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Introduction

Bézier polynomials and their generalization to tensor-product
surfaces provide a useful tool in surface design (Bézier 1970, 1977,
Forrest 1972). They were developed as early as 1959 by de Casteljau
at Citroén but owe their name to P. Bézier from Renault who was first

to employ them in car body design in the late sixties.

De Casteljau 1959 also describes triangular patches, but these
scarcely received any attention until Sabin 1977. Farin 1979 generalizes
and extends results obtained by de Casteljau and Sabin, sharing their

restrictions to domains that consist of congruent triangles only.

The present paper restates some of the results of Farin 1979, including
a short outline of the univariate case, and then generalizes them to

Bezier polynomials defined over arbitrary triangles; formulas describing

r .. . . .
C continuity of adjacent triangular patches are provided.

The last two sections give applications of the theory: the C
2
Clough-Tocher scheme is generalized to the C” case and a formula for

the dimension of the linear space of piecewise ct polynomials (of degree

n) is derived.






I Univariate Bézier Polynomials

1. Definition

A Bézier polynomial Bp¢ is defined by

1) B,4]1® = > b, B, @
i=0

where the Bri1 are Bernstein polynomials

(2) B! (t)=(in]ti(l—t)n—i S o<i<n

and ¢ is the piecewise linear function joining the points

(%,bi); 0<i<n. ¢ is called the Bézier polygon associated with Bn(b? ;

the bj are called Bézier ordinates of Bp¢.

n
Since the Bj satisfy

n
(3) Bj (1)<0;0<i1<n;0<t<1,

@ ¥ B (=1,
i=0

*) In classical approximation theory, B,¢ is called the "Bernstein
approximant” to ¢ (Davis 1975) the graph of Bpd , 0<t<1, lies in the
convex hull of the graph of ¢. (Bézier 1970, Bézier 1976, Forrest 1970).






2. Degree Elevation

Every polynomial of degree n can be written as a polynomial of

degree n+1 ; let E¢ be a polygon joining points (? ,bl ) 0<i<n+l1. If

(5) b: —¢(#)—Lb- +(1—L)b- 0<i<n+l
i =0/~ i-1 i, 0s1s ’

it is easy to show that
(6) Bp¢ = Bpyp E

3. Derivatives

For the r-th derivative of B¢ we find

n—r
M $rlBadl 0 = M X ATbiB" ()
i=0

This yields immediately

(82) ‘é—:r[Bndﬂ 0) = 2 A"bg

B

80) §riBadl () = M ATby

i.e. the r-th derivative at an endpoint depends only on the (r+1)

adjacent Bézier ordinates.

We also note that for Ce[a,b] instead of te[0,1], (7) becomes






9 4-rBae1 @) = i - Gl T AThiB (@)

4. Recursive Algorithm (de Casteljau 1959)

n
The Bj satisfy a recurrence relation

10) B (t)=(1—1) Bril_1 () + t B?__ll (t)

n
(with B; (t) =0 for i<0 or i>n).

(10) allows to expand Bpj¢ in terms of Bernstein polynomials of lower

degree :

(1) [Baol 1) = Y bl @B 1) . 0<ren,
1=0

where the bir (t) are defined by

r—1

b b
(-6bj +tb.,

(12) b (1)

bY (1)

bj .

Since

(13) [Bpol (1) = by (1) ,

(12) provides an easy and stable algorithm for the numerical

evaluation of [By¢](t). This is illustarted in fig. 1
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Fig. 1 construction of [B3¢] (%)

One can show that

r
(14) blr (‘[) = Z b1+_] BI: (t) : 0<r<n
=0 ] 0<i<n—r

The bir (t) can also be used to determine the r-th derivative of Bp¢;

T b T (0 BE (1
1=0

df !
(15) T [Bno] (1) = (nr_lr)!

For r=1, (15) states that bg_l(t) and b?_l(t) determine the tangent to

[Bho](t) and, for r=2, that bg_z (t) , bil_z t) , bg_z (t) determine the

osculating parabola.






5. C"—Continuity

Suppose we are given a Bézier polygon ¢ with Bézier ordinates bj

over te[0,1]. We seek a Bézier polygon y with Bézier ordinates C;j

over (Ce[l,2] such that the two polynomials defined by ¢ and w form

a function in C'[0,2]. From (8a) and (8b) we get the conditions

(16) APDBRTP = Apco ; 0<p<r.

