Understanding the Interplay between the Logical and
Structural Coupling of Software Classes

Nemitari Ajienka!, Andrea Capiluppil

% Brunel University London
Kingston Lane, Uzbridge
Middlesex, UBS8 SPH

Abstract

During the lifetime of object-Oriented (OO) software systems, new classes
are added to increase functionality, also increasing the inter-dependencies
between classes. Logical coupling depicts the change dependencies between
classes, while structural coupling measures source code dependencies induced
via the system architecture. The relationship or dependency between logical
and structural coupling have been debated in the past, but no large study
has confirmed yet their interplay.

In this study, we have analysed 79 open-source software projects of differ-
ent sizes to investigate the interplay between the two types of coupling. First,
we quantified the overlapping or intersection of structural and logical class
dependencies. Second, we statistically computed the correlation between the
strengths of logical and structural dependencies. Third, we propose a simple
technique to determine the stability of OO software systems, by clustering
the pairs of classes as “stable” or “unstable”, based on their co-change pattern.

The results from our statistical analysis show that although there is no
strong evidence of a linear correlation between the strengths of the coupling
types, there is substantial evidence to conclude that structurally coupled
class pairs usually include logical dependencies. However, not all co-changed
class pairs are also linked by structural dependencies. Finally, we identified
that only a low proportion of structural coupling shows excessive instability
in the studied OSS projects.

Email addresses: nemitari.ajienka@brunel.ac.uk (Nemitari Ajienka),
andrea.capiluppi@brunel.ac.uk (Andrea Capiluppi)

Preprint submitted to Journal of Systems and Software October 20, 2017

Keywords: object-oriented (OO), open-source software (OSS), references,
structural coupling, co-changed structural dependencies (CSD), coupled
logical dependencies (CLD)

1. Introduction

Various software dependency measures have been proposed over the years.
Logical coupling is a measure of the degree to which two or more classes
change together or co-evolve, based on the historical data of modifications;
while structural coupling is a measure of the structural or source code depen-
dencies between software classes. For example, the number of method calls
between object-oriented (OO) software classes.

Establishing that two software entities co-evolve (i.e., they are logically
coupled) means that developers consider them as logically related: for ex-
ample, a change in one entity causes a change to be made to another entity.
This is also known as the cause — effect rule.

On the other hand, structural coupling is the degree of interdependence
between software modules, and it indicates how closely connected two mod-
ules are at the source code level. Henderson-Sellers et al. [1| state that
strong coupling complicates a system since a module is harder to understand,
change, or correct by itself, if it is highly interrelated with other modules.
“Software complexity can be reduced by designing systems with the weakest
possible coupling between modules" [1] because “every time a supplier class
changes, its clients are also likely to change” [2].

In earlier studies, co-evolution of OO software classes has been studied in
relation to structural coupling [2, 3, 4, 5| and software quality |6, 7|. Some
of these studies showed that most of the structurally coupled related entities
in software projects do not co-evolve, and the other way round |2, 4, 5].

Figure 1 illustrates what has been proposed in the past, and for a smaller
subset of classes: analysing the direction of the relationship between co-
evolution and structural coupling for 12 Linux kernel modules [3], Yu identi-
fied a linear and directional relationship between the co-evolution and struc-
tural coupling. According to that work, structural coupling does not bring
about independent evolution: if software classes are evolved independently,
there will be no correlation between structural coupling and co-evolution
data. In addition, according to Oliva and Gerosa [5], controlling coupling
levels in practice is still challenging. One of the reasons is that the extent to
which changes propagate via structural dependencies is still not clear.

Evolutionary dependencies

Independent Co-evolution
evolution

Structural ‘

coupling

Figure 1: The relationships among evolutionary dependencies, structural coupling and
co-evolution [3] of Linux Kernel Modules.

In this context and state of knowledge, this paper analyses a sample of
79 OSS projects (written in Java) in order to add evidence to the discussion
on the causes of co-evolution of classes with a large sample of a variety of
software projects and to work on the gaps identified in previous research
3, 2|.

This work is articulated as follows: in Section 2 we briefly explain the
types of software dependencies (coupling) under study. For the sake of repli-
cability, in Section 3 we describe the steps taken to carry out this study, with
a working example using a software project. Sections 4 and 5 highlight the
findings of our study, followed by a discussion on the importance of these
findings. In Section 6 we summarise the related work, and put ours into con-
text. Section 7 highlights the threats to validity and finally, our conclusions
and areas for further research are presented in Section 8.

2. Object-Oriented Software Dependencies

A dependency is a semantic relationship that indicates that a client el-
ement may be affected by changes performed in a supplier element [2]. In
the next Subsections, we introduce structural and logical dependencies and
discuss how they can be operationalised in the context of OO programming.

2.1. Logical Coupling

According to Wiese et al., "change coupling is a phenomenon associ-
ated with recurrent co-changes found in the software evolution or change his-
tory" [8]. Therefore, the logical coupling of any two classes is based on their
evolution history, and is a measure of the observation that the two classes al-
ways co-evolve or change together[9, 10, 11, 12]. They are commonly treated
as association rules [6], which means that when X is changed, X, is also
changed [2]. Furthermore, X1 and X2 are called the antecedent (i.e., left-
hand-side, LHS) and the consequent (i.e., right-hand-side, RHS) of the rule,
respectively. For example, the rule {A, B}— C found in the sales data of a
supermarket indicates that a customer who buys A and B together, is also
likely to buy C |2].

Two classes change at the same time when changes in one class A are
made in response to a change in another class B. Kagdi et al. [13] state that
logical coupling captures the extent to which software artifacts co-evolve and
this information is derived by analysing patterns, relationships and relevant
information of source code changes mined from multiple versions (of software
systems) in software repositories (e.g., Subversion and Bugzilla).

According to Lanza et al. [14] it is useful to study logical coupling because
it can reveal dependencies that are not revealed by analyzing only the source
code [3]. This sort of dependencies are the most troublesome and are prone
to represent sources of bugs in software projects. Zimmermann et al. [15]
represents logical dependency using two metrics: support and confidence.

Operationalisation. Confidence and support are two well-known metrics used
in association rule learning: the support value counts the number of revisions
where two software artifacts (i.e., classes) were changed together, in other
words the probability of finding both the antecedent and consequent in the set
of revisions. For example, in Figure 2, class A was modified in 3 transactions
(where 3 is the "Transaction Count” [3]). Out of these 3 transactions, 2
also included changes to the class C. Therefore, the support for the logical
dependency A — C will be 2. By its own nature, support is a symmetric
metric, so the A — C dependency also implies A < C.

In this paper, the degree or strength of the logical dependency between
classes is evaluated using the confidence metric. By doing so, we evaluated
the significance of the association rules between classes [2]|, and across the
lifespan of a software project (i.e., taking all versions of the software system
into consideration).

Revision Co-change

\ o

Ajava & o— 4
B.java
Cjava — $. *—
D.java 5
Time
—

Figure 2: Association rule example for confidence and support metrics

As per its definition, the confidence! value of a dependency link normal-
izes the support value by the total number of changes of the causal class,
or the antecedent of the association rule. Numerically, it is the ratio of the
support count to transaction count: from Figure 2, the confidence value for
the association rule A — C' (which states that C depends on A) will have
a high confidence value of 2/3 = 0.67. In contrast, the rule C' — A (which
states that A depends on C) has a lower confidence value of 2/4 = 0.5. In
other words, the confidence is directional, and determines the strength of the
consequence of a given (directional) logical dependency.

Finally, logical coupling is directional, thus A — C' (changes made to
class A resulted in changes in C) and C' — A (changes in C caused changes
in A) will have different meanings. As a result, the confidence for these two
cause — effect rules can be different.

2.2. Structural Coupling

According to Yu [3], structural coupling is also directional. Geipel and
Schweitzer [4] state that there is a directed dependency between two classes
A and B if A depends on B in such a way that A is not operational without
module B. In the case of Java, this means that A would not compile in the
absence of B. Furthermore, the relationships “class A depends on class B”
and “class B depends on class A” have different effects on software evolution.

LAlso called the support ratio [3|. In this study we only adopt the confidence metric
which is a measure of the degree to which a change in one class also leads to a change in
another class

If A depends on B, changes made to B can lead to changes to A, but not
the other way round [4]. Therefore, we need to explicitly define the direction
of the dependency relationship between these two classes. We adapt Yu’s 3]
representation of directional coupling: a single directional solid arrow from
class A to class B denotes that class B is directionally coupled to class A. This
is depicted as A—B. We remark that the relation “class B is directionally
coupled to class A” is denoted by an arrow from class A to class B. This is
because B is dependent on A; a change to class A can affect class B.

Coupling is derived from the number of referring variables and functions
of other modules. There are several types of relationships among source code
entities (e.g. method calls, class access, or class inheritance). The constructs
of most programming languages such as C, C++, and Java can induce such
type of relationships [16]. A method calls another method, a class extends
another class, or a class aggregates objects of another class - all of these call
relationships create a direct dependency between two classes. These static
structural code dependencies are most frequently used when analyzing or
leveraging coupling [17].

Operationalisation. In this study, the strength of the structural coupling of
classes is measured by the number of references from the caller class to
the called class. Oliva and Gerosa measured structural coupling using the
Message Passing Coupling (MPC) metric which is the number of external
operation calls, i.e. the number of calls from methods of a class to opera-
tions of other classes. Yu [3] represented the reference (“structural”) coupling
between classes with the dependency path count between two classes (“de-
pendency path is a path from the definition of the function in component C1
to the use of the function in component C2” [3]). Accordingly, the strength
of the structural coupling from the caller C2 to the called class C1 in Figure
3 is 4 (2 for function call func(int), 2 for global variable gv) [3].

3. Research Methodology

In this section, we present the research goals and questions to be an-
swered (3.1), we describe the inclusion or selection criteria for the case stud-
ies (3.2), data collection (3.3). Additionally, we outline the steps performed
in the methodology with the use of worked examples: identifying the class
coupling types (3.4); evaluating their intersection (3.5); performing the sta-
tistical tests (3.6); and measuring the structural stability of structural links
between classes (3.7).

