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Methods for representing the inverse of Linear Programming (LP) basis matrices are 
closely related to techniques for solving a system of sparse unsymmetric linear equations by 
direct methods. It is now well accepted that for these problems the static process of 
reordering the matrix in the lower block triangular (LBT) form constitutes the initial step. 
We introduce a combined static and dynamic factorisation of a basis matrix and derive its 
inverse which we call  the partial  el imination form of the inverse (PEFI). This 
factorization takes advantage of the LBT structure and produces a sparser representation of 
the inverse than the elimination form of the inverse (EFI). In this we make use of the 
original columns (of the constraint matrix) which are in the basis. To represent the 
factored inverse it is, however, necessary to introduce special data structures which are 
used in the forward and the backward transformations (the two major algorithmic steps) of 
the simplex method. These correspond to solving a system of equations and solving a 
system of equations with the transposed matrix respectively. In this paper we compare 
the nonzero build up of PEFI with that of EFI. We have also investigated alternative 
methods for updating the basis inverse in the PEFI representation. The results of our 
experimental investigation are presented in this paper. 



 
1. Introduction 
 
Computer solution of large sparse systems of linear equations and the related problem of 
computing the inverse of the corresponding coefficient matrix, both efficiently and in an 
efficient (compact) form assumes a key role in the study of large systems which arise in 
many contexts [DFREID79], [DGEPLE82]. Commercial exploitation of the equation 
solving technologies for such systems is most widespread in the field of linear 
programming. This is because formulation of large planning and scheduling problems and 
also their solutions have been well investigated since the late sixties. Also solution 
methods for LPs have continued to keep pace with developments in the field of 
algorithms, software and computer hardware. Series of special conferences on the topic 
of sparse matrices and sparse equation solving methods were organised during the 60s and 
all through the 70s [WILLBY69], [REIDJK71], [ROSWIL72], [BUNROS76], [DUFSTW79], 
and there is a wide body of literature which cover these developments. Research 
covering algorithms, data structures, software implementation and exploitation of machine 
architecture 

Our research interests concern the solution of large Linear Programming problems robustly 
and efficiently [MTTAMZ88]. At the heart of such a system lies suitable basis inversion 
and basis inverse update procedures. In this paper we set out our arguements for the 
choice of the inversion and update procedures; we describe the mathematical methods and 
the related implementation issues and finally present some preliminary results of our 
investigations. The rest of the paper is organised as follows. In section 2 we expand 
on the background of the developments and present our analysis of the issues. In 
section 3 we discuss why the lower block triangular (LBT) form is a desirable structure, 
and the corresponding factored form of the inverse. In section 4 we outline the data 
structures which we have adopted to represent the factorisation and we describe how it is 
used in the solution process. In section 5 we compare the elimination form of the 
inverse with the partial elimination form of the inverse (PEFI) as derived by us. In 
section 6 the alternative ways of updating representation are presented.  Section 7 
contains a discussion and concluding remarks based on our findings. 

2. Background and an Analysis of the Issues 

The methods of computing and updating the inverse basis matrices of large sparse linear 
programming problems are dominated by the following major considerations. (a) The 
nonzero structure of the matrix needs to be analyzed and the rows and columns of the 
matrix reordered: ANALYZE phase. (b) Pivots have to be chosen for (Gaussian) 
elimination and alternative methods of factorization of the matrix have to be considered: 
FACTOR phase. (c) A method has to be derived whereby the inverse can be used in 
the solution process implicit in the "backward and forward transformations": SOLVE 
procedures. (d) Suitable data structures have to be designed to represent the original 
sparse matrix and the sparse basis inverse. (e) The implications of the algorithms and 
the data structures on the main memory of the computer and the architecture of the 
processor have to be taken into account. (f) In addition to the efficient inverse 
representation an efficient update procedure has to be designed taking into account (b), 
( d ) ,  ( e )  a b o v e . W e  r e f e r  t h e  r e a d e r s  t o  p a p e r s  [ B A R G O L 6 9 ] ,  [ F O R T O L 7 2 ] ,  
[HELRAR71], [HELRAR72], [REIDJK76], [REIDJK82], [GMSAWR84] which have 
addressed, expanded and dealt with most of these issues. The point (e) concerning 
implications of these algorithms on the current generation of multiprocessing architecture 
has been barely discussed in the literature. 