(16) implies that, for fixed p, the Bézier polynomials defined by
b= P bn—p+1 , ..., bp and cq4,Cq soesCp coincide since all their

derivatives coincide at t=1 resp.¢=0.

Hence

p
bn—p+i BP () = D ¢BP ().

1=0

Mo

i

Il
o

since ¢=t — 1. This is true for all t, i.e. also for t=2:

p p
Y bapsiBf (2 = Y ¢BP ().

i=0 i=0

The right-hand side equals > and we get
[

(17) Cp z n-p+i B (2) ; 0<p<r.

Note that this is equivalent to:

(18) ¢p = bh_ o @ 5 0s<ps<r.






We can define the second Bézier polynomial over [1,B ] instead

of [1,2]; in this case, (18) becomes

(19) cp = bh_, (B).

Thus we have a condition for C'—continuity given by (16) and a

construction given by (17), Note that fig. 1 can be interpreted as

. -1
the construction of the bg , b? ey b, from the bg,bé,...,bf)1

n

to obtain C™— continuity. We also note that the two corresponding

Bézier polynomials coincide with the original polynomial given by

(0]
b, ... b% .

boal)






II Bezier Polynomials over a Triangle

1. Definition

We consider a triangle T in the plane with vertices P;,Pp,P3 and

edges ej,ep,e3 in which we assume barycentric coordinates defined

such that for each point P in the plane

P=uPp + vPp + wP3

where

0 <u,v,w <1 for all P ¢ T,

u+v+w=1,
and
_ P3PPI PR3] [PIP P
[Py Py P3] [Py Py P3]” [P Py P3]

Here, [P3 PPy] denotes the area of the triangle P, P, P, etc.

A

1

u = o P W = o
®

/ \
e

Fig. 2: Triangle T with barycentric coordinates.

We define Bernstein polynomials ijn (W) _over T:

n . n! i jok . u+v+w=1 u = (u,v,w)
20 B = g YV S 4 +k=n i= Gk
Since the Bii(g) are terms of
! i j ok
(21) (u+v+w) = Z i!;l!k! u'vIiw®
i+j+k=n
1.1.k>0

we have immediately

22) Bl @ < 0 for 0 < u,v,w< 1,






(23) i B?(li) = 1.

n
The summation Z in (23) is short for the one used in (21).

L

The %(n—i—l) (n+2) polynomials BE form a basis for the linear space

of all bivariate polynomials of degree n.

A Bézier polynomial over T is defined by

(24) [Bpo](w) = ZbiN B () .

where ¢ is the piecewise linear function determined by the points

(ril_’ %,%,bi). The bj are called Bézier ordinates of Bpo;
¢ is called the Bézier net of B ,¢.*) (22) and (23) imply that the

graph of Bp¢; lies in the convex hull of the graph of ¢. The

structure of ¢ is illustrated in fig. 3.

/ 030
/b021 by2g
/bm\\ by \ bsig
boos b192 bso1 baoo

Fig. 3: Structure of ¢ for n = 3

We also note that the boundary curves of B¢ are the (univariate)

Bézier polynomials determined by the boundary points of ¢.

*) This notation is chosen to be like the one in the univariate
case to point out the similarity of both methods. No confusion
should arise, however, since the meaning of Bp¢, ¢, etc. will

be clear from the context.






10.

2. Degree elevation

Every bivariate polynomial of degree n can be written as a polynomial

of degree n + 1; let E¢ be a net determined by points (l'l‘il‘l’ nil’ nlj—l’bz)’

itj+k = n+1. If

(25) bj (=1 = —= bit1,j,k +

g bi j+1,k

n+1

+ bi jk+1 s i+j+k =n+1,

n+1

it is easy to show that

(26) Bp¢ = Bp41Ed.
This is illustrated in fig. 4 and the following example.

°:bi,i+j+k=2

* -:bg,i+j+k=3

S

fig. 4: Elevation of degree from 2 to 3.

