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Introduction

Following Cryer (FB, 1976)", a FREE BOUNDARY PROBLEM (FBP;
plural FBPs) may be defined as a steady-state boundary value problem,
typically an elliptic partial differential equati on with associated
boundary conditions, which has to be solved in a domain, parts of
whose boundaries, the FREE BOUNDARIES (FB; plural FBs) are unknown
and must be determined as part of the solution. Correspondingly,
a MOVING BOUNDARY PROBLEM (MBP; plural MBPs) or STEFAN PROBLEM
may be defined as a non-stationary or time-dependent boundary value
problem, namely a parabolic partial differential equation with
associated initial and boundary conditions, which has to be solved
in a time-dependent space domain with MOVING BOUNDARIES (MB; plural MBs).
Since the FB or MB has to be determined as part of the solution it can
readily be shown that such problems are inherently non-linear.

Heat conduction or diffusion problems with phase changes from

solid, liquid or vapour states constitute a large class of MBPs.
A simple example is the melting and freezing of ice/water which was
first studied by Stefan (1889) and after whom this class of problems
is named. FB and MBPs occur in many areas of practical interest such
as the metal, glass, plastics and oil industries, space vehicle
design, preservation of foodstuffs; chemical and diffusion processes,
statistical decision theory, semiconductors, astrophysics, metereology,
geophysics and plasmaphysics (references and details are given in

section 6).

t The references are split into two sections, one for moving and one for
free boundary problems. References in sections 1-6 are for the former
unless prefixed FB.



The main part of this survey is concerned with the numerical
solution of MBPs. The need for an up-to-date survey is apparent
from the large amount of research effort expended on these problems
in recent years, especially with regard to the multi-dimensional
case. Earlier surveys have mainly concentrated on the one (space)-
dimensional problem, see Muehlbauer and Sunderland (1965),

Bankoff (1964), Rubinstein (1971), Boley (1972), Crank (1975).
More recent surveys have included multi-dimensional applications,
see Furzeland (1974), Crank and Fox in Ockendon (1975), Meyer
(1975a,1976), Hoffmann (1977, I-111); the references in Ockendon
and Hoffmann being the most comprehensive and containing many
practical applications.

In the following sections the formulations of MBPs and their
approximate analytical and numerical solutions are discussed. The
terminology used in the heat conduction context is employed in
order to fix ideas. For completeness, a brief section on the formulation
and numerical solution of FBPs is included in order to bring the literature
on the subject up-to-date. The references are split into two parts,

one for MBPs and one for FBPs.



Classical formulations of MBPs

A simple example of a MB (Stefan) problem is the one-phase,
one-dimensional melting ice problem. The classical formulation of
the problem is to find the pair of unknowns (u(x,t),s(t)), where

u(x,t) denotes the temperature distribution in space x and time t,

and s(t) the position of the ice/melted water interface (MB),

subject to the equations (in their simplest, non-dimensional form):

2
Ou _27u , 0<x<s(t), t>0,
ot ox 2

(the governing partial differential, heat conduction equation)

u =1 on x =0 ,t >0 ,

(the fixed boundary condition, constant temperature)

u=0
O} att = 0 (initial conditions) ,
S =

u=0
ou ds onthe MB x = s(t), t > 0.
ox  dt

Equation (1.5) denotes the phase change temperature on the isotherm

x = s(t) which is moving away from the heat input boundary x = 0.
Equation (1.6) is known as the 'Stefan condition' and is derived
from heat balance arguments at the MB.This condition explicitly
relates the velocity of the MB, ds/dt, with the heat flux, du/0ox,
on x = s (t). The problem is one-phase if it is assumed that the

semi-infinite block of ice x > s(t) is, and remains, at u = 0.