(e) ANALYZE phase 

Given a nonsingular matrix B of order m the reordering algorithms make use of the 
corresponding graph of the adjacency matrix derived from the nonzero elements. In the 
symmetric case the aim is to derive specifications for symmetric row and column 



interchanges given by permutation matrices P,PT respectively such that we obtain a 
reordered matrix B, B = PBPT which is presented as compactly as possible in band 
diagonal form. The heuristic methods exploit the underlying undirected graph and make 
use of the degrees of the vertices. In the case of unsymmetric matrices, the general 
situation with basis matrices, it is well established [DARMIT81], [DUFFIS84] that LBT is 
the most desirable form. This LBT reordering is achieved by considering the underlying 
directed graph and applying the following algorithms. 

- Maximal Matching 

We can apply the maximum matching algorithm of Hall [HALLML56] whereby the matrix 
B is reordered to B* which has a zero-free diagonal. As a result B* = BQ; the 
permutation matrix Q which specifies the reordering is derived by this algorithm. 

- Finding the Strong Components 

To the matrix B* which has a zero-free diagonal the celebrated algorithm of Tarjan can 
be applied to obtain the strong components (the diagonal blocks of the matrix) of the 
directed graph. This leads to the derivation of orderings given by the permutation 
matrices P,  whereby the original matrix B can be reordered into the lower block TP
triangular form B 
B = PB*  or B = P(BQ) . We note that for the symmetric case the problem of TP TP
bandwidth minimisation is NP-complete [PAPDIM76]. Hence only heuristic methods are 
applied. In contrast the above mentioned LBT algorithms have the complexity of low 
order polynomials [DUFFIS84], [DARBYK80]. Beale [BEALEM84] conjectured that a 
band form for the unsymmetric case may be equally attractive as the LBT form. 
Although we have done some preliminary work on this topic [JUMITZ87] this has not 
been properly followed up and we are not considering the issue of symmetric matrices and 
the band form any further in this paper. It is interesting to note that Hellerman and 
Rarick [HELRAR71] did not make use of Tarjan's work as these results were not known 
at that time. They also combined the ANALYZE and at least a part of the FACTOR 
phase as they preassigned pivot positions; the implications of this are discussed in the next 
subsection, 
(b)    FACTOR phase 
The main motivation of this phase is to compute a sparse yet accurate LU decomposition 
of the matrix B. If the LU decomposition is computed in the product form of the L 
and U transformation matrices then this reduces the nonzero growth. If pivot choice 
is made dynamically during factorization with a view to control accuracy then this can 
lead to a stable solution. Hellerman and Raricks P4 algorithm finds spikes which are 
postponed for pivoting and constructs pivot agenda based entirely on a static analysis. 
The main aim is to minimise fill in. Unfortunately, however, it is necessary to modify 
the algorithm to deal with all possible contingencies otherwise the method is known 
[LINMAH77], [ERGRLP85] to lead to structural singularity as well as unstable solutions. 
Erisman et al have studied the comparative performance of a modified and improved P5 

(precautionary partitioned preassigned pivot procedure) with the modified Markowitz 
procedure with threshold tolerance due to Reid. The authors conclude that not only is 
the latter superior in non-LP applications, even in LP applications, the latter is equally 
good if not superior, taking into account accuracy and robustness. It is well known that 
the choice of the largest admissible nonzero entry at each step of Gaussian elimination can 
provide accurate LU decomposition but this strategy will result in considerable fill-in. 
Tomlin [TOMLIN72] suggested a relative tolerance of 0.01 of maximum column entry 
based on experimental evidence of processing LP problems. We have found Reid's 
recommendation of a threshold tolerance with restricted Markowitz merit criteria very 



effective indeed [DEREID86], According to Reid at the kth elimination step pivots are 
chosen by the criteria. 
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absolute  entry of  the  nonzero elements  avai lable  for  pivot  in  the column q of  the 
matrix at the kth step. Following Duff Erisman and Reid's suggestion we use  a  nea r  
minimum as opposed to exact minimum merit count and a threshold value of u  =  0 .1  
which leads to fairly good results both for sparsity and accuracy. The data s t ruc tu res  
adopted by us are briefly discussed in section 4. 

