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ABSTRACT

A new class of C' piecewise—cubic interpolatory polynomials

is defined, by generalizing the definition of cubic X-splines given
recently by Clenshaw and Negus (1978). It is shown that this new
class contains a number of interpolatory functions which present
practical advantages, when compared with the conventional cubic

spline.






1. Introduction

This paper is concerned with the problem of piecewise-cubic
polynomial interpolation where, unlike the cubic spline, the
interpolatory function does not necessarily possess a continuous

second derivative. More specifically, given the points

a=Xo<x1<...<Xx=Db (1.1)

and the corresponding set of values yi=y(x;); 1 = 0,1,....k, we
consider the problem of constructing a piecewise-cubic polynomial

s € C' [a,b], with knots x; ; i = 0,1 ,. .. ,k, such that

s(xi) =yi;1=0,l... k.

One class of such interpolatory functions is the class of X-splines
considered recently by Clenshaw and Negus (1978), who show that
There are certain practical advantages in allowing discontinuities in
S@® In particular, they derive an X-spline which reduces considerably
the computational effort involved in constructing the interpolatory
function, whilst retaining the same order of convergence as the
conventional cubic spline.

In the present paper we show that the conditions used by
Clenshaw and Negus (1978) for defining an X-spline are unnecessarily
restrictive and we extend their definition to a much wider class
of piecewise-cubic polynomials. We show that any X-spline s of this
new class leads to O(h*) convergence uniformly on [a,b], that the
magnitude of the jump discontinuities of s ¥ and s ¥ at the
interior knots are respectively 0(h®) and O(h) and that the class
contains several interpolatory functions which are better, in terms

of accuracy, smoothness and ease of computation, than those

considered by Clenshaw and Negus (1978).



2. Interpolatory Piecewise-Cubic Polynomials

Given the set of values y; =y (xi),x = 0,1,... .k, where x; are
the points (1.1), let H be the piecewise - cubic Hermite polynomial

which is such that
H(xi) = yiand H (xi) = y(l)i i=0,1,....k.

Then, if yeC*[a,b],the following optimal error bound holds
4
h

1 -yl = @]

In (2.1), || * || denotes the uniform norm on [a,b] andh = | max hi’
S1s
Where

hi:Xi—Xi_l;izl,z,...,k,

see e.g. Birkhoff and Priver (1967).

Definition 1 . Let s be the piecewise——cubic polynomial obtained from

H by replacing the derivatives y;'". ; i = 0,1,....k, respectively by

suitable approximations m; ; i = 0,1,...,k. Then, s will be called a

piecewise-cubic polynomial (P.CF.) with derivatives m; ; i=0,1, ,k

It follows at once from the definition that
s(xX) = Yir T ™ O T s[Ntinti] O?
+ S[Xi1, Xi1,Xi,Xi] (X-Xi1) (X-Xi) ,

X € [Xi_l’xil; 1i=1,2,..., k,

where s(Xi)= Vi, s(l)(xi)z m; and, with the usual notation for

divided differences,
i X X = Y Y / hi - m; .} / hi
and SIX; 7 X5 X5 X1 = My — 2A¥: — Vi) / hi + m,}/ h.2

1 =12 ...,k

2.1)

(2.2)

(2.3)



The following theorem can be established easily by using (2.1),

Theorem 1 . Let s be a P.C.P. with derivatives m;; i=0,1,....k.

Ifye C4[a,b] then, for x ¢[x i.1,x; ;1= 1,2,....k,

4
h h
500 = ¥ € omax{l my - y_(i)1 L m, - yi(1) b @

2.4
i i 384 24

The theorem shows that the best order of approximation that

can be achieved by an interpolatory P.C.P.s is

| s-y || = 0(h?),

and that this order is obtained only if the derivatives m; are such

that

i (2.5)

with n > 3.

