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A  Linear,   Functional  Differential  Equation  of   the  First  Order 

In   this   paper  rational   function  methods   are  used   to  study 
the  analytic  nature  of   a  function  satisfying  a  functional 
equation  and   related   to  a   l inear,   functional differential 
equation  of  the   first   order.     The  solution   of  this   differential 
equation   is   of   intrinsic  interest,   since  i t   can  be  regarded  as 
a  generalisation  of   the  exponential   function.  From  the 
rational   functions   sequences  of  approximations  to  solutions 
of   the  differential   equation  are   constructed.  Some  of   these 
sequences   can  be  used   to  calculate   the solutions  for an 
appreciable  range  of  the  independent  variable. 
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1 .   The  Problem 

From  the  literature  it   appears   that  the  basic  problem  has  arisen 

from  two  distinct  sources,   namely,   from  a  problem  in  electrical 

engineering  [Ockendon  &  Tayler,   1971]  and from a problem in the theory 

of  number  [Mahler,   1940]. 

The  problem  is   to   solve  the  functional,    differential  equation 

dt
tdy )( =  ay( λ )  +by(t) (1) 

for t   >  0  with   y(o)  = 1,where  we  take  λ   ≥   0and  a,b   to  be  real 

constants, 

For  0  ≤  λ   ≤  1 the  solution  is  found  to be  unique, [See  Kato &  Mcleod, 

1971],   but  for  λ  > 1   there  exist   non-trivial  solutions  of   (1.1)  with 

y(o)   =  0,     Thus  for  X >1   eigensolutions  exist.  For λ   > 1  we  shall  

be    interested,   particularly, in   those  solutions   which,   as   functions 

of  λ ,    are  the  analytic   continuations  of  solutions  found  for  0  < λ  < 1, 

but  other  solutions  are  also  discussed. 

Since  most  of   the  analysis  is  carried  out  in  the  Laplace  transform 

plane,   i t   is  convenient  to  modify,   slightly,   the   formulation  of 

(1.1)   to 

                            dt
dy(t) +  αλy (λt)   =  βy(t)                                         (1.2) 

where     α ,β      are  real constants,   the remaining conditions being unchanged. 

A  number  of  particular  cases  of (1.2)  are  trivial and  soluble immediately. 

 (i) For λ  =  0,     or    α   =  0,   the  solution  is  y(t)    =  eβ t
.  

         (i i) For  λ   =   1   the  solution  is  y(t) = e(ß -α ) t  

        (iii)  If  for  integer  n  ≥   0,     β  =αλn +1
,  ,    the  solution is  a  polynomial 

           of  degree  n  in  t ,    namely 
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For  0  <  λ  <   1     this  solution  is  unique,  but  not  for  λ   >  1     It   is,  

however,   the  analytic  continuation  of  the  solution  valid  for  0  <  λ   <  1. 
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From  now  on  we  assume  that,  unless  stated  otherwise,   α  ≠  0,   λ  ≠  0,1, 

and ß - αλn+1 ≠  0    for  n  = 0,1,2,...  . 

The  series  solution  of  (1.1) 
 

   (1.3)r!
rt
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⎧

 

is  absolutely  convergent  for  0 ≤  λ  ≤  1  and  can  be  used  to calculate 

y(t)  for  quite  large  values  of  t   when  α ,β     are  such  that,   after a 

few  terms,   all   the  coefficients   in  the series  are positive.  when  the 

signs  of  the  coefficients     in   the  series  alternate  i t   is  not  suitable. 

In  particular  the  solution  for  the case with β-αλ6   small  mentioned  by 

Fox  [1971] 

dt
dy

 
= -y(0.99t)  +  0.95 y(t)                                                                (1.4) 

can  be  evaluated  from  (1.3)  for  quite  large  values  of  t .  

     2. The  Functional  Equations 

Laplace  transforming (1.2)  gives the functional equation 

(s-β)Y(s)   +  α Y (
λ
s

)=  1                                              (2.1) 

            where and  is   a   function   of  four  variables y(t)dt,ste
0

Y(s) −∞
= ∫

s,  α,  β    and  λ. 

This  is  a  linear  equation  so  we  can write 

Y(s)   =  Yo(s)  +  Ye(s) (2.2) 

where  Yo  (s)→
s
1        as   |s| → ∞   and  satisfies  the  initial  condition 

Y0=1; 

                                        (s- β )Y0  (s)   + α   Y0(
λ
s

)=  1.                                                             (2.3) 

and  Ye (s)   is  such  that  its  original  is  zero  at  t  =  0 

(s- β )Ye  (s)   + α   Ye(
λ
s

)=  0 (2.4) 
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It    is   sufficient   if   these  eigerisolutions  Ye   (s)   are   such  that,    with 

δ>0, 

     )5.2(sasδ1s
10(s)eY ∞→
+

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
 

Such  solutions   do  not   arise  for  0 < λ  < 1,  and  for  λ  > 1   we   require 

the  analytic   continuations   of   the    λ  < 1  solutions.     We  will   defer 

further   discussion  of   Ye  (s)  until    section  7. 

A  sequence  of   functions   closely  related  to  Yo (s) can  be  generated 

successively  by  writing  for     m = 0,1,2,    . . . .  

sYm(s)   =   1   +   (ß-α  λm+1) Ym+1  (s) (2.6) 

with  the   condition    Ym (s)→
s
1    as   | s | →.∞. 

The   functional   equation  satisfied  by   each  Ym   (s)    is 

(s   -  β)   Ym    (s)   +  αλmYm =)(
λ
s     1                                                      (2.7) 

and  we  immediately   see  that  we   can  write 

Ym  (s, α ) ≡   Yo   (s, α λm)  .                                                                      (2.8) 

Further  from   (2.7)  we  find 

βmλα
1(0)mY
−

=                                                                                    (2.9) 

Setting  m  =  0     Yo (O)=
βα

1
−

   which   suggests  we  should  be   able   to 

introduce  negative  values  for     m    by  writing 

 sY-1  (s)   =   1  +   (ß  -α)  Yo  (s) . 

Substituting  in  (2.3) 

(s   -  β) [sY-1 (s) - 1] + α [Y-1 )(
λ
s -1  ]   = )( αβ −  

(s - β) sY-1(s) -s  +
λ
α  sY-1 )(

λ
s =  0 

     (s -  β) Y-1(s)+ +
λ
α  Y-1 )(

λ
s = 1 

provided  s   ≠ 0 
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In  general   (2.6)   and   (2.7)   can  be  introduced  for  negative values of 
m    along  with  the  condition  Ym (s)→ s

1   as s   →   ∞ .    (2.8)   and  (2.9) 
are  also  valid  for  negative    m.   However  we  must  be  cautious  in using 
these  relations   recursively  with     m    decreasing,   in  particular  at   s  =  0. 
 

3.  The  Dual  Equations 

In   (2.8)  we  observed  that  Ym (s,α)  ≡  Y(s, α  λm ).From now on,  for our 

convenience,  we  will   drop   the  zero   suffix  of  Y0.    Consequently   (2.6) 

and   (2.7)   are   simply 

sY(s,α)   =   1   +   (β   -   αλ)  Y(s,αλ) (3.1) 

(s - β) Y (s,α)   +  αY (, α)  =1 (3.2) 

with  a  replaced  by  αλm  .      Further  on  rearranging  the  former   in  the 

form 

(α- β) Y  (s,α)   +  s  Y(s, ⎟
⎠
⎞

⎜
⎝
⎛
λ
s )   =   1 (3.3) 

we   see   that   (3.3)   is   the   dual  of   the  equation   (3.2)   in  that   the 
roles   of  α   and  s   are   interchanged. 

It   is  because  of   this  duality  between  s  and  α   that  we  write  Y  as 
a  function  of   two  variables,   Y(s,α),    although  it   is  a   function   of 
β   and  λ   as  well.      In  fact  we  will   find  that  i t   is   β  and  λ    that 
largely  determine  the  analytic  behaviour  of  Y (s,α).  

In  addition  we  note   that   (2.9)   becomes 

Y(0,α)   =
βα

1
−

.  (3.4) 

The  dual  result   for  s   is 

Y(s,0)    =  
βs

1
−

 .  (3.5) 

Strictly,   however,   i t   is   from  the  equation     (3.2)   with  the 

condition Y(s,α)—> s
1   as   |s |  →  ∞  that  we  must  determine  Y(s,α) .  

To  obtain  solutions  of  our  original  differential   equation   (1.2) 

we  require  the  Laplace  inverse of Y(s,α).    We will  therefore 

concentrate  on  the  s  variable  and  find  both  series   and  continued 
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fractions   in  s  for  Y(s ,α ) .    On  inversion  these  will  yield  sequences 

r  approximations  to  the  solutions  in  the  original  variable. 

Solutions  of  the  Functional  Equation 

We  will  introduce  our  solutions  in  a  convenient  order  for  discussing 

the  nature  of   the  singularities  of  Y ( s ,α ) .  

Two  rational  function  solutions  of  the  basic  equation  (3.2), 

(s - ß )  Y ( s ,α )    +  αY(-
λ
s

 
,α)  =   1 

with  the  boundary  condition  Y(s,α)   =
s
1 as s  →  ∞ ,   suggest  themselves. 