Example 1: The following two Bézier nets determine the same
polynomial:

¢z 3 O Ed:

3. Derivatives

Let u = u(s) be the equation of a straight line in terms of the

barycentric coordinates of T, e.g. u(s) = (I-s)up+su, with two points

1

0. Y-






11.

Hence

27) cfsrr u@s) = 0 forr > 1

(here, 0 = (0,0,0)).
Forr =1, we set u = 51_52(5)

Sinceu + v+ w =1 we have u+ v+ w = 0.
The term u defines a direction with respect to which we can take

dr
ds" ’

directional derivatives. We set D;: =

For the Bernstein polynomials Bri1 we get
Theorem 1: Set A = (A,pn,v). Then

(28) D BY(v) = Gt r), > By, (1) BiZ) (w)

Remarks: (a) The term B (u) is well-defined even if the sum

of the arguments does not equal 1. (b) For i,A that do not satisfy

1 — A2>0 (componentwise), we set Bril_r (u) = 0.

~

Proof
1) For triple products of functions of one variable s the

Leibniz formula

fs). g™ ). 0 ()

}Ju.v !

dr J
T f(s).g(s).h(s) = ¥
ds A

is true.
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11) Because of the linearity of u(s), v(s), w(s) repeated

applications of the chain and product rules yield:

if [u@)] = f* @) - ﬁk etc.
ds™

iii) Setting f (u(s)) = [u(s)]i etc., we obtain

D B (w = 4= L u) (v (w1

L gt 11itk!
T
N W Y n! i-% _j-p. k—v
‘% vt bV WY GOy & VY
This implies
Theorem 2: The r-th directional derivative wrt g of a Bézier

polynomial Byp over T is given by

! n-r T . B
(29) D [Bnél () = oy 2 % bisa By (1) Bf " ()
1
We note that this can be rearranged to

T n-r
(0) DY [Bndl(w) = omy X Bl Y biea BT .
1

4, Recursive Algorithm (de Casteljau 1959)

Let us define a] = (1,0,0), ap = (0,1,0), a3 = (0,0,1).

Lemma 3: The B? satisfy a recurrence relation
Gl BYw) = u-B" L () + v. B () + wB®™! (u),i+j+k =n
1= 1-a, - 1-a, ™~ l-a3 =

Proof: Use the identity

n! _(n n—i
ilk!k! i ]

and the recursion formula for binomial coefficients.
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This lemma allows to expand B¢ in terms of Bernstein polynomials of

lower degree, with polynomial coefficients bri (u):

~

Theorem 4:

(32 Bpolw = Y b' B " (w , 0<r<n
t

where the bri (u) are defined by

bL(w) = uw bt )+ vt )+ w~bri_+1a3 (u);itj+k =n-r
(33)
bl () = bj
Proof is by induction on r. (32) is true for r = 0.
Induction:
n-r B
Baél(w) = > bf B ()
1
n—-r r n—r—1 n—-r—1 n-r-1
Gh bl @) B ST @) +vB G, @ )+wB 5 W)
1

~

n-r-1
= X [wbl, @+ veobl @+ owebl @ ]BTT )
1
(33) n-r-1
= X o BT W
i
Since
(B ¢](w) = b, (u),
(33) provides an algorithm for the evaluation of [B,¢] (u). This is

illustrated in figure 5.
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Figure 5: Construction for [B;¢]( 4 L4)

The bri (u) have an explicit form similar to (14):

~

r
bi—k BL(E);i+j+k:n-r.

T
G4 b (u) =
1~

> M=

To prove this one checks that (34) is consistent with the recursive
definition (33) of the bi(u).

With (34), we can simplify (30) to

r n! n-r r

I
G5 PulB ) =G b (W,

Hence to take the rth (directional) derivative of B , we first

perform n-r steps of the evaluation algorithm (33) to obtain the
bn r(u) and then evaluate the Bezier polynomial (35) using the same
algorlthm, but now with weights u , v , w 1instead of u, v, w. For

r=1" (35 means that the b?_l(g) determine the tangent plane to
[Bhdl (u)- for r = 2 we see that the osculating paraboloid is
determined by the blil_z(g).

