

 TR/13/88 December 1988

ALTERNATIVE METHODS FOR

REPRESENTING THE INVERSE OF

LINEAR PROGRAMMING

BASIS MATRICES

Gautam Mitra and Mehrdad Tamiz

z1631889

ALTERNATIVE METHODS FOR REPRESENTING THE INVERSE

OF LINEAR PROGRAMMING BASIS MATRICES

Gautam Mitra

Brunel University

and

Mehrdad Tamiz†

Brunel University

†Dr Mehrdad Tamiz is supported by a collaborative research grant of the

Science and Engineering Research Council (SERC) UK and Numerical
Algorithms Group Limited (NAG), UK.

TABLE OF CONTENTS

0 Abstract

1. Introduction

2. Background and an Analysis of the Issues

3. Lower Block Triangular (LBT) Factorization and Basis
Inverse Representation

4. Data Structures for Factorization.

5. A Comparison of Alternative Representations for Basis
Inverse

6. Update of the Basis Inverse

7. Acknowledgments

8. References

 TITLE:

Alternative Methods for Representing the Inverse of Linear Programming Basis Matrices

Gautam Mitra and Mehrdad Tamiz
Brunel University, U.K.

Methods for representing the inverse of Linear Programming (LP) basis matrices are
closely related to techniques for solving a system of sparse unsymmetric linear equations by
direct methods. It is now well accepted that for these problems the static process of
reordering the matrix in the lower block triangular (LBT) form constitutes the initial step.
We introduce a combined static and dynamic factorisation of a basis matrix and derive its
inverse which we call the partial el imination form of the inverse (PEFI). This
factorization takes advantage of the LBT structure and produces a sparser representation of
the inverse than the elimination form of the inverse (EFI). In this we make use of the
original columns (of the constraint matrix) which are in the basis. To represent the
factored inverse it is, however, necessary to introduce special data structures which are
used in the forward and the backward transformations (the two major algorithmic steps) of
the simplex method. These correspond to solving a system of equations and solving a
system of equations with the transposed matrix respectively. In this paper we compare
the nonzero build up of PEFI with that of EFI. We have also investigated alternative
methods for updating the basis inverse in the PEFI representation. The results of our
experimental investigation are presented in this paper.

1. Introduction

Computer solution of large sparse systems of linear equations and the related problem of
computing the inverse of the corresponding coefficient matrix, both efficiently and in an
efficient (compact) form assumes a key role in the study of large systems which arise in
many contexts [DFREID79], [DGEPLE82]. Commercial exploitation of the equation
solving technologies for such systems is most widespread in the field of linear
programming. This is because formulation of large planning and scheduling problems and
also their solutions have been well investigated since the late sixties. Also solution
methods for LPs have continued to keep pace with developments in the field of
algorithms, software and computer hardware. Series of special conferences on the topic
of sparse matrices and sparse equation solving methods were organised during the 60s and
all through the 70s [WILLBY69], [REIDJK71], [ROSWIL72], [BUNROS76], [DUFSTW79],
and there is a wide body of literature which cover these developments. Research
covering algorithms, data structures, software implementation and exploitation of machine
architecture

Our research interests concern the solution of large Linear Programming problems robustly
and efficiently [MTTAMZ88]. At the heart of such a system lies suitable basis inversion
and basis inverse update procedures. In this paper we set out our arguements for the
choice of the inversion and update procedures; we describe the mathematical methods and
the related implementation issues and finally present some preliminary results of our
investigations. The rest of the paper is organised as follows. In section 2 we expand
on the background of the developments and present our analysis of the issues. In
section 3 we discuss why the lower block triangular (LBT) form is a desirable structure,
and the corresponding factored form of the inverse. In section 4 we outline the data
structures which we have adopted to represent the factorisation and we describe how it is
used in the solution process. In section 5 we compare the elimination form of the
inverse with the partial elimination form of the inverse (PEFI) as derived by us. In
section 6 the alternative ways of updating representation are presented. Section 7
contains a discussion and concluding remarks based on our findings.

2. Background and an Analysis of the Issues

The methods of computing and updating the inverse basis matrices of large sparse linear
programming problems are dominated by the following major considerations. (a) The
nonzero structure of the matrix needs to be analyzed and the rows and columns of the
matrix reordered: ANALYZE phase. (b) Pivots have to be chosen for (Gaussian)
elimination and alternative methods of factorization of the matrix have to be considered:
FACTOR phase. (c) A method has to be derived whereby the inverse can be used in
the solution process implicit in the "backward and forward transformations": SOLVE
procedures. (d) Suitable data structures have to be designed to represent the original
sparse matrix and the sparse basis inverse. (e) The implications of the algorithms and
the data structures on the main memory of the computer and the architecture of the
processor have to be taken into account. (f) In addition to the efficient inverse
representation an efficient update procedure has to be designed taking into account (b),
(d) , (e) a b o v e . W e r e f e r t h e r e a d e r s t o p a p e r s [B A R G O L 6 9] , [F O R T O L 7 2] ,
[HELRAR71], [HELRAR72], [REIDJK76], [REIDJK82], [GMSAWR84] which have
addressed, expanded and dealt with most of these issues. The point (e) concerning
implications of these algorithms on the current generation of multiprocessing architecture
has been barely discussed in the literature.