4. 1 The  Iterated  Series 

By  iteration, we   find 

          (4.1.1) 

For  0  <  X  λ   1     and  s ≠ 0, 
1+n

s

 
   as  n  →∞ ,   so  that 

,
s

1nλα),1nλ

sY(
+

→+  
and  the  last  term  of   (4.1.1) 

∞→→
∏
=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

++−
nas0n

0p
)pβλ(s

α,1nλ

sY1)/2n(nλ1n)α(
 

This  result  produces  the  trivial  cases   (i),   (ii)   and  (iii)   of 

section  1  and  further  setting  s  =  0   and  assuming   |α |< |  β  |   we 

have  Y(0,α)   =
βα

1
−

.      To  obtain  (iii)   of  section  1,   since  (4.1.2) 
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⎪
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sαY(1
β)nλ

s(
α...1

β)2λ
s(
α1

β)λ
s(
α1)β(s

1)αY(s,  

provided    0  <   λ  <   1     and  s ≠ ßλP p  =  0,1,2,   ..............  

Hence  for  0  <  λ   <   1  and  for  all  α,ß 

(4.1.2)
0r r

0p
)pλβ(s

1)/2r(rλr)α()αY(s, ∑
∞

= ∏
=

−

+−
=
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does   not   terminate   if  β  = α  λn+1 for  some    n,   consider   first   the  case 

    β  =  αλ,   the   rth       partial   sum  of  sY(s,α)    is 

.r

1p
)pλα(s

1)/2r(rλ1rα)(1

rαλs
αλ11r

1p
)pλα(s

1)/2r(rλ1rα)(...)2λαs

2λα(1
λαs

λα)
λαs

λα(1

r

1p
)pλα(s

s1)/2r(rλ1r)α(..
)3λα)(s2λαλ)(sα(s

s3λ2α
)2λαλ)(sα(s

sλα
λαs

s

∏
=

−

+−−−=

−
+

∏
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  Hence   for  0<λ<1     sY(s,α)  =1. 

  A  similar  technique  when  β  = αλn+1       shows   that  the  rth  partial  sum  of  the  series 

⎥
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⎥
⎥
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        (4,1.3) 
  This   shows   not  only  that   (iii)   of   section   1   is   contained   in  the 
  expansion  (4.1.2)   but  is  also  gives  the  error  in  approximating  the 
  L.H.S. of   (4.1.3)  by  a  finite  number  of   terms of   the  i terated  series. 

The  expansion  (4.1,2)   for Y(s,α)  is absolutely  convergent under  the 

conditions 

i) 0<λ<1     ;     all  α,β       ;       s ≠ β λr r = 0 , l , 2    ...   ; 

ii)               λ>1     ;     | a | < |  β |    ;      s ≠ β λr                r = 0 , l , 2   ...   . 

  Thus,  with β  ≠0    and   0 <λ  < 1,   i t    appears   that  in  general  Y(s,α)   is 
an  analytic  function  of  s  with  simple  poles  at   s  = β  λ r    ,     r   =  0,1,2   . . . .    ;  

   unless  β  = αλn + 1   when Y(s,α)  has  a  pole  of  order  n  +  1   at  s = 0.    For 
0<  λ   <   1    β  λ r  →   0   as  r→  ∞     so  that  Y(s,α)   has  an  essential   singularity 
at  s  =0.    The   function  given  by  (4.1.2)   also   has    simple  poles   at  

s  =  β  λ r ,    r   =  0,1,2   . .   for  λ  >1 provided   |  α  |  < |  β  | ,   and  then  has  an 

essential   singularity   at   s  =  ∞ .  



The  absolute   convergence  of   (4.1.2)   allows   the  series   to  be 

rearranged   and  expressed  in  partial   fractions,   so   that,    with  β   ≠   0, 
r

.
1r r

1p
)pλ(1

r)
β
α(1)/2r(rλ

1)K( α

where

(4.1.4)rλβs
1.

1r r
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This   K(α)   may  be  expressed  as  an  infinite  product 
 

(4.1.5)

0p
1.for λ

1

pβλ
α1

1λfor0
1p

)β
pλα(1)K( α
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       The  product  when  0   <  λ    <  1   is  indicating the conflict   in the 

nature  of  the  solution  at  points  where  β   =  αλP  ,     p = 1,2.. .    .  

For  λ   >  1   the  absolute  convergence  of  the  expansion   (4.1.2) 

required   |α |<|  β  |    ,     the  product   (4.1.5)   suggests   a  singularity 

when  α   =  β .  

The  expansion   (4.1.2)   is   clearly  fitting  Y(s,α)   for   |s |    large 

in   the  sense   that 

Y(s,α)-  Sn (s)   =0 )( 1ns
1 +     as   |s |   →   ∞  

where   Sn   (s)  is  the nth    partial  sum of  (4.1.2).    The  original of 

Sn (s)   must,    for  0 < λ  <1,   match  the  first   n terms in the series  for 

y(t)   and  hence  be  useful  at   least  for  t   small.    When  λ   >1, 

(4.1.2)   can  be  readily  expanded    for   |s |   small  but  not  |s |   large 

it   does  not  produce  the  solution  (i ii) of  section  1  as  can   be 

seen  from  (4.1.3). Consequently  it   is  not   the   required   continuation 

of  the  above  0 < λ  < 1  solution.  However,   the   fact   that a function 

with the  roots   s  =  βλ r  exists for λ   >   1  and  which  satisfies (3.2) 

demands  closer  investigation; this  will   be  undertaken  in  section  5. 
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Successive   terms   of   (4.1.4)   fit   the   poles   at   s   = β λr      r  =0,1,2   ...   . 

When   s= β   is   the  pole  with   the   largest   real  part  which   is   so   when 

β  >   0   and  0   <  λ   <   1   the  original   of   the  series   (4.1.4)   will  usually 

provide  good  approximations   to  y(t)   for   t   large.   When  λ   >   1  and 

β  <  0     the   original   of    the  series    (4.1.4),    although   not    y(t),   will 

also  be  found  interesting. 

 By  repeated  use  of   the  equation  (3.1),  we  find  that 

 (4.1.6)ms
)mλαY(s,m

1p
)pαλ(β1rs

11m

1r

r
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s
1)αY(s,

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
∏
=

−++∑
−

= ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
∏
=

−+=  

Like  Y(s,α),   Y(s,αλm  )   has  simple  poles  at  s  =  β λr     r  =0,1,2   ... 

When  β  =  αλm   for  some  m,   this  series   in
s
1  terminates  and  corresponds 

to  case   (iii)   of   section  1.     Further  when  β ≈ α λm     it  is  advantageous 

to   take  out     m     terms   of   the  series in
s
1  using   (4.1.6)   and    use 

(4,1.2)   or   (4.1.4)   for  Y(s,αλm ).   But  changing  α   to  αλm   improves   the 

convergence  of  both   (4.1.2)   and   (4.1.4)   for  0 < λ  <  1     and   so,  even 

when β   is   not  close   to  αλm   ,   it  will   often  be  useful  to  take out  m 

terms  of  the  series in
s
1 ;   m    need  not  be  small.     When  λ  is  close 

to   1   there  are  difficulties  in  using   (4.1,2),   nevertheless  using 

(4.1.6)   excellent  numerical  results  can  be  obtained  for  values 

of  λ  less  than  about  0.95. 

4.2     The  Continued  Fraction  Matching  Power   Series 

From  (4.1.6)   we  have 

(4.2.1)ms
)mλαY(s,1m

1r

m

1p
)pλα(β1rs

1r
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)pλα(β

s
1)αY(s, ∑
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where Y(s,αλm  ) has  simple poles  at s  = β λr   r  =0, 1,2   . . for  0   <  λ   <1  . 

Y(s,α)   satisfies   the  boundary  condition  Y(s,α)→ 
s
1  as   |s|→ ∞   and 

since  all  the  poles  of  Y(s,α)   lie  in   |s|  ≤ | β |   for  0 <λ < 1  the  last 

term → 0  as m→  ∞  provided |s|>| β |.   Consequently  Y(s,α)has  the 

power   series   expansion 

)
1r

(4.2.21rs
1r

1p
)pλα(βs

1)αY(s, ∑
∞

= +∏
=

−+=
⎪⎭

⎪
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⎪
⎨
⎧

 

for  0  <  λ  <  1,    | s |  >| β |  ;   the  series  is  absolutely  convergent.   For 
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λ  > 1  and  α   ≠   0  the  series  diverges,  unless    β = αλn   for  some 

integer  n  when  the   series   terminates.  This   expansion  is   in  agreement 

with  the  particular  cases  λ   =  0, λ   =  1  and  β   =  αλn     quoted  in  section 1. 

This    series   (4.2.2)   is   readily   converted  into   the  continued  fraction 

(4.2.3)

...1
β)nλ(α1nλ

s
1) α1n(λ1nλ.....1

β)2λ(αλ
s

1) αλ(λ
1

β)λ(α
s
1

+
−−

+
−−−

+
−

+
−

+
−

+  

by,   for  example,   applying  the  Q-D algorithm.   Now the elements of 
this  continued  fraction  occur  in  pairs  and  only  the   even   convergents 
are  finite  for  s  small.     We  consider  only  the  even  convergents,   or 
what  is   equivalent,   the  convergents  of   the  J  fraction  that  matches   the 
series   (4.2.2) 

...)β1nλ(αnλ1)αn(λnλs
)nλα(β1)αn(λ12nλ......

