TR/77 SEPTEMBER 1977

THE NUMERICAL SOLUTION OF TWO-DIMENSIONAL
MOVING BOUNDARY PROBLEMS USING
CURVILINEAR CO-ORDINATE TRANSFORMATIONS.

by

R. M. FURZELAND



w9260406



ABSTRACT

A numerical method is described for the solution of
two-dimensional moving boundary problems by tansforming

the curved, fixed and moving boundaries in the original
co-ordinate system (x,y) into an orthogonal or, in general,
nonorthogonal curvilinear system (&,n) such that the curved
boundaries become (§,n) co-ordinate lines. All computations
are then carried out in the transformed region using a fixed,
rectangular (£,m) mesh which corresponds to a moving,
non-rectangular (x,y) mesh. A one-phase, two-dimensional
problem is solved by using two different such transformations
and the results are compared with those from finite-element,
enthalpy and isotherm migration methods.






Introduction

In two (and higher) space dimensions, moving boundary problems
(MBPs) involve the solution of partial differential equations over
regions with curved, moving and fixed boundaries. Standard finite-
difference or finite-element approximations are inaccurate near such
curved boundaries and, in order to maintain accuracy, special treat-
ments are necessary. In recent years, a great deal of interest has
been shown in the solution of partial differential equations subject
to curved, fixed boundaries where the original co-ordinate
system (x,y) is transformed into an orthogonal or, in general,
nonorthogonal system (&,n) such that the curved boundaries become (&,n)
co-ordinate lines. Associated with this transformation is the
generation of a curvilinear (x,y) mesh spacing corresponding to a
regular, straight-lined (&,n) spacing. Since the new co-ordinates
are chosen so as to fit the original region's shape, they are often
called 'body-fitted' or 'natural' co-ordinates.

The overheads involved in using such transformations are the
need to solve the subsidiary mesh generation problem and the increased
complexity of the transformed governing equation and boundary conditions.
In return for these overheads such methods have several important
advantages, since the numerical approximation is now over a simple,
straight-lined bounded region with no loss of accuracy near the
boundaries. Also, direct control over the (x,y) mesh spacing is now
available thus enabling a finer mesh ('zoning') to be used in subregions
of special interest (e.g. near moving boundaries (MBs) or singularities)
and a coarser mesh to be used for the rest of the region. Further,
the techniques can be preprogrammed for a general class of regions

resulting in automatic mesh generation schemes.



For MBPs, where the region changes with time, a fixed (§,n)
mesh which corresponds to a moving (x,y) mesh can be used for all
time. The movement of the boundary and mesh points in the original
region is reflected only through changes in x and y at the
corresponding, fixed (&,n) points at each time step. This concept
combines the moving mesh features of an Eulerian representation of the
governing equations with that of a fixed mesh, Lagrangian one. The
model problem treated is a one-phase, two-dimensional MBP in a
rectangle, the fourth side of which is the MB. The problem is solved
by transforming all the boundaries, including the MB, into fixed (&,n)
co-ordinate lines. The techniques used suggest obvious extensions to
regions with four curved sides.



2.

Body-fitted, curvilinear co-ordinate transformations
Consider the transformation of a two-dimensional, four-
sided region, with co-ordinates (x,y), into a rectangular region,
with co-ordinates (&,n) Fig. 1.
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Figure 1. Transformation from original (x,y) to transformed (&,n) region.
The use of orthogonal transformations for the solution of flow
problems in curved regions is well-known. For such problems one
wishes to solve (say) Laplace's equation for the potential function ¢ (x,y)
VEy0=bxx +hyy =0, @.1)
and an orthogonal, curvilinear system can be generated from the

solution of the 'inverse' Laplace equations

2 2
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Derivatives of ¢ with respect to x and y are given by

1 1
where hj =(x§ +y§)2, hy = (xf +y5)? . (2.4)



Thus (2.1) is transformed into

1 [h, 1 [n )
n

ihy [hy
Recent applications of this method have been given by
Hung and Brown [13].

A particular case of (2.2) and (2.5) occurs if &, n are
complex conjugates, a well-known example of this being £ = dand n =, v
the potential and stream functions. Use of the Cauchy-Riemann
conditions reduces the solution of (2.2) and (2.5) to the solution of

Aiwx=o, Viwyzﬂ’ (2.6)
over the rectangular (¢,y) region. This idea of exchanging the

dependent and independent variables has long been in use,
Thorn and Apelt [ 183, and has recently been extended by Boadway
[3] . Interchange of dependent and independent variables forms
the basis of the Isotherm Migration methods used for MBPs, see
Crank and Gupta [7], Crank and Crowley [6]. Conformal
transformations possess the useful property that the Laplacian
operator remains invariant and methods based on these transformations
have been applied to two-dimensional MBPs by Kroeger and Ostrach [14].