Clearly a P.C.P. s is continuous and possesses a continuous
first derivative. In general however s @ has a jump disontinuity

at each interior knot- Using (2.2) and (2.3) it can be shown easily

3)

that the jump discontinuities of s® and s @ at the interior knots

are respectively,

d®; = sPxH)-s? (xi-)

2
_ —hiﬂi (=pm. , —2m, — ym .+ 38Y, + 37, };

i=1,2,...k-L, (2.6)

and

d® =5 @ (x; 1)-sV(x;-)

6 2 2 2 2 ,
w267 EBymy o+ (D= 2Bpmy + yimy o+ 2B0YG 20X

11

=1,2,..., k-1, 2.7)



where

ﬂ i= hj /(hi+hi+1), ’y=l—[3i and Y; - (Yi'Yi-l) /h; . (28)

Theorem 2. Let s be a P.C.P. with derivatives m ;; 1 = 0,1,...k, and
denote the jump discontinuities of s @ and s @, at an interior knot
xi , respectively by d?; and d®; . If y e C’[a,b] then, for some

& € [Xi-1, Xi-1],

2
d? = =g m - yD am -y oy -y

i=1.2,.k1, (2.9)

and, for some M € [Xi.1, Xi+1]

6
d® = i pm - yi(l’l 1 - 2ﬁi m, -y ey -y
2 (h, +h, )y Y0);
i=1,2,....k-1 (2.10)

Proof. Equation(2.9)follows from (2.6),by using the result

(1) (1 (1
3Biy Yo+ 3 Y - By -2y vy g
_ 1 @ _ 1 2 (5)
o Tty 7 Ry g B (g Ry R YT
i=1,2,..., k-1 2.11)

This result is due to Kershaw (1972: 193) and is established by using
Peano's method for finding remainders.
Similarly, equaiton (2.10) follows from (2.7), by using the
result
1) 1.2

2 42 _ a2, _ (1) 2 () _ 1 (CINNEN
BIY; = 2 Yy~ By = 2By vy = o by Ty

i=1,,2,...,k-1,



which is also established by the use of Peano's method.

Using (2.9)and (2.10)we obtain at once the following bounds

on the magnitudes of di(z)and d?),
6(h. + h. ) 1
1dP i e m -y D e = R — w2 Hy
1 . 1 1 1 12 1 1+1
1 1+1
L3 3 (5)
+ 30 (h1 + hi+1 y H
1=1,2,...... k-1,
1 1
| d.(3) < 12 maxy— , —— max | m. — y.(l) |
1 2 2 i 1 1
h  h:
1 1+1

“4)

b

1
+ (h, + hi+1)|| y

1=1,2,...k-1.

Theorem 2 shows that the magnitudes of d(z)i and d© )i , like the

order of convergence of s, depend only on the quality of the approxima-

tions m;. More specifically if the conditions (2.5) which lead to

0(h*) convergence uniformly on [a,b] hold then, in general,

d® = om?) and ) = o) .

Furthermore, if the knots are equally spaced with h; =h and in (2.5)
n > 4 then d?;= 0(h?) .
Clenshaw and Negus (1978) determine the derivatives m; of a

P.C.P. s by imposing the conditions
@ c¢h = @

d :ii+1d

. i:1929' .. 9K_1’
i 3 i

where the c. are given numbers. These conditions lead to the
relations

Am +Bm+Cm =DY+EY ; L
Al ddo i i 1=1L2,0 0k

4) ”

(2.12)

(2.13)

(2.14)

(2.15)



where

A; = B.(1-B, —cp)B = {2+c -2(+c)C = yiz(l +c)

X (2.16)
D. = B.(3 - 3B, - 2B.c) E = v 3+ 2)

and B, vi, Yiare given by (2.8). The equations (2. 15) together with

the two end conditions

mo = ygl) and m, = yg), 2.17)

are then used to determine the derivatives m. of a P.C.P. s which
Clenshaw and Negus call an "X—spline with parameters c ;". A sufficient
condition for the unique existence of an X-spline s is that

-1

0 < 1+c <Bsi= 120, k-1 (2.18)

If (2.18) holds then, it can be shown that,

m. - yi(l) = om )

The X-splines of particular interest are those which correspond

respectively to the following three choices of the parameters c; :

1)ci=0;1=1,2,.. . k-1.

