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Abstract

We present a new Bayesian methodology to learn the unknown material density of a given sample by inverting its

two-dimensional images that are taken with a Scanning Electron Microscope. An image results from a sequence of

projections of the convolution of the density function with the unknown microscopy correction function that we also

learn from the data. We invoke a novel design of experiment, involving imaging at multiple values of the parameter

that controls the sub-surface depth from which information about the density structure is carried, to result in the image.

Real-life material density functions are characterised by high density contrasts and typically are highly discontinuous,

implying that they exhibit correlation structures that do not vary smoothly. In the absence of training data, modelling

such correlation structures of real material density functions is not possible. So we discretise the material sample

and treat values of the density function at chosen locations inside it as independent and distribution-free parameters.

Resolution of the available image dictates the discretisation length of the model; three models pertaining to distinct

resolution classes are developed. We develop priors on the material density, such that these priors adapt to the sparsity

inherent in the density function. The likelihood is defined in terms of the distance between the convolution of the

unknown functions and the image data. The posterior probability density of the unknowns given the data is expressed

using the developed priors on the density and priors on the microscopy correction function as elicitated from the Mi-

croscopy literature. We achieve posterior samples using an adaptive Metropolis-within-Gibbs inference scheme. The

method is applied to learn the material density of a 3-D sample of a nano-structure, using real image data. Illustrations

on simulated image data of alloy samples are also included.

KEYWORDS: Bayesian methods, Inverse Problems, Nonparametric methods, Priors on sparsity, Underdetermined

problems

1. INTRODUCTION

Nondestructive learning of the full three-dimensional material density function in the bulk of an object, using available

two dimensional images of the object, is an example of a standard inverse problem (Mayer, Chinta, Langenberg &

Krause 2012; Bertero & Boccacci 1998; Dorn, Bertete-Aguirre & Papanicolaou 2008; Natterer & Wbbeling 2001;

Arridge & Schotland 2009). The image results from the projection of the three dimensional material density onto

the image plane. However, inverting the image data does not lead to a unique density function in general; in fact to

render the inversion unique, further measurements need to be invoked. For instance, the angle at which the object is

imaged or viewed is varied to provide a series of images, thereby expanding available information. This allows to

achieve ditinguishability (or identifiability) amongst the solutions for the material density. A real-life example of such

a situation is presented by the pursuit of material density function using noisy 2-dimensional (2-D) images taken with

electron microscopy techniques (Panaretos 2009). Such non-invasive and non-destructive 3-D density modelling of
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material samples is often pursued to learn the structure of the material in its depth (Davis et al. 2002), with the ulterior

aim of controlling the experimental conditions under which material samples of desired qualities are grown.

Formally, the projection of a density function onto a lower dimensional image space is referred to as the Radon

Transform; see Helgason (1999), Kutchment (2006). The inverse of this projection is also defined but requires the

viewing angle as an input and secondly, involves taking the spatial derivative of the density function, rendering the

computation of the inverse projection numerically unstable if the image data is not continuous or if the data comprises

limited-angle images (Markoe & Quinto 1985; Rullgrd 2004) or if noise contaminates the data (Li & Speed 2000).

Furthermore, in absence of measurements of the viewing angle, the implementation of this inverse is not directly

possible, as Panaretos (2009) suggested. Even when the viewing angle is in principle measurable, logistical difficulties

in imaging at multiple angles result in limited-angle images. For example, in laboratory settings, such as when imaging

with Scanning Electron Microscopes (SEMs), the viewing angle is varied by re-mounting the sample on stubs that are

differently inclined each time. This mounting and remounting of the sample is labour-intensive and such action leads

to the breaking of the vacuum within which imaging needs to be undertaken, causing long waiting periods between

two consecutive images. When vacuum is restored and the next image is ready to be taken, it is very difficult to identify

the exact fractional area of the sample surface that was imaged the last time, in order to scan the beam over that very

area. In fact, the microscopist would prefer to opt for an imaging technique that allows for imaging without needing

to break the vacuum in the chamber at all. Such logistical details are restrictive in that this allows imaging at only a

small number of viewing angles, which can cause the 3-D material density reconstruction to be numerically unstable.

This problem is all the more acute when the data is discontinuous and heterogeneous in nature. Indeed, with the help

of ingenious imaging techniques such as compressive sensing (Donoho 2006), the requirement of a large number of

image data points is potentially mitigated. If implemented, compressive imaging would imply averaging the image

data over a chosen few pixels, with respect to a known non-adaptive kernel. Then the inversion of such compressed

data would require the computation of one more averaging or projection (and therefore one more integration) than

are otherwise relevant. While this is easily done, the implementation of compressive sensing of electron microscopy

data can be made possible only after detailed instrumentational additions to the imaging paraphernalia is made. Such

instrumentational additions are outside the scope of our work. We thus invoke a novel design of imaging experiment

that involves imaging at multiple values of some relevant parameter that is easily varied in a continuous way over a

chosen range, unlike the viewing angle. In this paper, we present such an imaging strategy that allows for multiple

images to be recorded, at each value of this parameter, when a cuboidal slab of a material sampe is being imaged with

an SEM.

In imaging with an SEM, the projection of the density function is averaged over a 3-D region inside the material, the

volume of which we consider known; such a volume is indicated in the schematic diagram of this imaging technique

shown in Figure 1. Within this region, a pre-fixed fraction of the atomistic interactions between the material and
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the incident electron beam stay confined, (Lee 1993; Goldstein, Newbury, Joy, Lyman, Echlin, Lifshin, Sawyer &

Michael 2003). The 2-D SEM images are taken in one of the different types of radiation that are generated as a result

of the atomistic interactions between the molecules in the material and a beam of electrons that is made incident on

the sample, as part of the experimental setup that characterises imaging with SEM, (Goldstein et al. 2003; Lee 1993;

Reed 2005). Images taken with bulk electron microscopy techniques potentially carry information about the structure

of the material sample under its surface, as distinguished from images obtained by radiation that is reflected off the

surface of the sample, or is coming from near the surface1.

In practice, the situation is rendered more complicated by the fact that for the 2-D images to be formed, it is not

just the material density function, but the convolution of the material density function with a kernel that is projected

onto the image space. The nature of the modulation introduced by this kernel is then also of interest, in order to

disentangle its effect from that of the unknown density function that is responsible for generating the measured image.

As for the modulation, both enhancement and depletion of the generated radiation is considered to occur in general.

It is to be noted that this kernel is not the measure of blurring of a point object in the imaging technique, i.e. it is

not the point spread function (PSF) of the observed image, but is characteristic of the material at hand. The kernel

really represents the unknown microscopy correction function that convolves with the material density function–this

convolution being projected to form the image data, which gets blurred owing to specifics of the imaging apparataus.

Learning the de-blurred image from the PSF-convolved image data is an independent pursuit, referred to as Blind

Deconvolution (Qui 2008; Hall & Qui 2007; Bishop, Babacan, Amizik, Katsaggelos, Chan & Molina 2007). Here our

aim is to learn the material density and the microscopy correction function using such noisy image data.

The convolution of the unknown kernel with the unknown density, is projected first onto the 2-D surface of the

system, and the resulting projection is then successively marginalised over the 2 spatial coordinates that span the plane

of the system surface. Thus, three successive projections result in the image data. Here we deal with the case of an

image resulting from a composition of a sequence of three independent projections of the convolution of the material

density function and the unknown kernel or microscopy function. So only a sequence of inversions of the image

allow us to learn this density. Such multiple inversions are seldom addressed in the literature, and here, we develop

a Bayesian method that allows for such successive inversions of the observed noisy, PSF-convolved 2-D images, in

order to learn the kernel as well as the density function. The simultaneous pursuit of both the unknown density and

the kernel, is less often addressed than are reported attempts at density reconstruction, under an assumed model for

the kernel, (Goldstein et al. 2003; Merlet. 1994; Heinrich & Newbury 1991; Pouchou & Pichoir 1984).

We focus here on the learning of a density function that is not necessarily convex, is either sparse or dense, is

1Since the radiation generated in an elemental three-dimensional volume inside the bulk of the material sample, is due to the interaction of the

electron beam and the material density in that volume, it is assumed that the material density is proportional to the radiation density generated in

an elemental 3-D volume. The radiation generated in an elemental volume inside the bulk of the material, is projected along the direction of the

viewing angle chosen by the practitioner to produce the observed 2-D image.
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often multimodal - with the modes characterised by individualised, discontinuous substructure and abrupt bounds,

resulting in the material density function being marked by isolated islands of overdensity and sharp density contrasts;

we shall see this below in examples of reconstructed density functions presented in Section 9 and Section 10. Neither

the isolated modes of the material density function in real-life material samples nor the adjacent bands of material

over-density, can be satisfactorily modelled with a mixture model. Again, modelling of such a real-life trivariate

density function with a high-dimensional Gaussian Process (GP) is not possible in lieu of training data, given that the

covariance function of the invoked GP will then have to be non-stationary (Neal 1998) and exhibit non-smooth spatial

variation. Here by “training data” is implied data comprising a set of known values of the material density, at chosen

points inside the sample; such known values of the density function are unknown. Even if the covariance function

were varying smoothly over the 3-D spatial domain its parametrisation is adhoc in lieu of training data but with an

abruptly evolving covariance function–as in the problem of inverting SEM image data–such parametrisation becomes

impossible (Paciorek & Schervish 2006), especially when there is no training data available. At the same time, the

blind implementation of the inverse Radon Transform would render the solution unstable given that the distribution of

the image data in real-life systems is typically, highly discontinuous.

In the following section, (Section 2) we describe the experimental setup delineating the problem of inversion of

the 2-D images taken with Electron Microscopy imaging techniques, with the aim of learning the sub-surface material

density and the kernel. In addition, we present the novel design of imaging experiment that achieves multiple images.

In Section 3 we discuss the outstanding difficulties of multiple and successive inversions and qualitatively explain

the relevance of the advanced solution to this problem. This includes a discussion of the integral representation of

the multiple projections (Section 3.2), the outline of the Bayesian inferential scheme adopted here (Section 3.6) and

a section on the treatment of the low-rank component of the unknown material density (section 3.5). The details of

the microscopy image data that affect the modelling at hand are presented in the subsequent section. This includes

a description of the 3 models developed to deal with the three classes of image resolution typically encountered in

electron microscopy (Section 3.3) and measurement uncertainties of the collected image data (Section 3.4). Two

models on the kernel, as motivated by small and high levels of information available on the kernel given the material at

hand are discussed in Section 4; priors on the parameters of the respective models is discussed here as well. Section 5

is devoted to the development of priors on the unknown density function such that the priors are adaptive to the

sparsity in the density. In Section 6, the discretised form of the successive projections of the convolution of the

unknown functions is given for the three different models. Inference is discussed in Section 7. Section 8 discusses

with salient aspects of the uniqueness of the solutions. Application of the method to the analysis of real Scanning

Electron Microscope image data is included in Section 10 while results from the inversion of simulated image data are

presented in Section 9. Relevant aspects of the methodology and possible other real-life applications in the physical

sciences are discussed in Section 11.
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2. APPLICATION TO ELECTRON MICROSCOPY IMAGE DATA

For our application, the system i.e. the slab of material, is modelled as a rectangular cuboid such that the surface at

which the electron beam is incident is the Z=0 plane. Thus, the surface of the system is spanned by the orthogonal

X and Y -axes, each of which is also orthogonal to the Z-axis that spans the depth of the slab. In our problem, the

unknown functions are the material density ρ(x, y, z) and the kernel η(x, y, z).

Here we learn the unknown functions by inverting the image data obtained with a Scanning Electron Microscope.

Though the learning of the convolution ρ ∗ η of ρ(x, y, z) and η(x, y, z), is in principle ill-posed, we suggest a novel

design of imaging experiment that allows for an expansion of the available information leading to ρ ∗ η being learnt

uniquely when noise in the data is small (Section 8). This is achieved by imaging each part of the material sample

at Neng different values of a parameter E such that images taken at different values ε of this parameter E, carry

information about the density function from different depths under the sample surface. Such is possible ifE represents

the energy of the electrons in the incident electron beam that is used to take the SEM image of the system; since the

sub-surface penetration depth of the electron beam increases with electron energy, images taken with beams of different

energies inherently bear information about the structure of the material at different depths.