For nonorthogonal co-ordinate systems the transformed
equations are more complicated. Derivatives of ¢ (x,y) are given by:
dx :(Ynd)g_yad)n)” > (2.7)
by = (Ynde —xgbn)/T . 2.8)
where J is the Jacobian Xeyn = Xnyg # 0, and where the

following differential relations have been used

Nx =—y§/J > My =Xé::/J. (2.10)



Using the above relation, Laplace's equation for ¢(x,y) becomes

where A=g3+e3 =k +yp)/1% (2.12)
2

B=2(Exnx +EyNy) =—2(Xgxy +yeyn)/J™ (2.13)

C:n§+n§,=(x§+y§)u2 : (2.14)

D=&xx +&yy (See Chu [5] for expression (2.15)

E =nxx +Myy in terms of x(to,y;:,etc.) (2.16)

Similar expressions for more general equations than Laplace's can
be developed, see Chu [5], Oberkampf [16], and these authors
have shown that the equations do not change type (elliptic,
hyperbolic or parabolic).

Corresponding transformations for normal derivatives of ¢

on the boundary follow from
1

(1)1’1 = —l(g'(bx _(I)y) on y= g(x) , (217)
[(g)? +1]2

:;1 [¢§(g'yn+xn)—¢n(g'ya+xg) | (2.18)
g')? +1)2

where g' =dy/dx.

Time derivatives for the function ¢(x,y,t) can be

transformed from a given (X,y) point to the corresponding (&,n)

point by the relation
@0xy = @0gn—7 (b -yebnxogn

~1 (xedn = xnbe) G0en (2.19)



and thus all derivatives of ¢(x,y,t) can be expressed in terms of

derivatives at fixed points in the transformed region even if the
original mesh is moving (time-dependent).

The transformation functions &(x,y) and n(x,y) can be determined
in various ways. Winslow [20], with later work by Chu [5], chose

the mesh lines to be equipotential' lines where & and n satisfy

2 2
VX, y §=0, Vx,y n=0, (2.20)

which makes x and y solutions of the quasilinear equations

Axgg +Bxgpny +Cxpypy =0,
g6 TPXEN T Xmn 2.21)
Ayaé +Bygn +Cynn =0,
and the governing equation for $§ becomes

The main advantage of using (2.20) is that (2.11) simplifies
to (2.22) since D = E = 0. Also, Winslow notes that because of the
averaging properties of solutions to Laplace's equation, it can be
expected that a mesh constructed in this way is, in some sense, smooth.
Winslow solved the quasilinear equations (2.21) by successive
over-relaxation solution at each step of a corresponding sequence
of linearised equations. Godunov and Prokopov [11] have used this
method to construct moving meshes for time-dependent problems.
Thompson et al. [19] have extended the above ideas to multi-connected
regions and have shown how the spacing of the co-ordinate lines
can easily be controlled by altering the elliptic system used to
generate & and n.

Barfield [2] used an equivalent approach where x and y

satisfied a linear elliptic system in the (§,n) plane, which



made (&,n) solutions of a quasi-linear system in the (x,y) plane,
to produce a 'near orthogonal' (in the least squares sense),
curvilinear mesh. Amsden and Hirt [1] used this approach to
give a intuitively simple scheme for deforming a given regular (§,n)
mesh into the required (x,y) mesh by moving the mesh points small
steps at a time. Potter and Tuttle [17] have given an orthogona-
lisation procedure for the transformation of discrete nonorthogonal
co-ordinates.

Instead of choosing & and n to satisfy (2.20), Oberkampf [16],

used equations (2.11) - (2.16) with the mappings onto the unit square:

__x=x4(y) (2.23)
Xu(y)=x¢(y)

D A 249 (2.24)
Yu(x)—yr(x)

where xp,Xy,y/,yy are the four curved sides in Figure 1.

In general, xy, etc. represent sets of discrete values of boundary

points and are specifically chosen so as to give a required mesh
spacing. Since &,n are then known (discrete) functions of x and vy,
the derivatives éx,iy,etc. required for the coefficient A-E are
readily available by suitable discrete approximations. Alternative
mappings than (2.23) and (2.24) are available by use of the finite
element techniques of bivariate blending-functions, Gordon and
Hall C-12J, or isoparametric curvilinear co-ordinates, Zienkiewicz
and Phillips [21].