This is the only choice of the ¢; for which an x-spline s is twice
continuously differentiable in [a, b]. Thus, in this case, s coincides
with the conventional cubic spline and the equations (2.15) become
the well—known consistency relations for cubic spline interpolation
i1) c. - (hi - hi + 1)/2hi+

1;1 = 1,2,....

This is the only choice of the c. for which the derivatives m; of

the x-spline s are such that

m. — yi(l) = 0(h4); i=0,1, ... k.



For this reason s is called by Clenshaw and Negus the "optimal
interpolating X-spline". Clearly, when the knots are all equally
spaced the optimal X-spline coincides with the conventional cubic

spline.

(iii)e; = -1.i - 1.2,... k-1.

In this case the equations (2.15) become

2
Bim; .1 +m;i=Bi(3-B)Yi+ty Yi+1;1=1,2,... k-1.

Thus, the derivatives of the X-spline s are determined by solving a
lower triangular linear system and, for this reason, s is called the
"x-spline which minimizes computational labour".

Clenshaw and Negus (1978: chap.2.) claim that the conditions
(2.14), with suitable c; + 0 , can restrain the magnitude of d; 3
and thus produce X-splines with smaller third derivative jump
discontinuities than those of the conventional spline. However,
this claim is not justified by Theorem 2 of the present paper which
shows that, for the conventional spline and for any other X-spline,
di¥ , is always O(h). In fact, the results of the present section
indicate that the conditions (2.14) are unnecessarily restrictive
and suggest the generalization of the x-spline definition given in

the following section.

3. A new definition for x-splines

Let pi denote the cubic polynomial interpolating the function

y at the points Xi, Xi+1 , X1+2 and X;+3 and define the quadratic

polynomials qi ;1i=0, 1 ,..., k-2, by

qi pi(l); i=0,1,....k-3, and x> = qx3 = P 3"

(2.19)

(3.1)



The motivation for the new definition of x-splines emerges from
the observation that the jump discontinuities (2.6) and (2.7) can be

written respectively as

d(2)_ 2 5 ~
P T A Oy R = my)
11
And +y.(q, (x, )-m_ )},
1 1-1 1+l 1+1
€) 6 2
- _ _ - 3.2
d =5 @_ . _)-m )(1-26)@ &)-mHl (3-2)
h B
1 1
2
-y Q& )mm b
i=12,, k-1

This implies that the equations (2.15) can be written as

Aimi; + Bim; +C; mi+1 =A; qi+1(Xi-1 )+Biqi-i(xi)+(x)+Ci q i-1(Xi+1 )3

i=1.2,...,K-1,

and suggests the following definition which extends the class of
x-splines considered by Clenshaw and Negus (1978) to a wider class

of P.C.P.

Definiton 2 . Leta; ,b;;1=1,2,...  k— 1 be 2k—2 real numbers . Then,

a P.C.P. s whose derivatives in. ; i=0,1, . ..k, satisfy the relations
o
M, =y, >
am +m +bm
1 1-1 1 1 1

- +1

- aiqi—l (Xi—1)+qi—l (Xi)+biq' (Xi+]) ; (3.3)

i-1
1=12,..,k-1,

M=y
where the polynomials q; are defined by (3.1), will be called an x-spline

with parameters aj, b;; 1=1,2,...,k-1.



Clearly, this new definition contains the x-splines considered

by Clenshaw and Negus (1978) as the special case

aj :Ai/Bi 5 bi :Ci/Bi 5 1- 1,2,.. . ,k—l 5 (34)

where the A., B. are given by (2.16).