)β2λλ(α1)αλ(λs
λ)α(β1)αλ(λ

βλαs
1

+−++−+

−−−

+−+−+

−−
+−+

 

                              (4.2.4) 
It  is  obtained  on  contracting  (4.2.3) 

This   continued   fraction  is   fitting  the  terms   in  the  series   in
s
1  

(4.2.2)     for   Y(s,α)  and  gives  the  required   solution  when λ  = 0 and 
when λ   =  1.   Further  when  β   = αλn   it terminates  and gives  the polynomial 
solution  quoted  in  section  1   for  not  only  0<λ  <1   but   also   for  λ  > 1. 

In  section  6  we  show  that  for  0 < λ  <1  the  denominator  roots  of 

(4.2.4)  tend to β  λn and  the   continued   fraction  converges   to   Y(s,α)  for 

all  and  s  ≠   0.  When  λ   >  1   the   denominator   roots   do  not   tend  to 

 β  λn    but   instead  tend  to  -α  λ2n-1 The  continued  fraction  still   fits  the 

boundary condition  as  |  s |   —>∞  and  it converges; but  not   to the  same function 
as   (4.1.2).  

When β   ≈  α  λn   for all λ   the continued fraction  provides  an  analytic 

continuation  of  the  polynomial   solution  in
s
1 .    However  a more effective 

analytic  continuation  is  to  set  m = n  in  (4.2.1)  and  use  the continued 

fraction  for  Y(s,α  λn),  or  put  another  way,  the series expansion  with 

the  terms   after  the  nth   replaced by  the  corresponding continued  fraction. 

In  particular   the  solution  of   the  problem  (1.4)   is  efficiently  calculated 

by  this method  with n = 6. 
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In  general   the  solution  to  our problem is  to approximate  the 

original  of   (4.2.1) with  the   continued   fraction  (4.2.4), with α  λm 

in  place  of  a,   replacing  Y(s, α  λm  ). Denoting  the  nth convergent  of 

(4.2.4)  by Y/n  (s,α)   the  corresponding  approximation  to  y(t)   is 

∑
−

=
∏
=

−−+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
∏
=

−+
1m

1r
(4.2.5)

m

1p ms
)mαλY/n(s,1)Lpλα(β

r!

rtr

1p
)pλα(β1  

The  inversion  of  the  continued  fraction  can  be  performed  in  two  ways. 

Indirectly  using  a  method  based  on  the  complex  inversion  formula 

such  as  Talbots  method  [1976];   or  directly  by  evaluating  the  positions 

of  the  poles  of   (4.2.4)   numerically,  expanding  in  partial  fractions 

and  then  inverting.    With  this  latter  method  as λ    approaches  1 

high  convergents   (n >10)   are  often  required  and  the  zeros  of  the 

denominators  must  be  determined  very  accurately.   The  use  of  high 

convergents  can  be  reduced  by  taking  out  more  terms  of   the  series 

when 0  <  λ   < 1. The  advantage,  when  0 <  λ  < 1,   in  using   (4.1.2)  or 

(4.1.4), over  the  continued   fraction,    is   that   the   positions   of   the 

poles  βλ r   are  known  and  the  partial  fraction  expansion  can  be  performed 

algebraically. 

 

4.3    Further  Solutions 

In  section  4.1  we  generated  the  solution(4.1.2)   by   iteration  of 

the  equation  (3.2).     The  solution  satisfyingthe  boundary  condition 

Y(s,α)→
s
1    as  |s|→ ∞    was  valid  for  0 < λ< 1  and  for  all  α , β . 

Now  our  functional  equation  (3.2) 

                                            (s -ß)  Y(s,α)  +  αY(
λ
s ,α) = 1 

can  be  iterated  in the  sense  opposite  to  that  which  generated   (4.1.2). 

      This   produces 

{ } (4.3.1)..α,n)Y(sλnsλ(β1α
)1nsλ(β...1α

sλλ(β1α
1)αY(s,

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+
−−++−+=   

The  associated  series 

     ∑
∞

= +∏
=

−+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

1r
(4.3.2)1rα

1r

1p
)psλ(βα

1  
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converges  absolutely  for all  finite  s  under   the   conditions    0 < λ  < 1 

and  |α |>|β  | ,   but  clearly  does  not converge  to  the  same  function  as 

(4.1.2)  ;  for   compare  (4.3.2)   with   (4.2.2)   in   our  previous   solution 

s   and  α   are  not  interchangeable.Similarly  when   (3.1)   is   iterated in 

the   sense   opposite   to   that  used  in  generating   (4.1.6), we find 

∑
∞

= ∏
=

−

−

∏
=

=
−

−
+∑

=

= ∏
=

−

−=

0r
(4.3.4)r

0p
β)pλ

α(

rs)(
sereiesThe

(4.3.3)
)

1n

0p
βpλ

α(

)nλ
αY(s,ns)(1n

0r )
r

0p
βpλ

α(

rs)()αY(s,

 

 

converges  when  0  <  λ  <  1    for  all  s,β   ; α  ≠λp β    r =0,1,2,   ...  and  is 

the  same  function  as (4.3.2) when   |α│>| β  | .    However  when λ>1, 

(4.3.4)   has  an  interesting  relationship  with   (4.1.2),   they  become the 

same   function  when  both  series  are  absolutely  convergent,  that is 

when   |α |<│  β  │   and    |s|<| β  | .    It  is  to  this  function, with  Its 

interchangeability  between  the  two  variables  s    and  α ,  that  we 

turn  our  attention  in  the  next  section. 

5.     Symmetric  Solution  of   the  Functional  Equations   for  λ   >  1. 

If  we   relax   the  boundary   condition  Y(s,α) →
s
1  as    |s |→  ∞ ,  the 

functional  equations   (3.2)   and   (3.3)   have   an  interesting  solution 

symmetrical   in  the  variables  s   and  α .    For  the  variables  to be 

interchangeable,   both  s   and  α   must  have identical  arrangements   of  poles. 

The   iterative  solution   (4.1.1)   displays poles  at  s  =  β  λ r       r   =  0,1,2,   . . .  

while   the   iterative  solution  (4.3.3)  has  poles  at α =  β λ r       r   =  0,1,2,   . . . ,  

moreover  both   are  convergent  for  λ  > 1 for  some  α ,  s (as  well  as  for 

0 < λ  < 1).   Let  us   combine   these   properties  by   solving,   in   a similar 

iterative  manner,   the  pair  of   functional  equations   (3.2)   and   (3.3) 

simultaneously. 

                         (s - β) Y (s,α)  +   αY (
λ
s

 , α)   =  1                                                         (3.2) 

(α -  β)  Y ( s ,α )  + s Y ( s ,
λ
α )   =  1 (3.3) 
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     Multiplying   (3.2)   by   (α -β), 

(s- β)(α- β)  Y (s,α)  +α[1 -
λ
s Y(

λ
s ,

λ
α )]=  α -ß 

Y(s,α)  = )]λ
α,λ

sY(λβ
sα[1)β)(αβ(s

β −
−−

−  (5.1) 

Iteration  of  this   equation  gives,   if  β ≠  0 

[

(5.2))..nλ
α,nλ

sY(
β2nλ
sαλ1

)1nλβ)( α1nλβ(s
λαs...

.../1λ)βλ)(αβ(s
sλα1)ββ)(α(s

β)αY(s,

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎢
⎣

⎡

−
−−−−

+

+
−−

+
−−

−=

 
When  the  boundary  conditions   are 

Y(s,0)   = s- β and Y(0,α)   = 
βα −

1                                             (5.3) 

we   see   that   the   solution   for  A   >   1   is  

(5.4),
0r )pβλ(α

r

0p
)pλβ(s

rs)α(λβ)αY(s, ∑
∞

= −∏
=

−
−=  

This   series   is   absolutely  convergent,   excluding   the   lines  poles 

at   s   =   βλ r   and  α  = βλ r    r  =0,1,2,…,   for  all   λ  >0.   At   λ  =1   the 

series   takes   the  value 

          
βαs

1
−+

.                (5.5) 

For   the   behaviour  of   this   function  as    │s|   → ∞ ,   write 

]..]1nλβ
α[11nλβα

λα...[1
λβα

λα[1
βα
β]

β
α[1

βα
β1

−
−

−−
++

−
+

−
−≡−

−
−≡

 
then  the  partial   sum  of  n  terms   of   (5.4),   for  a  given  λ  &  β,  tends  to 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∏
−

=
−

− 1n

0p
)pλβ(α

nα1
s
1 (5.6) 

The   function   (5.4)    does   not   tend   to
s
1     as    │s│→  ∞  if   α = βλP  for  p=0,1,2,…, 
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     or   if  0 <   λ  < 1. 

Suppose  the  n  iterations  of (3.2)  and  of  (3.3)   are  performed 
consecutively,   rather  than  simultaneously  using   (5.1),  Then  the 
relation   (5.2)   is  obtained  but  in  a  rearranged  form  connecting  both 
(4.1-1)   and   (4.3.3). 

 
When  the  n  iterations  with   (3.3) 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡ −
−

−

−−
−

−
−

= ..)nλ
αsY(s,1

β1nλ
α

s...........1
β

λ
α

s1
βα

1)αY(s,  

are   followed  by  the  n  iterations  with   (3.2) (5.7 ) 

          

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡ −
−

−

−−
−

−
−

= ..)nλ
α,nλ

sY(nλ
α1

β1nλ
s

nλ
α

..........1
β

λ
s

nλ
α

1
βs

1)nλ
αY(s,  

 
together  they  form  a  rearrangement  of  (5.2).  Removing  the  final 

term,  we  readily  obtain  the  partial  fraction  in  s  expansion  of  n 

terms  of  (5.4). 