Ci c2
> if -{gv:.-a} W=,
gv =100; =
=gy,
int func (int i]'.-_--_ - &
{ i S » y = func(b);
y 1% z = funcle);

Figure 3: Structural Dependency Path Between Two OO Software Classes — Caller (C2)
using a function and variable defined in Called (C1) [3]

3.1. Research Goals and Questions

This work is based on the three goals with related motivations presented
in Table 1:

G1: to investigate the interplay between logical and structural coupling
by identifying the proportion of established logical dependencies that involve
structurally related elements and the actual proportion of structural depen-
dencies that effectively lead to logical dependencies [2];

G2: to investigate whether the evolutionary coupling strength between
classes and their structural coupling strength co-vary; and

(G3: to cluster the pairs of classes as “stable” or “unstable”, based on their
frequency of co-change. How the “stability” of a pair of classes was evaluated
is discussed in Section 3.7.

Research questions were derived from each goal, and testable hypothe-
ses formulated, as summarised in Table 1.

With respect to related work, our study is the largest attempt so far (in
terms of projects examined) to evaluate the relationship between structural
and logical coupling. Also, it is the first work that examines all the revi-
sions of the sampled projects, instead of only one snapshot of their evolution
(typically, the last one [4]).

Establishing whether there is an interplay between logical and structural
coupling has several applications in software engineering, including:

A1l Prediction of software changes: Geipel and Schweitzer [4] state that
the question about the causes of change propagation has been over-
looked by many researchers in favor of a predictive approach. As such,

Table 1: Research Goals and Questions

Goals | Research Ques- | Motivation Null Hypothesis Hy
tions

Gl [Q1l] Is there a | While it has been identified that
directional rela- | structural coupling leads to logical
tionship between | coupling on a small sample of arti-
structural and | facts [3], others have identified that
logical coupling? very often most of the logical depen-

dencies are not caused by structural
coupling and vice versa [2, 5, 4].
These varying results need verifica-
tion on a distinct sample of projects
of different sizes.

G2 Q2] Is there a | The strength of the generalizeabil- | No linear relation-
linear relationship | ity of Yu’s study [3] needs further | ship between the
between logical | improvement with a larger sample. | strengths of logical
and structural | Furthermore, the chosen a@ = 0.1 | and structural class
coupling? might have resulted in a type I er- | dependencies in OO

ror — mistakenly rejecting a null hy- | software.
pothesis.

G3 Q3| What is the | This research goal is exploratory.

proportion of sta-
ble pairs of classes
in a software sys-
tem?

Taking cues from the structural en-
gineering discipline, the assertion is
that as with the renovation of build-
ing structures, where maintenance
happens for a period of time [18, 19],
adding a stable coupling link be-
tween two classes should ideally only
require little or no co-changes in the
first half of their coupling life-cycle.

these causes are implicitly contained in a prediction function or as input
to a machine learning algorithm as done in prior studies on software
change prediction [6, 20, 21, 22, 23]. A strong relationship between co-
evolution of classes and structural coupling provides statistical support
for these models and predictions, thus helping to achieve more focused
software maintenance.

A2 Co-change inferred by structural coupling: understanding the in-
fluence of structural coupling on co-change can also help in predicting
the co-change of software classes based on coupling data, i.e., which
classes are likely to be changed based on the internal structure of a
software system.

A3 Focusing maintenance effort: If a majority of the classes in an object-
oriented software system are not structurally linked but co-change fre-
quently, this will be an indication of the need to investigate other im-
plicit [24] forms of coupling (e.g., semantic or conceptual coupling)
[2, 25] which may be propagating ripple effects of changes across classes
to reduce maintenance efforts.

A4 Focusing testing effort: the relationship between structural and log-
ical coupling would also help in software testing. When changes are
made to one class, other classes with strong co-change or structural
coupling to that class should also be tested. This is to ensure that the
changes in one class do not introduce regression faults in other classes.

3.2. Case Study

The selection criteria for our sample of projects were based on the follow-
ing considerations:

1. Open source projects which (i) provide public access to source code and
(ii) use a version control system that allows us to extract the historical
information [26];

2. Implemented in Java to allow the extraction of the structural coupling
between classes, since structural coupling varies between languages [2];

3. Randomly sampled projects;

4. Multiple revisions/commits (> 20 revisions in order to exclude trivial

projects), and a relatively long history log. Prior research [27| shows
that 75% of OSS projects on Github have over 20 commits and 90%

have less than 50 commits. We selected projects with above 20 com-
mits to have a mix of projects with varying levels of activity in our
sample, improve generalizeabiliy of the study as well as extract sub-
stantial change history to understand logical coupling;

5. A large group of users.

3.3. Empirical Data collection

In the next Subsections, we present how and what kind of data we col-
lected from the repositories of the studied sample of OO software projects.

3.3.1. Selection of a sample of OSS projects

Leveraging the FlossMole project, we used its latest available data dump
to determine the population of GoogleCode: a total of 2,593,222 projects are
listed in the November 2012 dump.? Given their language descriptions, we
extracted the subset of Java projects from that population, obtaining 49,459
Java projects. Each project in the subset was given a unique ID: using a 95%
confidence level, and a 5% confidence interval, a random sample of 380 IDs
were extracted, and linked to the Java projects’ names.

3.3.2. Storage of projects metadata and revisions

The first phase of this activity was centered on obtaining the metadata
(e.g, name of developers, date and time of changes, etc.) of each project in
the sample. The repository of each project was downloaded and stored, with
its metadata, using the CVSAnalY set of tools.> The metadata allowed us to
obtain the list of revisions for each class, and for the whole project, as well
as the development and revision logs [28]. Table 2 summarises the sample in
terms of number of stored classes and number of revisions per project (Q1
and Q3 represent the first and third quartiles of the distribution of values,
respectively).

The second phase was to get all the revisions of each project, from this
we could identify the trivial projects (with < 20 revisions) and exclude these
from the study. As a result, we ended up with 79 non-trivial Java open-
source software projects. Since we also want to calculate the structural and
logical coupling between Java classes, in this study, we have excluded revi-
sions without files with the .java extension as our focus is on classes written

2Data dump is available at http://flossdata.syr.edu/data/gc/2012/2012-Nov/
3http://metricsgrimoire.github.io/CVSAnalY /

10

in Java. We have also filtered out revisions with over 10 files [13] to reduce
noise in logical coupling measurement and mitigate the influence of factors
such as updating licence information in all classes which are not related to
changes in source code. Filtering non-structural change couplings reduces
the amount of misleading change couplings and, thus, reduces the effort to
investigate all change couplings [29].

Table 2: Summary of project sample in terms of number of class dependencies and revi-
sions.

Min. | Q1 | Median | Mean | Q3 Max.
Structural Dependencies | 13 75 | 252 675 714 6,594
Logical Dependencies | 26 394 | 1,648 21,640 | 10,441 | 529,590
Revisions | 21 36 | 56 117 111 769

3.4. Identifying class dependencies

In the following Subsections, we present how the class dependencies were
calculated with examples. We also present assumptions and decisions made
during this task.

3.4.1. Logical Coupling

For each project we extracted the number of revisions, based on the tables
built by CVSAnalY 4. This task was a pure SQL extraction task, so it does
not pose a time issue. For all revisions, we extracted the list of class pairs
that were co-evolving in that revision and stored this data in a .CSV file. An
example of the co-evolution data is provided in Table 3, detailing an excerpt
of the Java classes that co-evolve in the UrSQL project in its 4*" revision.
The first column shows the project name, the third and fourth columns show
classes that were co-changed, through association rules.

Using the arules ° library in the R % environment for association rule
mining, we were able to compute the Confidence metric for each pair of
classes with an established logical dependency (confidence > 0).

4https://sites.google.com /site/arnamoyswebsite / Welcome /updates-

news/howtoinstallandruncvsanaly2inubuntul110
Shttps://cran.r-project.org/web/packages/arules/index.html
Shttps://www.r-project.org/

11

Table 3: Co-evolution data for Project UrSQL (excerpt)

Project Name | Rev | class A | class B

UrSQL 4 UDO Filio

UrSQL 4 UDO Main

UrSQL 4 UDO UrSQLController
UrSQL 4 UDO UrSQLEntity
UrSQL 4 UDO UrSQLEntry
UrSQL 4 Filio UDO

UrSQL 4 Filio Main

UrSQL 4 Filio UrSQLController

3.4.2. Structural Coupling

While logical coupling is based on a time interval, structural coupling
is defined for a specific time instant |2, 4|. Every snapshot of each project
was parsed to extract the number of references between "caller” and "called”
classes, the number of methods making the calls from the “caller” to and
the number of methods being called in the "called” classes via the UNDER-
STAND tool “. The references or calls from one class to another are and
are used as a proxy for the structural relationship or coupling types, e.g.,
inheritance relationships [3].

Among the goals of this study is to understand the impact of logical
coupling on structural coupling and vice versa. Therefore, we computed
and used the number of references between any pair of coupled classes per
project in the latest source code snapshot [4] in order to achieve this goal
and to mitigate the threat of a change in the number of references between
classes from one revision to another. Given that two coupled classes may
have been co-changed multiple times in the past. Similar methodology is
adopted by Geipel and Schweitzer who stated that structural dependencies
between two classes somewhat stable from the creation of the younger class
until the removal of one of the classes from an OO software. This process
was automated using a Shell script we developed. As an example, Table 4
shows the number of operational calls between two Java classes (UrSQLCon-
troller.java and UrSQLEntity.java) in the UrSQL project. The number of
operational calls changes after two revisions as shown in column 5 and is sta-

Thttps://scitools.com/

12

ble during the last revisions shown in column 2; as at the time of extracting
the data for this study.