The corresponding two-phase problem is to find the triple

(ul(x,t),uz(x,t),s(t)) where u; and u, denote the temperatures in

each phase, e.g. liquid and solid respectively. An example of this

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)
(1.6)



would be the finite block of ice, 0<s(t)<x<I,where u, X, ©

is not constant. In this case there is one governing equation

(1.1) for each phase and the MB conditions are

2 i iy on X =5(t) 1.8
% &
1 (XY (XY dt

This can be generalised to multi-phase, multi-MBPs with different
phase change temperatures on each MB. For example, the
melting and solidification of alloys involving, a mixture of
two or more metals, Chuang et al. (1975), or the ablation
of the alloy walls of a space vehicle which leads to a three-phase,
solid-liquid-vapour, problem with two MBs, Koh et al. (1969). A
piece of ice immersed in water represents a two-phase problem with
two MBs, Cannon et al. (1967).
More general formulations of the classical problem are based
on combinations of the following:-
(a) Non-linear governing equations, e.g. in the heat conduction
problem where there are temperature-dependent thermal properties
c(u), k(u), p(u) a’nd interqal (body) heating function Q(x,t) i.e.

p(u)c(u)%:[%{ k(u)%ﬂ Q) (1.9)

or in non-steady flow through a porous medium, - the filtration

problem discussed by Fulks and Guenther (1969), Graveleau and Jamet

(1971), Kamin (1976), Peletier and Gilding (1976), Cannon and Fasano (1977),
NGNS ¢
Y Iy 2

(u™) , m>1, (1.10)

More general non-linear forms are given in Hoffmann (1977, III).



If convection effects in the liquid phase are significant
then a connective term vou/0x, where v is the velocity of the
liquid phase, needs to be added to the governing conduction equation,
Haitz and tfestwater 0-970), Kroeger and Ostrach (1974).

The heat conduction equation may also be coupled with another
equation such as one describing mass transfer, e.g. moisture movement
and temperature distribution in humid porous flow, Aguirre-Puente
and Fremond (1975), Mikhailov (1975, 1976); heat and concentration
diffusion, Mebditch, Tayler in Ockendon, (1975, pp. 112, 120);
temperature and pressure distributions in multi-phase flow, Koh
et al. (1969).

(b) Time-dependent or non-linear fixed boundary conditions, e.g.
ou ou

u=¢(t) or E:h(t) or a—X:g(u,t) on x =0. (1.11)

Space-dependent initial conditions, e.g.
u=u,(x) at t=0 , (1.12)
(c) Space and time-dependent phase change temperatures,
u=np,(x,t) on x =s(t) (1.13)
and variable thermal properties and heat source (or sink)

function in the MB condition,
Ty

d
SRR Ny S huL,(x,t) on x = s(t). (1.14)

dt

A particular case of (1.14) is X - 0, i.e. there are Cauchy
data prescribed on the MB. Such problems have been termed implicit'
MBPs by Sackett (1971a) since there is no longer an explicit
relationship for the position or velocity of the MB in terms of u
or its derivatives. This causes difficulties in both theoretical
and numerical treatments. Implicit MBPs arise in biomechanics,

Crank and Gupta (1972a); statistical decision theory (see section 6);
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Bingham plastic flow, Rubinstein (1971); filtration, Ventcel
(1960); diffusion flames, Saitoh (1972).

Schatz (1969), has shown that the transformations

V:@ or V:@,
ox ot
will transform the implicit A = 0 case into the explicit A#0
case. However, such transformations are not always possible or
may introduce singularities if any of the data Q, ¢, h, g, ug,
Hyor p, the above equations are zero or discontinuous, see
Tayler in Ockendon (1975, p.125).
In general, (1.14) may take the non-linear functional
relationship
ou OJu ds
F(u,a—x, P X,E, t)y=0 on x =s(t) , (1.16)

see Hoffmann (1977, I1I), and the practical examples given by Ciment and

(1.15)

Guenther (1974), Meyer (1975b), Chuang et al. (1975), Friedman and Jensen (1975)

Proofs of the existence and uniqueness properties of
classical solution to MBPs have been mainly restricted to the one-
dimensional, one-phase case. For explicit (Stefan-type) MB
conditions, proofs have been given by Evans (1951), Cannon et al.
(1970), Rubinstein (1971); for implicit MB conditions by Schatz
(1969), Sackett (1971a), Sherman (1971). Smoothness, differentiability
and monotonicity properties of the MB have been discussed by
Friedman (1968), Schaeffer (1976). Two and three-phase problems
have been treated by Cannon et al. (1975), Fasano and Primicerio
(1977); non-linear problems are discussed in Hoffmann (1977,I11).
For more general, multi-dimensional problems the results need to
be expressed in terms of weak solutions which are considered in the

following section.