(e) ANALYZE phase

Given a nonsingular matrix B of order m the reordering algorithms make use of the
corresponding graph of the adjacency matrix derived from the nonzero elements. In the
symmetric case the aim is to derive specifications for symmetric row and column

interchanges given by permutation matrices P,PT respectively such that we obtain a
reordered matrix B, B = PBPT which is presented as compactly as possible in band
diagonal form. The heuristic methods exploit the underlying undirected graph and make
use of the degrees of the vertices. In the case of unsymmetric matrices, the general
situation with basis matrices, it is well established [DARMIT81], [DUFFIS84] that LBT is
the most desirable form. This LBT reordering is achieved by considering the underlying
directed graph and applying the following algorithms.

- Maximal Matching

We can apply the maximum matching algorithm of Hall [HALLML56] whereby the matrix
B is reordered to B* which has a zero-free diagonal. As a result B* = BQ; the
permutation matrix Q which specifies the reordering is derived by this algorithm.

- Finding the Strong Components

To the matrix B* which has a zero-free diagonal the celebrated algorithm of Tarjan can
be applied to obtain the strong components (the diagonal blocks of the matrix) of the
directed graph. This leads to the derivation of orderings given by the permutation
matrices P, whereby the original matrix B can be reordered into the lower block TP
triangular form B
B = PB* or B = P(BQ) . We note that for the symmetric case the problem of TP TP
bandwidth minimisation is NP-complete [PAPDIM76]. Hence only heuristic methods are
applied. In contrast the above mentioned LBT algorithms have the complexity of low
order polynomials [DUFFIS84], [DARBYK80]. Beale [BEALEM84] conjectured that a
band form for the unsymmetric case may be equally attractive as the LBT form.
Although we have done some preliminary work on this topic [JUMITZ87] this has not
been properly followed up and we are not considering the issue of symmetric matrices and
the band form any further in this paper. It is interesting to note that Hellerman and
Rarick [HELRAR71] did not make use of Tarjan's work as these results were not known
at that time. They also combined the ANALYZE and at least a part of the FACTOR
phase as they preassigned pivot positions; the implications of this are discussed in the next
subsection,
(b) FACTOR phase
The main motivation of this phase is to compute a sparse yet accurate LU decomposition
of the matrix B. If the LU decomposition is computed in the product form of the L
and U transformation matrices then this reduces the nonzero growth. If pivot choice
is made dynamically during factorization with a view to control accuracy then this can
lead to a stable solution. Hellerman and Raricks P4 algorithm finds spikes which are
postponed for pivoting and constructs pivot agenda based entirely on a static analysis.
The main aim is to minimise fill in. Unfortunately, however, it is necessary to modify
the algorithm to deal with all possible contingencies otherwise the method is known
[LINMAH77], [ERGRLP85] to lead to structural singularity as well as unstable solutions.
Erisman et al have studied the comparative performance of a modified and improved P5

(precautionary partitioned preassigned pivot procedure) with the modified Markowitz
procedure with threshold tolerance due to Reid. The authors conclude that not only is
the latter superior in non-LP applications, even in LP applications, the latter is equally
good if not superior, taking into account accuracy and robustness. It is well known that
the choice of the largest admissible nonzero entry at each step of Gaussian elimination can
provide accurate LU decomposition but this strategy will result in considerable fill-in.
Tomlin [TOMLIN72] suggested a relative tolerance of 0.01 of maximum column entry
based on experimental evidence of processing LP problems. We have found Reid's
recommendation of a threshold tolerance with restricted Markowitz merit criteria very

effective indeed [DEREID86], According to Reid at the kth elimination step pivots are
chosen by the criteria.

1)j(c1)i(r
j,i

min −− (2.1)

1u0...|)k

jb|max(u|k
j ib|and <<>

ll

In (2 .1) denotes the entry in the remaining matr ix a t the kk
j ib thj) (i t h

e l imina t ion s tep , a re row and co lumn nonzero counts of row(i) , ji c,r
co lumn(j) , and u is a threshold tolerance.

T h u s t h e p i v o t c h o s e n i s s u c h t h a t k
pqb |u

k
pqb

| i s g r e a t e r t h a n t h e l a r g e s t

absolute entry of the nonzero elements avai lable for pivot in the column q of the
matrix at the kth step. Following Duff Erisman and Reid's suggestion we use a nea r
minimum as opposed to exact minimum merit count and a threshold value of u = 0 .1
which leads to fairly good results both for sparsity and accuracy. The data s t ruc tu res
adopted by us are briefly discussed in section 4.