Table 4: Coupling data for Project UrSQL (excerpt)

Name | Rev | Caller Called References
UrSQL | 1 UrSQLController | UrSQLEntity | 3

UrSQL | 2 UrSQLController | UrSQLEntity | 3

UrSQL | 3 UrSQLController | UrSQLEntity | 15

UrSQL | 4 UrSQLController | UrSQLEntity | 15

UrSQL | 5 UrSQLController | UrSQLEntity | 15

UrSQL | 6 UrSQLController | UrSQLEntity | 15

UrSQL | 7 UrSQLController | UrSQLEntity | 15

3.5. Evaluating the intersection of sets (RQ1)

Once pair-wise structural and logical dependencies were identified and
the associated coupling values were calculated, we then built a spreadsheet
per project based on the data with the following columns; LHS (antecedent),
RHS (consequent), references, and confidence.

With this, we could start investigating our research questions. Firstly, we
identify the distinct structurally dependent class pairs from the structural
coupling data, as well as the distinct change dependent pairs from the co-
evolution data.

Using a Shell script we developed, we could parse the data and identify
the proportion of structural dependencies that involved non-logical depen-
dencies; the proportion of logical dependencies that involved non-structural
dependencies, and; the intersection set of pairs of classes that are both struc-
turally and logically related.

3.6. Statistical tests — Spearman’s Correlation (RQ2)

This Section describes the computation of statistical tests for RQ2. The
intersection of coupling sets (from 3.5) is used to evaluate the relationship
between the coupling types. All the values of the logical coupling strength
(i.e., the confidence metrics); and all the values of the structural coupling
strength (i.e., the number of references between classes), are pulled together,
per pair of classes, per project. Given a project, we created two vectors, one
with the values of ‘number of references’ between classes; the other with all

13

the values of co-change confidence between classes. The null hypothesis H
to be tested is as follows:

e Hy: No linear relationship between the strengths of logical and structural
class dependencies in OO software.

The correlation between the two vectors is evaluated using the Spear-
man’s rank correlation coefficient [3]. Spearman’s rank correlation, a non-
parametric test was chosen because it is unlikely that either the structural
or logical coupling values will have a normal distribution in each project.

Various correlation coefficients have been considered including Pearson,
Kendall and Spearman. However, for Pearson’s to be valid the data has to
follow a normal distribution [3, 30| (the mean, median and mode have to
be the same) while Kendall’s tau is used in small sample sizes and where
there are multiple values with the same score [31] and interpreted based on
the probability of concordant and discordant observations. Finally, p-values
derived from Kendall’s tau are more accurate with smaller sample sizes.

For all the projects studied, we reject the null hypothesis at the 95%
confidence level. In other words, if the rank correlation coefficient proves
to be statistically significant at the a <= 0.05 level, we will reject the null
hypothesis and fail to reject the alternative hypothesis Hy: There is a linear
relationship between the logical coupling and structural coupling of OO soft-
ware classes. The results derived for all projects are exposed in Section 4.

One of the threats to the statistical validity of Yu’s study [3] is the selec-
tion of the significance level. In that study, the chosen o = 0.1 which might
have resulted in a type I error — mistakenly rejecting a null hypothesis. To
reduce this threat the plan for future work included increasing the confidence
level to 95% (reducing the a value to 0.05) for more accuracy which we have
done in this study to mitigate this threat.

3.7. Identifying stability level of structural links (RQS3)

In order to answer research question Q3 from Table 1 above, we need
to identify (i) which pairs of classes are structurally coupled, (ii) how many
times they co-changed (as depicted in Figure 3) and (iii) assign a level of
stability to each pair.

As an example, for two classes A and B that are structurally and logi-
cally coupled we identified their level of structural stability by means of the
following steps:

14

e we counted the number of revisions when the pair shows a structural
link, and we named it the life cycle of that link, and for that pair;

e we divided this life cycle in two, so to obtain two halves of the life cycle;

e we identified in which half the pair also showed a co-change. Only
the co-changes relating to the structural links between the classes are
considered, i.e., this co-change affects the variable gv or the function
func() or both as in Figure 3;

e we made a decision on the stability of a class pair based on the resulting
co-change pattern.

This procedure is visually summarised in Figure 4. The class pair A —
B is structurally coupled (shown by the z symbols) for 6 revisions (its life
cycle) and co-changed (shown by the o symbols) in four revisions, three in
the first half and once in the second half. It is noteworthy that this life cycle
or total number of revisions may vary depending on the classes involved. In
addition, this is an exploratory study, thus we carried out a median split
[32] on the life cycle into two equal halves where possible to mitigate bias
in either direction of the split in the absence of a parametric model. The
median split procedure has been frequently used in prior research [33] to
convert continuous variables into categorical variables for further analyses
and interpretation.

This is to enable us investigate homogeneous portions of the life cycle of
dependencies in terms of number of revisions across the splits [34] using the
standard held-out (HO) splitting method (splitting data into two halves for
empirical evaluation) [35]. Using a different split for example one quarter
on one hand and three quarter on the other hand provides a higher chance
that the results will be skewed the results in one direction. The chance of
having minimal levels of maintenance activity within the one quarter split
will be higher and will result in a large number of either unstable pairs or
static stable pairs.

3.7.1. Drawing Scenarios of Stability
Using Figure 4 as a visual example, we identified the following 5 scenarios
(also pictorially drawn in Figure 5):

1. Static stable pairs: this set is composed of all the pairs of classes that
indeed have a coupling link between them, but they do not co-evolve.

15

Logical Mid-point

Coupling :
(Co-change) Revision
Structural
0 0 0 0 Coupling
X X X X X X
|] L |
T | ' | | 1
1 2 3 : 4 5 6
Structural \ ll)
Coupling Life | : |
Cycle for Class . Second Half
Pair C1 C2 First Half
Time
—

Figure 4: Evaluating the structural stability for a pair of classes, using structural coupling
(x) and co-change (o)

This is a common scenario for software projects, so our contribution is
to clarify its relevance in a large pool of projects.

2. Stable pairs: the pairs in this scenario only co-change in the first half
of the life cycle. This points to the classes that need maintenance in a
limited number of revisions, after establishing a link between them.

3. Partially stable pairs: the pairs in this scenario are co-changed in both
halves, but with a majority of the co-changes in the first half. This is
an interesting scenario and is worth more investigation, whereby the
pair of classes require frequent maintenance. While this scenario points
to more maintenance needed into these classes, overall we still cluster
them in the somewhat structurally stable class pairs. The majority of
this further maintenance is needed for a limited period.

4. Partially unstable pairs: the pairs in this subset are either equally co-
changed in both halves, or with a majority of the co-changes in the
second half. This points to more maintenance needed, and not only
early on: even after having established the structural link, effort is still
needed later on in the life cycle.

5. Unstable pairs: the class pairs in this scenario are co-changed only

16

in the second half of their life cycle. Changes to the structural link
between these classes materialise not when a coupling link is established
between them but only in a future moment.

L L o 000
N TN
(1) [4)
N N

S X X X X X X S X X X X X X

L oo L L oo
R N/

S X X X X X X S X X X X X X

L ooo o

S X X X X X X

Figure 5: Examples of the 5 stability scenarios. (KEY: L = Logical Coupling; S =
Structural Coupling)

We argue that scenarios 1, 2 and 3 jointly represent the subset of stable
(to a various degree) pairs in a system. Conversely, scenarios 4 and 5 can
be linked to an overall instability of a pair of classes. The scenarios, and the
evaluation of their stability, can be used to investigate the quality of software
systems and their architecture. For example, a poorly designed system with
tightly coupled classes will require frequent maintenance to a majority of the
coupled classes given a new requirement [1].

4. Results

Following the methodology outlined above, this Section presents the re-
sults of the three analyses, as performed on the selected projects. The aim
is to answer the three research questions outlined in Table 1.

4.1. RQ1. Is there a «directionaly relationship between structural and logical
coupling?

To answer this question, the aim was to get a view of the overlapping or
intersection set of structural and logical class dependencies in OO software
projects. Once the two sets of coupling are computed per project, the inter-
section set of class dependencies represents the proportion of pairs of classes

17

that are both logically and structurally related. Depending on the size of the
two sets, the Venn diagram could be far from symmetric.

From Table B.7 in Appendix B we know, for example, that the project
with ID=31 has a proportion of 68% of its structural class dependencies
including logical dependencies (as shown in the 6" column). On the other
hand, only 21% of the pairs that co-changed include structural dependencies
(number of operational calls or references > 0), in the same project. This is
a recurring pattern: in a majority (81%) of the projects, we have evidence to
indicate that very often, structurally related classes involve logically related
classes (64 of 79 projects).

In 5 of these projects, all the structural dependencies are reflected into
logical dependencies. In both Venn diagrams (left and right) in Figure 6, the
smaller circle represents the set of structural dependencies while the larger
circle represents the set of logical dependencies.

Using the Venn diagram on the left (weighted) in Figure 6, all the coupled
pairs of classes in the jbandwidthlog project (project ID = 97) need also co-
changes. On the flip side, not all the pairs that co-change are structurally
coupled.

Figure 6: Venn Diagrams (weighted) showing the two sets of coupling in two scenarios:
project ID=97 (left) and project ID=69 (right)

The second most common scenario identified in the results is illustrated
using the Venn diagram in Figure 6 (right), showing the guitarjava project
(project ID = 69). A subset of pairs of coupled classes do not need co-change,
while the majority of the others still do. Again, in this project the majority
of its other co-changes are not conducive of structural coupling.

18

On the other hand, a majority of the projects show evidence to indi-
cate that very often, logically related classes do not involve structurally cou-
pled classes. In a study on the relationship between logical and structural
coupling, Oliva and Gerosa classified the logical coupling measurements as
follows: 0 - 0.33 (low), 0.33 - 0.66 (medium), 0.66 - 1.0 (high) [2].

Applying a similar categorization on the percentages in Table B.7 (in
Appendix B), allows us to infer that the proportion of logically related classes
that involve structurally related classes OO software is relatively low ® in all
projects studied, ranging from 1% to 44%. With over half (63) of the 79
studied projects with 20% or below.