The imaging instrument does not image the whole sample all at the same time. Rather, the imaging technique that

is relevant to this problem is characterised by imaging different parts of the sample, successively in time. At each of

these discrete time points, the i-th part, (i = 1, . . . , Ndata) of the sample is viewed by the imaging instrument, along the

viewing vector vi to record the image datum in the i-th pixel on the imaging screen. Thus, every pixel of image data

represents information about a part of the sample. The i-th viewing vector corresponds to the i-th point of incidence

of the electron beam on the surface of the material sample. The image datum recorded in the i-th pixel then results

from this viewing, and harbours information about the sample structure inside the i-th interaction-volume, which

is the region that bounds atomistic interactions between the incident electron beam and molecules of the material

(see Figure 1). The point of incidence of the i-th viewing vector, i.e. the centre of the i-th interaction volume is

marked in the diagram. The volume of any such 3-D interaction-volume is known from microscopy theory (Kanaya

& Okamaya 1972) and is a function of the energy E of the beam electrons. In fact, motivated by the microscopy

literature, (Kanaya & Okamaya 1972), we model the shape of the i-th interaction-volume as hemispherical, centred

at the incidence point of vi, with the radius of this hemisphere modelled as ∝ E1.67. We image each part of the

sample at Neng different values of E, such that the k-th value of E is εk, k = 1, . . . , Neng. To summarise, the data

comprise a Neng 2-D images, each image being a square spatial array of Ndata number of pixels such that at the i-th

pixel, for the k-th value of E, the image data is Ĩ(k)i where i = 1, . . . , Ndata. Consideration of this full set of images

will then suggest the sub-surface density function of the sample, in a fully discretised model. Convolution ρ ∗ η of

ρ(x, y, z) and η(x, y, z) is projected onto the system surface, i.e. the Z=0 plane and this projection is then further

projected onto one of the X or Y axes, with the resulting projection being projected once again, to the central point of

6



Z

X

Y

Material
sample

Point of incidence of
interaction−volume

Direction of a viewing vector

Interaction−volume

ε
k−1E=    centred at (x_i,y_i,0)

beam incidence at j−th location 

beam incidence at i−th location

interaction−volume atinteraction−volume at

interaction−volume at
εE=    centred at (x_i,y_i,0)
k

ε
k−1E=    centred at (x_j,y_j,0)

Figure 1: Left: schematic diagram of the imaging experiment relevant to the application of inverting image data taken with

a Scanning Electron Microscope, to learn sub-surface material density and the kernel. The interaction-volume created by the

incidence of the electron beam (shown in thick arrow) is modelled as a hemisphere (shown in blue) centred at the point of incidence

of this beam with radius given as a function of the energy E of the beam. At each of the Ndata incidences of the beam, Neng images

are taken with beams that are distinguished by the energy E of the electrons in them. The X , Y and Z-axes characterising the 3-

dimensional grid used in the modelling are marked. The i-th incidence of the beam is on the point (xi, yi, 0) on the sample surface.

Right: The j-th and i-th beam incidences are depicted. At the i-th incidence, the interaction-volumes resulting from interactions of

the material with beams of energy E = εk (larger interaction-volume in outline only) and E = εk−1 (smaller interaction-volume

in blue) are schematically depicted.

the interaction-volume created by the i-th incidence of the beam of energy εk, to give rise to the image datum in the

i-th pixel in the k-th image.

Expanding information by imaging at multiple values of E is preferred to imaging at multiple viewing angles for

logistical reason as discussed above in Section 1. Further, the shape of the interaction-volume is rendered asymmetric

about the line of incidence of the beam when the beam is tilted to the vertical (Sawyer, Grubb & Meyers 2008, Figure

3.20 on page 92 of), where the asymmetry is dependent on the tilt angle and the material. Then it is no longer possible

to have confidence in any parametric model of the geometry of the interaction-volume as given in microscopy theory.

Knowledge of the symmetry of the interaction-volume is of crucial importance to any attempt in inverting SEM image

data with the aim of learning the material density function. So in this application, varying the tilt angle will have to be

accompanied by approximations in the modelling of the projection of ρ ∗ η. We wish to avoid this and therefore resort

to imaging at varying values of E.

Physically speaking, the unknown density ρ(x, y, z) would be the material density representing amount or mass

of material per unit 3-D volume. The measured image datum could be the radiation in Back Scattered Electrons or

X-rays, in each 2-D pixel, as measured by a Scanning Electron Microscope.
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3. MODELLING

The general inverse problem is I = P(ρ) + ε where the data I : Rm −→ D ⊆ R, while the unknown function

ρ : Rn −→ H ⊆ R, with m ≤ n. In particular, 3-D modelling involves the case of n = 3, m = 2. The case of

n > m is fundamentally an ill-posed problem (Tricomi 1985; Tarantola 2004). Here ε is the measurement noise, the

distribution of which, we assume known.

In our application, the data is represented as the projection of the convolution of the unknown functions as:

Ĩ = C[ρ ∗ η] + ε,

where the projection operator C is a contractive projection from the space that ρ ∗ η lives in - which is ⊆ R3 - onto the

image space D. C itself is a composition of 3 independent projections in general,

C = P1 ◦ P2 ◦ P3,

where P1 is the projection onto the Z=0 plane, followed by P2 - the projection onto the Y =0 axis, followed by P3

- projection onto the centre of a known material-dependent three dimensional region inside the system, namely the

interaction volume. These 3 projections are commutable, resulting in an effective contractive projection of ρ ∗ η onto

the centre of this interaction volume. Thus, the learning of ρ ∗ η requires multiple (three) inversions of the image data.

In this sense, this is a harder than usual inversion problem. The interaction volume and its centre - at which point the

electron beam is incident - are shown in Figure 1.

It is possible to reduce the learning of ρ ∗ η to a least-squares problem in the low-noise limit, rendering the inverse

learning of ρ ∗ η unique by invoking the Moore Penrose inverse of the matrix C that is the matrix representation of

the C operator (Section 8). The learning of ρ(x, y, z) and η(x, y, z) individually, from the uniquely learnt ρ ∗ η is

still an ill-posed problem. In a non-Bayesian framework, a comparison of the number of unknowns with the number

of measured parameters is relevant; imaging at Neng number of values of E suggests that Ndata × Neng parameters

are known while at most Ndata × Neng + Neng are unknown. Thus, for the typical values of Neng and Ndata used in

applications, ratio of known to unknown parameters is ≥ 0.99, using the aforementioned design of experiment (see

Section 8.1). The unknownNeng parameters still renders the individual learning of ρ(x, y, z) and η(x, y, z) non-unique.

Such considerations are however relevant only in the absence of Bayesian spatial regularisation (Stuart 2010; Cotter,

Dashti & Stuart 2010), and as we will soon see, the lack of smooth variation in the spatial correlation structure

underlying typically discontinuous real-life material density functions, render the undertaking of such regularisation

risky.

However in the Bayesian framework we seek the posterior probability of the unknowns given the image data. Thus,

in this approach there is no need to directly invert the sequential projection operator C; the variance of the posterior

probability density of the unknowns given the data is crucially controlled by the strength of the priors on the unknowns

(Gouveia & Scales 1998; Carreira-Perpin 2001). We develop the priors on the unknowns using as much of information
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as is possible. Priors on the kernel can be weak or strong depending on information available in the literature relevant

to the imaged system. Thus, in lieu of strong priors that can be elicited from the literature, a distribution-free model

for η(x, y, z) is motivated, characterised by weak priors on the shape of this unknown function. On the contrary, if the

shape is better known in the literature for the material at hand, the case is illustrated by considering a parametric model

for η(x, y, z), in which priors are imposed on the parameters governing this chosen shape. Also, the material density

function can be sparse or dense. To help with this, we need to develop a prior structure on ρ(x, y, z) that adapts to

the sparsity of the density in its native space. It is in this context, that such a problem of multiple inversions is well

addressed in the Bayesian framework.

3.1 Defining a general voxel

Lastly, we realise that the data at hand is intrinsically discrete, owing to the imaging mechanism. Then,

• for a given beam energy, collected image data is characterised by a resolution that depends on the size of the

electron beam that is used to take the image, as well as the details of the particular instrument that is employed

for the measurements. The SEM cannot “see” variation in structure at lengths smaller than the beam size. In

practice, resolution ω is typically less than the beam size; ω is given by the microscopist. Then only one image

datum is available over an interval of width ω along each of the X and Y -axes, i.e. only one datum is available

from a square of edge ω, located at the beam pointing. This implies that using such data, no variation in the

material density can be estimated within any square (lying on the X − Y plane) of side ω, located at a beam

pointing, i.e. ρ(x, y, z) = ρ(x+ δ1, y + δ2, z), where δ1, δ2 ∈ [0, ω), ∀ x, y, z. The reason for not being able to

predict the density over lengths smaller than ω, in typical real-life material samples, is discussed below.

• image data are recorded at discrete (chosen) values of the beam energy E such that for a given beam pointing, a

beam at a given value εk ofE carries information about the material density from within the sub-surface depth of

h(k). Then 2 beams at successive values εk−1 and εk of E allow for estimation of the material density within the

depth interval [h(k−1), h(k)) that is bounded by the beam penetration depths. Here k = 1, 2, . . . , Neng, h(0)=0.

This implies that for a given beam pointing, over any such interval, no variation in the material density can be

learnt from the data, i.e. ρ(x, y, z) = ρ(x, y, z + δ3) where δ3 ∈ [h(k−1), h(k)), ∀ x, y, z. Again, the reason for

inability to predict the density at any z is explained below.

As is evident in these 2 bulletted points above, we are attempting to learn the density at discrete points identified

by the resolution in the data. The inability to predict the density at any point inside the sample could be possible in

alternative models, for example when a Gaussian Process (GP) prior is used to model the trivariate density function that

is typically marked by disjoint support in R3 and/or by sharp density contrasts (seen in a real density as in Figure 10

and those learnt from simulated image data, as in Figure 5). While the covariance structure of such a GP would be

non-stationary (as motivated in the introductory section), the highly discontinuous nature of real-life density functions

9



would compel this non-stationary covariance function to not vary smoothly. Albeit difficult, the parametrisation of such

covariance kernels can in principle be modelled using a training data–except for the unavailability of such training data

(comprising known values of density at chosen points inside the given 3-D sample). As training data is not at hand,

parametrisation of the non-stationary covariance structure is not possible, leading us to resort to a fully discretised

model in which we learn the density function at points inside the sample, as determined by the data resolution. In

fact, the learnt density function could then be used as training data in a GP-based modelling scheme to help learn the

covariance structure. Such an attempt is retained for future consideration.

Thus, prediction would involve (Bayesian) spatial regularisation which demands modelling of the abruptly varying

spatial correlation structure that underlies the highly discontinuous, trivariate density function of real life material

samples (see Figure 10). The spatial variation in the correlation structure of the image data cannot be used as a proxy

for that of the material density function, since the former is not a pointer to the latter, given that compression of the

density information within a 3-D interaction-volume generates an image datum. Only with training data comprising

known material density at chosen points, can we model the correlation structure of the density function. In lieu of

training data, as in the current case, modelling of such correlation is likely to fail.

Hence we learn the density function at the grid points of a 3-D Cartesian grid set up in the space of X , Y and Z.