(e) The SOLVE procedures

Let e denote an m component vector with +1 as one or more of its components (e
is known as the form vector). Let aj denote a column of the A matrix and Π the
vector of shadow prices. There are two well known steps of the revised simplex, namely
backward Transformation and Forward Transformation, [BEALEM68], [MITRAG76], which
make use of the B-1 representation. These transformation steps can be expressed as
two equivalent equation solving steps given by the relations

eT)(Bor eB 1-1 =ΠΠ=− (2.2)
and

ja1Bja −= (2.3)

Having computed the inverse in the factored form it becomes necessary to compute the
solutions shown in (2.2) (2.3) making use of the data structures and the factored inverse
representation.

(d) Choice of Data Structure

In the sixties and seventies in main frame as well as mini computers the main memory
modules (also known as core store) were very expensive and for an LP system to work
over a range of machines with varying memory sizes both the A matrix and the B-1

matrix were stored in backing magnetic stores in the form of sequential files. The main
memory is no longer at a premium even for desk top machines. Yet it is still necessary
to design highly compact data structures to represent the A and B- 1 matrices.
There are well known storage schemes for sparse and supersparse matrices [KALANJ71],
[DARMIT83], [MITAMZ89]. Since we wish to have both A and B-1 memory
resident i t is to our advantage to use as much of A as possible to represent B- 1 .
We believe that although it might lead to some slowing down of the processing speed the
ability to accommodate larger models in memory considerably enhances the upward limit of
the resulting system. We take up this issue again in section 5 where we discuss some
statistics concerning storage.

(e) Computer Memory and Processor Architecture

We have not studied in depth the implications of different parallel processing architectures
and memory couplings on different LP and linear equation solving algorithms. We are,
however, conscious of the strong trends in the design of algorithms which require transfer
of serial algorithms for such computation intensive tasks to parallel machines. The main
reason for setting this item for consideration is that it is a factor that has to be taken
into account in the redesign of algorithms which must cover such aspects as memory
coupling, data structure design and process synchronisation steps [HOCJES88].

(f) Update Procedures

Bartels and Golub [BARGOL69] developed a basis inverse update procedure which requires
the original basis to be factored in the LU form. Their work and subsequent studies
[REIDJK82] demonstrated that this was superior to product form update in all
considerations of sparsity, stability and speed. Forrest and Tomlin [FORTOL72]
introduced a clever variation of this update procedure which is better than the latter in
speed and sparsity but is poorer on a stability consideration. This issue and its close
relationship to the original problem of computing a sparse yet stable inverse was well
addressed by Reid who produced the celebrated LAO5 subroutines with modified Bartels
Golub update. These subroutines have been widely quoted in many studies and have
been adopted as the main compute engine in successful LP systems [MARSTN81],
[SMTTHB87]. Gill et al [GMSAWR84] have also considered this issue in considerable
depth. They put forward a cogent argument (for studying this problem in its own right)
which can be stated as follows. Considerable progress continues to be made in sparse
equation solving methods which may be looked upon as "blackbox" procedures. Not all
of these provide iterative update procedure. Hence methods for sparse and stable
updates to work with sparse and stable solvers can be of considerable value. They have
described how Bisschop and Meeraus's work [BISMER77] interpreted as Schur complement
update can be exploited towards this purpose. We have found these arguments very
compelling indeed. We describe in section 6 the mathematics of this update procedure
as adopted by us and the framework and findings of our experiment.

3. Lower Block Triangular (LET) Factorization and Basis Inverse
Representation

After reordering the matrix B into the LBT form B we can factorize it in the LU form
and derive the elimination form of the inverse (EFI) as it is derived by the Gaussian
elimination operations. Alternatively we can first factorise the matrix and then apply the
elimination operation only partially to the diagonal blocks of the matrix B and call this
the partial elimination form of the inverse (PEFI) [MITRAG73], [DARBYK80].
Erisman, Duff and Reid [ERGRLP85], [DEREID86] call the same representation the
reducible factors of the original (reducible) matrix. If we do not take into account
possible cancellation of nonzero elements to zero values then it is easy to show that PEFI
will always produce a sparser inverse than EFI. Our computational experience
([DARBYK80], also see next section) bears this out and Erisman et al, as above, make
the same statement. We illustrate this point by considering a reordered B matrix with
two block diagonal matrices and four partitions. Consider the matrix B in the reducible
form

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡=

44342414

332313

2212

1

LBBB

BBB

BB
LB

 (3.1)