This confirms the directional relationship (structural coupling — co-
evolution of classes) between structural and logical coupling, as identified
by Yu [3] and shown in Figure 1. Therefore, to answer RQ1, we conclude
that there is a directional relationship between structural and logical coupling
in OO software, and for the majority of projects in our studied sample.

Figure 7 shows two summary box-plots with the following percentages:

Structural n Logical

CSD(%) = (1)

Structural

Structural n Logical
CLD(%) = Logical)

The Co-changed Structural Dependencies ratio (CSD) is the percentage
of structurally coupled pairs that have also been co-changed with respect
to all the structurally coupled pairs per project. Structural implies the set
of class pairs with source code dependencies between them, while Logical
implies the set of classes observed to have co-changed in the past.

The Coupled Logical Dependencies ratio (CLD) is a similar percentage,
but evaluated with the co-change sets. The two box plots are exemplary
of a common pattern: the median CSD ratio is around 80%, meaning that,
for all the projects, most of the structurally coupled pairs also co-evolve.
On the other side, the median CLD shows that, for most projects, very few
co-changing pairs are also coupled.

Around 80% of structural class dependencies include logical depen-
dencies but not vice versa

8compared to the proportion of structural dependencies belonging to the intersection

set

19

cLD o0

CsD } 4{

T T T T T
0 20 40 60 80 100 120

Figure 7: CLD and CSD Percentages per OSS Project (KEY: CSD = Co-changed Struc-
tural Dependencies; CLD = Coupled Logical Dependencies)

4.2. RQ2. Is there a <«lineary relationship between structural and logical
coupling?

To answer this research question, we used the method outlined in Sec-
tion 3.4 and the statistical approach shown in Section 3.6. Using the Spear-
man’s rank correlation, we tested for the null hypothesis Hy: No linear rela-
tionship between the strengths of logical and structural class dependencies in
OO0 software (at a = 0.05).

Figure 8 shows the generic correlation outcomes, alongside the p-values
derived from the Spearman’s rank correlation analysis computation. As vis-
ible, there is a significant correlation (i.e., p-value <= 0.05) in less than 10
projects. In a handful of projects we observed an insignificant (i.e., p-value
> 0.05) negative Spearman’s correlation between the structural coupling
strength (i.e., references between classes) and their co-evolution strength
(i.e., confidence), while the majority of projects show an insignificant positive
correlation coefficient.

Differently from [3|, where a correlation (albeit at o <= 0.1) was indeed
found between references (i.e., structural coupling) and confidence (i.e., co-
change), we do not find a strong evidence to fail to reject Hy. The results of

20

the correlation tests are visible in Figure 8. The outcome of the Spearman’s
rank correlation was concluded considering the overall pool of projects, rather
than the single projects alone. This is because, we cannot generalize the
findings derived from a small subset or a minority of projects from our sample.

There is no significant correlation between structural and logical
class coupling strengths; they have minimal impacts on each other

0.8+

0.6

HUIJ”.‘]IJ]JMI[I[[L[[I“M[MH .

—0.4-

—0.64

—-0.8 T T T T T T T T T T T T T T T
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Figure 8: RQ2 - Spearman’s Rank Correlation (correlation results with p-values)

4.3. RQ3. What is the proportion of stable pairs of classes in a software
system?

To answer RQ3, we evaluate the overall structural stability of the studied
sample of projects by adopting the five stability scenarios from Section 3.7.
In the same section, we described the steps taken to achieve the structural
stability using an example pair of structurally and logically classes A and B.

Firstly, in this section, using the following projects; 2dTetris (ID=1),
monome-pages (ID=142) and fyllgen (ID=60) as examples, we briefly dis-
cuss class pairs that have been identified as belonging to each of the five
stability scenarios from these projects. In Table 5, we present a structural
class dependency per structural stability scenario alongside the number of
times the class pair have undergone co-changes in the first and second halves
of their structural coupling life cycle and discuss these further afterwards.

21

Table 5: Structural stability scenarios - worked example

Caller Called Stability # Coupling | 1st half | 2nd half
MidiPlayer Statistics Static sta- | 222 0 0
ble
NetGame Gamelmpl Stable 258 5 0
TetrisMainWindow| FieldGraphic Partially 120 3 2
stable
MIDITriggersPage | MonomeConfiguration Partially 249 13 14
unstable
GUI Family Unstable 49 0 7

. Static stable pairs: the class pair MidiPlayer.java and Statistics.java
are structurally linked but they never co-change.

. Stable pairs: NetGame.java and Gamelmpl.java only co-change in the
first half of their life cycle. These classes have only been co-changed
in 5 revisions of the 2dTetris project, and all in the first half of their
coupling life cycle.

. Partially stable pairs: the classes TetrisMainWindow.java and Field-
Graphic.java in the 2dTetris project belong to this scenario. The pair
were are co-changed in both halves of their structural coupling life cy-
cle, but with a majority of the co-changes in the first half.

. Partially unstable pairs: the classes MIDITriggersPage.java and Monome-

Configuration.java in the monome-pages project belong to this cate-
gory. The class pair equally co-changed in both halves of their struc-
tural life cycle but with a majority of the co-changes occurring in the
second half.

. Unstable pairs: GUljava and Family.java in the fyllgen project are
examples of structurally linked classes in this scenario. The classes are
co-changed only in the second half of their life cycle. Modifications
to these classes materialise not when an operational link is established
between them but only in a future moment.

Repeating the same analysis for all the projects, Appendix A shows the

percentages of pairs falling in each scenarios, per project (Table A.6). Figure
9 further summarises the overall sample of 79 studied OO software projects.

Box-plots are used for the 5 scenarios.
Looking at the box-plots in Figure 9:

22

e only around 10% of class pairs are unstable pairs. However, one project
in particular (fyllgen) contains 57% of unstable pairs of classes, al-
though it is an outlier.

e As a result of the many outliers, the median value in the “unstable”
scenario is significantly lower than the average.

e The “partially stable” and “partially unstable” clusters are more com-
pact than other clusters, and show less variability (around 8% and 10%,
respectively, on average).

e The percentages of stable and static-stable pairs show the higher vari-
ability, given the studied sample of projects.

e All the projects show more stable pairs than unstable apart from the
outlier project (fyllgen).

% unstable h }

% partially unstable «Dj }

% partially stable

% stable }—‘:lj }
% static stable 4:': }

T T T T
0 20 40 60 80 100

Figure 9: Summary of Structural Stability of Studied Sample of Projects

The studies systems in the sample show a larger set of stable pairs
of classes than unstable

23

5. Discussion

In this study, we have conducted a large scale empirical study on the (i)
linear relationship between the structural and logical dependencies of pairs
of Java classes (ii) existence or non-existence of a directional relationship
between structural and logical coupling [3] and (iii) overall evaluation of the
structural stability of OO software projects. Below we discuss the findings
reported, and put them in perspective for the software maintenance field.

5.1. Directional relationship between the structural and logical coupling of
00 software classes

Our results from analysing a different sample of OSS projects from a
different repository to the one studied by Geipel and Schweitzer [4] have
showed that the proportion of co-changed structural dependencies (CSD) are
always larger than the proportion of structurally coupled logical dependencies
(CLD) in open-source software projects. Similarly, they have identified that
the proportion of change dependencies is always larger than the proportion
of structural dependencies [5, 2.

The intersection of these two sets is particularly important: in 64 out of
the sample of 79 studied projects, between 60% and 100% of the structurally
coupled pairs co-change once or more. Differently from other research results,
that tend to highlight the 80-20 Pareto distribution in most of the metrics
on single software artifacts (complexity [36], defect density [37], number of
changes [38]), we have detected that pairs of structurally coupled classes do
not follow such distributions.

5.2. Linear relationship between the structural and logical coupling of OO
software classes

The results of the analysis of RQ2 are presented in Section 4. When using
a <= 0.1, Yu [3| found a correlation between the structural and the logical
coupling. On the contrary, using a <= 0.05, we have shown that there is no
correlation between the two: a stronger coupling between two classes is not
a predictor of the likelihood of more changes to that pair of classes. While
computing the correlation coefficients per project, the outputs also showed
that using o <= 0.1 will not have any effects on the results.

A reason for this could be the fact that software architectures change, a
certain class A may stop using features from another class B after a while or
the class B might be removed [4]. Ripple effects can also play a major role:

24

apart from the A — B link, one should consider all the links around the A
and B classes alone, as visible in Figure 10.

d

Figure 10: Effect of networks

Changes to the d, e or f classes, connected to A alone, can have ripple
effects on the A— B coupling link. Similarly, changes to g and h can influence
their link to B, and in turn the A— B link too. This effect was not investigated
in this paper, but it is likely to play a role in how the maintenance efforts
are linked to co-changes. Previous research [5] has shown that ripple effects
are propagated across the path of structural dependencies in OO software.

5.8. Object-Oriented Software Structural Stability

To achieve the final goal of this study, we finally investigated the impact
of time on the structural link between class pairs. We posit that after the
addition of a structural link between two classes, the need of co-change should
degrade over time. In doing so, we defined 5 levels of stability to define a
coupling link, from “statically” stable to unstable.

From the results gathered, a vast majority of the coupling links are stable
over time: once inserted they do not need major maintenance work. This
is in line with practitioners’ advice: software systems should be built with
low coupling and high cohesion to improve comprehension, reuse and main-
tenance [1].

The stability to changes of a software system draws a similar scenario
to structural engineering: too many interactions between components (i.e.,
coupling) affect maintenance (i.e., renovation) of a building [18] and should
be kept to a minimum. The types of renovations in the structural engineering
discipline are also similar to OO software co-changes (i.e., classes). Slaughter
[18] outlined the types of changes that can be expected over the long term
in buildings and these include: (i) change in functions (i.e., change in class

25

functionality [39, 40, 41]), and (ii) flow, or the movement within buildings
(i.e., change in the access scope and mode for any datum in software systems
[41, 42]). Finally, the nature of component interactions influence the flexi-
bility of building structures to the different maintenance types [18, 43, 44].