Another possibility to compute Dy B, is given by

(36) DI [Badl(w) = 2 s

which is proved from (29) (Farin 1979). We have thus a second method
to compute the rth derivative of Bp¢: first, perform r steps of
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algorithm (33) with weights u,v, wto obtain the bir(u), then

evaluate the Bézier polynomial (36) using (33) with weights u, v, w.
Actually, one can switch from one method to the other at each

step. *

Let us now evaluate derivatives across a boundary of T, saye3,

this implies w = 0. From (36) we see that the rth derivative of

Bho is a Bézier polynomial of degree n-r with Bézier ordinates

bi(w). On the boundary e3, this Bézier polynomial will only depend

on those b5 (w) for which k = 0.

Therefore DII:i[Bn(I)]|e3 depends only on the r + 1 parallels (of

Bézier ordinates) to e;.

Note also that D{[Bncl)]|e3 is an (n-r)th degree univariate polynomial

in v:
| n-r . _
(37) DiBpélle; = ——— ¥ bl (1) BR 7T (v)
~ (n—-r)! .= 1 ]
1=0 3
where i, is short for (n-r-j, j,0).

3

* The relationship of this statement with the univariate case
becomes clear if we view terms in uas generalizations of the

difference operator A.
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III Composite Surfaces

r .. . .
1. C—Continuity between adjacent triangles

Let a Bézier polynomial B,¢; be defined over a triangle Ty = Py Py P3.
Let a second triangle Tp = Py P4 Py with

P, = ugP P + Wy Py

be given. We seek a Bézier polynomial Bp¢p defined over Tp that has

c’ -continuity with Bp¢; along the common edge P Py.

Let the barycentric coordinates in Tj be uj, 1 = 1,2. Then there

xists a linear transformation

with a nonsingular matrix A such that
A = WA, 2y = A, 2, = A

(see also Fig. 6). We find for A:

0 0 W,
A = w;o 0 w, 0 ;0 wo £ 0

— 300

— €210

P Fy Bae = 0307 “129
I\\\ c
201
by ~ ‘111
v, =0 lOZI 120 ©p21
Py

vnrl-.:()
220 270 \
l' bo12 €102
| 111 ]; = C
210 012

P,— v,=0 Poo3__

P o2 \ N\

52012p540= 003

Figure 6. Two adjacent (cubic) triangles
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Let the Bézier ordinates of Bp¢, be bj, those of B¢ be c;.

The rth cross-boundary derivative with respect to some direction

u;(resp. up) of B,¢; is determined by the (r+1) rows of Bezier

ordinates in T; parallel to the edge e3;. The next theorem gives

a simple method to compute the relevant ¢; from the relevantb;.

Theorem 5: With the above notations B,¢; and B,¢, have C'-continuity

along e; if and only if
(39 “gp.hn-p-j = bPap-jj0 (Wo) ;

Example 2: Forr =1, (39) becomes for p = 0:
€0,jn-j = bn-jj0 5,0=<j<n
and for p = 1:
ClLin-1-j = bn-1-3j0(e) 0<j<n-1
=ugbp_jj0o + Vobn-1-j, j+1,0 * Wo bp_1-j, j,1-
The first equation ensures that B,¢; and B,¢, have a common boundary

curve. The second equation states that every shaded quadrilaterial
in fig, 7 is plane. (Figure 7 shows the projection into the plane

only).

Fig. 7 Cl-continuity between

adjacent cubic triangles.

Proof of theorem 5:
Let i; be of the form (0, j, k) and i3 of the form (i, j, 0). (37) gives

the C'-condition
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n—p n-p
2. bPis (w) BPi(v) = X C’L(Ez) B P(v);0<p<.
=0 j=0

Comparison of coefficients yields

_ r
(40) bPiy (1) = cPi; (Auy) ;

—. o
IA

0<jJ< n-p

The term bpi3 (Wy) can be viewed as the p-th directional derivative
of the Bézier polynomial defined by bpi3 (up); the same is true for

cpil (Au)). These two polynomials coincide in their derivatives up to

order p: hence they are equal:

bPi, (u) = cPi, (Al : peT
13 21 = 1 1) » OSJSn—p
This is true for all u;, e.g. also for u; = uy:
bPi3 (uy) = iy (Auy)
<r
= ¢, (1,0,0) P
- <)Jj<n-p
= Cpin—p-j
Example 3: Consider the two triangles below. Let P, be the
centroid of P;, P4, P3, such that
P4, = 3P, — P— P3.
Py
T
Py 2
Tl

P, has barycentric coordinates u, = (-1, 3, -1) with respect to T;.
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Let ¢; be defined over T, by the Bézier ordinates

We seek ¢,, defined over T, such that B3 ¢; and B3¢, have common first

and second cross-boundary derivatives along P;,P,.