It is easily seen that the matrix can be expressed in a factored form as

B =

×

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡×

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡×

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

IB

IB
I

I

I
I

B
I

IB

IB

IB

L

24

23

22

14

13

12

11

 (3.2)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡×

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

4434

33

L
I

I
I

IB
I

I
I

I
B

I
I

The submatrices B2 2, B3 3 can be expressed in the elimination form as B2 2= L2 2U2 2,
B3 3 = L3 3U3 3. This leads to the further factored form

B =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡×

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

IB

IB
I

I

I
I

U
I

I
I

L
I

IB
IB

IB
L

24

22

2222

41

31

21

11

 (3.3)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ ×

×

4443

3333

L
I

I
I

IB
I

I
I

I
U

I
I

I
L

I
I

We note that the PEFI can be easily derived from the above representation and only
nonzero build up takes place in the L22, U22, L33, U33 matrices as obtained by the
elimination operations.

I f a f u l l E F I w a s d e r i v e d B - L U t h e n t h e r e w i l l b e f u r t h e r n o n z e r o b u i l d

up i n t h e p o s i t i o n o f t h e b l o c k s o c c u p i e d b
42

32

B
B

 | B 4 3 | w h e r e a s i n t h e

PEFI no non zero build up takes place in these positions. In the MA28 subrout ines
dis t r ibuted by Harwell [DEREID86] this can be specif ied as an opt ion and the
corresponding reducible factorization obtained. The apparent drawback of this method is
that Bartels and Golub's update procedure cannot be applied to this form. We consider
this issue fur ther in sect ion 6.

4. Data Structures for Factorization

The Analyze phase only makes use of static data structres. At the end of reordering,
these data areas are discarded and they have no influence on the performance of the
iterative steps of the simplex. For a description of these data structures we refer the
readers to [DARBYK80], [TAMIZM86], [DEREID86]. In contrast the data structures used
in the FACTOR phase require dynamic update, they also determine the overall usage of
main memory and influence the processing speed in the simplex steps.

There are altogether three data structures which have important bearing in the
factorization phase. These are ETA representation, LBT structure (sub-bump sequence)
indicator, and structure for Markowitz pivot selection.

- Eta Representation and Sub Bump Sequence

In general we can subdivide these in following groups: Unit and non unit etas. Unit etas
may or may not take up any space depending on implementation strategy but non unit
etas can be further subdivided into direct and indirect etas. The indirect etas are in turn
subdivided into full and split columns of the orginal A-matrix. These eta categories are
shown in hierarchical form in diagram 4.1.

 Diagram 4.1

The sturctures of these Etas are shown in diagram 4.2. Last and next provide forward
and backward linking information NONZER and MROPIV indicate nonzeros and pivot rows
respectively. They all occupy 2 bytes - 16 bits. The row indices I,,I2 etc occupy 2
bytes, whereas pivot value (PIVVAL) and elements VAL1, VAL2 are in double precision
and occupy 8 bytes. ICOLAD is a 4 byte integer pointing to an A-matrix column.
IBLOCN indicates the sub bump with which the split eta is connected. The A-matrix
columns themselves make up the indirect etas. Their storage is shown in diagram 4.3.

Diagram 4.2

We use the supersparse representation of Kalan [KALANJ71] and initially construct a
unique element pool for the nonzero elements of the columns. As most real-life LP
models have a prevalence of plus and minus ones the data structure is designed to store
these values implicitly. A typical packed column format is shown in diagram 4.3. Where
column header contains information regarding the bound and a pointer to the bound value.
I,, I2, I3 are the row numbers of the nonzero coefficients. P1 and P2 are the pointers
to the unique element pool. I3 inidcates a row number of 9 and the corresponding row
coefficient has a value of +1.

Diagram 4.3

Finally we note that a split eta which corresponds to the factored partial column of the
A-matrix has a unit pivot and its entries are the original column entries less those entries
which are marked in the sub bump indicators. Thus as shown in diagram 4.4 rows in a
sub bump sequence are indicated by sub bump number. The column ak belongs to this

sub bump ISB = 3. Hence the split part of the column does not include the entries with

these row number

.

Diagram 4.4

This information is used during the forward and backward transformation processes.

- Data Structures for Markowitz Pivoting

The pivot choice strategy for the dynamic factorization of the sub bump based on merit
count is already described in section 2.1. We have followed the storage scheme of Reid
et al [DEREID86] and employ forward and backward linked lists of row counts and
column counts which are set up initially. At each pivotal step these lists are updated.
We do not search these lists fully for minimum merit count but accept near minimum
merit count. After pivot operation Reid et al store the remaining updated matrix using a
threaded list structure. We have adopted a different strategy whearby we update the
remaining matrix in packed form and use two alternating temporary work areas. The
growth of these work areas during these steps are indicated in table 4.1.

