables 1 and 3 show that the X -splines $\mathrm{Q}_{2,2}$ and $\mathrm{Q}_{2,1}$ produce the most accurate results. They also show that there
is no significant overall difference in accuracy between the approximations due to $Q_{2,2}$ and $Q_{2,1}$ and between those of $Q_{1,2}$ and $Q_{1,1}$ This is in accordance with the theory, since when $y(x)=\exp (x)$ and the equally spaced knots (5.1) are used, then the error bounds (4.4), (4.6), (4.8) and (4.10), with the $\mathrm{O}\left(\mathrm{h}^{7}\right)$ term ignored, give $\mathrm{E} \leq \mathrm{n} \times 10^{-9}$ where n takes the values $7.0,6.8, .35$ and .13 respectively for each of the X-splines $\mathrm{Q}_{1,1}, \mathrm{Q}_{1,2}, \mathrm{Q}_{2,1}$ and $\mathrm{Q}_{2,2}$, A similar argument would of course explain the results corresponding to the unequally spaced knots $(5,2)$, for which $h=\max _{\mathrm{i}} \mathrm{h}_{\mathrm{i}}=15 / 64$. Naturally, as h decreases the difference in accuracy between the results due to $Q_{2 \text {, and }} Q_{2,1}$ becomes more pronounced. However, $\mathrm{Q}_{2,2}$ leads to a marked improvement in accuracy only if h is very small.

Of the four X-splines considered here the construction of $\mathrm{Q}_{1,1}$ involves the least computational effort. The derivatives of this X -spline are determined by forward substitution from two lower triangular systems and this involves less computational effort than the determination of the parameters of the conventional cubic spline s_{I}. Also, $Q_{1,1}$ is the only X -spline in Section 4 whose unique existence is guaranteed for any distribution of the knots. For this reason, we consider $Q_{1,1}$ to be of greater practical interest that the other three X-splines considered in Section 4.

By Definition 2, the construction of a quintic X -spline requires knowledge of $y^{(1)}$ and $y^{(2)}$ at the two endpoints x_{Q}, x_{k} and, in an interpolation problem, this information is not usually available. However, by using techniques similar to those of Behforooz and Papamichael [1 and 2], the end conditions

$$
\begin{equation*}
\mathrm{m}_{0}=\mathrm{y}_{0}^{(1)}, \mathrm{m}_{\mathrm{k}}=\mathrm{y}_{\mathrm{k}}^{(1)} \tag{5.3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{M}_{0}=\mathrm{y}_{0}^{(2)}, \quad \mathrm{M}_{\mathrm{k}}=\mathrm{y}_{\mathrm{k}}^{(2)} \tag{5.4}
\end{equation*}
$$

can be replaced by conditions which use only the available function values of y at the knots whilst retaining the order of the X -spline approximation. For example, if $\pi_{\mathrm{i}}(\mathrm{x})$ is the quartic polynomial interpolating y at the points $x ., x_{i+1}, x_{i+2}, x_{i+3}$ and $x_{i+4} ; j=0, k-4$, then the following end conditions can be used, instead of (5.3), for the construction of $\mathrm{Q}_{1,1}$ and $\mathrm{Q}_{1,2}$

$$
\begin{equation*}
\mathrm{m}_{0}=\pi_{0}^{(1)}\left(\mathrm{x}_{0}\right), \mathrm{m}_{\mathrm{k}}=\pi_{\mathrm{k}-4}^{(1)}\left(\mathrm{x}_{\mathrm{k}}\right) . \tag{5.5}
\end{equation*}
$$

Similarly, the end conditions

$$
\left.\begin{array}{l}
\mathrm{m}_{0}+\alpha_{0} \mathrm{~m}_{1}=\pi_{0}^{(1)}\left(\mathrm{x}_{0}\right)+=\alpha_{0} \pi_{0}^{(1)}\left(\mathrm{x}_{1}\right), \tag{5.6}\\
\alpha_{\mathrm{k}} \mathrm{~m}_{\mathrm{k}-1}+\mathrm{m}_{\mathrm{k}}=\alpha_{\mathrm{k}} \pi_{\mathrm{k}-4}^{(1)}\left(\mathrm{x}_{\mathrm{k}-1}\right)+\pi_{\mathrm{k}-4}^{(1)}\left(\mathrm{x}_{\mathrm{k}}\right),
\end{array}\right\}
$$

can be used for the construction of $\mathrm{Q}_{2,1}$ and $\mathrm{Q}_{2,2}$, where, in (5.6)

$$
\alpha_{j}=\left(1+u_{j}+v_{j}+w_{j}+u_{j} v_{j}+v_{j} w_{j}+w_{j} u_{j}+u_{j} v_{j} w_{j}\right) / u_{j} v_{j} w_{j} ; \quad j=0
$$

with

$$
\mathrm{u}_{0}=\mathrm{h}_{2} / \mathrm{h}_{1}, \quad \mathrm{v}_{0}=\left(\mathrm{h}_{1} \mathrm{u}_{0}+\mathrm{h}_{3}\right) / \mathrm{h}_{1}, \quad \mathrm{w}_{0}=\left(\mathrm{h}_{1} \mathrm{v}_{0}+\mathrm{h}_{4} / \mathrm{h}_{1},\right.
$$