The choice of the use of orthogonal or nonothogonal co-ordinates

depends on the degree of sophistication required of the mesh generation



scheme. An orthogonal system cannot be achieved with arbitrary
spacing of the natural co-ordinate lines around the boundary and, in
certain situations, this capability is more important than orthogon-
ality. However, nonorthogonal systems do involve more complicated
governing equations and boundary conditions and greater overheads in
the computation of the required transformation functions.



3. Model problem
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Figure 2. Physical plane. Figure 3. Transformed plane.

The one-phase, two-dimensional MBP of Bonnerot and Jamet [4]
is taken as the model problem, see Figure 2. The problem is to

solve for u(x,y,t) and the MB y = s (x,t)

Up = Uy +Uyy in.0<x<1l, 0<y<s(x,t), t>0, (3.1)
subject to

uy =0 on x=0 and x=1, 0<y<s(x,t),t>0, (3.2)

u=1lon y=0, 0<x<1, t>0, (3.3)

s(x,0)=2+cosmx , initial  conditions (3.4)
u(x,0)=1-y/(2+cosmx),] 0 <x <1,0 <y <s(x,0), (3.5)
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u=0, (3.6)
on the MB y =s(x,t), t>0,
vp=-up , 3.7

where v, denotes the velocity of the MB in the normal direction, n.

The MB moves upwards and becomes the line y = 4 for t >7.
The physical plane containing the curved MB is transformed
into the unit square of Figure 3 using the transformations
=X, n=nExy) (3.8)
Under these, in general, nonorthogonal transformations, the

diffusion equation (3.1) becomes, from (2.11) and (2.19),

u, =Auéé+Bu§n+Cum+D'u iJrE'un,OS<§S1,OS1‘|S1,‘[>O, (3.9)

where D'=D+l.(xnyt—ynxt) , (3.10)
J
, 1

E :E+§(y§xt—xiyt) , (3.11)

and A to E are given by (2.12) -(2.16).
Since &=x these equations simplify to give

uy :au(g&eru&n +Cunq +du§+eun,0£§£l, 0<n<Lt>0, (3.12)

a=1b=-2y./y, ,
With c:(l/yn)2+(b/2)2, d=0, (3.13)

eznxx +nyy +Yt/Y‘I’1'

and the boundary conditions (3.2) and (3.3) become
ynui—yiunzoonianndizl,OSnSI,t>O, (3.14)
u=1onn=0,0<E<1, t>0. (3.15)
The MB condition (3.7) can be written in terms of movements
along the y ordinates only, see [7,10], as
Y, =—{1+(Yy)*}u, , on y=s(x,t). (3.16)
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From this the transformed MB conditions can be written as

u=0 (3.17)
on n=1,t>0.

yt=—{1+y§}1n/yn, (3.18)

The movement of the MB is now monitored by the change of y values

for points (§, n) on n =1 using (3.18).

Method 1 - solution based on transformations of Oberkampf 16],

Following the transformations of Oberkampf [16], equations

(2.23) and (2.24) define the transformations

E=X, mM=y/s(x,t), 4.1)

which is simply the two-dimensional version of the fixing of the
boundary, Landau [15] , transformation. (It has since been found
that this idea has already been used by Duda et al. [8] for
two-phase, two-dimensional MBPs.)

Using (4.1), the coefficients of the transformed diffusion
equation (3.1) are, from (3.13) with Yn =8 and yé :ysa/s,

azl,b:—2ys&/s2 ,

c=(1/s%) + (b/2)%, d=0, 4.2)
e = (y/s)a§+yt/s ,

Similarly, the derivative boundary conditions (3.14) are

sua—(ys&un/s):OOHianndizl 4.3)

and the MB condition (3.18) is

yt:_lﬁﬂg}]n p— (4.4)

S

If Figure 3 is discretised into a leszesh of size h
with §k=kh, k=0,1,...,N;,andn, =rth, £ =0,1,.., Np,then



12

suitable discrete approximation for s¢ , and s;¢ are

s = Sk+1 —Sk-1
2h k=12,..N{ 1.
o, = Skl =28k +Sk] (4.5)
€¢ ~ 12

Atk=0and k=N, , s ¢ =0 since uy =0 and u = 0.

The numerical solution proceeds by discretising the time
variable t by t" = ndt ,n=20,1,2,..... and by using suitable
approximations for the derivatives of u over the unit square.
Central finite-difference approximations, with simple explicit
time-differencing approximations, are used in order to illustrate
the ideas, the presence of the cross derivative term resulting in
a nine-point formula. To maintain 0(h%) accuracy for derivatives of
u at the boundaries of the square, three-point end-on formulae may

be used. Alternatively, use of the fictitious point idea results in
two-point formulae which have the added advantage of possessing

lower truncation error.