(e) The SOLVE procedures 

Let e denote an m component vector with +1 as one or more of its components (e 
is known as the form vector).  Let aj  denote a column of the A matrix and Π  the 
vector of shadow prices. There are two well known steps of the revised simplex, namely 
backward Transformation and Forward Transformation, [BEALEM68], [MITRAG76], which 
make use of the B-1 representation. These transformation steps can be expressed as 
two equivalent equation solving steps given by the relations 

eT)(Bor      eB 1-1 =ΠΠ=−  (2.2) 
and 

ja1Bja −=          (2.3) 

Having computed the inverse in the factored form it becomes necessary to compute the 
solutions shown in (2.2) (2.3) making use of the data structures and the factored inverse 
representation. 

(d)    Choice of Data Structure 

In the sixties and seventies in main frame as well as mini computers the main memory 
modules (also known as core store) were very expensive and for an LP system to work 
over a range of machines with varying memory sizes both the A matrix and the B-1 

matrix were stored in backing magnetic stores in the form of sequential files. The main 
memory is no longer at a premium even for desk top machines. Yet it is still necessary 
to design highly compact data structures to represent the A and B- 1  matrices.  
There are well known storage schemes for sparse and supersparse matrices [KALANJ71], 
[DARMIT83], [MITAMZ89]. Since we wish to have both A and B-1 memory 
resident i t  is  to our advantage to use as much of A as possible to represent B- 1 .  
We believe that although it might lead to some slowing down of the processing speed the 
ability to accommodate larger models in memory considerably enhances the upward limit of 
the resulting system. We take up this issue again in section 5 where we discuss some 
statistics concerning storage. 



(e) Computer Memory and Processor Architecture 
 
We have not studied in depth the implications of different parallel processing architectures 
and memory couplings on different LP and linear equation solving algorithms. We are, 
however, conscious of the strong trends in the design of algorithms which require transfer 
of serial algorithms for such computation intensive tasks to parallel machines. The main 
reason for setting this item for consideration is that it is a factor that has to be taken 
into account in the redesign of algorithms which must cover such aspects as memory 
coupling, data structure design and process synchronisation steps [HOCJES88]. 

(f) Update Procedures 

Bartels and Golub [BARGOL69] developed a basis inverse update procedure which requires 
the original basis to be factored in the LU form. Their work and subsequent studies 
[REIDJK82] demonstrated that this was superior to product form update in all 
considerations of sparsity, stability and speed. Forrest and Tomlin [FORTOL72] 
introduced a clever variation of this update procedure which is better than the latter in 
speed and sparsity but is poorer on a stability consideration. This issue and its close 
relationship to the original problem of computing a sparse yet stable inverse was well 
addressed by Reid who produced the celebrated LAO5 subroutines with modified Bartels 
Golub update. These subroutines have been widely quoted in many studies and have 
been adopted as the main compute engine in successful LP systems [MARSTN81], 
[SMTTHB87]. Gill et al [GMSAWR84] have also considered this issue in considerable 
depth. They put forward a cogent argument (for studying this problem in its own right) 
which can be stated as follows. Considerable progress continues to be made in sparse 
equation solving methods which may be looked upon as "blackbox" procedures. Not all 
of these provide iterative update procedure. Hence methods for sparse and stable 
updates to work with sparse and stable solvers can be of considerable value. They have 
described how Bisschop and Meeraus's work [BISMER77] interpreted as Schur complement 
update can be exploited towards this purpose. We have found these arguments very 
compelling indeed. We describe in section 6 the mathematics of this update procedure 
as adopted by us and the framework and findings of our experiment. 