In three (space)-dimensions x =(x,y,z) the two-phase MBP is

pc%= V(kVu) + Q , ggDi , 1=1,2, 0 <t <T,
ou
— —hu, = -h + g.(x,t) , xedD., 0<t<T,
ot 1 1 1
u(x,0) =u, (x)
- at t=0 ,

£(x,0) = f, (x)
u(x,t) =uy(x,t) = upy

oul? onthe MB f(x,t) =0,0<t<T,
[k—} =—-pL vy +q

on |1

where, in the heat conduction context, u denotes the temperature

(1.17)

(1.18)

(1.19)
(1.20)

(1 21)

(1.22)

in each phase i =1,2, Uy the phase change temperature (constant),

L the latent heat, n the outward normal to the MB f (x,t)= 0, and
vy the velocity of the MB in the normal direction; D=D, nD,

and 8D=8D108D2 denotes the interior and boundary of the region

in Figure 1. The thermal properties ¢, p, k, body heating function
Q and MB heat source q may be functions of u,x and t or may vary

between phases.

MB f(x,t) = 0

Figure 1 - Two "-phase region with a MB



Patel (1968) showed that the MB condition (1.22) can be
simplified by using differential relationships on the isotherm

(1.21), e.g. to
2 2 2
I + (ﬁj + % {k@} = —pL o on z=s(x,y,t) , (1.23)
0x oy 0z || ot
for the case q = 0. This is an explicit relationship for the
component du/0z of grad u in terms of derivatives of the MB curve
f(x,t) =0written as z = s(x,y,t). Similar relations hold for the
other two components du/0x andcou/dy. This form is useful for

developing approximations, typically finite-difference ones, for
the components of grad u, see Sikarskie and Boley (1965), Lazaridis
(1970), Rathjen and Jiji (1971), Crank and Gupta (1975), Furzeland
(1977, Ch.4). The corresponding form for the two-dimensional, one-

phase problem with MB y = s(x,t) is

2
k{l+(%}] — = -—pL a—i] on y=s(x,t). (1.24)



2. Alternative formulations - enthalpy, veak solutions and variational

inequalities

Certain classes of MBPs may be formulated in such a way

that the MB conditions may be absorbed into the new governing
equations and the new problem may be solved without any explicit
reference to the position of the MB or to the MB conditions. The
position of the MB is located, a posteriori, when the solution is
complete. This reformulation may also be effected for FBPs, see
later.

One of the earliest such formulations was based on use of
the heat enthalpy (content or internal energy) function H(u) as
first used by Albasiny (1956), Rose (1960), with theoretical
justification by Kamenomoatskaj.a (1961), Oleinik (1960). Using
heat balance arguments, the two-phase MBP (1.17), with MB
conditions (1.21) and (1.22), can be reformulated as the single
equation over the whole domain D

OH (u)
ot

or in integral form over an arbitrary volume V of D

=V(kVu)+Q ,xeD ,0<t<T , (2.1)

j;jv{aa—lj= V(kVu)-Q} dvdt =0 , (2.2)

where H(u) represents the sum of the sensible and latent heat content
Szekely and Themelis (1971), Hodgkins, Longworth, Tayler in Ockendon
(1975, pp.26, 54, 120),Shaxnsundar and Sparrow (1975). The MB
conditions have been absorbed into (2.1) by the definition of H,
Budak et al. (1965), Bonacina et al. (1973) ,

H(u) = [y {p(c)c(g)+Lp (c—uy)d g , (2.3)

T Albasiny does,in fact, mention earlier use of this idea by

Evres et al. in 1946.
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where uy < u,, is an arbitrarily chosen, reference temperature
and o is the Dirac (impulse) function, see Figure 2.

H(u) has a jump discontinuity at u =u,; of the form

[H(uM )]

and dH/du is infinite at u=u,,. If equation (2.1) is integrated

= pL , (2.4)

2
1

over a small volume V around the MB, and the limit fit 6t > 0 taken,

then the Stefan condition (1.22) is obtained, Shamsundar and Sparrow

(.1975) . This demonstrates the equivalence of (2.1) to the
classical problem (1.17), (1.21) and (1.22).

A

»H

Figure 2 -Has a function of u. Figure 3-u as a function of H.