The  residue   at  s   =  ß 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∏
−

=
−

−
−

+
−−

+
−

−
∏
−

=
−

−=−
→ ln

1p
1)λ

1(

1n

βnλ
α

....
1)2λ

11)(λ
1(

2

βnλ
α

1)λ
1(

βnλ
α

11n

0p
β)pλ

α(

nβ)(α)β)Y(s,(s
βS

Lim  

).nλ
αK(forseriestheoftermsnx1n

0p
)

βpλ
α(1

1

∏
−

=
−

=  

For  0  <  A  <   1    the  n  terms  of  the  series   for ).nλ
αK(

 
is  tending  to  cancel the 

factors      in   the  denominator,  while  for  X > 1   it  is   tending  to  introduce  extra 
factors  to the denominator.     As n → ∞ ,    this   residue  tends   to  K(α) as 
defined   in   (4.1.5),    further   the   complete   partial   fraction   expansion 
of   (5.4)   for λ >    1  is 

)9.5(
1r rβλs

1.r

1p
)pλ(1

r

β
λα

βs
1)K(αα)Y(s,

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∑
∞

= −∏
=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

=  
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and  is   identical   to   (4.1.4).     For  0  < λ  < 1  the  precise  nature  of 
the   partial   fraction  expansion    of   (5,4)   is  not   important.  

The   function   (5.4)   is    identical   to   the  function   (4.1.2)   for 
λ>1     and   |  α  |<|  β  | ,    and   is    an  analytic  extension  for  λ  >1  of   this 
function. (5.4)   may  also  be  used   to  define    the   function   for 
0  < λ  < 1,   but    the   natural  barrier   that  exists  at   λ   = 1  makes   this 
choice  less   obvious.     Linking   (5.4)   for λ   >   1  with  our  previous 
solution   (4.1.2)   for  0 <  λ  < 1    has  much  to   commend  it;   in  particular 
(4,1.4)   holds   for  all   positive   λ   ≠   1, and, if  λ  > 1,α  ≠  βλp   for  p =0,1,2,. . .  

Expansion  of   Symmetric  Solution 

The  function  (5.4),   with  its symmetrical  arrangement  of  the  poles 
in  the  two variables   s  and  α ,   can be expanded  in  terms  of  the  residues 
at   the  intersections   of  these  poles. 

                              

∏
∞

=
−

−=−−=−−
→→

=

==>

⎥
⎦

⎤
⎢
⎣

⎡

1p
)pλ

1(1

β)λ
β,λ

βY(λ
β1β)α)Y(s,ββ)(α(s

βα
Lim

βS
LimK

is(5.1)fromβ,αsatresiduethe1,λWith
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(5.9)
0r 0m )mλβ)(αrβλ(s

r,mK
K)αY(s,

writtenbecan(5.4),m

1q
)qλ(1

r

1p
)pλ(1

mrrmλ
r,mSettingK

1`p
)pλ

1(1

β,m

1q
)qλ(1

r

1p
)pλ(1

mrrmλα))Y(s,mβλ(α)rβλ(smβλα
LimrβλS

Lim

ismλβα,rλβspointtheatresiduetheWhile

∑
∞

=
∑
∞

= −−
=

∏
=

−∏
=

−

++
≡

∏
∞

=
−

−

∏
=

−∏
=

−

++
=−−

→→

==

 

The double  summation  cannot  be  split  into a product of  a sum  over  r 
and  a  sum  over  m. 

6.      Continued     Fraction  Solutions 

We  write  our  continued  fractions  in  the  form 

   ....
nq
np.....

2q
2p

1q
1p

+++
 

and  suppose   that  Pn  /Qn     is   the  nth  convergent.   Only  standard  results 
from  the  theory  of  continued  fractions  are  used, 
Pn  and  Qn  both  satisfy 

   
un+1   =  qn+1 un  +  pn+1  un-1 

for  n =   1,2,3,    . ..,   the  initial values   for  P     being P0 = 0,   P1= P1 

whilst   the  corresponding values  for Qn     are  Qo   =   1,  Q1=q1 , 

From here we   deduce  the  determinant  formulae 

Pn+1Qn - PnQn+1   =  (-1)n  p1p2 ….pn+1  , 

Pn+2Qn - pnQn+2  =   (-1)n     p1p2..... pn+1qn+2' 

for  n=0,1,2,...... 

If  the  numerator  elements  pn    of  the  continued  fraction  are  non-zero 

constants  and  the  denominator  elements  qn     are  polynomials   in  some 

parameter  s,   say,   then  Pn ,   Qn    are  polynomials   in  s.     The  first 

determinant  formula  shows  that  any  zero  of  Qn    cannot  be  a  zero  of  Pn 

(or Qn+1). 
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Conventionally  a  power  series   is   converted   into   its   corresponding 

continued  fraction  by  some  such  method  as  the  Q-D  algorithm.     For 

the  series   (4.2.2)  we   found   the   corresponding   continued   fraction 

   
(6.1)

1
)βnλ(α1nλ

s
1)α1n(λ1nλ

1
)β2λ(αλ

s
1)αλ(λ

1
)βλ(α

s
1

KK +−−
+−−−

++−+−+−+  

The  iterated  series  (4.1.2)   is  also  in  a  form  suitable  for  conversion 

to  a  continued  fraction. 

(6.2)
)12nλβ(s

)1nλβ(s12nλα

)22nλβ(s

1)s1n(λ1nλα

)3λβ(s

)λβ(s3λα

)2λβ(s

1)s(λλα
)λβ(s
)β(sλα

)β(s
1

K
K

+−−

−−−
+−−

−− −
++

−

−
+

−

−
+

−
−

+
−  

We  start  by  discussing  the  location  of  the  roots  of  the  denominator 

polynomials  of  the  convergents  of  these  two  continued  fractions.  Since 

the  elements  of  the   continued   fractions   are   clearly  grouped  in  pairs, 

we  consider  only even order  convergents.   The  denominator polynomial 

of  the 2n  convergent  of (6.1)   is  of  degree  n  in  s,  whilst   for   the 

continued  fraction    (6.2)   it  is  a  polynomial  of  degree   2n   in   s. 

Although  for  these  polynomials  we  cannot,   in  general,  determine  the 

exact  position  of  the  roots,  we  can  locate  them  approximately  to 

within  a  certain  order  in  A,   such  as for  example,  0(A)  as  λ → 0 or 

0 )1(
λ

as λ  → ∞ .    It   is   necessary   to  consider  six  cases   in  the  ranges 

of  the  parameters    α, ß , λ.       These  are 

 (i)       β  ≠ 0,    β  ≠αλm    ,       0 < λ < 1  ; 

(ii)       β  ≠ 0,   β  =αλm    ,       0 < λ < 1  ; 

(iii)      β  =0,   0<λ< 1; 

(iv)      β  ≠0,   β  ≠ αλm  or  β  λm ≠ α,   λ > 1 ; 

(v)       β  ≠0,   β  =αλm or  β  λm = α,   λ > 1 ; 

(vi)      β  =0,  λ>1 ; 

m    being  a  positive  integer  ≥  0. 
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Now   the   2nth  denominator   polynomial   of   (6.1)   may  be  expressed   in   the 
form 
 
(s- β)(s- β  λ)_.(s- β  λn -1   )  + αλn  (1+λ+...+λn - 1 ) (s-β) (s- β  λ) .  . .  (s-β  λn - 2) +.. . . . .  

                                    +    α  n - 1λn (n -1 )  (1+λ+ ..+ λn - 1) (s-β)+   αnλn2   ,  
                                            (6.3a) 

or,   alternatively  as 

s n  +  ( 1 +λ+ . . . +λ n - 1 )  (αλ n - ß ) s n - 1 + . . . +λ n ( n - 1 ) / 2  (αλ n -β) (αλ n - 1β) . . . (αλ -β) .  

  (6.3b) 
If  we  define  C    by )(n

r

    1(n)
0c,1,2,3,r,

)rλ(1
)1rnλ(1

)2λ(1

)1nλ(1.
)λ(1
)nλ(1(n)

rC ≡=
−

+−−

−

−−
−
−

= KK  

the   two  polynomials   (6.3a) and   (6.3b)   may  be  expressed  as  respectively 

∑
=

−∏
+−=

−∑
=

−∏
−−

=
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧n

0r
,rns

n

1rnp
ß)pλ(α(n)

rC
n

0r
1)/2r(rλand

1rn

0p
)Pλβ(s(n)

rCnrλrα  

where   1.
n

1np

1

0p
≡∏

+=
≡∏

−

=

(i)        β  ≠ 0,      β   ≠ αλm ,        0  <  λ  <   1  ,     m  = 1,2,3,    ...   . 

For   these  conditions   the  roots   are  s   -   β  λr   {1+0(λ) }  as  λ  →0, 
r  = 0,1,2,... (n-1).      The   order    term   is   not   best   possible   except 
for  r  =   (n-1),   but   it   is  adequate   for  our  purposes.   It   appears,   in  fact, 

  
that   the   roots   are   s  =  βλr {1 + 0(λ(n-r)2}  as  λ → 0,   so   that   the 
denominators   are  producing  the  earlier  poles   of  Y(s,α)   more   closely 
than  the  later  ones.     The  order  terms  do  not     imply  that  the  roots  are 
necessarily  real. 