No variation in the material density inside the ik-th grid-cell can be learnt, where this grid-cell is defined as the “ik-th

voxel” which is the cuboid given by

– square cross-sectional area (on a Z =constant plane) of size ω2, with edges parallel to theX and Y axes, located

at the i-th beam incidence,

– depth along the Z-axis ranging from h(k−1) ≤ z < h(k),

with i = 1, 2, . . . , Ndata, k = 1, 2, . . . , Neng, h(0) = 0. Then one pair of opposite vertices of the ik-th voxel are

respectively at points (xi, yi, h
(k−1)) and (xi, yi, h

(k)), where the i-th beam incidence is at the point (xi, yi, 0) and

xi := imodulo (
√
Ndata) yi := int(i/

√
Ndata) + 1.. (3.1)

See Figure 2 for a schematic depiction of a general voxel. Here
√
Ndata is the number of intervals of width ω along the

X-axis, as well as along the Y -axis. Thus, on the part of the X − Y plane that is imaged, there are Ndata squares of

size ω. Formally, the density function that we can learn using such discrete image data is represented as

ξ
(k)
i := ρ(x, y, z) for x ∈ [xi, xi + ω), y ∈ [yi, yi + ω), z ∈ [h(k−1), h(k)), (3.2)

This representation suggests that a discretised version of the sought density function is what we can learn using

the available image data. We do not invoke any distribution for the unknown parameters

ξ
(1)
1 , ξ

(2)
1 , . . . , ξ

(Neng)
1 , ξ

(1)
2 , . . . , ξ

(Neng)
2 , . . . , ξ

(1)
Ndata

, . . . , ξ
(Neng)
Ndata

. It is to be noted that the number of parameters that we
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X
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Figure 2: Figure to bring out the general (ik-th) voxel, as distinguished from the general (ik-th) interaction-volume. For the

value εk of the imaging parameter E, the i-th viewing vector vi impinges the Z=0 surface at the material slab at point (xi, yi, 0),

creating the ik-th interaction-volume (in blue) that is modelled as a hemisphere of radius R0(k). The maximal depth that this

interaction-volume extends to, is h(k). Thus, under the assumption of hemi-spherical shape, R0(k) = h(k). Here, i = 1, . . . , Ndata

and k = 1, . . . , Neng. In the figure, the beam is incident on the 14-th square on the surface, where the origin is at the marked

vertex O. Also, the depicted interaction-volume goes down to the 4-th Z-bin, i.e. has a radius=R0(4) = h(4). Then the depicted

interaction-volume is the ik-th one, with i = 14 and k=4. The example voxel the outermost face of which on the X = 0 plane

is shown in red, lies between depths h(3) and h(4), and has i = 2; this is then the ik-th voxel, with i=2, k=4. The grid-cells on

the Z=constant planes are squares of side ω, the resolution length of the imaging instrumentation. The gridding along the Z-axis

is non-uniform. Material density inside the ik-th voxel is the constant ξ(k)i and for all i = 1, . . . , Ndata, correction function in this

voxel is η(k), k = 1, . . . , Neng.

seek is deterministically driven by the image data that we work with–the discretisation of the data drives the discretisa-

tion of the space of X , Y and Z and the density in each of the resulting voxels is sought. Thus, when the image has a

resolution ω and there areNeng such image data sets recorded at a value ofE, the number of sought density parameters

is Ndata × Neng where Ndata is the number of squares of size ω that comprise part of the surface of the material slab

that is imaged. Here the number of parameters Ndata × Neng is typically large; in the application to real data that we

present later, this number is 2250. We set up a generic model that allows for the learning of such large, data-driven

number of distribution-free density parameters in a Bayesian framework.

3.2 Defining a general interaction-volume

Under the consideration of a hemi-spherical shape of the interaction-volume, the ik-th interaction-volume is com-

pletely specified by pinning its centre to the i-th beam pointing at (xi, yi, 0) on the Z=0 plane and fixing its radius

to R0(k) ∝ εk
1.67, (Kanaya & Okamaya 1972) where the constant of proportionality is known from microscopy

theory2and xi and yi are defined in Equation 3.1. In this hemispherical geometry, the maximal depth that the ik-th
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interaction volume goes down to is h(k) = R0(k).

The measured image datum in the i-th pixel, created at E = εk, is Ĩ(k)i . This results when the convolution

(ρ ∗ η)
(k)
i , of the unknown density and kernel in the voxels that lie inside the ik-th interaction-volume, is sequentially

projected (as mentioned in Section 3), onto the centre of the ik-th interaction-volume, i.e. onto the point (xi, yi, 0).

This projection is referred to as C(ρ ∗ η)
(k)
i . The integral representation of such a projection suggests 3 integrals, each

over the three spatial coordinates that define the ik-th interaction-volume, according to

C(ρ ∗ η)
(k)
i =

∫ R0(k)

R=0

∫ θmax

θ=0
RdRdθ

∫ z=zmax(R,θ)

z=0
ρ(s) ∗ η(s)dz∫ Rmax

R=0

∫ θmax

θ=0
RdRdθ

(3.4)

for i = 1, . . . , Ndata. Here the vector s represents value of displacement from the point of incidence (xi, yi, 0), to a

general point (x, y, z), inside the interaction-volume, i.e.

s := (x− xi, y − yi, z)T = (R cos θ,R sin θ, z)T

R =
√

(x− xi)2 + (y − yi)2 tan θ =
y − yi
x− xi

.

(3.5)

3.3 Cases classed by image resolution

We realise that the thickness of the electron beam imposes an upper limit on the image resolution, i.e. on the smallest

length ω over which structure can be learnt in the available image data. For example, the resolution is finer when the

SEM image is taken in Back Scattered Electrons (ω . 0.01µm) than in X-rays (ω ∼ 1µm). The comparison between

the cross-sectional areas of a voxel and of an interaction-volume, on the Z=constant plane is determined by

– ω since the area of the voxel at any z is ω2.

– the atomic-number parameter Z of the material at hand (see Equation 3.3) since the radius R0(k) of the hemi-

spherical interaction-volume is a monotonically decreasing function of Z , at E = εk.

Then we can think of 3 different resolution-driven models such that

1st model: voxel cross-sectional area on the Z=0 plane exceeds that of interaction-volumes attained at all E, i.e.

π(R0(k))2 ≤ ω2, ∀ k = 1, . . . , Neng.

2 In the context of the application to microscopy, atomic theory studies undertaken by Kanaya & Okamaya (1972) suggest that the maximal

depth to which an electron beam can penetrate inside a given material sample is h(k) (measured in µm), for a beam of electrons of energy E = εk

(measured in kV), inside material of mass density of d (measured in gm cm−3), atomic number Z and atomic weight A (per gm per mole), is

h(k) =
0.0276Aε1.67k

dZ0.89
k ∈ Z+. (3.3)

Here Z is an integer valued atomic number of the material, Z > 0 while A and d are positive-definite real valued constants. As E increases, the

depth and radial extent of the interaction-volume increases.
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2nd model: voxel cross-sectional area on the Z=0 plane exceeds that of interaction-volumes at some values of E but is

lower than that of interaction-volumes attained at higher E values, i.e. π(R0(k))2 ≤ ω2, ∀ k = 1, . . . , kin and

π(R0(k))2 > ω2, ∀ k = kin + 1, . . . , Neng.

3rd model: voxel cross-sectional area on the Z=0 plane is lower than that of interaction-volumes attained at all E, i.e.

π(R0(k))2 > ω2, ∀ k = 1, . . . , Neng.

The first two models are realised for coarse resolution of the imaging technique, i.e. for large ω. This is contrasted

with the 3rd model, which pertains to fine resolution, i.e. low ω. Since R0(k) is a monotonically decreasing function

of Z (Equation 3.3), the 1st model is feasible for “high-Z materials”, while the 2nd model is of relevance when the

material at hand is a “low-Z material”. To make this more formal, we introduce two classes of materials as follows.

For fixed values of all parameters but Z ,

if ω2 ≥ π[R0(Neng)]2|Z, “high-Z” material (3.6)

if ω2 < π[R0(Neng)]2|Z, “ low-Z” material.

The computation of the sequential projections involve multiple integrals (see Equation 3.4). The required number

of such integrals can be reduced by invoking symmetries in the material density in any interaction-volume. Such

symmetries become avaliable, as the resolution in the imaging technique becomes coarser. For example, for the 1st

model, when the resolution is the coarsest, the minimum length ω learnt in the data exceeds the diameter of the lateral

cross-section of the largest interaction-volume achieved at the highest value of E, i.e for E = εNeng . (Here “lateral

cross section” implies the cross-section on the Z=0 plane). Then for the coarsest resolution, 2R0(Neng) ≤ ω (see

Figure 3) and so, π[R0(Neng)]2 ≤ ω2 which means the lateral cross-section of the ik-th interaction-volume is contained

inside that of the ik-th voxel. Now in our discretised representation, the material density inside any voxel is a constant.

Therefore it follows that when resolution is the coarsest, material density at any depth inside an interaction-volume, is

a constant independent of the angular coordinate θ (see Equation 3.4). Thus, the projection of ρ ∗ η onto the centre of

the interaction-volume, does not involve integration over this angular coordinate.

However, such will not be possible for the 3rd model at finer imaging resolution. When the resolution is the finest

possible with an SEM, ω is the smallest. In this case, the lateral cross-section of many voxels fill up the cross-sectional

area of a given interaction volume. Thus, the density is varying within the interaction-volume. Thus, the projection of

ρ ∗ η cannot forgo integrating over θ.

The last case that we consider falls in between these extremes of resolution; this is the 2nd model. Isotropy is valid

∀ k = 1, . . . , kin but not for k = kin + 1, . . . , Neng; (see middle panel in Figure 3).

3.4 Noise in discrete image data

As discussed above in Section 1, noise in the data can crucially influence how well-conditioned the inverse problem is.

Image data is invariably subjected to noise, though for images taken with Scanning Electron Microscopes (SEM), the
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Figure 3: A schematic diagram to depict the three models that we work with. When the instrumental resolution is the coarsest

out of the three cases, i.e. ω is the largest, (for high-Z materials), the size of the ik-th interaction-volumes (depicted in red) is

such that their cross-sectional areas on a Z=constant plane fall short of the area of a voxel (outlined in black), on this plane. Here

k = 1, . . . , Neng though in the representation on the left, a value of 2 has been used for Neng. Thus, the projection C(ρ ∗ η)(k)i onto

the centre of an interaction-volume is done by considering an isotropic density function, since density inside a voxel is a constant.

Middle panel: (for low-Z materials) the cross-sectional area π(R0(k))2 of the ik-th interaction-volume and ω2 of any voxel, on

the Z=0 plane are such that π(R0(k))2 ≤ ω2 for k = 1, . . . , kin. On the other hand, for k = kin + 1, . . . , Neng, π(R0(k))2 > ω2

and therefore for such k, the ik-th interaction-volume spills into the neighbouring voxels on the Z=0 plane. Thus, the contribution

to projection C(ρ ∗ η)(k)i from the ik-th interaction-volume includes contribution from these neighbouring voxels as well. Such

contribution is modelled using a nearest-neighbour weighted averaging. Left: for the finest instrumental resolution, (obtained for

example with Back Scattered Electron images taken with SEM), for all k = 1, . . . , Neng in general, the interaction volume exceeds

a voxel in cross-sectional area, on the Z=0 surface.

noise is small. Also, imaging with SEM being a controlled experiment, this noise can be reduced by the microscopist

by increasing the length of time taken to scan the sample with the electron beam that is made incident on the sample

in this imaging procedure. As illustrations of the noise in real SEM data, Vanderlinde & Caron (2007) suggest that in

a typical 20 second scan of the SEM, the signal to noise is about 20:1, which can be improved to 120:1 for a longer

acquisition time of 10 minutes3. Importantly, this noise could arise due to to variations in the beam configurations,

detector irregularities, pressure fluctuations, etc. In summary, such noise is considered to be due to random variations

in parameters that are intrinsically continuous, motivating a Gaussian noise distribution. Thus, the noise in the 2-D

image data, created by the i-th beam pointing for E = εk, (i.e. the noise in Ĩ(k)i ) is modelled as a random normal

variable, drawn from the normal with standard deviation σ(k)
i . 0.05Ĩ(k)i , k = 1, . . . , Neng, i = 1, . . . , Ndata. In the

illustration with real data, a scan speed of 50 s was used, which implies a noise of less than 5%.

3.5 Identifying low-rank and spatially-varying components of density

It is known in the literature that the general, under-determined deconvolution problem is solvable only if the unknown

density is intrinsically, “sufficiently” sparse (Donoho & Tanner 2005; Wright et al. 2009). Here we advance a method-

ology, within the frame of a designed experiment, to learn the density - sparse or dense. In the following subsection,

we will see that priors on the sparsity that we develop here, bring in relatively more information into the models when

the density structure is sparse.

3In modern SEMs, noise reduction is alternatively handled using pixel averaging (”Stereoscan 430 Operator Manual”, Leica Cambridge Ltd.

Cambridge, England, 1994).
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With this in mind, the density is recognised to be made of a constant ρ0 (the low-rank component in the limiting

sense), and the spatially varying component ρ1(x, y, z) that may be sparse or dense in R3. We view the constant part

of the density as ρ0 = ρ0δ(x − xi, y − yi, z) where δ(·, ·, ·) is the Dirac delta function on R3 (Chakraborty 2008),

centred at the centre of the ik-th interaction volume, ∀ k = 1, 2, . . . , Neng. Then in our problem, the contribution of

the constant part of the density to the projection onto the centre of the ik-th interaction-volume is

C(ρ0 ∗ η(x, y, z)
(k)
i ) ≡ ρ0C(δ(x− xi, y − yi, z) ∗ η(x, y, z))

(k)
i )

= I0(k), (3.7)

a constant independent of the beam pointing location i, if η(x, y, z) is restricted to be a function of the depth coordinate

Z only. As is discussed in Section 4, this is indeed what we adopt in the model for the kernel.

Then, I0(k) depends only on the known morphological details of the interaction-volume for a given value of E,

∀ i = 1, 2, . . . , Ndata. Thus, {Ĩ(k)i }
Ndata
i=1 = {Ĩ1

(k)

i + I0(k)}Ndata
i=1 , where Ĩ1

(k)

i is the spatially-varying component of

the image data. The identification of the constant component of the density is easily performed as due to the constant

component of the measurable.