3.      Lower Block Triangular (LET) Factorization and Basis Inverse 
Representation 

After reordering the matrix B into the LBT form B we can factorize it in the LU form 
and derive the elimination form of the inverse (EFI) as it is derived by the Gaussian 
elimination operations. Alternatively we can first factorise the matrix and then apply the 
elimination operation only partially to the diagonal blocks of the matrix B and call this 
the partial elimination form of the inverse (PEFI) [MITRAG73], [DARBYK80]. 
Erisman, Duff and Reid [ERGRLP85], [DEREID86] call the same representation the 
reducible factors of the original (reducible) matrix. If we do not take into account 
possible cancellation of nonzero elements to zero values then it is easy to show that PEFI 
will always produce a sparser inverse than EFI. Our computational experience 
([DARBYK80], also see next section) bears this out and Erisman et al, as above, make 
the same statement. We illustrate this point by considering a reordered B matrix with 
two block diagonal matrices and four partitions. Consider the matrix B in the reducible 
form 
 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡=

44342414

332313

2212

1

LBBB

BBB

BB
LB

  

  (3.1) 



It is easily seen that the matrix can be expressed in a factored form as 
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The submatrices B2 2,  B3 3 can be expressed in the elimination form as B2 2= L2 2U2 2, 
B3 3 = L3 3U3 3.  This leads to the further factored form 
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We note that the PEFI can be easily derived from the above representation and only 
nonzero build up takes place in the L22, U22, L33, U33 matrices as obtained by the 
elimination operations. 
 
I f  a  f u l l  E F I  w a s  d e r i v e d  B  -  L U  t h e n  t h e r e  w i l l  b e  f u r t h e r  n o n z e r o  b u i l d  

up  i n  t h e  p o s i t i o n  o f  t h e  b l o c k s  o c c u p i e d  b
42

32

B
B

 | B 4 3 |  w h e r e a s  i n  t h e  

PEFI no non zero build up takes place in these positions. In the MA28 subrout ines  
dis t r ibuted by Harwell  [DEREID86] this  can be specif ied as  an opt ion and the 
corresponding reducible factorization obtained. The apparent drawback of this method is  
that Bartels and Golub's update procedure cannot be applied to this form. We consider  
this  issue fur ther  in  sect ion 6.  



4. Data Structures for Factorization 

The Analyze phase only makes use of static data structres. At the end of reordering, 
these data areas are discarded and they have no influence on the performance of the 
iterative steps of the simplex. For a description of these data structures we refer the 
readers to [DARBYK80], [TAMIZM86], [DEREID86]. In contrast the data structures used 
in the FACTOR phase require dynamic update, they also determine the overall usage of 
main memory and influence the processing speed in the simplex steps. 
 
There are altogether three data structures which have important bearing in the 
factorization phase. These are ETA representation, LBT structure (sub-bump sequence) 
indicator, and structure for Markowitz pivot selection. 
 
- Eta Representation and Sub Bump Sequence 
 
In general we can subdivide these in following groups: Unit and non unit etas. Unit etas 
may or may not take up any space depending on implementation strategy but non unit 
etas can be further subdivided into direct and indirect etas. The indirect etas are in turn 
subdivided into full and split columns of the orginal A-matrix. These eta categories are 
shown in hierarchical form in diagram 4.1. 
 

 
      
   
         Diagram 4.1 
 

The sturctures of these Etas are shown in diagram 4.2. Last and next provide forward 
and backward linking information NONZER and MROPIV indicate nonzeros and pivot rows 
respectively. They all occupy 2 bytes - 16 bits. The row indices I,,I2 etc occupy 2 
bytes, whereas pivot value (PIVVAL) and elements VAL1, VAL2 are in double precision 
and occupy 8 bytes. ICOLAD is a 4 byte integer pointing to an A-matrix column. 
IBLOCN indicates the sub bump with which the split eta is connected. The A-matrix 
columns themselves make up the indirect etas. Their storage is shown in diagram 4.3. 
 
 
 



 
Diagram 4.2 

 
We use the supersparse representation of Kalan [KALANJ71] and initially construct a 
unique element pool for the nonzero elements of the columns. As most real-life LP 
models have a prevalence of plus and minus ones the data structure is designed to store 
these values implicitly. A typical packed column format is shown in diagram 4.3. Where 
column header contains information regarding the bound and a pointer to the bound value. 
I,, I2, I3 are the row numbers of the nonzero coefficients. P1 and P2 are the pointers 
to the unique element pool. I3 inidcates a row number of 9 and the corresponding row 
coefficient has a value of +1. 