PROBLEM MAXIMUM MAXIMUM

 SUB BUMP AMOUNT USED AREA USED AT
 PIVOT STEP

AT1 166

AT2 156

BP1 356

BP2 423

GA1 55

GA2 43

TABLE 4.1

5. A Comparison of Alternative Representations for Basis Inverse

In this section we compare the PEFI method with the EFI method which is otherwise
well established. For the EF1 method we have made use of the MINOS inveresion
procedure.

The six test problems summarized in Table 5.1 are basis metrices collected from three
well known LP Benchmark test problems [BRUNEL87], [GAYM85]. The three problems
were partly processed by MINOS [MURTSU83] and their bases saved at given iterations.
The basis files were then read back into FORTLP [MTTAMZ88] which in turn computed
the invert. The invert statistics produced by FORTLP are presented in a summary form
in table 5.2.

In these experiments we were mainly interested in the non zero build up in the inverse
representation and in determining the amount of main computer storage saved by using
the indirect eta vectors

NAME PROBLEM MATRIX ITERETION BASIS
 ORDER NUMBER NONZERO

ATLAS AT1 315 900 1406

ATLAS AT2 315 1200 1472

BPTEST BP1 822 2500 4765

BPTEST BP2 822 5500 4777

GANGES GA1 1310 303 3453

GANGES GA2 1310 603 5374

SUMMARY INFORMATION FOR THE TEST BASES

TABLE 5.1

In order to evaluate the stability of PEFI with sub bumps processed by Markowitz merit
count and threashold pivoting, we solve the following system of equations and compute an
error term in the following way.

Let
Bx = b (5.1)

Where
b = Be (5.2)

And e is a vector with unit components. If x is the computed solution then the accuracy
of the algorithms is measured by the quantity.

.|1ix|max||ex||ERROR
i

−=== ∞

This error term follows closely the measure suggested by Reid et al [DEREID86].

A-MATRIX

COEFF. USED

PROBLEM TOTAL

NONZERO

BUMP

SIZE

NO.OF

SUB-BUMPS

LARGEST

SUB-BUMPS

TOTAL NO.

OF NONZERO

IN B-1
ABOVE SPLIT BELOW TOTAL

TOTAL NO. OF

NON-ZERO IN

U-1

AT1 1406 179 11 166 1697 199 172 155 526 442

AT2 1472 170 9 156 1729 284 168 171 623 493

BP1 4765 445 34 356 6298 1157 424 492 2073 1655

BP2 4777 460 19 423 6433 1184 448 369 2001 1905

GA1 3453 94 4 55 3424 312 135 2411 2858 140

GA2 5374 303 21 43 5369 397 353 2026 2776 339

DETAILED STATISTICS OF INVERSION INFORMATION
TABLE 5.2

f japanta.rep

A comparison of nonzero build up and inversion time using MINOS and FORTLP is
presented in Table 5.3. The error term for the invert in FORTLP is also shown in this
table.

 MINOS FORTLP FORTLP

PROBLEM

TOTAL
NONZERO

TIME

NONZERO

TIME

NONZERO

ERROR

AT1 1406 6.7 1793 8.6 1694 0.25×10-9

AT2 1472 6.8 1857 7.4 1736 0.81×10-12

BP1 4765 40.6 6550 38.0 6191 0.50×10-9

BP2 4777 45.2 6707 50.1 6402 0.65×10-10

GA1 3453 11.0 3424 6.8 3424 0.76×10-12

GA2 5374 14.3 5367 27.0 5369 0.33×10-13

COMPARISON OF INVERSION TIME AND NONZEROS

TIMES IN SECONDS ON IBM PC RT6150

TABLE 5.3

6. Update of the Basis Inverse

Bartels Golub update within PEFI

The product form update appears very poor indeed compared with the Bartels-Golub and
Forrest-Tomlin schemes on account of speed and accuracy. Unfortunately the PEFI or
the reducible factorization in spite of producing, a sparser inverse (see section 5), is not
suitable for applying the latter updates as we do not possess a B = LU decomposition.
In the Bartels-Golub scheme [BARGOL69] at the kth iteration after inversion we can
express the factorization of the basis matrix Bk and its inverse as

 (6.1) orkUkT...TLTkB

121 −
=

 (6.2) 11

121
11

k
1 LTT...kTU)kB(−−

−
−−− =

In (6 .1) (6 .2) we make use of the or iginal L and der ive T, . . . Tk - 1 and Uk from
the original U. The method of computing these is well established [GMSAWK84] and
not repeated here. The Forrest-Tomlin update can be considered to be similar to
Bartels and Golub with an additional row interchange.