(ii)     β   ≠ 0,    β  =  αλm ,     0 < λ < 1     for   some m  =  1,2,3,   .. . 
Under  these  conditions   it  is  clear  from  (6.3b)   that  the  denominator 

polynomial  Q2n  ( s) ,  say,  has    m   roots   at  s = 0 and  the  remaining  roots 
at  s  = β  λr   {1+0(λ)}   as   λ+0, for  r = 0,1,2,..  (n-m-1) .     Of   course  in  this 
case   the   continued   fraction   terminates   and   it   is  not  necessary  to 

consider Q2n  (s)  for  n >m.
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On  the  other  hand  if  β  –αλm  ≈ 0   for  some  m =1,2,3,..   then  Q2n (s) 
has   m    complex  conjugate  roots for   m   even, or  (m+1)   complex 

conjugate  roots   for    m    odd,   all   located  near  s  = 0.     This  result  is 

not   inconsistent   with   (i)    but   is   providing   additional   information 

concerning  roots  near  s  =0  when  β  -αλm    ≈   0 , 

(iii)     β  = 0, 0 < λ < 1. 

         In  this  case  (6.3)  reduces  to 

S
n  +  α λ n ( 1 + λ+ . . + λ n - 1 ) s n - 1 . . . + α n - 1 λ n ( n - 1 ) ( 1 + λ+ . . + λ n - 1 ) s + α n λ n 2 ,  

  (6.4) 
or 

∑
=

−n

0r
,rns(n)

rCnrλrα

 
and  all  the  roots  are  0(λ n)   as   λ→  0.     In  fact  they  all  lie  on  the 

circle   | s  | =  |α|  λn.   For  n  odd,   symmetry  in  the coefficients  shows 

that  one  root  is  s = -α λn  exactly, 

(vi)     β   =0,   λ  >1. 
Having  dealt  with case  (iii)  it  is  convenient  to consider next case (vi) 

For  these  conditions  we  find  that  the  roots  are  located  at 

s  =  -α λ2r-1{1  + 0 )1(
λ

}   as    λ→ ∞   for  r  - 1,2,..n,  and  since  (6.1) 

is  positive  definite  [see  Wall,   1948]  these  roots  are  necessarily  real. 

(iv)   β  ≠  0,    β  ≠α λm,  λ > 1   for  m = 1,2,  ... n. 

In  this case the  roots  are  at  s  =  -α λ2r -1 {1+0 )1(
λ

} as  λ→ ∞  for 

r  =  1,2,  .... n,  but  need  not  be  real. 

(v)   β  ≠0   β   =  α λm  ,   λ >1    for some   m = 1,2   ....  n. 

The   continued   fraction   again   terminates   at  the  mth  convergent. 
However  the  polynomial   (6.3)  has  m roots  at  s  =  0  and  the  remaining 

n - m   roots  are  at  s  =   - αλ2r-1  {1 + 0 )1(
λ

}as     λ→∞. 

We  note  that  when   λ=1,  the  denominator  polynomials  Q2n  (s)  reduce  to 

{s  +  α  - β  }n                                                    (6.5) 

For  the  continued  fraction  (6.2)  we  find  that  for  the  2n 

denominator  polynomial    n    roots  are  known  exactly,  and  that  this 
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polynomial  may  be  expressed  in  the  alternative  forms 

(s-β)(s-βλ). . .  (s-βλn -1) [(s-βn) .  .  .  (s-βλ2n -1 )   +  

+ αλ n(1 +λ  + ...+  λ n- 1) (s-βλ n) . . . (s-βλ 2n 2) +....      (6.6a) 

  … + αn-1λn(n-1) (1 +λ + ...+  λ n- 1) (s-βλ n)  + αnλn2  ], 

and 

(s-β)(s-βλ)...(s-βλn  1) [sn+(α-β)(1+λ...+ λn-1 ) λn sn-1 +... 

         ... + (α-β)(α-βλ)...(α-βλn-2)(1+λ+...+ λn-1) λn(n-1)s   + 

         (6.6b) 

+   (α-β)(α-βλ)    ...(α-βλn-1   ) λn2] 

The  polynomial   in  the  square  bracket   is   the  polynomial   (6.3)   with 
ß     replaced  by     βλh. 
 

Using  the  same  notation  as   for   (6.3)   the  polynomials   (6.6a)   and 
(6.6b)   may  be  expressed  as 

    ∑
=

∏
−−

=
−∏

−

=
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ n

0r

1r2n
np

)pβλ(s(n)
rCnrλrα

1n

0p
pβλ(s

and 

rns
n

0r

1r

0p
)pβλ(α(n)

rCnrλ
1n

0p
pβλ(s −∑

=
∏
−

=
−∏

−

=
−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

where 

 ∏
−

=
≡∏

−

=
≡

1n
np

1
1

0p
 
(i)        β≠0,   β  ≠ α λm  ,   0<  λ <   1,  m= 1 ,2,3, ..................  

The  roots   of   (6.6)   are  s = βλr,   r =0,1,2,..(n-1)   and  0(λn)   as 
λ→   0  for     n     remaining  roots. 

(ii)     β≠  0,     β  = αm  ,   0  < λ <1. for  some  m=l,2,3,,..   . 

Like  the  iterated  series   (4.1.2),   the  continued  fraction   (6.2) 
does  not   terminate  when  ß = αλ m   ,   but  tends   to  the  polynomial 
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solution  in  the  limit.     The  roots   for  this  case  are  of   the  same 

character  as  those  for   (i)   above. 

(iii)     β=0,     0 <λ   < 1. 
In  this  case  the  polynomial  in  the  square  brackets  in  (6,6) 

reduces   to   (6.4),consequently  there  are    n  roots  at  s  =0  and    n 

roots   that  as  mentioned  before  lie  on   |s|  =|α|λ n   .     The  roots  of 

(i)   and   (ii)  will  tend  to  these  values  as  ß   →  0  . 

(iv)        β≠0,   α≠βλ   ,   λ > 1      for  some  m =0,1,2 .....................  

The roots of (6.6) are s = βλr r =0,1, . .(n-1) ; s = βλr [l+0 )1(
λ

] 

as λ→ ∞ for r =n, (n+1) ,. .,(2n-2) ; s = (β-α)λ 2n-1 {1+0 )1(
λ

} 

as   λ→∞. 
(v) Β  ≠ 0 , α = ß  λm= λ>1    for  some  m = 0,1 ,2,... 

From  (6.6b)  we  find  that  the  denominator  polynomial  has  roots  at 

s  =  βλr,  r =0,1,..   (n-1) ;   (n-m)  roots  at  s  =0;   s =βλr{1+0 )1
λ

} (

as   λ  → ∞  for  r  =(2n-m),   (2n-m+1) , .. (2n-2)  ; s = (ß -α) \2n-1 {1+ 0 (y)} 
as    λ   →    ∞. In  particular  when  α  - ß ,   the  roots  are 
s  =  βλr,   r =0,1,.. .(n-1)   and    n    roots  at  s  =   0. 
 

(vi)     β  = 0,   λ  > 1 . 

The  roots   of   (6.6)   are     n  at   s  =0  and   s  =-αλ2r-1 {1+0 )1(
λ

}as   λ →∞ 

for  r  =1,2,..  n. 
For  A  =  1   we  see  that   (6.6)  becomes 

(s-β) n   {s+α -β) n .  

Summing  up  we  have  for   the  roots  of   (6.3)   and   (6.6): 

(6.3)        _____ ______ (6.6) 
 
(i)     βλr  {1+0(λ)},    r =0(l)(n-l). 
(ii)    βλr{ l+0(λ)} ,   r=0(l)(n-m-l)  ; 

              m  roots  s =0. 
 
     n  roots  0(λn  )   on  circle   |α |λn , 
     -αλ2r-1{1+0 )1

λ
( },   r  =1(1)n. 

     
      
    m  roots  at  s =0; 

     -αλ2r-1{l+ 0 )1(
λ

}, r=-m+1(1)n 

      
 

    -αλ2r-1{1+0 )1(
λ

},   r=1(1)n 

 
βλr,   r=0(1)(n-1)   ;   n  roots    0(λn) 
βλr,   r=0(1)(n-1)  ;    n  roots   0(λn) 
 
 
n  roots  s =0  ;    n  roots  0(A  ) . 
βλr,r=0(1) (n-1) ; βλr{l+0) )1(  },r=n(1) (2n-2) ; 

λ

(ß=α)λ2n-1{l+0 )1(
λ

}. 

βλr, r =0(1) (n-1); (n-m)   roots  at  s  =0; 
βλr  {1+0 )1( },   r=(2n-m)(1)(2n-2); 

λ

(ß-α)λ2n-L{1+0 )1(
λ

}. 

n  roots  s =0 ;-αλ2r-1{1+0 )1(
λ

}  r=1(1)n. 

(6.7)

 (iii) 
(iv) 

 
 
 
(v) 
 
 
 
 
(vi) 

(6.8) 
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Observing   that  when  3  =0,   the   continued   fraction   (6.2)   reduces   to 

(6.1),  we  note  that  the  significant  difference  in  the  roots   tabulated 

in  (6.8)   lies  in  cases   (iv)   and   (v)  where  β≠0   and  λ   >  1.   The  roots 

of   the  denominator  polynomials  of   (6.2)   are  tending,   as  expected,   to 

the  poles   βλ r      given  by   (4,1.2),  whereas   the  roots  of   (6.3)   do  not. 