To develop fictitious point approximations for MB conditions of
the form (4.4), i.e.
y, =-k( hu,onn=1, t>0, (4.6)
it is necessary to combine (4.6) with the governing equation (3.12)
applied at 1 =1. This idea is well-known in heat conduction
problems, Eyres et al. [9]. Combining (3.12) and (4.6) onn =1

gives the tridiagonal system for the velocity y; at the point &y ,
notated by (y);
=By /Ry + (ot 26y /)y + b0y /Ry = —Aoluy ) =y )/ b (4.7)

The tridiagonal system, rather than an explicit formula, arises

because of the cross-derivative terms. This system is readily solved
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using standard tridiagonal algorithms, and the position of the

MB is given by the approximation

yr = yi +8t(y,), » with error 0(3t+h?). (4.8)

The numerical solution algorithm is as follows:

1) given u and s at time level n, relate (§, ) points

to (x, y) points using (4.1) ;

i1) compute the new position of the MB at time (n+1) by a
simple explicit approximation developed (a) from
three-point end-on formulae for u or (b) from the

fictitious point formulae (4,7) and (4.8) ;

111) use (4.1) to relate the changes in y at the points (&, 1) ;

1v) solve the diffusion equation (3.1) with coefficients
(4.2) using a simple explicit time-differencing and
(a) three-point or (b) fictitious point approximations
at the boundaries. Go to step (ii) and repeat for each

time level.

The results of the three-point, Method 1(a), and fictitious point,
Method 1(b), schemes are compared in Table 1.

Method 2 - solution by 'equipotential’ transformations, Winslow [20]

The 'equipotential' transformations (2.20) of Winslow [20]
allow greater flexibility in the control of the mesh spacing, see the
discussion in Thompson et al. [19]. Since & = x, the quasilinear
system (2.21) for generation of the transformation reduces to the

single quasilinear equation

GYEJa_ZByin"‘YYT]n:Oa (5.1)
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herea = y2,p = —l+y? 52
wherea =y, B=yeyn,y=1+y. (5.2)
Control over the spacing of the co-ordinate lines is obtained by

the choice of boundary points for the boundary conditions

y=00onn=0, y=ns(l,t)on £ =1, } (5.3)

y =s(&,t)onn=1, y =ns(0,t)on £=0,

and by the addition of terms to the elliptic system (5.1), see

Thompson et al.

The overheads of having to solve (5.1) at each time step are
very expensive, and so an efficient numerical solution of (5.1) is
a necessity. Winslow [201 and Chu [5] linearised the quasilinear

equation (4.1) to the sequence of linear equations

al" Dy -2p Dyl 4y DY 0, r-12,..., (5.4)
and used successive over-relaxation, iterative solution for each linear
equation. The coefficients a, B, y at the next step r were under-
relaxed using the scheme
o) = P oc(y(r)) +(1- p)oc(r_l),O <p<l. (5.5)
An advantage of co-ordinate transformation methods is that,

for a reasonably accurate solution, the number of mesh points (N, xN,)

in the transformed plane need not be very large, c.f. the large number
of mesh points often needed in the physical plane. This suggests the
use of a direct, rather than an iterative, solution of equations (5.4).
With this in mind, a high-speed, banded matrix routine has been used
for the solution of the nine-point, non-symmetric finite-difference
equations resulting from central, finite-difference approximations

of (5.1).
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The numerical algorithm is then as for method (1) but with
steps (1) and (iii) requiring the solution of (5.4) to determine
the (§, n ) transformation. Note that the set of co-ordinate lines
generated by Methods 1 and 2 are different. This must be so since

the transformations (4.1) of method 1 do not satisfy (2.20).

6. Numerical results and conclusions

Methods 1(a), 1(b) and 2(a) were programmed in Fortran on a
CDC 7600 computer and the results are presented in Tables I and II
For methods of type (a), three-point end-on approximations are used
for the derivatives at the boundaries. If the value of u, is almost
zero (as it is near £ = 0 on m = 1 where the boundary is moving very
slowly) then it was found that three-point approximations could give
the wrong sign for u, . If this happened then the 0(h) two -point end-
on approximation was used since this always gave the correct sign.
Methods of type (b) use the fictitious point approach described in
section 4 and these methods always gave the correct sign for u,.
Explicit time-differencing schemes were used, the stability requirement
being &t < h?/4. Using this as an upper bound, the time step was

successively halved until the values agreed to 4 significant figures.