and

$$
\mathrm{u}_{\mathrm{k}}=\mathrm{h}_{\mathrm{k}-1}, \quad \mathrm{v}_{\mathrm{k}}=\left(\mathrm{h}_{\mathrm{k}} \mathrm{u}_{\mathrm{k}}+\mathrm{h}_{\mathrm{k}-2}\right) / \mathrm{h}_{\mathrm{k}}, \quad \mathrm{w}_{\mathrm{k}}=\left(\mathrm{h}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}}+\mathrm{h}_{\mathrm{k}-3}\right) / \mathrm{h}_{\mathrm{k}} .
$$

By analogy, the second derivative end conditions (5.4) can be replaced by

$$
\begin{equation*}
\mathrm{M}_{0}=\pi_{0}^{(2)}\left(\mathrm{x}_{0}\right), \quad \mathrm{M}_{\mathrm{k}}=\pi_{\mathrm{k}-4}^{(2)}\left(\mathrm{x}_{\mathrm{k}}\right) \tag{5.7}
\end{equation*}
$$

for the construction of $Q_{1,1}$ and $Q_{2,1}$ and

$$
\left.\begin{array}{l}
\mathrm{M}_{0}+\gamma_{0} \mathrm{M}_{1}=\pi_{0}^{(2)}\left(\mathrm{x}_{0}\right)+\gamma_{0} \pi_{0}^{(2)}\left(\mathrm{x}_{1}\right), \tag{5.8}\\
\gamma_{\mathrm{k}} \mathrm{M}_{\mathrm{k}-1}+\mathrm{M}_{\mathrm{k}}=\gamma_{\mathrm{k}} \pi_{\mathrm{k}-4}^{(2)}\left(\mathrm{x}_{\mathrm{k}-1}\right)+\pi_{\mathrm{k}-4}^{(2)}\left(\mathrm{x}_{\mathrm{k}}\right),
\end{array}\right\}
$$

for $\mathrm{Q}_{1,2}$ for $\mathrm{Q}_{2,2}$, where in (5.8)
$\gamma_{0}=\frac{\left[\mathrm{h}_{1}\left(7 \mathrm{~h}_{1}^{2}-3 \mathrm{~h}_{2}^{2}\right)+\left(\mathrm{h}_{2}+2 \mathrm{~h}_{1}\right)\left(\mathrm{h}_{3}+\mathrm{h}_{2}-\mathrm{h}_{1}\right)\left(\mathrm{h}_{4}+\mathrm{h}_{3}+\mathrm{h}_{2}-\mathrm{h}_{1}\right)+\mathrm{h}_{1}\left(\mathrm{~h}_{4}+2 \mathrm{~h}_{3}+3 \mathrm{~h}_{2}-\mathrm{h}_{1}\right)\left(5 \mathrm{~h}_{1}+3 \mathrm{~h}_{2}\right)\right]}{\left[\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)\left(\mathrm{h}_{2}+\mathrm{h}_{3}\right)\left(\mathrm{h}_{4}+\mathrm{h}_{3}+\mathrm{h}_{2}\right)+\mathrm{h}_{1} \mathrm{~h}_{2}\left(\mathrm{~h}_{4}+2 \mathrm{~h}_{3}+2 \mathrm{~h}_{2}\right)\right]}$
and γ_{k} is obtained from γ_{0} by replacing h_{j} by $h_{k+1-\mathrm{j}} ; j=1,2,3,4$, throughout.

Table 1

Values of $|\mathrm{Q}(\mathrm{x})-\mathrm{y}(\mathrm{x})|$. (Knots as in 5.1)

X	S_{I}	$\mathrm{Q}_{1,1}$	$\mathrm{Q}_{1,2}$	$\mathrm{Q}_{2,1}$	$\mathrm{Q}_{2,2}$
0.01	$.674 \times 10^{-8}$	$.114 \times 10^{-9}$	$.120 \times 10^{-9}$	$.733 \times 10^{-11}$	$.803 \times 10^{-12}$
0.02	$.151 \times 10^{-7}$	$.564 \times 10^{-9}$	$.593 \times 10^{-9}$	$.334 \times 10^{-10}$	$.402 \times 10^{-11}$
0.09	$.705 \times 10^{-8}$	$.497 \times 10^{-9}$	$.529 \times 10^{-9}$	$.364 \times 10^{-10}$	$.472 \times 10^{-11}$
0.22	$.189 \times 10^{-7}$	$.446 \times 10^{-9}$	$.366 \times 10^{-9}$	$.797 \times 10^{-10}$	$.519 \times 10^{-12}$
0.36	$.990 \times 10^{-8}$	$.840 \times 10^{-9}$	$.799 \times 10^{-9}$	$.369 \times 10^{-10}$	$.412 \times 10^{-11}$
0.62	$.281 \times 10^{-7}$	$.683 \times 10^{-9}$	$.563 \times 10^{-9}$	$.117 \times 10^{-9}$	$.245 \times 10^{-11}$
0.93	$.374 \times 10^{-7}$	$.152 \times 10^{-8}$	$.148 \times 10^{-8}$	$.102 \times 10^{-9}$	$.621 \times 10^{-10}$
0.96	$.184 \times 10^{-7}$	$.213 \times 10^{-8}$	$.219 \times 10^{-8}$	$.230 \times 10^{-10}$	$.381 \times 10^{-10}$
0.99	$.179 \times 10^{-7}$	$.276 \times 10^{-9}$	$.291 \times 10^{-9}$	$.102 \times 10^{-10}$	$.510 \times 10^{-11}$