Theorem 5 suggests the following construction of the Bézier ordinates
cj of ¢y :

Step 1:
1
Cl,jaz_j = bZ—J’J,O(_1,3,—1)

The scheme of the bi is given by

1

and hence the underlined numbers are the desired ¢y j »_;.

Step 2:

2
€2, j,1-j = bi-jjo(=1,3,-1).

The scheme of the bzi is given by

7
27 13

The Bézier ordinates of ¢; and ¢, are therefore
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*
] — has no influence on C?¢

0 1 \
0/ 0 ™ 0 !
Example 4: Suppose we are given ¢; and ¢, from the previous

example and want to verify that the two corresponding Bézier

polynomials join in C>. This is easily accomplished by means of

(40): Choosing u; to be a direction perpendicular to P|P,, we get

u; =[-13,-2; 4, =u;-A=[2-3, -]

~

The C' condition becomes (for j = O, 1, 2)

(41) 3bn_1_j: j+130 = bn_j:jao + CO,j,Il_j T bn_l_j:jal
and for the C* condition we get (for j =0,1)

bn_1-j,j1=3bn_2—j j+1,1 *bn_2-j j 2
(42)

=C1, j,n-1-j =3¢, j+1,1-j * b2, jn-2-7 -
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2. Degrees of Freedom

Theorem 5 enables us to construct a B ¢, that joins a given B ¢, in

C". There are n—r*) Bezier ordinates in ¢, that we can specify
arbitrarily, the remaining ones being fixed by C'-continuity. Since

we could specify all n+1 Bézier ordinates of ¢, arbitrarily, the

piecewise surface given by B,¢; and B¢ has n+1 + n—r degrees

of freedom (d.o.f's).

This construction may be repeated, thus adding n—r d.o.f's for each

new B,¢.

We may eventually encounter a situation where a new B,¢ cannot be

added in this fashion because two of its edges are shared by
previously constructed Bézier polynomials. One can in fact easily
give examples where such a construction must fail. It is always

possible, however, to add two Bézier polynomials simultaneously as is

shown in figure 8. Our problem is now to determine how many Bézier
ordinates in these two triangles can be arbitrarily specified; we

call this number of degrees of freedom p(n,r).

Fig. 8: determination

of p(3,1)

*) We define k =1k(k+1) = 1+2+...+k.






Theorem 6
2

n r=20
m+(n—2r)(n—r) ISrSi(n—l)
(43) p(n,r) = 2
n-r—1 %nSrSn
r =n

The method used for the proof is illustrated in example 5: search

every quadrilateral of "side length" r + 1 responsible for C' for
the number of d.o.f.'s it offers, proceeding from left (close to
predetermined points) to right. A more detailed description of this

procedure is given in Farin 1979.

Remark: The two vertices shared with previously determined

polynomials must not form a straight line.

Example 5. (see Fig. 8 and the C' conditions in Fig. 7).
Let the "*" be determined by C', then "m" is fixed because the

quadrilateral é‘ must be plane (this justifies the above remark).

We can specify the " Mo arbitrarily; together with "m", they will
determine "O". Hence, p(3,1) = 2.

Consider a triangle T that is subdivided into three subtriangles T;

by its centroid (see Fig. 9). Define 1%, to be the linear space of

n-th degree polynomials defined over each T; and joining in C".

Its dimension is given by

(44) dim %, = n+1+p(n,1)

This leads to a somewhat surprising result:
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Theorem 7

(45) ml =}

Proof: Combining (44) with (43), we get

dim 271 = dim <0 .

(45) follows since 1is a subspace of rﬁ_l.

A simple consequence is

Corollary 8: Every element of 1%, has continuous derivatives of

order O, 1, ..., r+1 at the centroid of T.