The representation of (Bk)-1 can be expressed as

 (6.3) 1

111
1 LR...kRkVQ...kQ)kB(−

−
− =

Where Vk is obtained from Uk with row deletion and row interchange which in each step
is specified by the permutation matrices Q1 ,Q 2

- Bartels-Golub update within PEFI

We explain here how the PEFI (reducible factorization) can be adopted to derive an
equivalent EFI and then used to introduce Bartels-Golub update. Consider the
factorization of (3.3) and re-express this as

 (6.4) 821 F... F F B ××=

- Deriving the U of the B = LU factor

It is easy to show that U of the LU factor is given by

 (6.5) 63 F F U ×=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Ι
Ι

Ι=

22

3

U

Fwhere

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Ι

Ι=

33

6

U
I

F

The generalization of this method is to simply multiply the matrices with Us of the
diagonal block to obtain the full U, and in practice it is a simple copy (trivial
multiplication) process. The statistics given in section 5 show that only (**) nonzeros
are used to represent the U part of the matrix of order 822 and the total of (**)
inverse nonzeros. Thus i t is a small price to pay to take a copy of the U (the
original Ujj are required to compute the L, see next section) in order to implement
Bartels-Golub scheme.

- Deriving the L of the B = LU factor

We note that the L is used to solve a system in the form

 vvL = (6.6)

where v is the solution for the given v. Consider the LU decomposition of the
partitioned matrix

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Ι

Ι×

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Ι

Ι=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Ι

Ι

22

32

22

32

22 U
B
L

B
B (6.7)

We wish to compute v expressed in the partitioned form, whereby

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Ι

Ι

3

2

1

3

2

1

32

22

v
v
v

v
v
v

B
L (6.8)

then 11 vv = (6.9)

 2222 vvL = (6.10)

and 33223 vvvB =+ (6.11)

From (6.7) we have)U(B B 1-

222323 =

Hence we can write (6.11) as

 332

1-
2223 vvvUB =+ (6.12)

(6.9), (6.10) and (6.12) allow us to compute L v = v. Using L1 1,B3 2,U2 2

-1 as opposed
to using L made up of L2 2,B3 2.

- The implementation issues

At first sight this appears rather strange to go through this long process and not compute
L as in the elimination form. The justification of going through these steps are set out
below. We wish to make use of as much of the A matrix as possible in the
representation of the B-1 since this saves storage. In this scheme the nonzeros of the
columns in the explicit transformation matrices are not introduced and stored as double
precision (*8) floating point values and the corresponding row indices of short integer (*2)
are not duplicated. The statistics given in section 5 show that upto *** of the B-1

matrix can be represented in this way. It is easily seen that computation of 3v in
(6.12) requires a second temporary
work area where computed and this added to . 2

1
2232 vUB −

3v

- Schur complement update

L e t t h e c o l u m n s …

1j
a

kj
a b e i n t r o d u c e d i n k s i m p l e x i t e r a t i o n s

a f t e r i n v e r s i o n a n d l e t t h e s e b e d e n o t e d a s c o l u m n s w 1 . . . o f t h e kw

m a t r i x W w h i c h i s o f o r d e r (m × k) . L e t d e n o t e u n i t v e c t o r s ie...ie
1

w h i c h i n d i c a t e c o l u m n s o f B w h i c h w e r e r e p l a c e d i n t h e s e k i t e r a t i o n s .
Le t E deno te a mat r ix o f o rder (k × m) made up o f cor responding row
v e c t o r s . I f d e n o t e s t h e b a s i s m a t r i x a t t h e k t h T)

i
e....ie,ie(

k21 kB

s t e p t h e n t h e s o l u t i o n t o t h e s y s t e m × = b c a n b e r e l a t e d d i r e c t l y t o t h e kB
s o l u t i o n o f t h e s y s t e m

 (6.13) ⎥
⎦

⎤
⎢
⎣

⎡=
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
0
b

z
x

OE
WB

It is easily seen that the matrix

 (6.14) ,E)TBEW(BkB −+=

and the system of k equations

 Ex = 0 (6.15)

set to zero value the variables which were made nonbasic in the simplex steps.

The (m+k) × (m+k) matrix in 6.13 can be factorized and re-expressed as

 (6.16) ⎥
⎦

⎤
⎢
⎣

⎡
Ι

Ι×
⎥
⎦

⎤
⎢
⎣

⎡=
⎥
⎦

⎤
⎢
⎣

⎡ Y
SE
OB

OE
WB

where S = - (EB-1 W) and is known as the Schur complement [COTTLE74] of the matrix
B. As in the LU solution we introduce an intermediate variable ν and write down
the set of three equations

 (6.17) bBνorbνB 1−==

) (6.18) νE(Szor0SzνE 1 −==+ −

 YzνxorνYzx −==+ (6.19)

which are derived from the two systems

 (6.20) ⎥
⎦

⎤
⎢
⎣

⎡=
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
0
b

z
ν

SE
OB

and

 (6.21) ⎥
⎦

⎤
⎢
⎣

⎡=
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
Ι

Ι
z
ν

z
xY

We note that it is not necessary to compute the columns of the matrix Y (Y=B-1 W)
explicitly. Since Bx = b - Wz we can compute x by applying a second solve
operation x = v - B-1(Wz). For a discussion of this and the method of solving a
transposed system (backward transformation) see [GMSAWR84]. For the implementation
of the method we use S- 1 in the explicit form and a second work area. I t is
interesting to note that the use of such partitioned inverse representation has been known
to other investigators [GEORGE74] but the application of this method to the update
procedure is novel.