By Definition 2, the derivatives m; ;i = 1,2, .. .,k-1 of an
X-spline s are determined by solving the (k-1)x(k—1)tri-diagonal
linear system defined by (3.3).The matrix of coefficients A of
this linear system is strictly diagonally dominant, and therefore

non-singular, if

ai |+ b | <1;i=1,2..k-1. (3.5)

Thus, a sufficient condition for the unique existence of s is that
its parameters satisfy (3.5.) . If this condition holds then, using

a result of Lucas (1974= 576),

A<V, (3.6)
where v > 1 is such that
la; | +|bi|+1/V<1;i-12......... k-1 .

We consider now the effect that the parameters a; , b; have on

the quality of the X-spline approximation. For this, we let

5 =a)q_ (x_)-Ap+iq_ co-dW+biq | x, -y

i=1,2,...k-1, (3.7)

and assume that the parameters of the X-spline satisfy (3.5). Then,

from (3.3),

|m'_yi(1)|gvmax|8' |5 i=12,..,k-1. (3.8)
1 i 1

1
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Also, by Taylor series expansion about the point xi , we find that,

ifye C°[a,b] then,
5i :—Fly(4)+ G y® romy;: i=12,.,k-1, (3.9)
4! 5! i’1
where

F B ah (h+h +h+2) hi i+ I%+1+h+2)
- hh+1 1+2(h * h+1)

=a {h (h+h )(2h +h ) (b +h )—h Ch+h )}

1+
(3.10)
11+1{11+1 +(I%+l +h h) (2l11+1 +h+2)}
+b. {h+1h_|_2 (h +h+1) (3h +h1+2 hl)} ;
1=12..k-1,
and, in (3.10),
hy+1 =-(hga+hy 1 +hy,, (3.11)
When the knots are equally spaced with h; = h ; 1 = 1,2,...k-1, then
(3.9) simplifies considerably and, if y € C'[a,b], it gives
5. =33, ~1+5 103y @+ Li3a -2+ 35, ynt g8
i 12 i i 1 60 i i 1
-t (233, -2+178, 102 y(8) 40 (n®) ;
720 1 1 L
i=1.,2,.. k-1, (3.12)
where
ai = ai, Bl=bi; 1=12,.,k-2, 313
and (3.13)
a =b b =a
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The results (3.8) and (3.9)-(3.10) show that any x-spline s, whose

parameters satisfy (3.5), is such that

=

- yi(l) — o™i = 12,k — 1 (3.14)

where, in general, n = 3. However, if the parameters of s are such
that F;=0;1=12,....k-1 thenn =4, and if F=G;=0;1=1,2,. .. ,k-1,
then n = 5.

The remainder of this paper is concerned with examining the
quality of six particular x-splines. These are the conventional
cubic spline, the two x-splines of Clenshaw and Negus (1978) which
we discussed briefly in Chapter 2, and three new x-splines of special
interest that emerge from Definition 2. In particular, for each of
these X-splines, we consider the case of equally spaced knots and,
by using (3.12), (3.8), (2.4), (2.12) and (2,13), we derive bounds

) 3)
on E=|s-yl, [q, | and[q [

4. x-splines of special interest

() x-spline s; with parameters

ai=Bi/2,bi=vy;i/2; i=1,2... k-1, 4.1)
where, as before, Bi -= hj;i/(hit+hir) and yi = 1-B; .

The values (4.1) are the only choice of parameters for which

4;® = 0;1=1,2,. .. ,k-1. Thus, s; is the well-known conventional
cubic spline.

When the knots are unequally spaced then, in general, F; + 0

and the derivatives m; of s; satisfy (3.14) with n=3. However,

if the knots are equally spaced then

ai=bi=1/4;i=1,2,...,k—l
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and, by using in this case (2.11) instead of (3.12),
4

i i=12,..,k-1.
=oY@

Thus, since v =2,

4

h .
|m Y1 | <—||y ||; 1=12,..,k-1,
and hence,
4 5
LI N 4.2)
—_— _l’_ J— , R
384 y 240 Y
(2)
di =9
and . (4.3)
2
(3) (4) n (5) ,
lgi "I < hiy +?IIY ; i=12,.,k-1

(IT) x-spline s;; with parameters

2 2
ai=g; , bi = Vi i=12,...,k—1. 4.4

The jump discontinuities of s“ " and sﬁ) satisfy (2.14) with
¢i = (hi—hjs; )/2hj:1, and (4.4) is the only choice of parameters of the
form (3.4) for which F; =0; 1 =1 ,2, ... k-1 . It follows that s;; is
the only P.C.P., in the class considered by Clenshaw and Negus (1978),
whose derivatives m. satisfy (3.14) with n > 3.