On the other hand, a clear definition of the instability (to changes) of
specific pairs of classes has evident benefits. The skewness of changes to
single classes is evident from past studies; in our work we posit that links
between classes should be considered too, since a small set of them requires
more maintenance than other parts.

5.4. Impact of Findings

Based on the findings of this study, we can infer that the co-evolution
of software classes are partly brought about by source code dependencies,
thus a directional relationship exists between the system architecture and
the co-evolution of software classes. It can also be inferred that since not all
the logical dependencies include structural dependencies, logical dependen-
cies could be related to other forms of software dependencies, for example
semantic coupling [25].

5.4.1. Semantic Coupling

According to Bavota et al. [45] “the peculiarity of the semantic coupling
measure allows it to better estimate the mental model of developers than the
other coupling measures. This is because, in several cases, the interactions
between classes are encapsulated in the source code vocabulary, and cannot
be easily derived by only looking at structural relationships, such as method
calls”.

Other researchers in the software evolution and dependency domain have
identified that semantic coupling metrics can outperform structural metrics
in identifying classes that might be impacted by a given change request [46]
and have combined semantic and logical coupling metrics in change impact
analysis [47, 48]. However, there is still the need to study the interplay
between semantic and logical coupling in OO software [2, 5, 49].

5.4.2. Co-Testing

In Section 1 we identified several application in software engineering based
on the interplay between structural coupling and co-evolution of OO software
classes. These include prediction of software changes; inferring co-evolution
from structural dependencies and; focusing testing effort. Our results have

26

shown that structural coupling in most cases will lead to co-evolution of
classes, therefore related classes need to be co-tested after modifications.

5.4.3. Dependency Management Tool-chain

According to Oliva and Gerosa “if the overlapping between structural and
logical coupling s large, then structural and logical dependencies can be used
interchangeably as input to dependency management methods and tools. On
the other hand, if the overlapping is actually small, then it would be necessary
to conceive and develop novel dependency management methods and tools that
incorporate both kinds of dependencies” [2|. Our results have supported the
fact that the overlapping between both types of dependencies is not large,
thus software management tools will need to draw insights from both types
of dependencies.

5.4.4. Co-change Prediction

Geipel and Schweitzer rightly state that any model that tries to infer
structural coupling from co-change data will produce a lot of false positives [4]
because the proportion of change dependencies is always larger than the pro-
portion of structural dependencies [5, 2]. On the other hand, Oliva and
Gerosa state that using the structural coupling information between pairs
of classes to predict unplanned future co-changes is a more realistic objec-
tive [5]. Our contribution adds to these past works: the prediction objective
is realistic, but only with the support of other coupling metrics, e.g., seman-
tic coupling. This is because the overlapping between structural and logical
dependencies is not large.

Finally, Geipel and Schweitzer have stated that the question about the
causes of change propagation has been overlooked by many researches in fa-
vor of a predictive approach [4]. Our results and contributions on a large
sample of 79 OSS projects provide statistical backing for the results in a
study carried out by Abdeen et al. [50]. They performed inter-system and
intra-system change impact prediction using structural, semantic dependen-
cies and a combination of both and compared results. They identified that
using semantic coupling produces better recall values, in particular, in the
intra-system scenario. They state that an addition of semantic coupling data
adds extra information that deals with the complexity of structural depen-
dencies in the learning phase. On the other hand, they identified that using
structural dependencies or a combination of both types of dependencies out-
performs semantic dependencies. Our results have statistically shown the

27

absence of a linear correlation between the degree of the structural and log-
ical coupling of classes in OO software. In addition, Only a minority of the
co-changed classes can be accounted for by structural dependencies. There-
fore, as Abdeen et al. have shown; using structural dependency information
alone will not yield a high precision or recall in co-change prediction com-
pared to semantic coupling.

6. Related Work

Structural and logical (evolutionary) dependencies are at the core of soft-
ware engineering. In the following Section we are summarising the main re-
sults of related studies on both aspects separately, and when studied jointly.

6.1. Structural Coupling

Structural coupling (simply called “coupling” in some studies [3, 51, 52,
53]) is still considered to be an imprecise measure of software complexity [51].
Many researchers have empirically investigated and identified the relationship
between coupling and the external quality factors of software products such as
fault-proneness and maintenance |54, 45|, change impact analysis [13, 46, 55,
56], re-engineering, reuse, change propagation, and clone management [45].

These studies proposed various structural dependency metrics which add
to the large number of metrics that already exist. Various attempts have
been made to address this problem by developing frameworks for coupling
measures to generate a consensus in the software engineering community (i.e.,
defining proper measures for specific problems) [57, 58, 59].

6.2. Logical Coupling

In comparison to the broad research on structural coupling, the study of
logical coupling, evolutionary or change dependencies [3, 2, 6] has just begun
a few years ago because of the advances in data mining techniques [3] used
to extract co-evolution data. However, despite its short history, there have
been several interesting studies published with promising results.

Ying et al. [20] proposed an approach to predict source code changes by
mining change history of software systems. Zimmermann et al.[6] applied
data mining to version histories in order to guide programmers along related
changes using the idea that “Programmers who changed these functions also
changed...." [6]. Given a set of existing changes, the mined association rules
1) suggest and predict likely further changes, 2) show up item coupling that

28

is undetectable by program analysis, and 3) can prevent errors due to incom-
plete changes.

6.3. The Link Between Structural and Logical Coupling

For most of the studies described in Subsection 6.1 and 6.2, the study of ei-
ther structural coupling or co-evolution of classes was done separately, at the
source code level (coupling), or based on CVS (Concurrent Versions System)
release history data (co-evolution) which reveals the evolutionary dependen-
cies between software entities [10]. Differently from previous studies, we have
empirically explored the direct influence of structural coupling on logical cou-
pling and vice versa in different ways: the correlation between the structural
and logical coupling strengths between classes and the overlapping of the cou-
pling types at the class level of granularity. There have been several studies
that have been performed to understand the relationship between the co-
evolution of classes and their structural coupling [60, 61, 3, 15, 9, 2, 29, 4, 5],
and we discuss them according to their year of publication in ascending order.

Gall et al. |9] were the first to use co-evolution to represent structural
coupling. They developed a technique called CAESAR for detecting change
patterns and applied it to a large Telecommunication Switching System with
a 20-release history. Their approach identifies evolutionary dependencies
among modules (hidden in source code) in such a way that potential struc-
tural shortcomings can be identified and further examined, pointing to re-
structuring or re-engineering opportunities [9]).

Zimmermann et al. [15] analysed the revision history of individual classes
and functions to detect the fine-grained coupling (they noticed that classes
with strong co-evolution also have strong structural coupling but did not
provide empirical evidence). In this study, we adapt the metrics (i.e., sup-
port and confidence) as proposed by Zimmermann et al. [15] to measure the
strength of association rules in our sample. We have also shown that struc-
tural and logical coupling strengths have minimal influence on each other.

Fluri et al. [29] investigated the degree to which co-changes are caused
by structural changes (source code/structural coupling) and textual modi-
fications (e.g., software license updates and white-spaces between methods
spaces). A preliminary evaluation involving the compare plugin of Eclipse
showed that more than 30% of all change transactions did not include any
structural change. Therefore, more than 30% of all change transactions have
nothing to do with structural coupling. They also found that more than
50% of change transactions had at least one non-structural change. In this

29

study we have shown that structural dependencies will usually include logical
dependencies but not the other way round.

Yu [3] conducted a study on 12 Linux kernel modules, comparing 12 pairs
of co-evolution data and coupling data and based on findings — established
that a linear relationship exists between co-evolution and structural coupling
and thus proved that the dependencies between software classes induced via
the system architecture have noticeable effects on class co-evolution. Al-
though Yu studies only 12 Linux classes, the study is the most similar to
ours and we have studied a large sample of 79 OSS projects. As mentioned
in Section 3.6, in Yu’s study [3] one of the threats to the statistical validity
is the selection of the significance level. The chosen o = 0.1 might have
resulted in a type I error — mistakenly rejecting a null hypothesis. To reduce
this threat they planned to increase the confidence level to 95% (reducing
the « value to 0.05) for more accuracy which we have done in this study
and achieved different results. We also identified that using o = 0.1 will not
change our results or conclusions.

Oliva and Gerosa [2] analyse Java files of the first 150 thousand commits
from apache software repository (ASF) to investigate and quantify the pro-
portion of logical dependencies that involve non-structurally related elements
and the proportion of structural dependencies that involve non-logically re-
lated elements. They concluded that in 91% of the cases logical dependencies
involve non-structurally related files, most logical dependencies are not di-
rectly caused by structural dependencies and structural dependencies very
frequently involve files that are not logically related, hence there is a very
small intersection between sets of structural and logical dependencies. How-
ever, differently from our study: the number of structurally coupled pairs
of classes used in their study was computed based on an estimate. They
derived the number of coupled pairs of classes by multiplying the average
CBO (number of classes each class is structurally coupled to) by the distinct
number of classes and for this reason, they acknowledge that their results
are not really reliable. Oliva and Gerosa [2] also suggests extending their
study to other OSS repositories and in this study, the subject systems were
taken from the GoogleCode repository. Thus it is important that this study
is conducted using a different sample of projects as well as methodology.

Recent studies [2, 5, 4] have shown that it is possible that both structural
and logical coupling are caused by other types of software dependencies (e.g.,
conceptual dependencies). An example of conceptual dependencies between
class methods is presented in [13], where the conceptual coupling values for

30

the pair addShape () and removeShape() is 0.78. The conceptual coupling
value is between 0 and 1 and it is a symmetric metric, i.e., the values of
(addShape (), removeShape()) and (removeShape(), addShape()) are the
same. Both methods contain similar terms such as canvas, frameset, and
shape, that contribute to the conceptual similarity between these methods.