In our inversion exercise, it is the {Ĩ1
(k)

i }
Ndata
i=1 field that is actually implemented as data, after I0(k) := inf{Ĩ(k)i }

Ndata
i=1

is subtracted from {Ĩ(k)i }
Ndata
i=1 , for each k = 1, . . . , Neng. Hereafter, when we refer to the data, the spatially-varying

part of the data will be implied; it is this part of the data that will hereafter be referred to as {Ĩ(k)i }
Ndata
i=1 , at each value

εk of E, k = 1, . . . , Neng. Its inversion will yield a spatially varying sparse/dense density, that we will from now,

be referred to as ρ(x, y, z) that in general lies in a non-convex subset of R≥0. Thus, we see that in this model, it is

possible for ρ(x, y, z) to be 0. The construction of the full density, inclusive of the low-rank and spatially-varying

parts, is straightforward once the latter is learnt.

3.6 Basics of algorithm leading to learning of unknowns

The basic scheme of the learning of the unknown functions is as follows. First, we perform multiple projections of

the convolution of the unknown functions in the forward problem, onto the incidence point of the ik-th interaction-

volume, ∀ i, k. The likelihood is defined as a function of the Euclidean distance between the spatially-averaged

projection C(ρ∗η)
(k)
i , and the image datum Ĩ

(k)
i . We choose to work with a Gaussian likelihood (Equation 7.1). Since

the imaging at any value of E along any of the viewing vectors is done independent of all other values of E and all

other viewing vectors, we assume {Ĩ(k)i } to be iid conditionally on the values of the model parameters.

We develop adaptive priors on sparsity on the density and present strong to weak priors on the kernel, to cover

the range of high to low information about the kernel that may be available. In concert with these, the likelihood

leads to the posterior probability of the unknowns, given all the image data. The posterior is sampled from using

adaptive Metropolis-Hastings within Gibbs. The unknown functions are updated using respective proposal densities.

Upon convergence, we present the learnt parameters with 95%-highest probability density credible regions. At the
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same time, discussions about the identifiability of the solutions for the 2 unknown functions and of uniqueness of the

solutions are considered in detail.

4. KERNEL FUNCTION

Identifiability between the solutions for the unknown material density and kernel is aided by the availability of mea-

surement of the kernel at the surface of the material sample and the model assumption that the kernel function depends

only on the depth coordinate Z and is independent ofX and Y . Thus, the correction function is η(z). In the discretised

space of X , Y and Z, the kernel is then defined as

η(k) := η(z) for z ∈ [h(k−1), h(k)), k = 1, . . . , Neng. (4.1)

Then η(0) is the value of the kernel function on the material surface, i.e. atZ = 0 and this is available from microscopy

theory (Merlet. 1994).

On occasions when the shape of the kernel function is known for the material at hand, only the parameters of this

shape need to be learnt from the data. Given the measured value η(0), i.e. the measured η(1), the total number of

kernel parameters is then 2. In this case, the total number of parameters that we attempt learning from the data is

Ndata×Neng + 2, i.e. the 2 kernel shape parameters and Ndata×Neng number of material density parameters. We refer

to such a model for the kernel as parametric. For other materials, the shape of the kernel function may be unknown.

In that case, a distribution-free model of the Neng − 1 parameters of the vectorised kernel function are learnt. In this

case, the total number of parameters that we learn is Ndata ×Neng +Neng − 1.

We fall back on elicitation from the literature on electron microscopy to obtain the priors on the kernel pa-

rameters. In microscopy practice, the measured image data collected along an angle χ to the vertical is given by

Q

∫ ∞
0

Ψ(ρz) exp[−f(χ)ρz]d(ρz), where Q ∈ R>0 and f(χ) ∝ 1/ sin(χ) with a proportionality constant that is

not known apriori but needs to be estimated using system-specific Monte Carlo simulations or approximations based

on curve-fitting techniques; see Goldstein et al. (2003). Ψ(ρz) is the distribution of the variable ρz and is again

not known apriori but the suggestion in the microscopy literature has been that this can be estimated using Monte

Carlo simulations of the system or from atomistic models. However, these simulations or model-based calcula-

tions are material-specific and their viability in inhomogeneous material samples is questionable. Given the lack

of modularity in the modelling of the relevant system parameters within the conventional approach, and the existence

in the microscopy literature of multiple models that are distinguished by the underlying approximations (Goldstein

et al. 2003; Merlet. 1994), it is meaningful to seek to learn the correction function.

Our construct differs from this formulation in that we construct an infinitesimally small volume element of depth

δz inside the material, at the point (x, y, z). In the limit δz −→0, the density of the material inside this infinitesimally

small volume is a constant, namely ρ(x, y, z). Thus, the image datum generated from within this infinitesimally small

volume - via convolution of the material density and the kernel - is ρ(x, y, z)η(z)δz. Thus, over this infinitesimal vol-
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ume, our formulation will tie in with the representation in microscopic theory, if we set η(z) ∝ Ψ(ρz) exp[−f(χ)ρz].

It then follows that η(z) is motivated to have the same shape as Ψ(ρz) exp(−cz), where c is a known, material depen-

dent constant4. When information about this shape is invoked, the model for η(k) is referred to as parametric; however,

keeping general application contexts in mind, a less informative prior for the unknown kernel is also developed.

4.1 Parametric model for correction function

Information is sometimes available on the shape of the function that represents the kernel. For example, we could

follow the aforementioned suggestion of approximating the form of η(z) as Ψ(ρz) exp(−cz), multiplied by the scale-

factorQ, as long as c is known for the material and imaging technique at hand. In fact, for the values of beam energyE

that we work at, for most materials c . 10−2, so that exp(−cz) ≈ 1 ( http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html,

Goldstein et. al 2003). Thus, we approximate the shape of η(z) to resemble that of Ψ(ρz), as given in microscopy

literature. This shape is akin to that of the folded normal distribution (Leone, Nottingham & Nelson 1961), so that we

invoke the folded normal density function to write

η(z) ≡ Q
[
exp

(
− (z − η0)2

2s2

)
+ exp

(
− (z + η0)2

2s2

)]
. (4.2)

Thus, in this model, η(z) is deterministically known if the parametersQ, η0 and s are, where, η0 and s are the mean and

dispersion that define the above folded normal distribution. Out of these three parameters, only two are independent

since η(z) is known on the surface, i.e. η(1) is known (see Section 4). Thus, by setting η(1) = 2Q exp[−η20/2s2], we

relate η0 deterministically to s and Q. In this model of the correction function, we put folded normal priors on Q and

s. Thus, this model of the correction function is parametric in the sense that η(z) is parametrised, and priors are put

on its unknown parameters.

4.2 Distribution-free model for correction function

In this model for the correction function, we choose folded normal priors for η(k), i.e. π(η(k)) = NF (m
(k)
η , s) with

m
(k)
η = Q

[
exp

(
− (h(k) − η0)2

2s2

)
+ exp

(
− (h(k) + η0)2

2s2

)]
. The folded normal priors on η(·) (Leone et al. 1961)

underlie the fact that η(k) ≥ 0, ∀ k = 1, . . . , Neng and that there is a non-zero probability for η(k) to be zero.

Thus, folded normal and truncated normal priors for η(k) would be relevant but gamma priors would not be. Also,

microscopy theory allows for the kernel at the surface to be known deterministically, i.e. η(1) is known (Section 4).

Then setting π(η(1)) =1, we relate Q, η0 and s. This relation is used to compute s, while uniform priors are assigned

to the hyper-parameters η0, Q. We refer to this as the “distribution-free model of η(z)”.

We illustrate the effects of both modelling strategies in simulation studies that are presented in Section 9.

The correction function is normalised by η̂(1)/η(1), where η̂(1) is the estimated unscaled correction function in the

first Z-bin, i.e. for z ∈ [0, h(1)) and η(1) is the measured value of the correction function at the surface of the material,

4c depends upon whether the considered image is in Back Scattered Electrons (BSE) or X-rays. In he former case c represents the BSE

coefficient, often estimated with Monte-Carlo simulations and in the latter, it is the linear attenuation coefficient).
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given in microscopy literature. It is to be noted that the available knowledge of η(1) allows for the identifiability of the

amplitudes of ρ(x, y, z) and η(z).

5. PRIORS ON SPARSITY OF THE UNKNOWN DENSITY

In this section we present the adaptive priors on the sparsity in the density, developed by examining the geometrical

aspects of the problem.

As we are trying to develop priors on the sparsity, we begin by identifying the voxels in which density is zero, i.e.

ξ
(k)
i = 0. This identification will be made possible by invoking the nature of the projection operator C(·). For example,

we realise that it is possible for the measured image datum Ĩ
(k)
i collected from the ik-th interaction-volume to be non-

zero, even when density in the ik-th voxel is zero, owing to contributions to Ĩ(k)i from neighbouring voxels that are

included within the ik-th interaction-volume. Such understanding is used to identify the voxels in which density is

zero. For a voxel in which density is non-zero, we subsequently learn the value of the density. The constraints that

lead to the identification of voxels with null density can then be introduced into the model via the prior structure in the

following ways.

1. We could check if C(ρ ∗ η)
(k)
i = C(ρ ∗ η)

(k)
−im, (where C(·)(k)−im := projection onto the centre of the ik-th

interaction-volume without including density from the mk-th voxel, i.e. without including ξ(k)m ). If so, then

ξ
(k)
m = 0. However, this check would demand the computation of C(ρ ∗ η)

(k)
i over a given interaction-volume,

as many times as there are voxels that lie fully or partially inside this interaction-volume. Such computation is

avoided owing to its being computationally intensive. Instead, we opt for a probabilistic suggestion for when

density in a voxel is zero. Above, i = 1, 2, . . . , Ndata, k = 1, 2, . . . , Neng.

2. We expect that the projection of ρ ∗ η onto the centre (xi, yi, 0) of the interaction-volume achieved at E = εk

will in general exceed the projection onto the same central point of a smaller interaction volume (at E = εk−1).

However, if the density of the ik-th voxel is zero or very low, the contributions from the interaction-volume

generated at E = εk may not exceed that from the same generated at E = εk−1. Thus, it might be true that

C(ρ ∗ η)
(k)
i ≤ C(ρ ∗ η)

(k−1)
i =⇒ ξ

(k)
i = 0 (5.1)

∀ i, k. This statement is true with some probability. An alternate representation of the statement 5.1 is achieved

as follows. We define the random variable τ (k)i , with 0 < τ
(k)
i ≤ 1, such that

τ
(k)
i :=

C(ρ ∗ η)
(k)
i

C(ρ ∗ η)
(k−1)
i

, if C(ρ ∗ η)
(k)
i ≤ C(ρ ∗ η)

(k−1)
i and C(ρ ∗ η)

(k−1)
i 6= 0 (5.2)

τ
(k)
i := 1 otherwise

Then the statement 5.1 is the same as the statement: “it might be true that τ (k)i ≤ 1 =⇒ ξ
(k)
i = 0 or ξ(k)i is very

low”, with some probability ν(τ
(k)
i ). In fact, as the projection from the bigger interaction-volume is in general
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in excess of that from a smaller interaction-volume, we understand that closer C(ρ ∗ η)
(k)
i is to C(ρ ∗ η)

(k−1)
i ,

higher is the probability that ξ(k)i is close to 0. In other words, the smaller is τ (k)i , higher is the probability

ν(τ
(k)
i ) that ξ(k)i is close to 0, where

ν(τ
(k)
i ) = pτ

(k)
i (1− p)1−τ

(k)
i , (5.3)

with the hyper-parameter p controlling the non-linearity of response of the function ν(τ
(k)
i ) to increase in τ (k)i .