When the knots are equally spaced then sj; coincides with the

conventional cubic spline s; .

(IIT) x-spline s 1 with parameters
=Bi,bi=0;1-1.,2,... k1. 4.5)
The jump discontinuities of Si I)andsi 1) satisfy (2.14) with

ci = -1, and the values (4.5) reduce the three-term recurrence relation

in (3.3) to the two-term recurrence relation (2.19). For this reason,



13

of all the x-splines contained in the definition of Clenshaw and
Negus (1978), the construction of sy involves the least computa-
tional effort.

When the knots are equally spaced then,

aj=1/2,b=0;i=1,2,.... k-1,
and, since V=2,
4

5)

0 h “ h ( 5
m — < — + — +0h ).
m —y | 12IIy | 60IIy ||+ 0Ch )

Hence,
on’ h’
@ 5) 6
E<— + — + 0(h ),
384||y | 2207 [+ 0ch )
oh h'
3) @) ®) 4
4 < + — + 0(h ,
ld; | 3Hy | 15Hy | (h )
and
h 2
“ ®) 3
a2 by e lly ot )
i=12 ,..,k -1,
where, in this case, (4,7) is obtained by using (2.13) for the bound
on,| di(z) |and the relation di(20 = _hdi(3)/3 instead of (2.12), for the

bound on | di(z) | .

(IV) x-spline sy with parameters

ai=bi=O; i-1 ,2,...,1(—1 .

The derivatives of s;y are given explicitly by

m;= qi-l(Xi); i:1727"'9k_1'

Thus, syv is the x-spline of least computational effort.

(4.6)

4.7)

(4.8)
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In this case,

m . o 1 hh  (h b @ _
m =y =9, (Xl)_yi T oo i i+1( T i+2)y (&i)’

1=1,2,.,k-1,

where &g [Xi1,Xir2 ]; 1= 1,2,...,k-2,& k1€ [Xk-3, Xk] and hy. is
given by (3.11). Hence, if the knots are equally spaced,

4
E<—|y (4.9)

2) 2 4) h (5)
g, | =h [y ||+E||Y [

and (4.10)
(3) (4) i

(V) X-spline sy with parameters,

hi+l (hi+1 + hi+2)
a = , b =0; 1=12,...., k-2,
i (th +h )t +h +h ) i
i i+1 i i+1 i+2 (41 1)
(h +h )

a IO,b — k-1 k-1 k-2 )
k-1 k-1

(hk_1+hk) (hk_2 +hk_1 +hk)

The construction of s, involves the same computational effort as
that of sy However, since the parameters (4.11) are such that
Fi =0; 1=1,2,....,k—1, the derivatives m; of s, satisfy (3.14) with
n=4.

When the knots are equally spaced then

ai=1/3, b =0; 1i=12,.,k-2,
a =0, b =1/3,
1 k-1

k—

and, sincev = 3/2
4

. h ) 5 (6) 6
| mi—y |S4—Olly [+ —=h Iy [[+0(h);

1=12,..,k-1.
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Hence,
5
B lly@ 1+ iy 1+ o) (4.12)
3847 Y ’ '
) 11 17 5
. h +—h + 0(h ),
g | < 30 ||y || 190 ||y || (h)
and
o @ 3 2 \ (4.13)
g, | <hly H+ﬁh Iy I+0Ch);
1i=12,.,k-1.
(V1) X-spline sy; with parameters
, hiy(h +h )  p(hi+1+hit2)
al = 2 bl = B 5
(h +h +h ) (h +h ) h (h+h ) (4.14)
i=12,.k-1,

where hyy is given by(3.11).