Table 2

Values of $\mathrm{D}^{(3)}$. (Knots as in 5.1)

	S_{I}	$\mathrm{Q}_{1,1}$	$\mathrm{Q}_{1,2}$	$\mathrm{Q}_{2.1}$	$\mathrm{Q}_{2,2}$
$\mathrm{D}^{(3)}$.130	$.285 \times 10^{-2}$	$.186 \times 10^{-2}$	$.921 \times 10^{-3}$	$.714 \times 10^{-4}$

Table 3

Values of $|\mathrm{Q}(\mathrm{x})-\mathrm{y}(\mathrm{x})|$. (Knots as in 5.2)

X	S_{I}	$\mathrm{Q}_{1,1}$	$\mathrm{Q}_{1,2}$	$\mathrm{Q}_{2,1}$	$\mathrm{Q}_{2,2}$
0.01	$.512 \times 10^{-9}$	$.252 \times 10^{-10}$	$.380 \times 10^{-10}$	$.227 \times 10^{-11}$	$.105 \times 10^{-10}$
0.05	$.287 \times 10^{-8}$	$.200 \times 10^{-8}$	$.253 \times 10^{-8}$	$.842 \times 10^{-9}$	$.315 \times 10^{-9}$
0.1	$.804 \times 10^{-7}$	$.858 \times 10^{-8}$	$.139 \times 10^{-7}$	$.341 \times 10^{-8}$	$.194 \times 10^{-8}$
0.17	$.297 \times 10^{-6}$	$.182 \times 10^{-7}$	$.577 \times 10^{-8}$	$.172 \times 10^{-7}$	$.484 \times 10^{-8}$
0.35	$.589 \times 10^{-6}$	$.293 \times 10^{-6}$	$.352 \times 10^{-6}$	$.314 \times 10^{-7}$	$.277 \times 10^{-7}$
0.5	$.272 \times 10^{-5}$	$.758 \times 10^{-6}$	$.960 \times 10^{-6}$	$.325 \times 10^{-6}$	$.122 \times 10^{-6}$
0.6	$.325 \times 10^{-5}$	$.964 \times 10^{-6}$	$.836 \times 10^{-6}$	$.413 \times 10^{-8}$	$.123 \times 10^{-6}$
0.8	$.721 \times 10^{-5}$	$.233 \times 10^{-5}$	$.229 \times 10^{-5}$	$.194 \times 10^{-6}$	$.154 \times 10^{-6}$
0.9	$.207 \times 10^{-4}$	$.220 \times 10^{-5}$	$.212 \times 10^{-5}$	$.227 \times 10^{-6}$	$.150 \times 10^{-6}$

Table 4

Values of $D^{(3)}$. (Knots as in 5.2)

	S_{I}	$\mathrm{Q}_{1,1}$	$\mathrm{Q}_{1,2}$	$\mathrm{Q}_{2,1}$	$\mathrm{Q}_{2,2}$
$\mathrm{D}^{(3)}$.484	$.433 \times 10^{-1}$	$.324 \times 10^{-1}$	$.272 \times 10^{-1}$	$.423 \times 10^{-2}$

R E F ERENCES

1. BEHFOROOZ, G.H. and PAPAMICHAEL, N. 1979 End conditions for cubic spline interpolation. J. Inst. Maths Applies . 23, 355-366.
2. BEHFOROOZ, G.H. and PAPAMICHAEL, N, 1980 End conditions for interpolatory cubic splines with unequally spaced knots. J. Comp. Appl. Maths (to appear).
3. BEHFOROOZ, G.H., PAPAMICHAEL, N. and WORSEY, A.J. 1979

A class of piecewise cubic interpolatory polynomials. J. Inst. Maths Applies, (to appear).
4. BIRKHOFF, G. and PRIVER, A. 1967 Hermite interpolation errors for derivatives. J. Math. Phys. 46, $440-447$.
5. CLENSHAW, C.W. and NEGUS, B. 1978 The cubic X-spline and its application to interpolation. J. Inst. Maths Applies. 22 109-119.
6. HALL, C.A. 1968 On error bounds for spline interpolation. J. Approx. Theory 1, 209-218.
7. LUCAS, T.R. 1974 Error bounds for interpolating cubic splines under various end conditions. SIAM J. Numer.Anal. 11, 569-584.

NOT TO BE
 REMOVED
 FROM THE LIBRARY

XB 23564032