The advantage of the chosen form of ν(·) is that it is monotonic and its response to increasing value of its

argument is controlled by a single parameter, namely p. We assign p a a hyper prior that is uniform over the

experimentally-determined range of [0.6, 0.99], to ensure that ν(τ
(k)
i ) is flatter for lower p and steeper for higher

p, (as τ (k)i moves across the range (0, 1]). The prior on the density parameter ξ(k)i is then defined as

π0(ξ
(k)
i ) = exp

[
−
(
ξ
(k)
i ν(τ

(k)
i )

)2]
. (5.4)

Thus, π0(ξ
(k)
i ) ∈[0,1] ∀ i, k. Any normalisation constant on the prior can be subsumed into the normalisation

of the posterior of the unknowns given the data; had we used a normalisation of
√

4π/p2, for all i, at those k

for which C(ρ ∗ η)
(k)
i > C(ρ ∗ η)

(k−1)
i or C(ρ ∗ η)

(k−1)
i = 0, the prior on ξ(k)i would have reduced to being a

normal N (0, 2/p2). This is because, for such ξ(k)i , τ (k)i = 1 so that ν(τ
(k)
i ) = p. However, for τ (k)i < 1 the

prior on ξ(k)i is non-normal as the dispersion is itself dependent on ξ(k)i . This prior then adapts to the sparsity

of the material density distribution. We do not aim to estimate the degree of sparsity in the material density

in our work but aim to develop a prior π0(ξ
(k)
i ) ∀ i, k so that {ξ(k)i }

Neng

k=1 sampled from this prior represents the

material density distribution at the given i, however sparse the vector (ξ
(1)
i , ξ

(2)
i , . . . , ξ

(Neng)
i )T is. Evidently, we

do not use a mixture prior but opt for no mixing as in Greenshtein & Park (2009). Indeed, in our prior structure,

the term
(
ξ
(k)
i ν(τ

(k)
i

)2
could have been replaced by

∣∣∣ξ(k)i ν(τ
(k)
i

∣∣∣, (as in parametric Laplace priors suggested

by Park & Casella (2008), Hans (2009), Johnstone & Silverman (2004)), i.e. by ξ(k)i ν(τ
(k)
i ) since ξ(k)i is non-

negative, but as far as sparsity tracking is concerned–which is our focus in developing this prior here–the prior

in Equaion 5.4 suffices.

That such a prior probability density sensitively adapts to the sparsity in the material density distribution, is brought

about in the results of 2 simulation studies shown in Figure 4. In these studies, the density parameter values in the

ik-th voxel are simulated from 2 simplistic toy models that differ from each other in the degree of sparsity of the

true material density distribution: ξ(k)i = u101 /u2, and ξ
(k)
i = u103 respectively, (where u1, u2, u3 are uniformly

distributed random numbers in [0, 1]), at a chosen i and energy indices k = 1, 2, . . . , 10. In the simulations we specify

the beam penetration depth h(k) ∝ ε1.67k as suggested by Kanaya & Okamaya (1972); as any interaction-volume is

hemispherical, its radius R0(k) = h(k). The kernel parameters η(k) are generated from a quadratic function of h(k)

with noise added. In the simulations, the material is imaged at resolution ω such that π[R0(10)]2 ≤ ω2, i.e. the “1st
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model” is relevant (see Section 3.3). This allows for simplification of the computation of C(ρ ∗ η)
(k)
i according to

Equation 3.4. Then at this i, for k = 1, 2, . . . , 10, ξ(k)i are plotted in Figure 4 against k, as is the logarithm of the

prior π0(ξ
(k)
i ) computed according to Equation 5.4, with p held as a random number, uniform in [0.6,0.99]. Logarithm

of the priors are also plotted as a function of the material density parameter. We see from the figure that the prior

developed here tracks the sparsity of the vector (ξ
(1)
i , ξ

(2)
i , . . . , ξ

(Neng)
i )T well.

Figure 4: Top: in the left panel black filled circles depict values of simulated material density parameters ξ(k)i = u10
1 /u2,

u1, u2 ∼ U [0, 1], at an arbitrary beam position index i, as a function of the energy index k, for k = 1, 2, . . . , 10. Log of the prior

π0(ξ
(k)
i ), as given in Equation 5.4, is shown in the middle panel as a function of k for p ∼ U [0.6, 0.99]. The log prior is plotted

against the true values of ξ(k)i in black filled circles in the right panel. Bottom: As in the top panels, except that this simulation is

of a sparser material density distribution with density parameters generated as ξ(k)i = u10
1 .

6. THREE MODELS FOR IMAGE INVERSION

In this section we develop the projection of the convolution of the unknown density and kernel onto the centre of the

ik-th interaction volume, for each of the 3 models discussed in Section 3.3, motivated by the 3 different classes of
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image data classified by their resolution. The difference between the size of a voxel and that of an interaction-volume

determines the difficulty in the inversion of to the image data.

As explained in Section 3.3, we attempt to identify means of dimensionality reduction, i.e. reducing the number

of integrals involved in the sequential projection of ρ ∗ η, (see Equation 3.4). We do this by identifying isotropy

in the distribution of the material density within the interaction-volume when possible, leading to elimination of the

requirement of averaging over the angular coordinate.

6.1 1st and 2nd-models - Low resolution

This class of image resolutions (ω ∼ 1µm), pertain to the case when the system is imaged by an SEM in X-rays.

6.1.1. High-Z Systems In the 1st model, for the high-Z materials, the cross-sectional area of an interaction-volume

attained at any E will fit wholly inside that of a voxel, where the cross-section is on a Z-constant plane. Then at a

given depth, the density inside this interaction-volume is that inside the voxel, i.e. is a constant. Thus, dimensionality

reduction is most easily achieved in this case with the density function isotropic inside an interaction-volume, bearing

no dependence on the angular coordinate θ of Equation 3.4. Then when we revisit Equation 3.4 in its discretised form,

the discrete convolution ρ ∗ η within the k-th Z-bin and the i-th beam pointing gives (ρ ∗ η)
(k)
i =

k∑
m=1

ξ
(m)
i η(k−m),

so that the projection onto the centre of the ik-th interaction-volume is discretised to give in Equation 3.4, gives the

following.

C(ρ ∗ η)
(k)
i =

1

(R0(k))2

k∑
q=0

[
(R0(q))2 − (R0(q−1))2

2

{
q∑
t=0

((
h(t) − h(t−1)

) t∑
m=1

ξ
(m)
i η(t−m)

)}]
. (6.1)

6.1.2. Low-Z Systems In the 2nd model, for low-Z materials, for any i ∈ {1, . . . , Ndata}, and k > kin, the cross-

sectional area of the ik-th interaction-volume on the Z=0 plane will spill out of the i1-th voxel into the neighbouring

voxels. Then only for at k = 1, 2, . . . , kin, isotropy within the ik-th interaction volume holds good. In general, the

projection C(ρ ∗ η)
(k)
i onto the centre of the ik-th interaction-volume includes contributions from all those voxels

that lie wholly as well as partly inside this interaction volume. This projection is then computed by first learning the

weighted average of the contributions from all the relevant voxels and then distributing this learnt weighted average

over the identified voxels in the proportion of the weights which in turn are in proportion of the voxel volume that lies

within the ik-th interaction-volume. Thus, for the i′k′-th voxel that is a neighbour of the ik′-th voxel that lies wholly

inside the ik-th interaction-volume, let this proportion be w(k′)
i′|i , where k′ ≤ k.

In general, at a given Z, any bulk voxel has 8 neighbouring voxels and when the voxel lies at the corner or edge of

the sample, number of nearest neighbours is less than 8. Then, at a given Z, there will be contribution from at most 9

voxels towards C(ρ ∗ η)
(k)
i . At Z = z ∈ [h(k

′−1), h(k
′)], for any i, let the maximum number of nearest neighbours be

imax|i, k so that imax|i, k ≤ 9. The notation for this number bears its dependence on both i and k. We define ξ̄(k
′)

i as

the weighted average of the densities in the ik′-th voxel and its nearest neighbours that are fully or partially included
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within the ik-th interaction-volume. Here k′ ≤ k, k = 1, . . . , Neng, i = 1, . . . , Ndata. Thus,

ξ̄
(k′)
i :=

imax|i,k′∑
i′=1

ξ
(k′)
i′|i w

(k′)
i′|i , (6.2)

where the i′-th neighbour of the ik′-th voxel at the same depth, harbours the density ξ(k
′)

i′|i and there is a maximum

of imax|i, k′ such neighbours. The effect of this averaging over the nearest neighbours at this depth, is equivalent to

averaging over the angular coordinate θ and results in the angular averaged density ξ̄(k
′)

i at this Z, which by definition,

is isotropic, i.e. independent of the angular coordinate. Then the projection onto the centre of the ik-th interaction-

volume, for k > kin, is computed as in Equation 6.1 with the material density term ξ
(·)
i on the RHS of this equation

replaced by the isotropic angular averaged density ξ̄(·)i . However, for k ≤ kin, the projection is computed as in

Equation 6.1.

6.2 3rd model - Fine resolution

In certain imaging techniques, such as imaging in Back Scattered Electrons by an SEM or FESEM, the resolution

ω � R0
(Neng)
i , ∀ i = 1, . . . , Ndata. In this case, at a given Z, material density from multiple voxels contribute to

C(ρ ∗ η)
(k)
i and the three integrals involved in the computation of this projection, as mentioned in Equation 3.4, cannot

be avoided. Knowing the shape of the interaction-volume, it is possible to identify voxels that live partly or wholly

inside the ik-th interaction-volume as well as compute the fractional or full volume of each such voxel inside the ik-th

interaction volume.

For this model, the projection equation is written in terms of the coordinates (x, y, z) of a point instead of the polar

coordinate representation of this point, where the point in question lies inside the ik-th interaction-volume that is cen-

tred at (xi, yi, 0). Then inside the ik-th interaction-volume, at a given x and y, z ∈
[
0,

√(
R0(k)

)2 − (x− xi)2 − (y − yi)2
]

.

For

x− xi ∈ [(u− 1)ω, uω] u = −(int)

(
R0(k)

ω

)
+ 1,−(int)

(
R0(k)

ω

)
+ 2, . . . , (int)

(
R0(k)

ω

)
,

the index pu(k) of the Y -bin of voxels lying fully inside the ik-th interaction volume, with respect to the centre of this

interaction-volume, are

pu(k) = −qu(k),−qu(k) + 1, . . . , 0, 1, 2, . . . , qu(k)− 1, qu(k),

where

qu(k) := (int)

(√
(R0(k))2 − u2ω2

ω

)
.

Then using the definition of the beam-pointing index in terms of the X-bin and Y -bin indices of voxels (see Equa-

tion 3.1), we get the beam-pointing index %u(i, k) of voxels lying wholly inside the ik-th interaction-volume, for a
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given u is

%u(i, k) = i− qu(k)
√
Ndata + u, i− (qu(k)− 1)

√
Ndata + u, . . . , i− (qu(k)− 2qu(k))

√
Ndata + u,

i.e. for a given u, %u(i, k) = i+ pu(k)
√
Ndata + u.

The depth coordinate of voxels with beam-pointing index %u(i, k) lying inside the ik-th interaction-volume are

z ∈
[
0,
√

(R0(k))2 − (pu(k))2ω2 − u2ω2

]
so that the energy index of voxels lying fully inside at Y -bin pu(k) and

x − xi ∈ [(u − 1)ω, uω) are ∈ [1, tmax(u)] where tmax(u) ∈ Z>0 such that tmax(u) = max{1, 2, . . . , Neng} that

satisfies

h(tmax(u)) ≤
√

(R0(k))2 − (pu(k))2ω2 − u2ω2.

At this Y -bin index pu(k), there will also exist a voxel lying partly inside the ik-th interaction-volume, at the

(tmax(u) + 1)-th Z-bin, between depths htmax(u) and
√

(R0(k))2 − (pu(k))2ω2 − u2ω2. In addition, the projec-

tion C(ρ ? η)
(k)
i will include contributions from voxels at the edge of this interaction-volume, lying partly inside

it; the beam-pointing indices of such voxels will be i − (qu(k) + 1)
√
Ndata + u and i + (qu(k) + 1)

√
Ndata + u

for x − xi ∈ [(u − 1)ω, uω] with u and q(u) defined as above. Lastly, parts of voxels at beam-pointing indices

i− (int)

(
R0(k)

ω

)
− 1 and i+ (int)

(
R0(k)

ω

)
+ 1 will also be contained inside the ik-th interaction-volume. These

voxels at the edges extend into the 1st Z-bin. We can compute the fraction r(b)a (i, k) of the volume of the ab-th voxel

contained partly within the ik-th interaction-volume by tracking the geometry of the system. Then using the discre-

tised version of Equation 3.4, we write,

ω−2(R0(k))2C(ρ ∗ η)
(k)
i =

(int)(R0(k)/ω)∑
u=−(int)(R0(k)/ω)

qu(k)∑
pu(k)=−qu(k)

tmax(u)∑
t=1

[(
h(t) − h(t−1)

) t∑
m=1

ξ
(m)
%u(i,k)

η(t−m)

]
+

(int)(R0(k)/ω)∑
u=−(int)(R0(k)/ω)

qu(k)∑
pu(k)=−qu(k)

(√(R0(k))2 − ((qu(k))2 + u2)ω2 − h(tmax(u))

) tmax(u)+1∑
m=1

χ(m)
%u (i, k)η(tmax(u)+1−m)

+

∑
`(i,k)

[(
h(1)

)
r
(1)
` (i, k)ξ

(1)
`(i,k)η

(0)
]

(6.3)

where `(i, k) = i−(int)

(
R0(k)

ω

)
−1, i+(int)

(
R0(k)

ω

)
+1, i−(qu(k) + 1)

√
Ndata+u, i+(qu(k) + 1)

√
Ndata+u,

for u = −(int)

(
R0(k)

ω

)
+ 1,−(int)

(
R0(k)

ω

)
+ 2, . . . , (int)

(
R0(k)

ω

)
,

χ
(m)
%u (i, k) := r

(m)
%u (i, k)ξ

(m)
%u(i,k)

,

and η(1) is the measured value of the kernel on the system surface (see Section 4).