This is the x-spline of highest accuracy, in the sense that (4.14)
is the only choice of parameters for which Fi=G;=0;1=1, 2,...k-1.
This implies that the derivatives m; of sy satisfy (3.14) with n = 5.
It should be observed that, in this case, the conditions (3.5) which

ensure the unique existence of sy are satisfied only if

(hi+hi+ 1) (hi'hi+2) <2h; + 2(hi + 1+hi+2) 5

1=1,2,...,k-1.

When the knots are equally spaced then,
a =1/6, b =1/2; 1=12,..,k-2,
a =1/2,b =1/6,
k-1 k-1

and, since v = 3,

31 s 6
|m — |<%h ||Y ||+0(h)-
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Hence,
4
E< iy et n' 1y 1+ 0w 419
" 384 y 2880 J ’ '
3
@ _h o 314+ © s
T <— +—h h),
s | 15“y [ 0 lly [/0th)
an . 4.16
3 “ 3.0 4
|s | <hlly ||+§)h ly [|+0th);
1=12,...k-1.

5. Numerical results and discussion

In Tables 1 - 3 we present numerical results obtained by taking

y(x) = exp(x),

xi-i/20;1-0,1,.., 20, (5.1)

and constructing each of the six x-splines considered in Section 4.
The results listed are values of the absolute error | s(x)-y(x) | ,
computed at various points between the knots, and values of the jump

. . .. ) (3) . . ]
discontinuities d; and d, - computed at a selection of interior

knots. The results of Tables 4 - 6 are obtained, in a similar
manner, by using the same y and the unequally spaced knots

xi=-1/8%;1=0,1,...,8, (5.2)

In each table, the results corresponding to the x-spline s are listed

in column (I), those corresponding to Sy; in column (II), etc.

The use of any of the X-splines sy syr Syv' Sy Or Syr.,
in preference to the conventional cubic spline S;, can be justified
only if it leads to increased accuracy or to a reduction of the
computational labour. The numerical results of this section indicate
that no significant improvement in accuracy is achieved by the so

called optimal x-spline Sy of Clenshaw and Negus (1973), or indeed
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by the more 'accurate’ sy . It follows that the only x-splines of
real practical importance, for the interpolation of smooth functions,
are those whose construction involves less computational effort than
the construction of s; . In particular the two new x-splines sy, and
Sy are of special interest. The x-spline Syy involves the least
possible computational effort, and it is of practical interest
because of its simplicity. The x-spline Sy has small discontinuities
in the second derivative and produces, with less computational effort,
results of comparable accuracy to those obtained by the conventional
spline.

By Definition 2, the construction of an x-spline requires

knowledge of y'"

at the two endpoints X¢ , Xx and, in an interpolation
problem, this information is not usually available. However, by
using techniques similar to those of Behforooz and Papamichael

(1979 a,b), the end conditions

m o= kO
o_yo’ _Yk

b

can be replaced by conditions which use only the available function
values of y at the knots whilst retaining the order of the x-spline
approximation. For example, instead of (5- 3) , the following end

conditions can be used respectively for the construction of Syy and

Sv:

m, = qo(Xo), Mk = qr-2(Xk),

and

mo +0(Oml =qo(xo)+0(0qo (x)

o m

+m =0
{ My T = 9

b4 X
1 k2 k

(5.3)

5.4

(5.5)
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where, in (5.5),

o =u; /(uj-1) + v; /{vi-1-(vj-u;))*} ; j = 0.k
with

u, =(h;+hy)/h;,vo=(h;+ho+hs)/h;,
and

w =(hi ")/, vie=(hyothy+hy)/hy

see Behforooz and Papamichael (1979 b).



Values of | s(x) - y(X)|.