 

 

 
 

Diagram      4.3 

 
Finally we note that a split eta which corresponds to the factored partial column of the 
A-matrix has a unit pivot and its entries are the original column entries less those entries 
which are marked in the sub bump indicators. Thus as shown in diagram 4.4 rows in a 
sub bump sequence are indicated by sub bump number. The column ak belongs to this 



sub bump ISB = 3. Hence the split part of the column does not include the entries with 

these row number 

 
. 

 
 

Diagram 4.4 
 
This information is used during the forward and backward transformation processes. 
 
 
- Data Structures for Markowitz Pivoting 
 
The pivot choice strategy for the dynamic factorization of the sub bump based on merit 
count is already described in section 2.1. We have followed the storage scheme of Reid 
et al [DEREID86] and employ forward and backward linked lists of row counts and 
column counts which are set up initially. At each pivotal step these lists are updated. 
We do not search these lists fully for minimum merit count but accept near minimum 
merit count. After pivot operation Reid et al store the remaining updated matrix using a 
threaded list structure. We have adopted a different strategy whearby we update the 
remaining matrix in packed form and use two alternating temporary work areas. The 
growth of these work areas during these steps are indicated in table 4.1. 
 
 

PROBLEM MAXIMUM MAXIMUM 

 SUB BUMP AMOUNT USED AREA USED AT 
   PIVOT STEP 

AT1 166   

AT2 156   

BP1 356   

BP2 423   

GA1 55   

GA2 43   

 
 
 
 
 
 
 
 
 
 
  
  
  
 
 

TABLE 4.1 



5. A Comparison of Alternative Representations for Basis Inverse 
 
In this section we compare the PEFI method with the EFI method which is otherwise 
well established. For the EF1 method we have made use of the MINOS inveresion 
procedure. 

The six test problems summarized in Table 5.1 are basis metrices collected from three 
well known LP Benchmark test problems [BRUNEL87], [GAYM85]. The three problems 
were partly processed by MINOS [MURTSU83] and their bases saved at given iterations. 
The basis files were then read back into FORTLP [MTTAMZ88] which in turn computed 
the invert. The invert statistics produced by FORTLP are presented in a summary form 
in table 5.2. 
 
In these experiments we were mainly interested in the non zero build up in the inverse 
representation and in determining the amount of main computer storage saved by using 
the indirect eta vectors 
  

NAME PROBLEM MATRIX ITERETION BASIS 
    ORDER NUMBER NONZERO 

ATLAS AT1 315 900 1406 

ATLAS AT2 315 1200 1472 

BPTEST BP1 822 2500 4765 

BPTEST BP2 822 5500 4777 

GANGES GA1 1310 303 3453 

GANGES GA2 1310 603 5374 

  
SUMMARY INFORMATION FOR THE TEST BASES 

TABLE 5.1 
 

In order to evaluate the stability of PEFI with sub bumps processed by Markowitz merit 
count and threashold pivoting, we solve the following system of equations and compute an 
error term in the following way. 

Let 
Bx    =    b       (5.1) 

Where 
b =    Be      (5.2) 
 

And e is a vector with unit components. If x  is the computed solution then the accuracy 
of the algorithms is measured by the quantity. 
 

.|1ix|max||ex||ERROR
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This error term follows closely the measure suggested by Reid et al [DEREID86]. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

A-MATRIX 

COEFF. USED 

PROBLEM TOTAL 

NONZERO 

BUMP 

SIZE 

NO.OF 

SUB-BUMPS 

LARGEST 

SUB-BUMPS 

TOTAL NO. 

OF NONZERO 

IN B-1
ABOVE SPLIT BELOW TOTAL 

TOTAL NO. OF 

NON-ZERO IN 

U-1

AT1 1406 179 11 166 1697 199 172 155 526 442 

AT2 1472 170 9 156 1729 284 168 171 623 493 

BP1 4765 445 34 356 6298 1157 424 492 2073 1655 

BP2 4777 460 19 423 6433 1184 448 369 2001 1905 

GA1 3453 94 4 55 3424 312 135 2411 2858 140 

GA2 5374 303 21 43 5369 397 353 2026 2776 339 

 
 

 
 

DETAILED STATISTICS OF INVERSION INFORMATION 
TABLE 5.2 

 
 
 
 
 
 
 
 
 
f japanta.rep 



A comparison of nonzero build up and inversion time using MINOS and FORTLP is 
presented in Table 5.3. The error term for the invert in FORTLP is also shown in this 
table. 
 