We  now  investigate  the  convergence  of  the  continued  fraction   (6.2). 

If  Pn   (s)/Qn  (s)     is  the  nth       convergent  of   (6.2)   and  R  (s)   is  the 

'remainder'    function  which  when  subtracted  from  the  nth  denominator 

element  makes 

Y ( s ) 5     (Pn   -Rn Pn-1    , ) / ( Q n - R n Q n - 1      ,) (6.9) 
 

we  find  that 

Q
2n

Y  -P2n
= (P

2n
Q

2n-1
P

2n-l Q2n
) R2n/(Q2n-R2n Q2n-1) 

)12nQ2nR2n(Q

2nR1ns12nα
1n

1p
)pβλ(s

1n

1p
)pλ(11)/2n(3nλn1)(
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As  noted  earlier  some  of  the  factors   (s-βλp  )  ,    p=0,l,2,. .    actually 

occur  in  Q2 n.   (s)   and  in  fact  we  may  writeX 

( )
( )10.6

(s)(0)
1nQ

1n

0p
)pλβ(ss12nQ

(s)(e)
nQ

1n
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where  Q  (s) ,    Q  (s)   are   polynomials   in     s     of   degrees   n,n -1 )(e
n

)0(
1−n

respectively  and  associated  with  the  even  and  odd  order  polynomials 

Q2 n   (s),    Q2n -1 (s)   respectively.     The  above  expression  for   (Q2nY  -P2 n.) 

thus  reduces   to 

( )6.11

(o)
1nQ2nR(e)

nQ

2nR1ns12nα
1n

1p
)pλ(11)/2n(3nλn1)(

2nPy2nQ
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The  determinant  formula  for  continued  fractions  shows  that  the  roots 

of  Q  (s)   are  distinct  from  those  of  Q ()(e
n

)0
1−n  (s).     From  (6.2)  we  see  that 

the  function  Rn(s)   can  be  expressed  as   the  continued  fraction  attached 

to  the  n th     element  and  so  for  0<  λ<l  we  find  that  R2n  (s)→ 0   as  n  →∞ 

Hence  for  0 <  λ  <1  and  s  ≠ root  of  Q  (s),   the  R.H.S.of   (6.11)  →  0 as )(e
n

n  →   ∞.     At  a  root  of  Q   (s),   the  R.H.S.  of   (6.11)  becomes )(e
n

                         (o)
1n/Q1ns12nα

1n

1p
)pλ(11)/2n(3nλ1n1)( −

−−
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⎪
⎬
⎫
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−

=
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and  since  Q ≠  0   at  a  root  of  Q        ,   this  expression  again  tends  to  zero )0(
1−n

)(e
n

as  n→∞ Hence  for  all  α,ß,s  and  o< λ<1 ,    the  continued  fraction 
(6.2)   converges. 
We  now  consider  the  case  of  λ  >  1  . 

⎭
⎬
⎫

⎩
⎨
⎧ ++→=≠≠ )nλ

10(1sα(s)2nR,0,1,2,mforαmλβand0βFor
β

K  

as   λ   →∞.     To  this  order,   this   term  is  produced  by  the   (2n+l)th  partial 
quotient,   but  for  convenience  we  consider 

.
22nQ(e)
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the  remaining  roots  of  the  denominator  lie  between  these  extreme  values. 
Consequently  for  β≠0,   β   λm ≠α  for  m = 0,1,2...   ,   and  λ > 1  we  have 
Y    -P2n/Q2n→ 0   as  n.→  ∞..     For  β   ≠0 ,     βλ m= α   for  some  m=0,1,2,…, 

Q      (s)  has  (n-m)   roots  at  s =0  and  Q (s)  has   (n-m + 1)   roots  at  s=0. )(e
n

)(
1

e
n+
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From  preceding  calculations 
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if  βλm    =  α.     Hence,   provided  2m <  n  +  1    there  is  a  pole  of  order   (n-2m+1) 
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term     → ∞ as  n  →  ∞.     From  this  we  infer  that  the  continued  fraction 
does  not  converge  if  for  some  integer  m=0,l,2,..   βλm    =α     From  (4.1.4) 
and  (4.1.5)   this  was  to  be  expected, 
For     ß=0  and  λ >  1 ,   the  odd  convergents  of  R2n       are  0(λ2n     )   as   λ  → ∞and 

the  even  convergents  are  0(
λ
1 )   as   λ    → ∞.      With     these  values 
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Near the root  of   smallest modulus,namely s =0    Q (e)  = o(λ n2 )   as     λ  → ∞  n

and Q (o)      = 0(λn(n+1))    as  λ   → ∞   and  so   the  contribution near  s=0  is n
 ' 

0(1)/s  as   λ   → ∞  
On  the  other  hand 

                         (e)
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and  at  the  root  of  least   modulus  of  the  denominator,  namely 

s=-αλ{1+0 )}1{(
λ  the  residue  is )1(0 1−nλ    as λ    → ∞ ,  whilst  at  the  root 

of  greatest  modulus,   namely s=-α λ2n+1   )}1(01{
λ

+
 
the  residue  is  .1)n(2nλ

10( +  

The  residues  at  the  intermediary  roots     lie  between  these  two 

residues• 



24 

Collecting   together   the   various   results   we  have   finally,   that 
(6.2)   converges   for  all   α, β,  s    and  λ    >  0   except   for     λ >  1     with  either 
βλm =   α   for   some  m = 0,1 , 2 ,  .. .   or   β= 0 .       For   β= 0    and   λ  >1,   only   the 
even  convergents  of   (6.2)   tend   to  a   limit  function.     This   case  will  be 
discussed  further  when  dealing  with  the  convergence  of   (6.1). 
An  analysis  similar  to   that  just  carried  out,   shows   that   the   continued 
fraction   (6.1)   converges   for  0  <   λ   < 1,   for   all   α,ß   and   s  ≠   0  .   At   s   =   0 
the  even  convergents  of   (6.1)   converge   to  the  expected  value  of

βα
1
−

 

provided   |α|<|β|.   To  prove   this  we  use   the   result   that   the   2nth 
convergent   of   the   continued   fraction 

KK+
+++ l
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has   at  s   =  0,   the  value 

2n..a4a2a
12n..a3a1a

4a2a
3a1a

2a
1a −+++ K  

(6.12) 
Applying  this   result   to   (4 ,3 .1) ,    we  find  at  s = 0 ,    the  2nth       convergent 
has   the  value 
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For  0  < λ <   1    and   |α|<|β|,   the   products   involved   converge  as  n→  ∞ and   the 

value  of  the  expression  tends  to
βα

1
−

. 

For    λ >  1    only   the  even  convergeuts   of   (6.1)   tend   to  a   limit   function. 
The  roots  of   the  denominator  polynomials   tabulated   in   (6.8)   show  that  for 
β≠0,   this   limit   function  is   different   to   that   of   (6.2).   The  reason  for 
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this   appears   to   lie   in  the  power   series   (4 .2 .2 ) .    As   a  function  of   λ, 
this   series  has   a  natural  boundary  at   |λ|  =1   [see  Hardy,   1949].   Now 
the  continued   fraction   (6.1)   is   not   only  attempting   to  analytically 
continue   the  power   series   as   a  function  of   s,   but  also  as   a  function 
of  λ.     As   a  function  of   s,   the  continued   fraction   (6.1)   extends   the  range 
from   |s|  >  │β│   for   the  series   for  0 < λ  <1   to   the  range  all   s ≠  0  .  While, 
as  a  function  of   λ,   (6.1)   is  giving  a  continuation  for   |λ |>l.     Since 
| λ |   =   1  is  a  natural  boundary  we  do  not  expect  this   continuation  to  be 
unique. 
The   iterated  series  converges  even  for  λ> 1    provided   |α|<|β|   and  the 
corresponding  continued  fraction  (6.2)   extends  this  range  to    λ>1,  β≠0. 
Nevertheless   it  is   the  natural  boundary  at |λ|=l  that  produces   the  problems 
with  the  iterated  series,   and  in  particular  the  β  =0  case. 

In  order   that   the  Laplace  transforms   should  possess   original   it   is   necessary 
for  the  real  parts  of  the  singularities   of   the   transforms   to  be  bounded 
on  the  right.     For  0 < λ< 1    this   is   always   the   case.     For  λ > 1   in  the 
continued  fraction   (6.1),    this   condition  requires   α  >0.     For   λ>1   and   β≠0 
in  the   iterated  series   (4.1.2)   this   requires   β< 0   and  in  the   continued  fraction 
(6.2)   this   condition  requires   β< 0   and  β- α < 0 .  
For    λ > 1  we   do   not  expect  the  solution  of  Y( s ,α )    to  be  unique,   since  for 
this   range   of    λ  eigensolutions   exist.     These   are   discussed  in   Section   7. 