The results are compared with those given by Bonnerot and Jamet
[4] who used a finite-element method in both space and time based
on an integral formulation of the problem. Their finite-element
method uses a variable space, triangular mesh so that the MB is
always approximated by a polygonal curve whose vertices are nodes of
the triangulation. The use of finite elements in time results in a
generalisation of the Crank-Nicolson implicit scheme. An explicit

scheme is used to approximate the MB condition (3.7) and the MB

position y = s( Xk,tn) is calculated from a geometrical procedure based
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on approximations of u over the two adjoining straight line
segments. Their best results (6t = h = 1/64) show good agreement
with those of methods 1 and 2, but for smaller values of h and ot
the agreement is not so good. Although the implicit method allows
large time steps to be used, it is suggested that a smaller time
step might give improved results for (say) h = 1/16.

Crowley (private communication) has applied both the enthalpy
and the Isotherm Migration (IMM) methods described in Crank and
Crowley [6] to this problem, and the results are compared in
Tables I and II. The enthalpy formulation corresponding to the
model problem was discretised using explicit finite-difference
approximations and the position of the MB was located by extrapolation
from the last two (u >0) mesh points along each x line. The solution
is over the fixed domain {0 <x <1, 0 <y <4} thus necessitating 400
squares of side h = 0.1 for comparable accuracy to Methods 1 and 2.
The IMM method uses the novel approach of working along the flow
lines, orthogonal to the isotherms. This results in a locally one-
dimensional, radial form of the IMM equation for the radius of curvature, r
as a function of u and t. The values presented in Tables I and II are
the results of early experiments and the authors expect that later
experiments will improve the accuracy near x = 0. A further useful
comparison would be the IMM method of Crank and Gupta [7], where

y is expressed as a function of u, x and t.

Conclusions

Co-ordinate transformations based on Methods 1(a) and (b)
provide a simple, efficient and accurate solution of the problem,

with 1(b) being the most accurate. Method 2 is more expensive due
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to the need to solve (5.1) at each time step but does offer a
smoother and more flexible control over the curvilinear mesh
spacing. Both methods compare favourably with those of Bonnerot

and Jamet, Crank and Crowley, and can be readily extended to implicit

schemes, e.g. see Duda et al. [8].
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TABLE I - Comparison of Methods land 2 with those of Bonnerot and
Jamet [4], Crank and Crowley [6]

Positions of the moving boundary y = s(x, t) for x = 0, 0.5 and 1 at

time t = 2.
Execution
Method s(0,t) s(0.5,t) s(1,t) time per
time step
Method 1(a), 100 squares of
side h=0.1, 8 t = 0.001. 3.072 2.830 2.651 0.0017
Method 1(b), 100 squares of
side h=0.1, 3 t = 0.001. 3.068 2.789 2.596 0.0017
Method 2(a), 100 squares of
side h=0.1, 8 t = 0.001. 3.084 2.841 2.599 0.1325
Crank and Crowley enthalpy,
400 squares of side h = 0.1, 3.085 2.777 2.602 0.0147
dt-0.002.
Crank and Crowley IMM,
8 points on 5 isotherms 3.248 - 2.523 0.0527
(6u-0.2), 6 t=0.0004
Bonnerot and Jamet, 256
triangles, h = 8 t = 1/16, 3.122 2.902 2.679 0.0367
4096 triangles, h =5 t = 1/64. 3 068 2810 2610 )

Notes
The execution times are all for runs on a CDC 7600 computer. The only
execution time quoted by Bonnerot and Jamet is for 200 triangles with

h=06t=1/10, so this value has been scaled up to 256 triangles. Method

2(a) involves on average 6 iterations of (5.4) to obtain convergence of

the y values to an accuracy of 10°°.
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TABLE II - Comparison of successive mesh refinements

Positions of the moving boundary y=s(x,t) for x = 0, 0.5 and 1
at time t = 2.

Method s(0,t) s(0.5,t) s(Lt)
3.089 2.866 2.685
3.053 2.797 2.610
h=1/8 3.052 2.780 2.587
Method 1(a) h=1/16
h=1/32
3.068 2.794 2.600
3.066 2.781 2.589
h=1/8 3.062 2.777 2.585
Method 1(b) h=1/16
h=1/32
Crank and 3.085 2.777 2.602
h=1/10 3.051 2.799 2.566
Crowley [6],
h=1/16
enthalpy method
h=1/8 3.181 2.978 2.712
Bonnerot and h=1/16 3.122 2.902 2.679
Jamet [4], 3.085 2.843 2.635
finite-element h=1/32 3.068 2.810 2.610
method h=1/64
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