  MINOS FORTLP FORTLP 

 
PROBLEM 

TOTAL 
NONZERO

 
TIME 

 
NONZERO

 
TIME

 
NONZERO

 
ERROR 

AT1 1406 6.7 1793 8.6 1694 0.25×10-9

AT2 1472 6.8 1857 7.4 1736 0.81×10-12

BP1 4765 40.6 6550 38.0 6191 0.50×10-9

BP2 4777 45.2 6707 50.1 6402 0.65×10-10

GA1 3453 11.0 3424 6.8 3424 0.76×10-12

GA2 5374 14.3 5367 27.0 5369 0.33×10-13

 
 

COMPARISON OF INVERSION TIME AND NONZEROS 
 

TIMES IN SECONDS ON IBM PC RT6150 
 

TABLE 5.3 
 
 
 
6. Update of the Basis Inverse 
 

Bartels Golub update within PEFI 
 
The product form update appears very poor indeed compared with the Bartels-Golub and 
Forrest-Tomlin schemes on account of speed and accuracy. Unfortunately the PEFI or 
the reducible factorization in spite of producing, a sparser inverse (see section 5), is not 
suitable for applying the latter updates as we do not possess a B = LU decomposition. 
In the Bartels-Golub scheme [BARGOL69] at the kth iteration after inversion we can 
express the factorization of the basis matrix Bk and its inverse as 
 
       (6.1) orkUkT...TLTkB
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In  (6 .1)  (6 .2)  we make use of  the or iginal  L and der ive T,  . . .  Tk - 1  and Uk from 
the original U. The method of computing these is well established [GMSAWK84] and 
not repeated here. The Forrest-Tomlin update can be considered to be similar to 
Bartels and Golub with an additional row interchange. 
 
The representation of (Bk)-1  can be expressed as 
 
       (6.3) 1

111
1 LR...kRkVQ...kQ)kB( −

−
− =



Where Vk is obtained from Uk with row deletion and row interchange which in each step 
is specified by the permutation matrices Q1 ,Q 2  .... 
 
- Bartels-Golub update within PEFI 
 
We explain here how the PEFI (reducible factorization) can be adopted to derive an 
equivalent EFI and then used to introduce Bartels-Golub update.  Consider the 
factorization of (3.3) and re-express this as 
 
         (6.4) 821 F...  F  F  B ××=
 
- Deriving the U of the B = LU factor 
 
It is easy to show that    U    of the    LU    factor is given by 
 
          (6.5) 63 F  F  U ×=
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The generalization of this method is to simply multiply the matrices with Us of the 
diagonal block to obtain the full U, and in practice it is a simple copy (trivial 
multiplication) process. The statistics given in section 5 show that only (**) nonzeros 
are used to represent the U part of the matrix of order 822 and the total of (**) 
inverse nonzeros.  Thus i t  is  a small  price to pay to take a copy of the U (the 
original Ujj are required to compute the L, see next section) in order to implement 
Bartels-Golub scheme. 
 
-  Deriving the L of the B = LU factor  
 
We note that the L is used to solve a system in the form 
 
     vvL =       (6.6) 
 
where v  is the solution for the given v. Consider the LU decomposition of the 
partitioned matrix 
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We wish to compute v  expressed in the partitioned form, whereby 
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then  11 vv =          (6.9) 
 
  2222 vvL =          (6.10) 
 
and  33223 vvvB =+          (6.11) 
 
From (6.7) we have  )U(B  B 1-

222323 =

Hence we can write (6.11) as 
 
  332

1-
2223 vvvUB =+        (6.12) 

 
(6.9), (6.10) and (6.12) allow us to compute L v  = v. Using L1 1,B3 2,U2 2

-1 as opposed 
to using L made up of L2 2,B3 2. 
 