In a study including 16 OSS projects, using Pearson correlation, Beck
and Diehl [60] conducted pairwise correlations on various software coupling
concepts to identify whether pairs of classes coupled by one concept are also
coupled a second concept. Interestingly, they found no correlation between
structural and logical coupling as well as between semantic and logical cou-
pling. However, they found a correlation between semantic coupling and
code ownership for obvious reasons; latent semantic indexing (LSI) is an in-
formation retrieval technique adopted to identify the degree to which the
underlying meanings of words or terms in different documents (e.g., identi-
fiers and comments in classes) are related and as such the semantic coupling
of class pairs measured using LST [25, 47| is based on the presence of similar
terms present in source code and code ownership is based on the concept
that two classes are related if they share the same author; and author names
are embedded in the source code of both classes. They also identified a cor-
relation between ownership coupling and logical coupling. An explanation is
that both are based on the check-in information. In this study, we report the
results derived from a large sample of OSS projects using a different method-
ology to identify the interplay between structural and logical coupling of Java
classes.

Geipel and Schweitzer [4] analyze the link between structural dependency
and the co-change frequency of OO software classes. Their study takes into
consideration the latest code snapshot when extracting structural dependen-
cies. They argue that structural dependencies between two classes i and
j are somewhat stable from the creation of the younger class until the re-
moval of either i or j. This assumption did not hold for the projects studied
by [5]. In addition, according to their results, many structural dependencies
are never involved in change propagation and state that if most active 10%
of the dependencies are responsible for over 70% of the co-changes, as is the
case in Eclipse, then the co-change behaviour is hardly a mirror image of the
dependency structure.

Building on their previous work [2] and other studies [4, 21, 62|, Oliva and
Gerosa [5] conduct a study in which they investigate the influence of struc-
tural dependencies on change propagation in four Java open-source software

31

of different sizes in terms of number of classes. Their results indicated that
in general, it is more likely that two software artifacts will not co-change just
because one depends on the other. However, the rate with which an artifact
co-changes with another is higher when the former structurally depends on
the latter. This rate becomes higher if the dependencies are tracked down to
the low -level entities that are changed in commits. This implies, for instance,
that developers should be aware of dependencies on methods that are added
or changed, as these dependencies tend to propagate changes more often.

7. Threats To Validity

In this Section we present the threats to validity of this study, dividing
them in external, internal and construct threats.

Ezxternal validity. This paper presents the results of an empirical analysis
that should be applicable to all OSS projects. We cannot generalize our
findings on any other sample of OSS projects, or from any other repository.
Nonetheless, in order to make the findings from our study more generalisable
and representative of OSS projects, we have carried out our analysis on a large
random sample of projects, with different sizes as well as different number of
past changes.

Internal validity. We acknowledge the fact that support and confidence val-
ues of association rules could produce misleading results [2]. For example, if
a Java file A joint-changed 7 times with B and afterwards, A changed alone
for other 3 times (B did not change anymore). Although the confidence for
the logical coupling A — B is 0.7, it may be the case that B does not actually
depend on A anymore (e.g., after both files changed together for the 7th and
last time, B was removed from the system or the structural link from B to
A was removed).

In addition, our method for partitioning the structural coupling life cycle
of coupled pairs of classes when answering RQ3 is not efficient in some cases.
That is cases where a pair of classes are coupled in an odd number of revisions,
we use rounded up values to determine the number of revisions in the first
and second half. For example, only in three revisions. The mid-point should
be just after revision 1.5, thus there will be two (1.5 — 2) revisions on one
half and only one in the second half.

Another threat to the validity of the results for RQ3 is the migration
of projects between open source forges. We acknowledge that some of the

32

projects might have been migrated from one repository to another. This
could mean that parts of the structural life cycle of some class pairs are not
migrated. However, to mitigate this threat we examined the initial commit
logs of 10 projects in our studied sample (project ID = 8; 26; 28; 51; 56;
69; 97; 109; 152; and 172 in Table B.7) by means of the CVSAnaly tool and
parsed these to identify whether the developers’ commit messages indicate
any migrations from another repository.

Table C.8 in Appendix C shows the commit message found for the initial
commit in 10 OSS projects (randomly selected from out pool of 79). Out of
these projects, only one project (e.g., bluecove) shows a migration from the
SourceForge repository, and reflected in the history log.

Construct validity. The scope of our sample of projects was limited to open-
source software projects written in the Java programming language (object-
oriented), thus we encourage investigating projects written in other program-
ming languages and non-object-oriented software projects.

The Fisher Exact Test tests for the dependence between two categorical
variables. However we have not relied on that test in this study to identify
whether there is a directional relationship between the structural and logical
coupling of OO software classes because while it tests for a dependence or
association it does not indicate the direction.

To assess the presence of a linear correlation between the strengths of the
structural and logical coupling between classes we adopted the Spearman’s
rank correlation coefficient. This is because it does not assume a normal
distribution and we cannot guarantee that the strength of the coupling be-
tween classes will follow a normal distribution across the history of software
projects. Notwithstanding the test has its disadvantages: it takes into con-
sideration the ranked order of the structural coupling metrics and not the
values themselves. In other words, as long as the order of the structural
coupling metrics remain the same the coefficient will stay the same.

To determine whether the correlation coefficients will remain the same
across different versions of the studied systems, for a subset of systems we
have computed the correlation using structural coupling metrics from earlier
versions prior to the last version and all the correlations remained the same.
Therefore, we deduce that structural coupling changes from version to ver-
sion for some individual class pairs may not affect the rank correlation of
Spearman’s correlation test [3].

33

8. Conclusion and Future Work

We have conducted a three-fold empirical study on a sample of 79 open-
source software projects to identify if there is a relationship between struc-
tural dependency and co-change of object-oriented (OO) software classes.
The number of projects used for this study is larger than those used by pre-
vious studies. More importantly, and differently from previous studies, our
sample considers every single revision that each project underwent, instead
of only one snapshot.

Firstly, we investigated the interplay between structural and logical cou-
pling to identify whether there is a directional relationship besides a linear
relationship between the two. Results pointed to the presence of a small
overlapping between structural and logical dependencies in a majority of the
software projects. However, we noticed a higher likelihood of structural de-
pendencies leading to co-evolution of classes but a small chance of being able
to infer structural coupling from co-evolution.

Secondly, using Spearman’s correlation we investigated whether a linear
relationship exists between the structural and logical coupling strengths of
pairs of OO software classes. Results from this investigation revealed that
there is in fact no strong evidence to suggest that a linear relationship exists
between the strengths of different types of couplings. A stronger structural
coupling does not imply a higher co-change likelihood.

Thirdly, we noticed a significant rate of structural stability of coupled class
pairs in the overall sample of projects studied. Coupling links are inserted
between classes and need a limited maintenance. The measurements used
clearly highlight the presence of a set of unstable links, that cause repeated
co-changes.

We have discussed the impact of our findings on software maintenance
in Section 5.4 and as future work, we plan to carry out studies on the same
sample of projects, to detect whether there are linear and directional rela-
tionships between semantic and logical dependencies. The rationale being
that if such a relationship exists, semantic coupling metrics can be used to
directly inform practitioner about potential co-changes of classes in OO soft-
ware projects. In addition, semantic coupling metrics will be used to inform
or predict the strength of the logical dependencies between classes without
the need to analyze historical data of software projects thus reducing the
computation time and efforts required in the detection of logical dependen-
cies via mining software repositories (MSR).

34

9. References

[1]

2]

3]

4]

[5]

(6]

17l

18]

19]

B. Henderson-Sellers, L. L. Constantine, I. M. Graham, Coupling and
cohesion (towards a valid metrics suite for object-oriented analysis and
design), Object Oriented Systems 3 (3) (1996) 143-158.

G. A. Oliva, M. A. Gerosa, On the interplay between structural and
logical dependencies in open-source software, in: Software Engineering
(SBES), 2011 25th Brazilian Symposium on, IEEE, 2011, pp. 144-153.

L. Yu, Understanding component co-evolution with a study on linux,
Empirical Software Engineering 12 (2) (2007) 123-141.

M. M. Geipel, F. Schweitzer, The link between dependency and
cochange: empirical evidence, Software Engineering, IEEE Transactions
on 38 (6) (2012) 1432-1444.

G. A. Oliva, M. Gerosa, Experience report: How do structural depen-
dencies influence change propagation? an empirical study, in: Proceed-
ings of the 26th IEEE International Symposium on Software Reliability
Engineering, 2015.

T. Zimmermann, A. Zeller, P. Weissgerber, S. Diehl, Mining version
histories to guide software changes, Software Engineering, IEEE Trans-
actions on 31 (6) (2005) 429-445.

M. D’Ambros, M. Lanza, M. Lungu, Visualizing co-change information
with the evolution radar, Software Engineering, IEEE Transactions on
35 (5) (2009) 720-735.

I. S. Wiese, R. T. Kuroda, R. Re, G. A. Oliva, M. A. Gerosa, An em-
pirical study of the relation between strong change coupling and defects
using history and social metrics in the apache aries project, in: IFIP

International Conference on Open Source Systems, Springer, 2015, pp.
3-12.

H. Gall, K. Hajek, M. Jazayeri, Detection of logical coupling based on
product release history, in: Software Maintenance, 1998. Proceedings.,
International Conference on, IEEE, 1998, pp. 190-198.

35

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

H. Gall, M. Jazayeri, J. Krajewski, Cvs release history data for detect-
ing logical couplings, in: Software Evolution, 2003. Proceedings. Sixth
International Workshop on Principles of, IEEE, 2003, pp. 13-23.

M. D’Ambros, M. Lanza, R. Robbes, On the relationship between change
coupling and software defects, in: Reverse Engineering, 2009. WCRE’009.
16th Working Conference on, IEEE, Lille, France, 2009, pp. 135-144.

I. Wiese, R. Kuroda, R. Ré, R. Bulhoes, G. Oliva, M. Gerosa, Do
historical metrics and developers communication aid to predict change

couplings?, Latin America Transactions, IEEE (Revista IEEE America
Latina) 13 (6) (2015) 1979-1988.

H. Kagdi, M. Gethers, D. Poshyvanyk, Integrating conceptual and logi-
cal couplings for change impact analysis in software, Empirical Software
Engineering 18 (5) (2013) 933-969.