Proof: An element of tl; contains a subtriangle that can be
considered an element of tf,. This subtriangle is responsible

for the derivatives at the cetitroid, and an application of Theore

7 completes the proof.

IV Interpolation in tf,; .

I. The case 73

We define
k. :LP. " 1_L pP. , *
QL k+1 ! ( k+1) i+l ")

m=mn-2r-—1.
Let D'f(P;); i = 1,2,3; denote all r+1 partials of order 0,1,...
of f at P;; we shall always require that the three D'f(P,) be

consistent with each other (this is trivially the case if 2r < n)

Let u; denote a direction not parallel to the edge P, P, .

*) wvertices are counted mod (3) .
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Our interpolation problem will be:

Find an element f in 1%, that assumes the followi

(Vi) DFf(Py 5 i = 1,2,3
1 =123
+
(Er) Dy fQF) 5 p=0l.r

j=0,L...m+p<l1.

Note that (E;) is void for m+p<lI.

The solution to the interpolation problem given by (V) and (E;)

for 13 is known as the C' clough-Tocher scheme (Strang/Fix 1973).

This solution can easily be constructed using Bézier polynomials;

it consists of three steps, see also fig. 9.

Fig. 9; Constructing the C' solution.

1. The Bézier ordinates "o" are given by (V;); the "m" stem

from (E;).

2. C!across the interior vertices determines the "0", cf. (41)

3. C' at the centro id determines " “”: it has to be the centroid
of the "0".

Note that this construction also implies the uniqueness of the






25.

interpolant. Moreover, Corollary 8 implies that it has (though

constructed in C! context) continuous second derivatives at the

centroid. This interpolation scheme has cubic precision.

The above case r = 1 cannot be generalized:

Theorem 9: The interpolation problem for tg given by (V;y)
and (E;) is overdetermined for r>2, n2>r+2.

Proof: In fig. 10, let "®" denote Bezier ordinates determined

by (Vr) and (E;—p) (for (n, r) = (5,2)) .
RN
\\°\\
AR
/;_\__L\!;\\\
o TN NN

Figure 10: Incompatibility in interpolation problem.

The "fat butterfly" - which is responsible for C2 continuity, see

(42) - is determined by six independent pieces of information, five

n n

of which are already fixed; 1i.e. one of the two Bézier ordinates "O
determines the butterfly completely (by equations (42) and (41).
Since (E;) prescribes both of them arbitrarily, the problem is

overdetermined.
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2. C2 Interpolation in r%

: : 2. .
Theorem 9 suggests to consider the following C -interpolation

problem:

Find an element in rg that satisfies (E2) and (V_;,)

V, demands that third derivatives parallel to edges are organized

as to determine seven (instead of eight) Bézier ordinates per

. o 3 L
boundary curve. This does not maintain C continuity at the

. . 2 .
vertices any more, by (a) retains C continuity there and (b)

eliminates the incompatibility that caused the failure of schemes

using (E2) and (V2).

The choice of ré is suggested by the following reasoning:

2 . . .
We want to be able to solve the C problem in adjacent triangles.

.. : . 2
If we were working in, say, rg (defined for each triangle), C

. . . 3. .

information along the common edge and (consistent !) C information
: . 2 o

at the corresponding vertices would not guarantee C continuity

between the two interpolants; but it is guaranteed using r%

2
We shall now turn to the solution of the C problem.

Since dim ré = 37 and (E9) and (V_;,) provide 33 constraints, we may

specify four additional Bézier ordinates. Again, the construction

of the solution consists of three steps, see Figure 11:

n n

Step 1: The Bezier ordinates "x" and the aj , i=1,..., 15, are

given by (V3) and (E»).
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AN
//\\
VTSN

AL gx\
/ am/s<g3 : \\

*
L
0
[
’
O

Figure 11: Constructing the C* solution.

Step 2:  We specify the Bezier ordinates s;, s», s3 in order to
determine the gi. This is done by solving a 2 x 2 linear system
for each of the "fat butterflies", e.g.

(41') a;s + gs + g4 = 3ss.

(42') apnp +ajo-3gs=ay;+ag - 3g4.