- Framework of Experimentation

The framework of experiments carried out by us is described here. We have taken the
results of EFI and Bartels-Golub update as in MINOS to compare against the PFI, PEFI
with Bartels Golub and PEFI with Schur complement, updates as implemented within
FORTLP. The results illustrating relative speed and nonzero build up (to be completed)
are set out in Table 6.1.

Problem No
and Basis

Information Initial

EFI and B-G Update
MINOS

After n iterations

Schur Complement
FORTLP

After n iterations

PEFI with B-G update
FORTLP

After n iterations

PFI update
 FORTLP

After n iterations

 n = 40 n = 80 n = 40 n = 80 n = 40 n = 80 n = 40 n = 80

 Nonzero xxx xxx xxx

BPA

 Time -- ---- ----

 Nonzero xxx

BPB

 Time -

Table 6.1 A comparison of alternative update methods

7. Acknowledgments

We are extremely grateful to NAG Ltd for their continued interest in this project and
their collaborative financial support. We also thank SERC for their support. We had
approached Dr J K Reid of Harwell Laboratories and Dr P Gill of Stanford Optimization
Laboratories for information on LAO5 and LUSOL subroutines respectively. They were
immediately forthcoming: after closely studying these two codes we have devised our
implementation strategy. Dr J Judice had worked on a related part of the project
[JUMITZ87] and was supported again by an SERC visiting fellowship. We acknowledge
many stimulating ideas put forward by him, not the least for his suggestion that we adopt
Schur complement update procedure. Dr K Darby-Dowman [DARBYK80] had earlier
worked on algorithms for restructuring basis matrices and we have drawn heavily on the
algorithms and subroutines developed by him.

REFERENCES

[BARGOL69] Bartels, R H, and Golub, G H, (1969), The simplex method of linear
programming using LU decomposition, Communications of the ACM, pp 266-268, 275-278.

[BEALEM68] Beale, E M L, (1968), Mathematical programming in practice, Pitman,
London.

[BEALEM84] Beale, E M L, (1984), private communication.

[BISMER77] Bischop, J, and Meeraus, A, (1977), Matrix augmentation and partitioning in
the updating of the basis inverse, Mathematical Programming, vol 13, pp 241-254.

[BRUNEL87] A collection of test problems held by the mathematical programming group
at Brunei University

[BUNROSE76] Bunch, J R, and Rose, D J, (1976) (eds), Sparse matrix computation,
Academic Press.

[COTTLE74] Cottle, R W, (1974), Manifestations of the Schur complement, Linear
Algebra Applic, vol 8, pp 189-211.

[DARBYK80] Darby-Dowman, K, (1980), The exploitation of sparsity in large scale linear
programming problems and data structures and restructuring algorithms for basis matrices,
PhD thesis, Brunei University, UK

[DARMIT81] Darby-Dowman, K, and Mitra, G, (1981), An investigation of algorithms
used in restructuring of linear programming basis matrices prior to inversion, in Studies of
Graphs and Discrete Programming, (ed) Hanson, P, North Holland, pp 69-73.

[DARMIT83] Darby-Dowman, K, and Mitra, G, (1983), Matrix Storage Schemes in Linear
Programming, SIGMAP, Bulletin of the ACM.

[DEREID86] Duff, I S, Erisman, A M, and Reid, J K, (1986), Direct method for sparse
matrices, Oxford Science Publications, Clarendon Press, Oxford.

[DFREID79] Duff I S, and Reid, J K, (1979), Performance evaluation of codes for sparse
matrix problems, in Fosdick, L O, (ed) Performance evaluation of numerical software,
North Holland, 1979.

[DGEPLE82] Duff, I S, Grimes, R G, Lewis, J G, and Poole, W G, Jr, (1982), Sparse
matrix test problems, SIGNUM Newsletter, Association of Computing Machinery, NY, vol
17 (2), 22.

[DUFFIS84] Duff, I S, (1984), Direct methods for solving sparse systems of linear
equations, SIAM Journal of SCI STAT COMPUT, vol 5, No 3, pp 609-619.

[DUFSTW79] Duff, I S, Stewart, G W, (1979) (eds) Sparse matrix proceedings, 1978,
SIAM, Philadelphia, PA.