M. D’Ambros, M. Lanza, M. Lungu, The evolution radar: Visualizing
integrated logical coupling information, in: Proceedings of the 2006 in-
ternational workshop on Mining software repositories, ACM, 2006, pp.
26-32.

T. Zimmermann, S. Diehl, A. Zeller, How history justifies system ar-
chitecture (or not), in: Software Evolution, 2003. Proceedings. Sixth
International Workshop on Principles of, IEEE, 2003, pp. 73-83.

L. Prechelt, An empirical comparison of ¢, ¢+, java, perl, python, rexx
and tcl, IEEE Computer 33 (10) (2000) 23-29.

F. Beck, S. Diehl, On the congruence of modularity and code coupling,
in: Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, ACM,
2011, pp. 354-364.

E. S. Slaughter, Design strategies to increase building flexibility, Build-
ing Research & Information 29 (3) (2001) 208-217.

M. Holmes, Common Renovation Mistakes and How to Avoid Them -
Homebuilding & Renovating kernel description (2008).

URL https : //www.homebuilding.co.uk/common — renovation —
mistakes — and — how — to — avoid — them/

36

[20]

21]

22]

23]

[24]

[25]

[26]

27]

28]

29]

A.T. Ying, G. C. Murphy, R. Ng, M. C. Chu-Carroll, Predicting source
code changes by mining change history, Software Engineering, IEEE
Transactions on 30 (9) (2004) 574-586.

A. E. Hassan, R. C. Holt, Predicting change propagation in software
systems, in: Software Maintenance, 2004. Proceedings. 20th IEEE In-
ternational Conference on, IEEE, 2004, pp. 284-293.

N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, Predicting the proba-
bility of change in object-oriented systems, Software Engineering, IEEE
Transactions on 31 (7) (2005) 601-614.

R. Malhotra, A. J. Bansal, Cross project change prediction using open
source projects, in: Advances in Computing, Communications and In-
formatics (ICACCI, 2014 International Conference on, IEEE, 2014, pp.
201-207.

R. Vanciu, V. Rajlich, Hidden dependencies in software systems, in:
Software Maintenance (ICSM), 2010 IEEE International Conference on,
IEEE, 2010, pp. 1-10.

D. Poshyvanyk, A. Marcus, The conceptual coupling metrics for object-
oriented systems., in: ICSM, Vol. 6, 2006, pp. 469-478.

D. Cruz, T. Wieland, A. Ziegler, Evaluation criteria for free/open source
software products based on project analysis, Software Process: Improve-
ment and Practice 11 (2) (2006) 107-122.

E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
D. Damian, An in-depth study of the promises and perils of mining
github, Empirical Software Engineering 21 (5) (2016) 2035-2071.

B. A. Romo, A. Capiluppi, T. Hall, Filling the gaps of development logs
and bug issue data, in: Proceedings of The International Symposium on
Open Collaboration, ACM, 2014, p. 8.

B. Fluri, H. C. Gall, M. Pinzger, Fine-grained analysis of change cou-
plings, in: Source Code Analysis and Manipulation, 2005. Fifth I[EEE
International Workshop on, IEEE, 2005, pp. 66—74.

37

[30]

[31]

32]

33

[34]

135]

[36]

[37]

[38]

[39]

R. R. Pagano, Understanding statistics in the behavioral sciences, 6th
Edition, Wadsworth-Thomson Learning, Australia;United Kingdom:;,
2001.

A. P. Field, Discovering statistics using SPSS: and sex and drugs and
rock 'n’ roll, 3rd Edition, SAGE, London;Los Angeles;, 2009.

D. Tacobucci, S. S. Posavac, F. R. Kardes, M. Schneider, D. Popovich,
Toward a more nuanced understanding of the statistical properties of a
median split.

L. Crawford, Senior management perceptions of project management
competence, International journal of project management 23 (1) (2005)
7-16.

A. J. Scott, M. Knott, A cluster analysis method for grouping means in
the analysis of variance, Biometrics (1974) 507-512.

K. W. Church, Empirical estimates of adaptation: the chance of two
noriegas is closer to p/2 than p 2, in: Proceedings of the 18th conference
on Computational linguistics-Volume 1, Association for Computational
Linguistics, 2000, pp. 180-186.

S. R. Chidamber, D. P. Darcy, C. F. Kemerer, Managerial use of met-
rics for object-oriented software: An exploratory analysis, Software En-
gineering, IEEE Transactions on 24 (8) (1998) 629-639.

N. E. Fenton, N. Ohlsson, Quantitative analysis of faults and failures in
a complex software system, Software Engineering, IEEE Transactions
on 26 (8) (2000) 797-814.

A. G. Koru, H. Liu, Identifying and characterizing change-prone classes
in two large-scale open-source products, Journal of Systems and Soft-
ware 80 (1) (2007) 63-73.

V. Rajlich, A model for change propagation based on graph rewriting,
in: Software Maintenance, 1997. Proceedings., International Conference
on, IEEE, 1997, pp. 84-91.

38

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

P. Ebraert, J. Vallejos, P. Costanza, E. Van Paesschen, T. D’Hondt,
Change-oriented software engineering, in: Proceedings of the 2007 in-
ternational conference on Dynamic languages: in conjunction with the
15th International Smalltalk Joint Conference 2007, ACM, 2007, pp.
3-24.

D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, C. Chen, Change im-
pact identification in object oriented software maintenance, in: Software
Maintenance, 1994. Proceedings., International Conference on, IEEE,
1994, pp. 202-211.

X. Ren, F. Shah, F. Tip, B. G. Ryder, O. Chesley, Chianti: a tool
for change impact analysis of java programs, in: ACM Sigplan Notices,
Vol. 39, ACM, 2004, pp. 432-448.

W. Glen, Use value of historical space structures in relation to adapt-
ability for housing, International journal for housing science and its ap-
plications 18 (1994) 63-63.

D. M. Gann, J. Barlow, Flexibility in building use: the technical feasibil-
ity of converting redundant offices into flats, Construction Management
and Economics 14 (1) (1996) 55-66.

G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, A. De Lucia,
An empirical study on the developers’ perception of software coupling,
in: Proceedings of the 2013 International Conference on Software Engi-
neering, IEEE Press, 2013, pp. 692-701.

D. Poshyvanyk, A. Marcus, R. Ferenc, T. Gyimoéthy, Using informa-
tion retrieval based coupling measures for impact analysis, Empirical
software engineering 14 (1) (2009) 5-32.

H. Kagdi, M. Gethers, D. Poshyvanyk, M. L. Collard, Blending con-
ceptual and evolutionary couplings to support change impact analysis
in source code, in: Reverse Engineering (WCRE), 2010 17th Working
Conference on, IEEE, 2010, pp. 119-128.

A. Lozano, C. Noguera, V. Jonckers, Explaining why methods change
together., in: SCAM, 2014, pp. 185-194.

39

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

N. Ajienka, A. Capiluppi, Semantic coupling between classes: Cor-
pora or identifiers?, in: Proceedings of the 10th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement,
ACM, 2016, p. 40.

H. Abdeen, K. Bali, H. Sahraoui, B. Dufour, Learning dependency-based
change impact predictors using independent change histories, Informa-
tion and Software Technology 67 (2015) 220-235.

M. J. Harrold, P. Kolte, A software metric system for module coupling,
Journal of Systems and Software (20) (2003) 295-308.

L. Yu, A. Mishra, S. Ramaswamy, Component co-evolution and com-
ponent dependency: speculations and verifications, IET software 4 (4)
(2010) 252-267.

H. Li, A novel coupling metric for object-oriented software systems, in:
Knowledge Acquisition and Modeling Workshop, 2008. KAM Workshop
2008. IEEE International Symposium on, IEEE, 2008, pp. 609-612.

G. A. Hall, W. Tao, J. C. Munson, Measurement and validation of mod-
ule coupling attributes, Software Quality Journal 13 (3) (2005) 281-296.

M. Gethers, B. Dit, H. Kagdi, D. Poshyvanyk, Integrated impact anal-
ysis for managing software changes, in: Software Engineering (ICSE),
2012 34th International Conference on, IEEE, 2012, pp. 430-440.

M. Revelle, M. Gethers, D. Poshyvanyk, Using structural and textual
information to capture feature coupling in object-oriented software, Em-
pirical software engineering 16 (6) (2011) 773-811.

L. C. Briand, J. W. Daly, J. K. Wust, A unified framework for coupling
measurement in object-oriented systems, Software Engineering, IEEE
Transactions on 25 (1) (1999) 91-121.

L. C. Briand, S. Morasca, V. R. Basili, Property-based software en-
gineering measurement, Software Engineering, IEEE Transactions on
22 (1) (1996) 68-86.

S. Morasca, L. C. Briand, Towards a theoretical framework for mea-
suring software attributes, in: Software Metrics Symposium, 1997. Pro-
ceedings., Fourth International, IEEE, 1997, pp. 119-126.

40

[60] F. B. S. Diehl, On the congruence of modularity and code coupling.

[61] N. Hanakawa, Visualization for software evolution based on logical cou-
pling and module coupling, in: Software Engineering Conference, 2007.

APSEC 2007. 14th Asia-Pacific, IEEE, 2007, pp. 214-221.

[62] H. Malik, A. E. Hassan, Supporting software evolution using adaptive
change propagation heuristics, in: Software Maintenance, 2008. ICSM
2008. IEEE International Conference on, IEEE, 2008, pp. 177-186.

Appendix A. Summary of Structural Coupling Stability Per Project

Table A.6 illustrates the proportion of class dependencies belonging to
each of the stability clusters. The 1%* column shows the project IDs; the
2" column shows the number of coupled class pairs; the 3" column shows
the proportion of class pairs that are structurally linked but they never co-
change; the 4" column shows proportion of class pairs that are changed in
both halves of their life cycle but with a majority of those revisions occurring
in the first half of their life cycle; the 5* column shows the proportion of class
pairs that equally co-changed in both halves of their structural life cycle but
with a majority of the co-changes occurring in the second half; finally in the
6", the proportion of class pairs with modifications which materialise not
when an operational link is established between them but only in a future
moment is shown.