7. INFERENCE

In this work, we learn the unknown material density and kernel parameters using the mismatch between the data

{Ĩ(k)i }
k=Neng; i=Ndata

k=1; i=1 and {C(ρ ∗ η)
(k)
i }

k=Neng; i=Ndata

k=1; i=1 , in terms of which, the likelihood is defined. The material density
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and kernel are convolved, and this convolution is sequentially projected onto the centre of the the ik-th interaction

volume, in the model (out of the 3 models, depending on the resolution of the image data at hand). Thus, if for the

given material, the available data is such that ω2 ≥ π[R0(Neng)]2, then we use Equation 6.1 to implement C(ρ∗η)
(k)
i . If

ω2 ≥ π[R0(kin)]2 but ω2 < π[R0(kin+1)]2 , Equation 6.1 is relevant while for ω2 ≤ π[R0(k)]2 the nearest neighbour

averaging is invoked; see Section 6.1.2.

We choose to work with a Gaussian likelihood:

(7.1)

L
(
ξ
(1)
1 , . . . , ξ

(Neng)
1 , . . . , ξ

(1)
Ndata

, . . . , ξ
(Neng)
Ndata

, η(1), . . . , η(Neng)|Ĩ(1)1 , Ĩ
(2)
1 , . . . , Ĩ

(Neng)
1 , Ĩ

(1)
2 , . . . , Ĩ

(Neng)
2 , . . . , Ĩ

(Neng)
Ndata

)
=

Neng∏
k=1

Ndata∏
i=1

1
√

2πσ
(k)
i

exp

−
(
C(ρ ∗ η)

(k)
i − Ĩ

(k)
i

)2
2
(
σ
(k)
i

)2
, (7.2)

where the noise in the image datum Ĩ
(k)
i is σ(k)

i ; it is discussed in Section 3.4.

Towards the learning of the unknown functions, the joint posterior probability density of the unknown parameters,

given the image data, is defined using Bayes rule as

(7.3)

π
(
ξ
(1)
1 , . . . , ξ

(Neng)
1 , . . . , ξ

(1)
Ndata

, . . . , ξ
(Neng)
Ndata

, η(1), . . . , η(Neng)|Ĩ(1)1 , . . . , Ĩ
(Neng)
Ndata

)
∝

L
(
ξ
(1)
1 , . . . , ξ

(Neng)
1 , . . . , ξ

(1)
Ndata

, . . . , ξ
(Neng)
Ndata

, η(1), . . . , η(Neng)|Ĩ(1)1 , . . . , Ĩ
(Neng)
1 , . . . , Ĩ

(Neng)
2 , . . . , Ĩ

(Neng)
Ndata

)
×

π0

(
ξ
(1)
1 , ξ

(2)
1 , . . . , ξ

(1)
Ndata

, . . . , ξ
(1)
Ndata

, . . . , ξ
(Neng)
Ndata

)
ν0

(
η(1), . . . , η(Neng)

)
where π0(ξ

(1)
1 , . . . , ξ

(Neng)
Ndata

) is the adaptive prior probability on the sparsity of the density function, as discussed in

Section 5. Also, ν0(η(1), . . . , η(Neng)) is the prior on the kernel, discussed in Section 4.

Once the posterior probability density of the material density function and kernel, given the image data is defined,

we use the adaptive Metropolis within Gibbs (Haario, Laine, Mira & Saksman 2006) to generate posterior samples.

At the n-th iteration, n = 1, . . . , Nmax, ξ(k)i is proposed from a folded normal density5. This choice of the

proposal density is motivated by a non-zero probability for ξ(k)i to be zero. The latter constraint rules out a gamma or

beta density that ξ(k)i is proposed from but truncated and folded normal densities are acceptable k = 1 . . . , Neng, i =

1, . . . , Ndata. Of these we choose the easily computable folded normal proposal density (Leone et al. 1961). The

proposed density in the n-th iteration, in the ik-th voxel is

ξ̃
(k)
i |n ∼ NF (µ

(k)
i |n, ς

(k)
i |n) (7.4)

while the current density in this voxel at the n-th iteration is defined as ξ(k)i |n. . We choose the mean and variance of

5The distribution NF (a, b) is the folded normal distribution with mean a ∈ R, a > 0 and standard deviation b ∈ R, b > 0 (Leone et al. 1961)
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this proposal density to be

(7.5)

µ
(k)
i |n = ξ

(k)
i |n−1, ∀ n = 1, . . . , Nmax

(
ς
(k)
i |n

)2
=


∑n−1
p=n0

(
ξ
(k)
i |p

)2
n− n0

−

∑n−1
p=n0

(
ξ
(k)
i |p

)
n− n0

2

if n ≥ n0

Tξ
(k)
i |0 if n < n0

The random variable T is considered to be uniformly distributed, i.e. T ∼ U(0, 1]. Thus, for n ≥ n0, the proposal

density is adaptive, (Haario et al. 2006). We choose n0 = 104 and Nmax is of the order of 8×105.

We choose ξ(k)i |0 by assigning constant density to the voxels that constitute the ik-th interaction-volume, k =

1 . . . , Neng, i = 1, . . . , Ndata.

When a distribution-free model for the kernel is used, in the n-th iteration, η(k) is proposed from exponential

proposal density with a constant rate parameter s1. When the parametric model for the kernel is used, η(z) is calculated

as given in Equation 4.2, conditional on the values of 2 the parameters Q and η0. The proposed parameters at the n-th

iteration are Q̃n and (η̃0)n. Q̃n and (η̃0)n are each proposed from independent exponential proposal densities with

constant rate parameters.

Inference is performed by sampling from the high dimensional posterior (Equation 7.3) using Metropolis-within-

Gibbs block update, (Gilks & Roberts 1996; Chib & Greenberg 1995). Let the state at the n iteration be

εn = (ξ
(1)
1 |n, . . . , ξ

(Neng)
1 |n, . . . , ξ

(Neng)
2 |n, . . . , ξ

(Neng)
Ndata

|n, η(1)|n, . . . , η(Neng)|n)T . (7.6)

For the implementation of the block Metropolis-Hastings, we partition the state vector εn as:

εTn = ((ε(ξ)n )T , (ε(η)n )T ),

where

ε(ξ)n = (ξ
(1)
1 |n, . . . , ξ

(Neng)
1 |n, . . . , ξ

(Neng)
2 |n, . . . , ξ

(Neng)
Ndata

|n)T ,

ε(η)n = (η(1)|n, . . . , η(Neng)|n)T . (7.7)

Here n = 1, . . . , Nburnin
, . . . , Nmax. We typically use Nmax > 8×105 and Nburnin

=1×105. Then, the state εn+1 is

given by the successive updating of the two blocks: ε(ξ)n+1 and ε(η)n+1.

8. POSTERIOR PROBABILITY MEASURE IN SMALL NOISE LIMIT

Here we check for uniqueness in the learnt ρ ∗ η. With the aim of investigating the posterior probability density in the

small noise limit, we recall the chosen priors for the material density (Section 5), kernel parameters (Section 4), and

the likelihood function (Equation 7.1).

25



Theorem 8.1. In the limit of small noise, σ(k)
i −→ 0, the joint posterior probability of the density and kernel, given

the image data, for all beam-pointing vectors (i = 1, . . . , Ndata) and all εk, k = 1, . . . , Neng, reduces to a product of

Ndata ×Neng Dirac measures, with the ik-th measure centred at the solution to the equation Ĩ(k)i = C(ρ ∗ η)
(k)
i ,

Proof. Logarithm of the posterior probability of the discretised distribution-free model is

log π
(
ξ
(1)
1 , . . . , ξ

(Neng)
1 , . . . , ξ

(1)
Ndata

, . . . , ξ
(Neng)
Ndata

, η(1), . . . , η(Neng)|Ĩ(1)1 , . . . , Ĩ
(Neng)
Ndata

)
=

Ndata∑
i=1

Neng∑
k=1

[
− log σ

(k)
i −

(
(Ĩ

(k)
i − C(ρ ∗ η)

(k)
i )2

2(σ
(k)
i )2

)]
−
Neng∑
k=1

[
(η(k) + η

(k)
0 )2

2N(s(k))2

]
−
Ndata∑
i=1

Neng∑
k=1

[(
ξ
(k)
i ν(τ

(k)
i )

)2]
+A,

(8.1)

where A ∈ R is a finite constant. Thus,

lim
σ
(k)
i −→0

π(ξ
(1)
1 , . . . , ξ

(Neng)
Ndata

, η(1), . . . , η(m)|Ĩ(1)1 , . . . , Ĩ
(Neng)
Ndata

) ∝

lim
σ
(k)
i →0

Ndata∏
i=1

Neng∏
k=1

1

σ
(k)
i

exp

(
− (Ĩ

(k)
i − C(ρ ∗ η)

(k)
i )2

2(σ
(k)
i )2

). (8.2)

The right hand side of this equation is the product of Dirac delta functions centred at Ĩ(k)i = C(ρ ∗ η)
(k)
i , for i =

1, . . . , Ndata, k = 1, . . . , Neng. Thus, the posterior probability density reduces to a product of Dirac measures for each

i, k, with each measure centred on the solution of the equation Ĩ(k)i = C(ρ ∗ η)
(k)
i .

On the basis of Theorem 8.1, we arrive at the following important results.

(i) (ρ ∗ η)
(k)
i is the least-squares solution to Ĩ(k)i = C(ρ ∗ η)

(k)
i .

(ii) The three contractive projections that act successively to project ρ ∗ η onto the space of functions defined over

the point of incidence of any interaction-volume, are commutable. Thus, for example, the result is invariant

to whether the projection onto the Z=0 plane happens first and then the projection onto the Y -axis happens or

whether first the projection onto the Y =0 plane is performed, followed by the projection onto the Z=0 axis.

Each of these projections is also orthogonal and is therefore represented by a projection matrix Pi, i = 1, 2, 3,

that is idempotent (Pi = P2
i ) and symmetric. Then, the composition of these projections, i.e. the C operator,

which in the matrix representation is C, is a product of three idempotent and symmetric matrices that commute

with each other. This implies that C is idempotent and symmetric, implying that C is an orthogonal projection.

(iii) In the small noise limit, (ρ ∗ η)
(k)
i is the unique solution to the least-squares problem Ĩ

(k)
i = C(ρ ∗ η)

(k)
i . The

justification behind this results is as follows. In the matrix representation, C is a square matrix of dimensionality

Neng ×Neng, where the image data is a Neng × Ndata dimensional matrix and ρ ∗ η is also represented by a

Neng×Ndata dimensional matrix. C being a composition of three commutable orthogonal projections, the matrix

C(Neng×Neng) is idempotent and symmetric. Then the Moore-Penrose pseudo-inverse of C exists as C+, and is
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unique for given C. Then (ρ ∗ η)
(k)
i is the unique solution to the least squares problem Ĩ

(k)
i = C(ρ ∗ η)

(k)
i

achieved in the low noise limit, such that (ρ ∗ η)
(k)
i = C+Ĩ

(k)
i .

(iv) The establishment of the uniqueness of the learnt ρ ∗ η in the small noise limit is due to our designing of the

imaging experiment to ensure that the dimensionality of the image space coincides with that of the space of the

unknown parameters.

(v) In the presence of noise in the data, the learnt ρ ∗ η is no longer unique. The variation in this learnt function is

then given by the condition number κ(C) of C. Now, κ(C) =‖ C ‖‖ C+ ‖, where ‖ · ‖ here refers to the 2-

norm. For orthogonal projection matrices, norm is 1, i.e. κ(C)=1. Therefore, fractional deviation of uniqueness

in learnt value of ρ ∗ η is the same as the noise in the image data, which is at most 5% (see Section 3.4).