7.       Eigensolutions 

We  now  discuss  equation  (2.4)  which  is 

(s-β)Ye(s)   + αYe(s/ λ)  = 0 (2.4) 

and  note  that  for  the  initial  condition  y(0)   =  0  to  be  satisfied 
it  is  sufficient  for 

Ye(s)   =  0(1/s1 + δ)  as |s|  →  ∞ δ   >  0. (2.5) 

Setting  s   =  0  in   (2.4)  we  have   (α-β)Ye   (0)  =0.      Assuming  Y e  (0)≠ 0 
  

this  gives   (α-β)   -  0,   and  with  this   condition  we  have  by  iteration  from 
(2.4)   that 

(7.1)
)nλs/ β(1λ)s/ β)(1s/(1

)1n(s/ λeY(s)eY
−−−

+
=

Kβ
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For   λ   >    1,   s/λn+1 →  0   and   the   product   converges   as   n  -→∞.      From 
(7.1)   we   thus   have   the   solution 

( )7.2}
0p

)pλs/β(1(0)/{eY(s)eY ∏
∞

=
−=  

for   λ   >   1. 
Approximating   to  Ye   (S)   by  more   than  a   single   factor   of   the   product 
ensures   that   (2.5)   is   satisfied.     The   solution  given  by   (7.2)   is   an 
eigensolution   to   the   problem  for   the   case  α=  ß. 

Iterating  from   (2.4)   in  the  opposite  direction  produces,   for 
0   <  λ  <   1,   the  solution 

( )7.3}
1p

)/βPsλ(1(0){eY(s)eY ∏
∞

=
−=  

Approximating   to  Ye   (s)   by  a  finite  number  of   factors   of   (7.3)   the 
condition  y(0)   = 0  in  the  original   is  not  satisfied   and  there   is   no 
eigensolution   to   our  problem  in   this   case. 

The   above   analysis  may  be   generalised   by   assuming   that  near   s=0 

(7.4)0|s|as0(s)}{1v)K(s/ α(s)eY →+=  

where   v,K  are   constants.      Substituting   in   (2.4)   shows   that   this   form 

is   possible  provided 

α  -   βλV (7.5) 

For  given  values   of  α, ß ,λ   this   equation  determines   v;   v  may   take   complex 
values.      Proceeding   as   before   and  using   condition   (7 .5)    we   have 

(7.6)}
0p

)pλs/ β(1/{v)K(s/ α(s)eY ∏
∞

=
−=  

which   for   λ   >    1    is   an  eigensolution.     With  n  sufficiently   large   for   the 
condition   (2.5)    to  hold,   approximations   to   Y(S)   may  be   obtained   from   (7.6). 
For  prescribed  α, β,λ   and  for  values  vi   satisfying   ( 7 . 5 ) ,    the   linear   form 
of   (2.4)   shows   that  other  eigensolutions   are  given  by 

∑ ∏
∞

=
−=

i 0p
(7.7))}pλs/ß(1}/{iv

)(s/ αiK{(s)eY  

These  eigensolutions   all  possess  originals   if   β< 0 .  
The   case   β =  0  may  be  regarded  as   a   limiting  case  of    (7.5)   with  λ   >   1 

and  v  →∞. 



27 

Writing    α/λv    for    β    in    (7.6)    and   then   setting   v+n   for   v,   suggests 

that  we   consider  the   function 

∏
∞

−=
−−+=

np
(7.8))}/αpvsλ(1/{nv)(s/αnK(s)nW  

Clearly 

Wn (s/λ)/Wn(s)   =   (1-sλV+n/α)/λV+n 

  

→  -s/α   as     n→ ∞ for   λ>1. 

Expressing   (7.8)   in  partial   fractions,   the   term  in   (1-sλv+r/α)-1 

has  coefficient 

                     
∏
−

=
∏
∞

=
−−−−+−−−++−−−

∏
∞

=
−−−++−

rn

1p 1p
)}pλ(1)}{pλ(1{1)/2rr)(n(nr)n)(v(vλnKrn1)(

}
0p

)prnλ(1/{r)n)(v(vλnK
 

keeping  r   fixed   and   letting  n  → ∞,   the  denominator   converges   for  λ   >   1 . 

Thus  with  a  suitable  choice  of  Kn     we   are   led   to  consider   the   series 
 

(7.9)
r )/αrvsλ(1

/2
2)2

1v(r
λr1)(KW(s) ∑

∞

−∞= +−

−+−
−

=  

v,K  being   arbitrary   constants.      This   is,   essentially,   the   solution  due 
to   Bowen  and   quoted   in  Fox   et   al   [ 1 9 7 1 ] ,       This   series   satisfies 

(7.10)
r

/22)2
1v(r

λr1)(K)W(s/ λsW(s)
∑
∞

−∞=

−+−
−=+

α
 

For   suitable   choices   of   v ,K,   W(s)   satisfies 

sY(s)   +  αY(s/λ)  =   1    , 

but  cases   occur,   where  for  particular  values  of  v,   W(s)   satisfies 

sY(S)   +  αY(s/λ)      =     0 

So   that   again  eigensolutions   exist.      An   obvious  value     is   v   =   0   in  which 

case   the  series   in   (7.10)   vanishes   (v  =  ±1,   ±   2,..   are  all   equivalent 

to   v = 0)   but   there   are   also   complex  values   of   v  which  make   the   series 
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vanish.     We  observe   that  the  function  W(s)   of   (7.9)   has  essential 
singularities   at  both  s  =  0  and   s  =  ∞,   and  does  not  possess  Taylor 
series   expansions   about   these  two  points. 

8.  Approximations  to  y(t) 

Our  principle  objective  was   to  solve   the  functional  differential 
equation

=
dt

dy(t) ay(λt) +    by(t) (1.1) 

for   t  >   0  and  y(0)   =   1;   a  =  -λα  and  b  =  3.     We  now  derive   approximations 
to   the   function  y(t)   by  finding   the  originals   of   the   convergents  of   the 
continued  fraction  and  of  the  series  of  section  4. 
Inverting   (4.1.6)  we  find 

}
1m
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r
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m

1p
)ß
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rt)}pλα(ß{1y(t) ∑
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=
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∏
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)mλαY(s,mβ  

The  results   of   section  4  enable  us   to  approximate  Y(s,αλ   )   by  sequences  of 
rational   functions,   each  of  which  can  be  expressed   in  partial   fractions. 
To   complete   the   inversion  of   ( 8 .1 ) ,   we   therefore  require   the  functions 

         ℒ-1≡t),(ρme (8.2)]1)!(m
1mt)(ρ

2!
2t)(ρt)(ρ[1tρe

)ρ(sms

mρ
−

−
+++−=

−
K  

When  Y ( s ,αλm)  is  approximated  by  n  terms  of  ( 4 . 1 . 4 ) ,  the  original  (8.1) 
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where,   as  in  (4.1.5), K(α)  = ∏
∞

=
+

1D
)

β

Pλα(1  

The  weights  in   (4.1.4)   in  general  increase  in  magnitude  for  a  certain 

number  of   terms   and   then  decrease,   some  weights   can  be  very   large.     The 

weights  continual  decrease   if 

λ1|
β
λα| −<  
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The   change  α   → α. λm     improves   the   convergence   of   the   series   and   the 
condition 

 
λ11mλ

β
α

−<+                                                  (8.4) 

can  be  usefully  used   to   fix  the  minimum  size  of  m  in   (8.3).     Notice 
however   that   the  change α   →   α  λm    does  not  directly  improve   the  coefficients 
in   (8.3). m  should  not  be   excessively   large   otherwise   loss   of   accuracy 
may  be   the   forfeit.  

Now  the   terms   of   (4.1.4)   fit    the  poles   of  Y(s,α)   in  the  order 
β ,    λ  β ,    λ2 β . . .      In   (8.3)   the  m  series  terms   are  fitting  y(t)   for  small t  
and   for   β  >   0 the  terms  derived   from   (4.1.4)  are   fitting  y(t)   for   t  
large,   consequently   (8.3)   provides   excellent     approximations    to   y(t) 
when  m  is   suitably   chosen  if   β> 0  and   λ    is  not too  close to  1.    For 
some  numerical  results   see  table  B, 

We now use  in  (8 .1)  n  terms of  the  i te ra ted ser ies  to  approximate  

Y(s ,αλm ) .  For  0  < λ  <  1  and β   0 ,  expanding the  f i r s t  n  te rms  of   the  ≠

i te ra ted   ser ies     (4 .1 .2)    in   par t ia l    f rac t ions    leads    to  
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where  the  coefficients  Kn   are  the  partial  sums  of  the  series   (4.1.5) 
for  K(α) 

(8.6)
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The   expression   (8.5)    inverts   to 
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            (8.7)

 
The  weights   in   (8.5)   also  normally  increase  in  magnitude to a maximum, 

which  can  be   large,   before  decreasing.     For   sufficiently   large  n  they 

tend   to  decrease  if 
β
αλ <  1 - λ.  
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Thus when  (8.5)  is  inserted  into  (8.1)  for Y(s,αλm), we obtain 
the  following  approximation  to  y(t) 

(8.8)
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and  the  condition   (8.4)  could  again  be  used  to choose the value of m. 

Since  the  iterated  series   (4.1,2)  matches   terms  in  the  series  of 
Y(s,α)   for  |s |   large,   all   the  terms   in   (8.8)   are  contributing  to   fi tting 
the  function  y(t)   for  small   t .  With  m  suitably  chosen,   for  both  positive 
and  negative β   ,    (8.8)  produces  good  approximations  to  y(t)  for  λ  < 0.9 
but  the  range in  t  diminishes  as  λ   is  increased  towards 1.  Some  numerical 
results  are  recorded  in  table  C.(8.8)  is  a more   versatile   formula   than 
(8.3),   in  fact  the  only  virtue  of   (8.3)   is   that  it   can  deal  with  large 
values  of  t   when  β   >  0. 