Table A.6: Summary of Projects Studied In Terms of Structural Coupling Stability

ID | coupled pairs | % static | % stable | % partially | % partially | % unstable
stable stable unstable

1 91 65 24 3 5 1

2 18 5 27 27 33 5

7 65 47 35 1 13 1

8 4082 39 50 2 5) 2

10 655 27 40 8 10 13

11 218 27 68 0 3 0

12 118 0 27 13 o1 7

13 1662 8 79 3 8 0

Continued on next page

41

Table A.6 — Continued from previous page

ID | coupled pairs | % static | % stable | % partially | % partially | % unstable
stable stable unstable

14 1084 51 37 4 4 1
18 67 10 28 37 20 2
20 67 10 28 37 20 2
22 161 21 60 16 1 0
24 317 37 61 0 0 0
26 194 20 48 7 18 4
28 753 40 36 12 8 2
30 157 36 43 7 13 0
31 50 32 36 18 12 2
41 252 5) 90 0 2 0
45 13 23 61 7 7 0
51 143 11 72 8 2 4
56 31 74 22 3 0 0
60 674 4 12 3 21 57
64 120 52 35 7 3 0
65 160 o1 41 5) 1 0
66 2914 25 74 0 0 0
67 76 21 47 23 2 5
68 407 11 85 0 2 0
69 309 21 57 15 3 1
71 476 0 99 0 0 0
79 802 14 72 4 8 0
81 368 47 40 7 2 1
84 659 o1 45 0 1 1
86 52 30 69 0 0 0
88 16 0 68 12 18 0
92 259 59 35 1 1 1
96 480 7 15 5) 47 23
97 57 45 38 1 14 0
99 1365 38 21 5) 12 21
103 80 43 35 5 15 1
107 73 30 68 0 1 0
109 24 16 75 4 4 0

42

Continued on next page

Table A.6 — Continued from previous page

ID | coupled pairs | % static | % stable | % partially | % partially | % unstable
stable stable unstable

112 57 19 68 7 5) 0
113 %) 27 30 18 16 7
115 83 15 28 26 22 6
118 673 26 516) 6 9 1
119 23 8 30 52 8 0
122 231 17 48 19 10 3
123 237 40 49 0 8 2
124 43 6 32 30 25 4
127 675 19 57 13 6 2
130 1045 31 60 2 4 0
136 78 5) 56 24 11 2
140 127 27 42 9 16 3
141 47 55 31 12 0 0
142 835 18 45 22 10 2
148 189 26 71 0 1 0
149 1526 45 23 5) 16 8
152 297 5) 67 8 18 0
157 1185 41 41 4 10 1
166 520 65 31 2 0 0
168 1018 50 45 0 3 0
169 50 42 38 4 14 2
170 191 45 34 6 6 7
172 1177 21 24 33 17 2
179 407 33 14 13 17 21
180 367 54 25 1 6 11
183 1457 41 37 9))
184 6594 29 37 2 4 26
185 3954 37 37 11 3 3
186 1341 21 52 7 7 4
188 274 29 38 2 5) 12
189 53 3 16 9 20 1
195 376 31 44 5 3 6
197 59 23 20 3 8 30

43

Continued on next page

Table A.6 — Continued from previous page

ID | coupled pairs | % static | % stable | % partially | % partially | % unstable
stable stable unstable

201 1652 17 64 2 6 4

202 121 41 36 8 3 3

211 4094 6 o8 1 0 0

Appendix B. List of Studied Object-Oriented Software Projects

Table B.7 shows the extent of this issue: the 1%¢ column in Table B.7
shows the project IDs; 2"¢ column shows the project names; 3"¢ column
shows the number of structural dependencies; 4" column shows the number
of logical dependencies; 5" column shows the number of dependencies in the
intersection set; 6! further shows the percentage or proportion of structural
dependencies in the intersection set; 7" column shows the proportion of
logical dependencies in the intersection set. The table is sorted by the 6
column in descending order to depict the observed result outlined in Section
4.1 (a high number of structural dependencies including logical dependencies
but not vice versa).

Table B.7: Intersection of Structural and Logical Dependencies in the studied 79 OSS
Projects. (KEY: Str. Dep. = Structural Dependencies; Log. Dep. = Logical (change)
Dependencies; CSD = Co-changed Structural Dependencies; CLD = Coupled Logical
Dependencies)

ID | Project Str. Dep. | Log. Dep. | Int. Set | CSD (%) | CLD (%)
12 | alleywayreinvented 118 680 118 100 17
88 | javacoder 16 104 16 100 15
97 | jbandwidthlog 57 468 57 100 12
119 | jsbe 23 70 23 100 33
189 | sjava-logging 53 408 53 100 13
71 | hobbylinkchecker 476 35,923 473 99 1
41 | daedalum 252 4,854 249 99 5
136 | migrator-postgresql 78 476 76 97 16
60 | fyllgen 674 14,318 656 97 5

Continued on next page

44

Table B.7 — Continued from previous page

ID | Project Str. Dep. | Log. Dep. | Int. Set CSD CLD
152 | onslaught 297 5,739 289 97 5
166 | prettyfaces 519 12,987 500 96 4
96 | jbal 480 12,986 461 96 4
124 | jutf8search 43 152 41 95 27
115 | jprg2-assg 83 332 79 95 24
2 | 4-connect 18 80 17 94 21
13 | alto 1,662 78,481 1567 94 2
211 | usemon 4,094 529,590 3,845 94 1
18 | apjava 67 196 61 91 31
122 | jtowerdefense 231 2,191 210 91 10
68 | guavatools 407 6,899 363 89 D
51 | echo-nest-java-api 143 1,116 127 89 11
109 | jmemcache 24 94 21 88 22
142 | monome-pages 835 10,362 727 87 7
79 | jangod 802 15,220 697 87 5
127 | kryo 675 5,372 580 86 11
112 | jnoob 57 417 48 84 12
172 | ps3mediaserver 1,177 29,313 983 84 3
26 | bitlyj 194 1,036 162 84 16
201 | tabulasoftmed 1,652 58,420 1,373 83 2
186 | seoma 1,341 16,929 1,104 82 7
20 | appletbomberman 282 1,255 230 82 18
28 | bluecove 753 63,404 607 81 1
67 | gp-net-radius 76 522 61 80 12
69 | guitarjava 309 3,681 248 80 7
197 | subitizer 59 176 47 80 27
22 | ascrblr 161 1,396 128 80 9
118 | jroguedps 673 6,255 532 79 9
8 | aima-java 4,082 190,432 3,200 78 2
130 | lemyriapode 1,045 10,520 809 7 8
165 | powermock 2,372 105,733 1,828 7 2
45 | dbmigrate 13 26 10 7 38
113 | jothelo 55 148 42 76 28
10 | alexo-chess 655 9,603 499 76 5)

45

Continued on next page

Table B.7 — Continued from previous page

ID | Project Str. Dep. | Log. Dep. | Int. Set CSD CLD
140 | mobs 127 672 96 76 14
188 | simplenamingservice 274 1,593 205 75 13
11 | algmusic 218 3,812 163 75 4
66 | gorobot 2914 88,731 2,173 75 2
179 | resttb 407 4,045 303 74 7
148 | ngamejava 189 1,196 139 74 12
184 | semanticdiscoverytoolkit| 6,594 177,962 4,741 72 3
107 | jiopi 73 532 52 71 10
86 | java-weather-api 52 220 37 71 17
195 | squabble 376 4,578 267 71 6
31 | catchnthrow 50 164 34 68 21
185 | semweb4j 3,954 68,309 2,551 65 4
170 | projet-qcm-java 191 868 122 64 14
30 | castanea 157 624 100 64 16
183 | scikit 1,457 10,958 924 63 8
157 | p2ploan 1,185 10,041 750 63 7
99 | jease 1365 39,842 861 63 2
24 | audao 317 6,838 198 62 3
123 | jugile-util 237 3,088 144 61 5
7 | ahs-scheduling 65 118 39 60 33
169 | project-armageddon 50 68 30 60 44
202 | tabuvrp-study 121 442 72 60 16
164 | powerjava 49 150 29 29 19
103 | jeudi-tech-spring 80 310 47 29 15
149 | object-procedural- 1,526 27,343 852 56 3
bridge
81 | jaque 368 1,065 205 56 19
168 | product-center 1018 7,220 530 52 7
84 | java-chess-web 659 2,596 337 51 13
65 | google-voice-java 160 724 81 51 11
14 | amock 1,084 2,969 545 50 18
180 | robust-coupe 367 1,648 182 50 11
1 | 2dtetris 91 166 44 48 27
64 | geocoder-java 120 379 58 48 15

46

Continued on next page

Table B.7 — Continued from previous page

ID | Project Str. Dep. | Log. Dep. | Int. Set CSD CLD
141 | mocrap 47 74 21 45 28
92 | javastepbystep 259 1,795 109 42 6
56 | fdelimitedtextutilities 31 34 8 26 24

Appendix C. Initial Developer Commit Messages from 10 OSS
Projects

Table C.8 shows the commit message found for the initial commit in 10
OSS projects (randomly selected from out pool of 79 studies OSS projects).

Table C.8: Developer Initial Commit Messages of 10 OSS Projects

ID | Project Initial Commit Message

8 aima-java “first source checkin”

26 | bitlyj “initial directory structure”

28 | bluecove “Initial import of SourceForge.net Subversion
Repository” (first 4 commits)

51 | echo-nest-java-api “initial import”

56 | fdelimitedtextutilities | “Initial import of fDTUtils with NetBeans
project files. I've been working on this for
a couple of days so a lot of the code is in this
import”

69 | guitarjava “GameBase: Project created. Initial classes
created.”

97 | jbandwidthlog no commit message

109 | jmemcache “first version really simple cache manage-
ment”

152 | onslaught “mavenized project, updated to working ver-
sion with build and stuff”

172 | ps3mediaserver “first commit”

47