8.1 Quantification of deviation from uniqueness of learnt functions

While ρ ∗ η is learnt uniquely in the small noise limit, the learning of ρ(x, y, z) and η(z) from this unique convolution

is classically, an ill-posed problem since then we know Ndata ×Neng parameters but (Ndata ×Neng) +Neng parameters

are unknown in the implementation of the distribution-free model of η(z); again (Ndata × Neng) + 2 are unknown in

case the parametric model of η(z) is used. Then the ratios of the known to unknown parameters in these two cases are

as high as rnonpram ≈ 0.990 and rparam ≈ 0.998 respectively, for typical values of Ndata=100, Neng=10.

In a Bayesian framework, the problem is addressed via the priors on the unknown parameters presented above. The

prior on the material density parameters is adaptive to the sparsity of the density in its native space. Thus, this prior

should expectedly perform equally well when the density function is intrinsically dense as well as for density functions

marked by high degrees of sparsity. This is evident in the quality of comparison of the true densities and the densities

learnt from simulated image data sets obtained by sampling from two density functions that are equivalent in all respect

except for their inherent sparsity, as shown in Figure 5. At the same time, the parametric model for the kernel is more

informed than the distribution-free model. We find corroboration of improved inference on the unknowns when the

parametric, rather than distribution-free model for the kernel parameters is implemented, in learning with simulated

data, (see Figures 6 and 8).

9. INVERSION OF SIMULATED MICROSCOPY IMAGE DATA

We describe the application of the inverse methodology described above to simulated images, as a test of the method,

i.e. compare the true material density and true kernel parameters (or correction function) with the estimated density

and kernel respectively. Here, the “true” density and kernel are the chosen density and kernel functions using which

the simulated image data are constructed.

The discussed examples include inversion of simulated image data

• of an example of a high-Z material, namely Copper-Tungsten alloys, the true density function of which is
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– dense (Sample I-CuW),

– sparse (Sample II-CuW), such that the density structure is characterised by isolated modes with sharp

edges.

• of a low-Z material, namely a Ni-Al alloy which is

– dense (Sample I-NiAl),

– sparse (Sample II-NiAl).

The (simulated) images are produced, in some cases at 18 beam energy values and in other cases at 10 different

values of E, corresponding to εk = n+ k, in real physical units of energy, namely kiloVolts (or kV), k = 1, . . . , Neng,

n ∈ R≥0. We work with Ndata=225, i.e. there are 15 pixels along the X and 15 along the Y -axis corresponding to 15

beam pointings along each of these axes. Then at any k, the image data in 225 pixels, are arranged in a 15×15 square

array. The image data in each pixel is computed from a chosen density and chosen correction function by allowing the

sequential projection operator C to operate upon ρ ∗ η where the material density parameters are chosen as

ξ
(k)
i = Υ

Ai[
ε2 +

x2i
B2
i

+
y2i
B2
i

+
(h(k))2

B2
i (1−Q2

i )

] where (9.1)

Υ = (int)(NengU1), U1 ∼ U [0, 1] for the sparse Sample II-CuW and Sample II-NiAl,

Υ = 1 for the dense Sample I-CuW and Sample I-NiAl,

Ai = U2, U2 ∼ U [0, 1],

Bi = U3, U3 ∼ U [0, nω] n ∈ Z+,

Qi = U4, U4 ∼ U [0, 1],∀ i = 1, . . . , Ndata.

Here U [0, ·] is the uniform distribution over the range [0, ·].

The true correction function is chosen to emulate a folded normal distribution with a mean of γ and dispersion ds.

η(k) = exp

[
(h(k) − γ)2

2d2s

]
+ exp

[
(h(k) + γ)2

2d2s

]
(9.2)

We recall from Section 6, that for materials at a high value of the atomic number Z , when imaged at low reso-

lutions, the unknown functions are learnt as per the prescription of the 1st model. See Equation 3.6 for definition of

“high” and “low” Z materials. In this connection we mention that for the low resolution imaging techniques (such

as imaging in X-rays), the smallest resolved length in the observed images is ω=1.33µm while for the illustration of

the high resolution technique (such as imaging with Back Scattered Electrons), a much finer resolution of ω=9 nm, is

considered. Materials for which Z is low, when imaged at low resolutions, are modelled using the 2nd model. Any

material that is imaged at high resolution, i.e. for small values of ω, will be modelled using the 3rd-model. The true

density and correction function are then used in the model appropriate equation (Equation 6.1 for the 3rd model and
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Figure 5: Estimated material density parameters over-plotted in the X − Z plane, ∀y, in solid contour lines, over the

true density (in filled coloured contours), given simulated images of Copper-Tungsten alloy - Sample I-CuW (left)

and Sample II-CuW (right). The simulated image data corresponds to a low-resolution imaging technique (such as

when the system is imaged by an SEM in X-rays), at different beam energy values. The material density estimate at

the medial level of the posterior probability is plotted. The parametric model for the correction function was used for

these runs.

Equation 6.1 for the other 2 models) to generate the sequential projections of the convolution ρ ∗ η to give us the

simulated image data { ˜
I
(k)
i }

Ndata, Neng

i=1; k=1 . The simulated images are produced with noise of 5% to 3%, i.e. σ(k)
i =0.05 to

0.03 times Ĩ(k)i .

We start MCMC chains with a seed density ξ(k)i,seed in the ikth voxel defined as ξ(k)i,seed = Ĩ
(k)
i /Φ

(k)
seed, where the

starting correction function {η(k)seed}
Neng

k=1 helps define Φ
(k)
seed =

∑k
j=1 η

(j)
seed(h

(j) − h(j−1)). The initial seed for the

correction function is chosen to be motivated by the forms suggested in the literature; in fact, we choose the initial

correction function to be described by a half-normal distribution, with a standard deviation of 5µm and mean of 5µm.

We use adaptive Metropolis within Gibbs for our inference, as discussed above in Section 7.

9.1 Low resolution, high-Z system

These illustrations are performed with intrinsic densities that are sparse (Sample II-CuW) and dense (Sample I-CuW).

The idea behind the modelling in this case is that the cross-sectional area of the surface of the interaction-volume at

any E, is less than the cross-sectional area of the voxel on this Z=0 surface, rendering the inversion the simplest out

of the three illustrations we discuss. An example resolution of ω=1.33 µm of such low-resolution imaging techniques,

allows for 15 beam pointings over an interval of 20 µm, from x=-10µm to x=10µm at given y, at spatial intervals

where ω. Again, at a given x, there are 15 beam pointings, at steps of ω, from y=-10µm to y=10µm. Neng was chosen

as 18. We invert the image data thus generated, both when we consider a distribution-free model for η(z) as well as

the parametric model.
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Figure 5 represents the estimated density functions for the two simulated samples, represented as contour plots in

the X − Z plane, ∀y, superimposed over the respective true densities which are shown as filled contour plots, when

the parametric model for η(z) is used. We set σ(k)
i = 0.05Ĩ

(k)
i . The panel on the left describes a true density function

that is dense in its native space while on the right, the true density function is sparse.

Figure 6 represents results of implementation of the distribution-free models for the kernel, using σ(k)
i = 0.03Ĩ

(k)
i .

This figure includes the plot of C(ρ∗η)
(k)
i as a function of the pixel location along theX axis, over all k = 1, . . . , Neng.

This data is over-plotted on the image data Ĩ(k)i , plotted against λi for all k. Similarly, the estimated η̂(z) and true

correction function are also compared. Trace plots for the chains are also included.

It is to be noted that the definition of the likelihood in terms of the mismatch between data and the projection of the

learnt density and kernel parameters, i.e. C(ρ̂ ∗ η̂)
(k)
i , compels C(ρ̂ ∗ η̂)

(·)
· and Ĩ(·)· to coincide, even if ρ̂(x) is poorly

estimated, though such a comparison serves as a zeroth order check on the involved coding.

9.2 Low resolution, low-Z system

Distinguished from the last section, in this section we deal with the case of a low atomic number material imaged at

coarse or low imaging resolution. In this case, the surface cross-sectional area of an interaction-volume exceeds that of

a voxel only for E = εk ≤ εkin , for k = 1, . . . , kin, kin+1, . . . , Neng. The illustration of this case is discussed here for

Sample II-NiAl, that is an alloy of Nickel, Aluminium, Tallium, Rhenium; see DSouza, Beanland, Hayward & Dong

(2011). The average atomic weight of our simulated sample is such that kin=13 but the extent of interaction-volumes

attained at E = εk (=k+2 kiloVolts) for k = 14, . . . , 18, is in excess of the image resolution 1.33 µm. All other details

are as in the previous illustration.

Figure 7 depicts the learnt density structure; visualisation to this effect is provided for the Ni-Al alloy sample in

terms of the plots of ξ(k)i against h(k), at chosen values of X and Y inside the sample. Since there are 225 voxels

used in these exercises, the depiction of the density at each of these voxels cannot be accommodated in the paper, but

Figure 7 shows the density structure at values of beam pointing index i corresponding to 15 values of Y , at one value

of the X (=6.67µm).

9.3 High resolution

The challenge posed by the high resolution (ω .10 nm=0.01 µm) of imaging, to our modelling is logistical. This

logistical problem lies in fact that for ω .10 nm the run-time involved in the reconstruction of the density over the

length scales of ∼1 µm, is prohibitive; for an image resolution of ω=10 nm, there are 100 voxels included over a

length interval of 1 µm, while at example lower resoutions relevant to the aforementioned illustrations there would be

int(100/15).

In light of this problem, for a high resolution of ω=2 nm that we work with, we choose 20 voxels (each of cross-

sectional size 2 nm), across the X range of -20 nm to 20 nm. A similar range in Y is considered. The simulated
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Figure 6: Left: - projection C(ρ̂ ∗ η̂)
(k)
i plotted in black, in model units, as a function of beam location on the X-axis,

(where the beam pointing index i = 1, . . . , 225), over the image data (in red), for all beam energy values εk = 2 + k

(in kiloVolts), k = 1, . . . , 18, for Sample I-CuW (upper panel) and Sample II-CuW with the relatively sparser material

density (lower). Middle: estimated correction function, in black, superimposed on the true η(·) for the two samples

(in red). The error bars in the above plots, as well as in all plots that follow, correspond to 95% highest probability

density credible regions, while the medial level of the posterior is marked by a symbol (filled circle). The trace of the

joint posterior probability density of the unknown parameters, given the image data is shown in the right panels. The

distribution-free model for the correction function was implemented.

system is imaged at 10 energy values εk = k + 1.5kV, k = 1, . . . , 10. The atomic number parameter Z of the used

material is such that the radius R0(1) = h(1) of the interaction-volume attained at k = 1 is about 21 nm, so that all the

studied voxels live inside this and all other (larger) interaction-volumes. It is possible to run multiple parallel chains

with data from distinct parts of the observed image, in order to cover this available image. That way, the material

density function of the whole sample will be learnt.

The plots of the learnt density for the intrinsically dense and sparse true density functions are shown as a function of

depth Z, for all X and Y , in Fig 8, which display results of runs done with the distribution-free as well as parametric

models for the correction function (using σ
(k)
i = 0.05Ĩ

(k)
i , i = 1, . . . , Ndata, k = 1, . . . , Neng). The multiscale
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Figure 7: For the simulated (sparse and low-Z) Sample II-NiAl, the estimated density parameters ξ(k)i plotted in model

units as a function of h(k) (in µm), atX = 6.67µm and distinct values of the beam pointing locations along the Y -axis,

in the range of -10µm to 10µm, at intervals of 1.33µm where the panel in the lower left-hand corner is at the smallest

value of Y and that in the upper right-hand most panel is at the highest value of Y . The true variation of the learnt

material density with depth is shown in red in each panel. This is compared to the material density estimated at the

lower and upper bounds of the 95% HPD credible region, as plotted in cyan and black respectively (in model units).

The parametric model for η(·) was used.
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structure of the heterogeneity in these simulated density functions is brought out by presenting the logarithms of the

estimated densities parameters alongside the logarithms of the chosen or true density parameters.

10. APPLICATION TO THE ANALYSIS OF REAL SEM IMAGE DATA OF NICKEL AND SILVER

NANO-COMPOSITE

In this section we discuss the application of the methodology advanced above towards the learning of the 3-D material

density and the microscopy correction function (or kernel) by inverting 11 images taken with a real SEM, in a kind of

radiation called Back Scattered Electron (BSE). The imaged sample is a brick of Nickel (Ni) and Silver (Ag) nanopar-

ticles, taken with the SEM (the Leica, Stereoscan 430 brand), at 11 distinct values of the beam energy parameter

E such that the values that E takes are 10, 11, . . . , 20kV. The brick of nanoparticles was prepared by the drop-cast

method in the laboratory. The resolution of BSE imaging with the used SEM is ≈50 nm=0.05 µm, i.e. the smallest

length over which sub-structure is depicted in the image is about 50 nm. While this resolution can be coarser than

that for images taken in the radiation of Secondary Electrons (Reed 2005), an image taken in Secondary Electrons will

however not bear information coming from the bulk of the material. Hence the motivation behind using BSE image

data.