19

Table 1

(Knots as in 5.1)

X D (1) (Iv) V) (VD
0.01 674x107 155x107 A11x107 .664x107 .682x107
0.02 151x107 A414x107 .383x10-’ .148X107 .154X107
0.09 .705x10-% .177x10-" .501x107 .688x107® 721x10°®
0.22 .189x10” 117x107 467x107 .190x10” .188x107
0.36 .990x10 .139x107 .808x107 .102x107 967x10®
0.62 281x107 .143x107 .697x107 283X107 .280x107
0.93 374x107 617x107 353x10° 369x107 378x107
0.96 .184x107 402x107 151x10° .193x107 177x10-7
0.99 179x107 327x10° 245x107 .182x107 177x107
Table 2
Values of diiz)) . (Knots asin 5.1)
D (I1I) (Iv) V) (VD)
X — -.996x10" 225x107 A121x10* -.889x10°
X4 — -.102X102 311x107 132x107* -.103X10™
X, — -.120x10 361x107 154x10™ -.120x10*
X B -.140x107 419x107 178x10™ -.139x10™
10
X, _ -.162x10* 487x107 207x10* -.162x10™
e — -.189x10~* .566x107 241x10* -.189x10™*
X — -.181x107 -320x107 290x10™ -210x10™




20

Table 3

Values of df)) . (Knots as in 5.1)

D (I11) (Iv) % (VD)
X .525x10! .597x10- 244x10™ .524x10- .526x10-
X, 611X107! .613x10-" .580x107! 611x10™ 611x10™
X7 710x10-! 723x107! 673x10- .709x10-! 710x10™!
X10 .824x10- .838x10-! .782x10- .824x10- .824x10!
X1 .958x10-" .974x10-! .909x10™ .958x10-! .958x10™"
X6 A11 113 106 A11 A11
X19 130 109 192 130 129
Table 4
Values of [s(x)-y(x)|. (Knots as in (5.2)

X ) (ID) (I1T) (IV) (V) (VI)
0.01 .512x107 131x107 125x107 .908x10 .104x10” 125x107
0.05 .287x10-% .763x10-2 .558x107 .196x10°¢ .611x10-8 .826x10
0.1 .804x10-’ .104x10°¢ .290x10°¢ .586x10°¢ 956x107 .105x10°¢
0.17 297x10-° 277x10°¢ 269x10°¢ 391x10°¢ 272x10°¢ 283x10°¢
0.35 .589x10°¢ .860x10°° 373x107° 921x107 .702x10-° .931x10-°
0.5 272x107 301x107 .933x107 192x10* 248x107 325x107
0.6 325x10-° .308x10-° 163x10° A422x10* 354x107 .298x107
0.8 721x107 .566x10- .118x10™ .328x10* .654x107 480x107
0.9 207x107* .192x107* 218x107° .184X10* 201x10™ .184x10™
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Table 5

(Knots as in 5.2)

Values of dS)) .

D (I1) (I1I) (Iv) V) (VD
X B -.166x107 -.646x107 255x107 -.152x107 -.169x107
X, — -.348x107 -209x10? .693x107 -.288x107 -.369x107
X3 - -.565x107 -.457x10? .148x10™! -394x107 -.630x107
X4 - -.839x107 -.862x10 275x107! -.442x107 -.103x10?
Xs - -121x10, -.151X10" 480x10™! -373x107 -.160x 1072
X¢ - -171x1072 -254x10" A427x10! -121x107 -260x10?
X7 - -.249x107 -315X10" -470x10™! -.941x107 -.387x107?
Table 6
Values of dEiS)) . (Knots as in 5.2)
D (I1) (I11) (Iv) V) (VD)
X .335x10" 319x10™! A413x10™! 325x107! 315x10™! 322x107!
X,  |.663x10" .668x107! .801x10™! 271x10™! .662x107 670x107!
X3 |.108 109 125 .541x10™! 107 109
xs  |.160 161 184 .871x10™ .160 162
xs  |.233 233 263 128 229 234
xs  |.324 329 376 745 327 332
X, |.484 479 403 601 484 476
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