For  our  third  method we approximate Y(s,αλm)  in  (8.1)  by  the  nth 

Convergent
(s)nQ
(s)nP

  of   the  continued  fraction  (4.2.4),   where  Pn  (s)  and 

Qn (s)   denote  the  numerator  and  denominator polynomials respectively. 

Assuming  β   ≠   αλm   for  any  positive integer m,  the  n roots of  Qn  (s) 

are  simple  and  for  0  <  λ   <   1  tend  to the values  β  λ r  while for  λ  >1 they 
tend  to  values  -αλ2 r + 1 ,    r  =  0,1,2.. .n-1.    The  roots    are   not   necessarily 

real,   although  they  are  tending  to  real  values.     On  determining  the  roots 

numerically   the   nth   convergent  can  be  expressed  in  partial  fractions 
 

∑ −
= (8.9))rρ)(sr(ρnQ'

)r(ρnP
(s)nQ
(s)nP  

whereρr denotes  a root  of  Qn  (s) .  Considerable care  must  be  taken  in 

evaluating  Pn( rρ ).Pn ( rρ )    should  not  be  calculated  directly  or  from  the 

recurrence  relations  that  generate  Pn (s).  When  ρ r     is  close  to a  root of 

Pn   (s)  many significant figures may be lost.     The determinant formula 

given  in  section  6  may  often  be  useful used in  this  situation. 

Since  Qn( rρ )   =  0,  we  have 
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and,   provided   ρ r   is  not  close  to  a  root  of  Qn - 1 ,(s),  the  P (ρ r)  

can  be  calculated  using  only   the  denominator  polynomials.   If   (8.10) 

is  used   to  find  P (ρ r  )    the  expansion  (8.9)  inverts  to  give 

(8.11)
1n
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n
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But  in  practice   to  maintain  accuracy  it   is  often  necessary  to use a 
mixture  of  methods   in  evaluating  the  Pn   (ρr )  .  

      

When, in (8.1),Y(s,αλm  )  is   replaced by   the  expansion of  its   nth 
 convergent 
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  we  obtain  the  approximation  to  y(t) 
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where  ρr   now  denotes   a  root  of  Qn   (s,αλm   )   and  em   (ρ, t )    is  defined  in   (8,2). 

These  roots  ρr   need  not  be  real.    Nevertheless   when  α  and  β   are  of 

the   same   sign   complex  roots   can  be  avoided  by  choosing  m  sufficiently 

large.     Using  properties   of  real  J  fractions  Wall   [p.1 1 9 1    ,   from  a  consider- 

ation  of   the  signs  of  the  partial  numerators   of    (4.2.3),   with  a  replaced 

by  αλm  ,   we   conclude   that   for   its   even  convergents  (8 .12) :  

For  0  < λ  < 1, 

a) α  and  β   both  <   0  and   |  β  |>|α |λm+1 ,   the  poles  are  simple,  real   and 

negative,   and  have  positive  residues. 

b) α  and  β   both  >   0  and   β  >  α λm+1  ,   the  poles   are  simple,   real  and 

positive  and  have  negative  residues. 

c) α  and  β   opposite   in  sign,   the  partial  numerators   of   (4.2.3) 

alternate  in  sign  and   the  poles   of   (8.12)  may  be   complex.      In  practice, 

as  n  is   increased  pairs  of  complex  poles   coalesce  and   shed   real  poles 

which  then   tend  to values  βλr   . 
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For   λ  >  1, 

d) α  > 0 and  either β  > 0  with αλm+ 1  > β  or β  <0, the  poles are simple, 

real   and  negative   and  have  positive  residues. 

e) α  < 0 and either β  < 0  with α  |  λm+ 1>  [β  |    or  β  >0,the  poles are  simple, 

real   and  positive   and  have  negative  residues. 

Thus  complex  roots need only  arise when 0 < λ  < 1 and α ,  β  are opposite 

in  sign.  When  the   conditions  (e)  hold  the  inversion  of  (8, 12)  is not 

meaningful, so that  when  λ>1, yc (t)  can  only  be  useful   for  α>0. 

The   continued fraction is  primarily matching  terms in  the  series 

   in  
s
1   of Y(s,αλm  ) ,  consequently the functions yc (t)  approximate y(t) 

well  for small  t .   However for 0 < λ  < 1  the  continued  fraction 

progressively  fits   the  poles   β ,λ  β ,λ2 β    and  can  produce  good 

approximations  to  y(t)  for  large  t ,   certainly  if  β  >0. Good   approximations 

are also obtained  when λ>1 and  α>0. In  table  D  we  record  some numerical 

results. The advantages  of  this  method  is   that   it   extends  the solution 

to values of  λ  greater  than  one  when  α  > 0,  and  further gives   solutions 

when  λ    is   near  one. 



33 

Solutions  of  the  functional  differential  equation  (1.1). 

TABLE  A  using   (1.3) 

λα  =  -a  =  +   1.0 β   =  0.95 λ  =  0.99  

 t y(t)  
0 l  
1 0.95099  
5 0.77378  

10 0.59046  
25 0.23707  
50 3.06402 E-02 
75 6.86576 E-04 
100 7.45578 E-06 

120 4.25506 E-05 

140 -1.77213 E-03 

150 1.39535 E-02 
160 1.74588  
180 1.22838 E+05 
200 7.18998 E+10 
220 1 .71180 E+17 
240 1.10332 E+24 
250 3.73368 E+27 

260 1.47881 E+31 

280 3.43702 E+38 
300 1.21665 E+46 
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TABLE   B  using   (4,1.4)   in   (8.1) 

 
α  = 1 3  = 1 A =  0.8  
 M -   15 N = 5  

t     y(t)  

0     1.000000  
1     1.242853  

10 
50 

    1.500779 
1.746529 

E+02 
E+19 

100     9.053594 E+40 

α  =  -10     β  =1      λ   =  0.9 
M  =   45     N   =   10 

                            y(t) t 
                             1.000000 0 
                             1.741286      E+03 1 
                             3.038451      E+15 10 
                             1.908673      E+38  50 

100                              1 .643197     E+60 

TABLE   C  using   (4.1.2)   in   (8.1) 

α  = -2 β  =  -1 λ   =   0.8  

 M = 9 N  = 15  

t    y(t)  

0    1.000000  
1    1.684644  
10    1.588661 E+01 
50    2.755279 E+02 
100    1.096282 E+03 

 
α  = -1 β  = 1 λ   = 0.95  

 M = 50 N =   10   

t     y(t)  

0     1.000000  
1     6,728839  
10     1.525186 E+07
50     8.350665 E+27
100       1.545544 E+50

TABLE  D  using   (8.12)   in   (8.1) 

 
α  = -1 6 =   1 λ   =   0.9  
 M  

= 
5 N   = 15  

t    y(t)  

0    1.000000  
1    6.193152  
10    2.633091 E+06 
50    8.521912 E+24 
100    4.686615 E+46 

λα  =  -a  =  +1      β   =   0.95     λ   =   3.01 
M  =   0       N   =   12 

                                  y(t) 
                                      1.000000 

t 
0 

                                      0.951466 1 
                                      0.620896 
                                      0.131362 
                                      0.309330     E-01 

λα  =  -a  -  +1,   β    =  0.95,   λ   =  0.99 

M  =  6       N  =   20 

produces  y(t)   in  table  A  for  t  <   150. 

10 
50 
100 



 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

    6.

FOX,  L.  et  al.     On  a  functional Differential Equation  (1971)8, 271-307. 

KATO,T. and  McLEOD, J.B.The functional  Differential  Equation 
                             y (x)  = ay(λx) + by(x).  MRC  Tech.Report  ≠1107,    June   1971. 

MAHLER, K.  1940 J. Lond Math Soc.15, 115-123. 

MURPHY, J.A,and  DREW, D.M. Continued  fraction  solutions  of  linear 
differential  equations.   Tech.Report  TR/26   (1973) 
Brunel  University. 

OCKENDON, J.R.and  TAYLER,A.B. 1971 Proc. Roy .Soc .A  322,447-468. 

RUTISHAUSER,  H.  Der  Quotient-Differenzen  Algorithmus   (1957) 
           Birkhauser  Verlag,  Basel/Stuttgart. 

          Accurate  numerical  inversion  of  Laplace  transforms. 
          Tech.Report  TR/61   (1976)Brunel  University. 

7.     TALBOTA. 

          A  continued  fraction  related  to   some  partition  formulas 
          of  Euler.Amer.Math.Monthly  Vol.48   (1941),102 -108. 

       Divergent  Series   (1949).   Oxford. 

       Analytic  Theory  of Continued  Fractions   (1948).   Chelsea. 

8.     WALL, H.S. 

BOOKS: 
    9.    HARDY,G.H 
 
   10.    WALL, H.S. 



 

 

 

 

 

 

 

 
 
 
 
 
NOT TO BE 
REMOVED 
FROM  THE  LIBRARY 

XB 2356820 8 

 


	                                                                                  BY 
	                               D. M.  DREW   and   J. A.  MURPHY 
	The  problem  is   to   solve  the  functional,   differential  equation 
	Further  from   (2.7)  we  find 
	The  dual  result  for  s   is 
	Solutions  of  the  Functional  Equation 
	 By  repeated  use  of   the  equation  (3.1),  we  find  that 
	This    series   (4.2.2)   is   readily   converted  into   the  continued  fraction 
	Expansion  of   Symmetric  Solution 