[ERGRLP85] Erisman, A M, Grimes, R G, Lewis, J G, and Poole, W G (1985), A
structurally stable modification of Hellerman-Rerick's P4 algorithm for reordering
unsymmetric sparse matrices, SIAM Journal of NUMER ANAL, vol 22, No 2, pp
369-384.

[FORTOL72] Forrest, J J H and Tomlin, J A, (1972), Updated triangular factors of the
basis to maintain sparsity in the product form simplex method, Mathematical Programming,
vol 2, No 3, pp 263-278.

[GAYM85] Gay, D M, (1985), Electronic mail distribution of linear programming test
problems, Mathematical Programming Society COAL Newsletter.

[GEORGE74] George, J A, (1974) On block elimination for sparse matrices, SIAM
Journal of Numer. Anal., vol 11, pp 452-455.

[GMSAWR84] Gill, P E, Murray, W, Saunders, M A, and Wright, M H, (1984), Sparse
matrix methods in optimisation, SIAM Journal of SCI STAT COMPUT, vol 5, No 3, pp
562-589.

[GRGLIU80] George, A and Liu, J W H, (1981), Computer solution of large sparse
positive definite systems, Prentice Hall, New Jersey.

[HALLML56] Hall, M (1956), An algorithm for district representatives, American
Mathematical Monthly, vol 63, p616-617.

[HELRAR71] Hellerman, E, and Rarick, D, (1971), Reinversion with the preassigned pivot
procedure, Mathematical Programming, vol 1, pp 195-216.

[HELRAR72] Hellerman, E, and Rarick, D, (1972), The partitioned preassigned pivot
procedure, in [ROSWIL72].

[HOCJES88] Hockney, R W, and Jesshope, C R, (1988), Parallel Computers, 2nd edition,
Adam Hilger, UK.

[JUMITZ87] Judice, J D, Mitra, G, and Tamiz, M, (1987), A program to reorder and
solve sparse unsymmetric linear systems using the envelope method, Technical
Report/04/87, Dept of Maths & Stats, Brunel University, UK.

[KALANJ71] Kalan, J E, (1971), Aspects of large scale in-core linear programming,
proceedings of the annual conference of the ACM, pp304-313.

[LINMAH77] Lin, T D, and Mah, R H, (1977), Hierarchical partition a new optimal
pivoting algorithm, Mathematical Programming, vol 12, pp 260-278.

[MARSTN81] Marsten, R E, (1981), The design of XMP linear programming library, ACM
Transactions on Mathematical Software.

[MITRAG73] Mitra G, (1973), Sparse inverse in the factored form and maintaining
sparsity during simplex iterations, in, Software for Numerical Mathematics, Evans, D J,
(ed), Academic Press.

[MITRAG76] Mitra, G, (1976), Theory and application of mathematical programming,
Academic Press, London.

[MITAMZ88] Mitra G, and Tamiz, M, (1988), FORTLP user manual, Brunei University
and NAG Ltd.

[MITAMZ89] Mitra G, and Tamiz M, (1989), Algorithms and software techniques for
constructing linear and integer programming system for large sparse problems, Academic
Press, Forthcoming.

[MURTSU83] Murtagh, B A, and Saunders, M A, (1983), MINOS 5.1 user's guide,
Technical Report SOL 83-20R, Department of Operational Research, Stanford University.

[PAPDIM76] Papadimitriou, C H, (1976), The N-P completeness of the bandwidth
minimisation problem, COMPUTING, vol 16, pp 263-270.

[REIDJK71] Reid, J K, (1971) (ed), Large sparse sets of linear equations, Academic
Press.

[REIDJK76] Reid, J K, (1976), Fortran subroutines for handling sparse linear programming
bases, Report AERE-R8269, Harwell.

[REIDJK82] Reid, J K, (1982), A sparsity-exploiting variant of the Bartels-Golub
decomposition for linear programming bases, Mathematical Programming, vol 24, No 1, pp
55-69.

[ROSWIL72] Rose, D J, and Willoughby R A, (1972) (eds), Sparse matrices and their
applications, Plenum Press.

[SMITHB87] Smith, B, (1987), Private communication concerning LP system developed at
Leeds University for Crew Scheduling.

[TAMIZM86] Tamiz, M, (1986), Design development and testing of a general linear
programming system, PhD thesis, Brunel Universit.

[TOMLIN72] Tomlin, J A, (1972), Pivoting for size and sparsity in linear programming
inversion routines, IMA Journal, vol 10, pp 289-295.

[WILLBY69] Willoughby, R A, (1969) (ed), Proceedings of the symposium on sparse
matrices and their applications, IBM Report RA1, Yorktown Heights, NY.

fjapan. rep

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 TR/13/88 December 1988
	Gautam Mitra and Mehrdad Tamiz