These two equations are readily solved for g4 and gs.
Step 3: We specify s4 and determine the x; by solving a 6 x 6

linear system, the first four equations being applications of (41),

the last two corresponding to (42).
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The system is

-3 1 0 0 0 1| |x; -5
0o 1 -3 1 0 0] [x, -,
O 0 O 1 -3 1| |x -s
(46) 77 = ’
1 0 1 0 1 0] [x4 3s,
0 0-3 3 0 |xs g3+84—81- 8>
0 0 0-3 3| |x6 gs+t86— 8384
and has the solution
X4 —-15 15 9 27 -6 2 -8,
X, 18 54 18 54 -36 -12 -s,
X 9 -9 9 27 -6 -6 -5
(47) 3 :L ‘ 3
X4 72 9 -9 9 27 18 -6 384
X5 6 —-6-18 18 12 4 g, +g4-8 8>
X 9 -9 9 27 18 18 gs+8s—83— 84

The above choice of the s; is not the only one possible; but it

minimizes the sizes of the linear systems that have to be solved.

Corollary 8 and the derivation of p(n,r) yield

Theorem 10 The above scheme has sextic precision. Any interpolant

constructed by it has continuous third derivatives at the centroid.
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r
V. The Dimension of M _ (i, b)

Let t(i,b) be a simply-connected (but not necessarily convex)
triangulation with 1 interior vertices and b boundary vertices,
such that the piecewise linear) boundary curve is a simply closed
curve. We exclude triangulations that contain vertices whose

star is a convex quadrilateral with the diagonals drawn in.*)
Let t], (i, b) be the linear space of C" piecewise polynomials of

degree n over 1 (i,b).

Theorem 11

(48) dim 1l (i,b)=n+1 +i-p(n,r) + (b-3)n-r

Proof: We use induction on the number of triangles in t (i ,b)

(t(i,b) consists of b+2i-2 triangles).

I. If © (i,b) consists of one triangle only,

dim <} (0.3) = n+1 .

2. Suppose (48) holds for a simply-connected subtriangulation
T (j, ¢) of T (i,b). We add a new triangle to t (j, ¢), thus obtaining

T (j',c'). We have to consider two cases.

Case a: ' =13, ¢ =c+l
<« added The dimension of T;(j’c)
is increased by n-r :
dim t} (j,c) +n—r

n+1 + j.p(n,r) + (c—-2).n—r

dim t} (j, c+1)

*) This restriction is a consequence of the remark after theorem 6.
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Case b: ' =j3+1, ¢ = c-1

< added We define
a(n,r) = pfn,r) - o-r.

. . _I,, .
Since dim tn(l,b) was increased

by p(n,r) when two triangles are added simultaneously (see figure 8),

q(n,r) denotes the change if only one triangle is added:

dimty (j+1,c—1)=dim 15 (j,c)+q(n,1)%)

=n+1+(G=D)p(nr)+(c—4) n—r
Remarks:

1. Every simply-connected triangulation can be constructed by

using steps a) and b) from the above proof.

2. If an optimization procedure is applied to a triangulation
(Barnhill 1977), the dimension of the corresponding linear spaces

does not change.

3. The above proof can be used to construct a basis for 1, (i,b) in

terms of Bezier polynomials.

4. Forn>4,r =1, theorem 11 coincides with a result obtained by

Morgan/Scott, 1975.

The proof of theorem 11 can easily be adapted to triangulations
t'(i,b) that have a hole, where the vertices around the hole are

considered boundary vertices:

Thus adding a triangle to t (i ,b) may decrease dim t} (i,b) !
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Corollary 12

(49) dim ©f (i,b) =n+1 + (i+D)p(n,r) + (b-3)n-r

Theorem 11 implies that univariate B-splines cannot be generalized :

Theorem 13 No r%_l(i,b) can contain a non-zero element f such

that

1) f is identically zero outside t(i,b)

i) fec®™ ! (R x R)

Proof: Suppose such an f existed. Construct a triangulation
1(i’,3) that contains t(i,b). (This is trivially possible since
1(i,b) is finite.)

1

i) and ii) imply f et (i13). Since dim ;! (i,3) = n+1, we

have rnl;l (i',3) = P, (the linear space of bivariate polynomials of

degree < n), i.e. fis a (global) polynomial But no non-zero

polynomial can satisfy 1).
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