- The implementation issues 
 
At first sight this appears rather strange to go through this long process and not compute 
L as in the elimination form. The justification of going through these steps are set out 
below. We wish to make use of as much of the A matrix as possible in the 
representation of the B-1 since this saves storage. In this scheme the nonzeros of the 
columns in the explicit transformation matrices are not introduced and stored as double 
precision (*8) floating point values and the corresponding row indices of short integer (*2) 
are not duplicated. The statistics given in section 5 show that upto *** of the B-1 

matrix can be represented in this way. It is easily seen that computation of 3v  in 
(6.12) requires a second temporary  
work area where  computed and this added to . 2

1
2232 vUB −

3v
 
- Schur complement update 
 
L e t  t h e  c o l u m n s   …  

1j
a

kj
a  b e  i n t r o d u c e d  i n  k  s i m p l e x  i t e r a t i o n s  

a f t e r  i n v e r s i o n  a n d  l e t  t h e s e  b e  d e n o t e d  a s  c o l u m n s  w 1  . . .   o f  t h e  kw

m a t r i x  W  w h i c h  i s  o f  o r d e r  ( m × k ) .    L e t   d e n o t e  u n i t  v e c t o r s  ie...ie
1

w h i c h  i n d i c a t e  c o l u m n s  o f  B  w h i c h  w e r e  r e p l a c e d  i n  t h e s e  k  i t e r a t i o n s .   
Le t  E  deno te  a  mat r ix  o f  o rder  (k  ×  m)  made  up  o f  cor responding  row 
v e c t o r s  .  I f   d e n o t e s  t h e  b a s i s  m a t r i x  a t  t h e  k t h  T)

i
e....ie,ie(

k21 kB

s t e p  t h e n  t h e  s o l u t i o n  t o  t h e  s y s t e m  ×  =  b  c a n  b e  r e l a t e d  d i r e c t l y  t o  t h e  kB
s o l u t i o n  o f  t h e  s y s t e m  
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It is easily seen that the matrix 
 
        (6.14) ,E)TBEW(BkB −+=

 
and the system of k equations 



  Ex = 0            (6.15) 
 
set  to zero value the variables which were made nonbasic in the simplex steps.   
 
The (m+k) ×  (m+k) matrix in 6.13 can be factorized and re-expressed as 
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where S = - (EB-1 W) and is known as the Schur complement [COTTLE74] of the matrix 
B. As in the LU solution we introduce an intermediate variable ν  and write down 
the set of three equations 
 
        (6.17) bBνorbνB 1−==
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which are derived from the two systems 
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We note that it is not necessary to compute the columns of the matrix Y (Y=B-1 W) 
explicitly. Since Bx = b - Wz we can compute x by applying a second solve 
operation x = v - B-1(Wz). For a discussion of this and the method of solving a 
transposed system (backward transformation) see [GMSAWR84]. For the implementation 
of the method we use S- 1  in the explicit  form and a second work area.  I t  is  
interesting to note that the use of such partitioned inverse representation has been known 
to other investigators [GEORGE74] but the application of this method to the update 
procedure is novel. 
 
- Framework of Experimentation 
 
The framework of experiments carried out by us is described here. We have taken the 
results of EFI and Bartels-Golub update as in MINOS to compare against the PFI, PEFI 
with Bartels Golub and PEFI with Schur complement, updates as implemented within 
FORTLP. The results illustrating relative speed and nonzero build up (to be completed) 
are set out in Table 6.1. 



 
 
 
 
 
 
 
 
 
 
 
Problem No 
and Basis 
 

Information Initial 
 
 

EFI and B-G Update 
MINOS 

After n iterations 

Schur Complement 
FORTLP 

After n iterations 

PEFI with B-G update 
FORTLP 

After n iterations 

PFI update 
      FORTLP 

After n iterations 

   n = 40 n = 80 n = 40 n = 80 n = 40 n = 80 n = 40 n = 80 

 Nonzero xxx xxx xxx       

BPA           

 Time -- ---- ----       

 Nonzero xxx         

BPB           

 Time -         

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6.1 A comparison of alternative update methods 
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