We sample two distinct areas from each of the 2-D images taken at values 10, 11, . . . , 20kV of E, resulting in two

different image data sets. The first data D1 comprises a square area of size 101pixels×101pixels, with this square

seated in a different location on an image than the smaller square that contain the pixels that define the image data set

D2. This second data D2 comprises a much smaller square of area 41pixels×41pixels. Given the imaging resolution

length of 0.05µm, i.e. given that the width of each square pixel is 0.05µm, in image data set D1 the 101 pixels

along either the X or Y -axes are set to accommodate the length interval [-2.5 µm, 2.5 µm] while in data D2, the

pixels occupy the interval [-1 µm, 1 µm]. Then in data set D1, at a given value of E, image datum from a total of

1002=10,000 pixels are recorded, i.e. Ndata for this data set is 10,000. For D2, Ndata=412=1,764. Both D1 and D2

comprise 11 sets of BSE image data {Ĩ(k)i }
Ndata
i=1 , with each such set imaged with a beam of energy εk, k = 1, . . . , 11

such that εk = k + 9 kiloVolts. For this material, the mean of the atomic number, atomic mass and physical density

in gm cm−3 yields average atomic number parameter Z of 37.5, and the numerical values of the parameters A and

d in Equation 3.3 as 83.28 and about 9.7 respectively; then the smallest interacion-volume attained at E = ε1 is

R0(1) = h(1) ≈0.44 µm and the largest at E = ε10 is about 1.4 µm.

The learning of the material density of a nanostructure is very useful for device engineers engaged in employing

such structures in the realisation of electronic devices (Gabrielyan, Saranti, Manjunatha & Paul 2013); lack of consis-

tency among measured electronic characteristics of the formed devices is tantamount to deviation from a standardised

device behaviour and such can be predicted if heterogeneity in the depth distribution of nanoparticles is identified.

Only upon the receipt of quantified information about the latter, is the device engineer able to motivate adequate

steps to remedy the device realisation. In addition, such information holds potential to shed light on the physics of
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Figure 8: Top row: results of inversion of simulated image data of the intrinsically sparse low-Z Sample II-NiAl when

a distribution-free model for the correction function is used. The true material density structure is presented in the

panels on the left, as a function of z, for all X,Y , in model units. The learnt material density, at the medial level of

the posterior, is similarly presented in the middle panels while the learnt η(k) over 95% HPD credible region is shown

in black as a function of h(k) in the right panels, in model units, superimposed on the true kernel parameters in red.

Middle row: the intrinsically dense, true and learnt (at the posterior median) material density of simulated sample

Sample I-NiAl in the left and middle panels respectively with the learnt η(·). A parametric model for the correction

function is employed. Bottom row: results from implementing simulated images of the sparse Sample II-NiAl when a

parametric model for the correction function is employed.
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interactions between nanoparticles.

If the calibration of the intensity I(k)i of the image datum is available in physical units (of surface density of

the BSE), then we could express the measured image data - as manifest in the recorded image - in relevant physical

units. In that case, the learnt density could be immediately expressed in physical units. However, such a calibration

is not available to us. In fact, in this method, the learnt density is scaled in the following way. The measured value

of η(1) from microscopy theory (Merlet. 1994) for this material suggests using the normalisation factor for η(·) is

≈ η̂(1)/0.325, so that the η(·) parameters, thus normalised, are in the physical units of µm. (The arithmetic mean of

the atomistic parameters of Ni and Ag yield the value of 0.325). This in turn would imply that the material density

parameters are each in the physical unit of µm−3 since the product of the density and kernel parameters appears in the

projection which is measured in physical units of “per unit area”, i.e. in “per length unit2” or (µm)−2. Here η̂(1) is the

learnt value of the kernel in the first Z-bin. Physically speaking, here we learn the number density in each voxel.

The configuration that the constituent nanoparticles are expected to relax into, is due to several factors, including

contribution from the surface effects - the surfaces of nanoparticles are active - this encourages interactions, resulting

in a clustered configuration. Additionally, gravitational forces that the nanoparticle aggregates sediment under, are also

active6, with the nanoparticle diameter responsible for determining the relative importance of the different physical

influences (Joly-Puttez 2011). Thus, in general, along the Z-axis, we expect a clustered configuration, embedded

within layers. This is what we see in the representation of the learnt density in the Y = 0 plane, when the image data

D1 and D2 are inverted; see Figure 10. In Figure 11 we present the learnt kernel parameters; the kernels learnt by

using data from two distinct parts of the image are expected to overlap given that in our model, the kernel function is

a function of Z alone with no dependence on X and Y . Such is recovered using data D1 and D2, as shown in the left

panel of this figure. The sequential projections of the convolution of the learnt density and learnt correction function,

onto the image space, using the data set D1 is overplotted on the image data in Figure 11. The parametric model for

the correction function is implemented here.

10.1 MCMC convergence diagnostics

In this section we include various diagnostics of an MCMC chain that was run until convergence, using the image

data D1. These include trace of the likelihood (Figure 12), and histograms of multiple learnt parameters - ξ(1)50 ,

η(1) - from 1000 steps, in two distinct parts of the chain, namely, for step number N ∈[1599001,1600000] and

N ∈[799001,800000], respectively (Figure 13). The histograms of the likelihood over these two separate parts of the

chain are also presented in this figure.

6Other relevant effects include viscosity and Brownian motion.
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Figure 9: The top panels display two of the 11 images of the prepared blend of Nickel and Silver nanoparticles, taken with an

SEM, at beam energy values of 20 kV (right) and 10 kV (left). A 5 µm× 5 µm area was identified in each of the 11 images taken

in the kind of radiation called Back Scattered Electrons (BSE), to form the data D1. The colourised squares in red in each image

represent the areas that contribute toD1 at energies 20 kV and 10 kV. The distribution of the measured image data over these square

areas in red (rotated clockwise by 90◦), for beam energies of 10 kV and 20 kV are shown in the left and right panels repectively, on

the lower row.

11. DISCUSSION

In this work we have advanced a Bayesian methodology that performs ditribution-free reconstruction of the material

density of a material sample and either a parametric or distribution-free reconstruction of the microscopy correction

function, given 2-D images of the system taken in any kind of radiation that is generated inside the bulk of the system

as a consequence of the material being impinged upon by an electron beam. This methodology is advanced as capable

of learning the unknowns even when the the inverse Radon transform is not stable; in addition to noise in the data, such

instability can also arise when the underlying distribution of the image data is not continuous. This in turn arises from
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Figure 10: The left and right panels show the slice of the learnt three dimensional material density in the Y = 0 plane from

inversion of image data D1 and D2 respectively. In fact, to construct these figures we use the density parameter value that is the

median of the posterior of the parameter given the image data. The data are obtained by imaging a brick of Nickel and Silver

nanoparticles in a radiation called Back Scattered Electrons, at resolution of 0.05µm, at 11 different values of E, from 10 kV,

. . ., 20 kV. D1 and D2 comprise 101×101 pixels and 41×41 pixels respectively. The labels on the colour-bar are number density

values, in physical units (of µm−3).

a material density function that is heterogeneous and is marked by a dense or sparse modal structure, characterised

by abruptly declining modal strengths. Given such sharp density contrasts that typify real-life material samples (see

Figure 10 and Figure 5), mixture models cannot work satisfactorially in this situation. Also, the density field may

not be necessarily convex in real-life material samples. Crucially, this inverse problem connects the measured 2-

D radiation in any pixel, with multiple sequential projections of the convolution of the unknown density and the

unknown kernel. The novelty of our solution to this harder-than-usual inverse problem includes the imaging of the

system at distinct beam energies, adoption of a fully discretised model, identifying priors on the sparsity of the density

and borrowing existing knowledge from the domain of application. In this application in which images are taken

with electron microscopes, the kernel is the microscopy correction function, the shapes of which are motivated by the

microscopy literature. In particular, there is deterministic information available in the literature about the correction at

the surface, allowing for identifiability of the global scales of the unknown material density and correction function.

From the point of view of 3-D structure modelling using images taken with bulk microscopic imaging techniques7,

(such as Scanning Electron Microscopy, Electron Probe Microscopy), our aim here supercedes mere identification

of the geometrical distribution of the material i.e. the microstructure. In fact, we aim to estimate the very material

density at chosen points inside the bulk of the material sample. Conventionally, Monte Carlo simulation studies

of microstructure are undertaken; convolution of such simulated microstructure, with a chosen luminosity density

function is then advanced as a model for the density. We advance a methodology that is a major improvement upon

this. One key advantage of our approach is that estimates of the 3-D material density are derived from non-invasive and

nondestructive bulk imaging techniques. This feature sets our approach beyond standard methodology that typically

relies on experimental designs involving the etching away of layers of the sample material at specific depths. Though

the microstructure, at this depth, can in principle be identified this way, a measure of ρ(x, y, z) is not achievable. That
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Figure 11: The top panel shows the spatially-averaged projection of convolution of learnt material density and correction function,

onto the image space, learnt using image data D1 in filled contours. The real image data D1 is overlaid in black solid contours.

The lower panel shows the correction functions learnt from data D1 and D2 in black and red respectively. The error bars in this

plot represent the learnt 95% highest probability density region.
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Figure 12: The trace of the joint posterior probability density of all uknown model parameters given data D1, from a chain that is

run with these data.

Figure 13: The histograms of the learnt material density in the voxel marked by the viewing vector vi, i = 50 and the lowest

value of E, (E = ε1), from two disjoint parts (middle and end) of the MCMC chain that is 1.6×106 steps long, are depicted in red

and black respectively, in the right panel. The histograms of the learnt correction function for k = 1 , obtained for these two parts

of the chain are displayed in the left panel. The histograms of the value of the likelihood in these two parts of the chain are plotted

in red and black in the middle panel. The chain was run with real image data D1 .

too, only constraints on the microstructure at such specific depths are possible this way, and interpolation between

the layers - based on assumptions about the linearity of the microstructure distribution - are questionable in complex

real-life material samples. Of course, such a procedure also damages the sample in the process. Thus, the scope of the

non-destructive methodology that we advance is superior. An added flexibility of our model is that it allows for the

learning of the correction function from the image data.

The expansion of the information is made possible in this work by suggesting multiple images of the same sample

taken with radiation characterised by different values of the parameter E that controls the sub-surface depth from

which information is carried, to result in the image. Given the differential penetration depths at different values of E,

the images taken in this way are realisations of the 3-D structure of the sample to different depths. While a number

of attempts at density modelling that use multiple viewing angles have been reported in the literature, the imaging
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of the system at different E is less common. Logistical advantages of imaging with SEM in this way exist over

the conventionally undertaken multi-angle imaging. One example of an imaging technique that may appear to share

similarity with our strategy of collecting information from contiguous slices at successive values of the depth variable

is volume imaging with MRI, i.e. Magnetic Resonance Imaging (Hornak 1996; Prasad 2006). However, unlike in

our imaging method, in this technique, the image data at any such slice is obtained via multiple angle imaging; the

imaging parameter whose value is varied to procure the image data is still the viewing angle, except this variation

is implemented at each individual slice. In our method, the parameter that is varied is itself the sub-surface depth,

achieved by varying the electron beam energy E, since depth has a one-to-one correspondence with E.

The method that we have discussed above is indeed developed to solve an unconventionally difficult deprojection

problem, but the method is equally capable of estimating the unknown density in an integral equation of the 1st kind -

Fredholm or Volterra - and thereby be applied towards density reconstruction in a wide variety of contexts, when image

synthesis is possible. The scope of such applications is of course ample, including the identification and quantification

of the density of the metallic molecules that have infused into a piece of polymer that is employed for charge storage

purposes, degrading the quality of the device as a result, or the learning of the density of a heterogeneous nanostructure

leading to increased understanding of lack of robustness of device behaviour, or identification of the distribution of

multiple phases of an alloy in the depth of a metallic sample meant to be used in industry and even estimation of density

of luminous matter in astronomical objects, viewed with telescopes, at different wavelengths. In fact, in the case of

self-emitting systems that are studied in the emitted particles, the problem is simpler, (as in several other applications),

since the interaction-volume is not relevant and the integral reduces to the (easier in general) Volterra integral equation

of the first kind. In either case, domain-specific details need to be invoked to attain dimensionality reduction.
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