If H and k are known functions of u over the region of solution
D, or over each small volume V of D, e.g. by standard tables or
experimental data, then the numerical solution can proceed and the
MB is given, a posteriori, by values of x where u=u,, see Hodgkins
in Ockendon (1975). If such relations are not known then the
definition (2.3) is used and the discontinuous nature of H(u) is

approximated by smoothing the jump at u,,, over the small interval
[um-¢&,uy +e]in Figure 2, see Budak at al. (1965), Moiseynko et
al. (1965), Meyer (1973), Bonacina et al. (1973),
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The smoothing approach is justified in practice by the fact

that most materials contain a certain amount of impurity and

so the phase change occurs over a range and not at a point.
Alternatively, u may be regarded as a function of H and

standard data for u(H) may be used, Albasiny (1956), Longworth

in Ockendon (1975, p.54). Otherwise the definition proposed

by Rose (1960) and At they (1974) is' needed

u=H/c, H<Cu, ,
u=u, , cuy<H<cu,+L, ((cconstant, (2.5)
u=(H-L)/C , H>Cu,+L| P=D
From a numerical point of view, this is preferable to using H(u)
where small changes in u produce large changes in H near u,, if
L is large. Also, Bonacina et al. (1973) have found that the
magnitude e of the assumed range of phase change temperatures can
appreciably effect the results, see Furzeland (1977, Ch.5).
One-phase problems can be treated in a similar way by
extending the definition of u to a fixed two-phase domain in which
the usual two-phase equations hold but c(u) =0, p(u) =0 in the
new phase, see Budak et al. (1965). Complications arise if uy is a function
of x, and, as yet, this problem has not been treated. The non-linearity,

associated with k(u) can be removed by introduction of the 'flow

temperature or 'conductivity potential' function given by ["k(&)de ,

see Albasiny, Longworth, and Furzeland (1977, Ch.5).

The discontinuous and non-linear nature and lack of
differentiability of the enthalpy formulations suggests the use of
the concept of a weak solution of the Stefan problem whereby the

problem is reformulated as an integral involving no derivatives of
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u, rather than as a differential relation. The weak solution
for (2.1) can be derived by multiplying (2.1) by an arbitrary
test function ¢, defined on D, which is twice continuously
differentiable with respect to the space variables and once

with respect to time and which is such that

¢ (x,t).=0 , xe dD ,
(2.6)
o (x,t)=0 , xeD
Integration of the resulting equation throughout D and for
0 <t<T, followed by integration by parts and use of the
conditions
=g(x,t) , xedD ,
g0 , x (2.7)
u=u,(x) , t=0

gives, the integral (weak or generalised) formulation
T k ad) _ (T k ad)
o [{uV( Vo) +Hu) ==+ Qoj dxdt = fo 50 g dxdt - JoH(ug) d(x,0)dx.

(2.8)
Existence and uniqueness theorems for weak solutions of this type
in multi-dimensional, multi-phase problems have been given by kamenomostskaja
(1961), Oleinik (1960), Friedman (1968) and Rubinstein (1971). Fasano and
Primicerio (1975) have used the weak solution formulation to give a stability
theorem for problems with sharply changing temperature-dependent coefficients.
The convergence of numerical schemes to the weak solution, despite the

discontinuities in u across the MB, is discussed in section 4.

Integral formulations such as (2.8) can also be developed
starting from the classical problem (1.17) rather than the enthalpy

form (2.1), - for an application of this to a finite-element method
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see Bonnerot and Jamet (1974, 1977). The theoretical properties
of weak solutions are useful in cases where the existence and
uniqueness of the classical solution cannot be proved e.g. for
multi-dimensional problems, Friedman (1968); for 'mushy regions,
Atthey (1974), when phases disappear regenerate), Friedman (1968),
Tayler in Ockendon (1975, p.120); for non-linear problems, see
equation (1.10) and associated references.

The classical formulation of MBPs can also be expressed in
terms of variational inequalities. Consider the one-phase MBP with

implicit MB conditions:-

%U:#HQ , xeD,, 0<t<T , (2.9)
u=g(t) , xedD, , O0<t<T , (2.10)
u=u,(x) , t=0 (2.11)
U= 0 (2.12)
a_Uzo onthe MBf (,t)=0, 0< t<T. (2.13)
on

If g 20, uy>20 and Q is such that %—Vzu—QZO(apractical

example of this is the oxygen diffusion problem of Crank and Gupta
(1972a)), and the definition of u is extended to the whole fixed
domain D by

u=0, xe D, nnoD,, 0<t<T , (2.14)

then it is easy to show that u also satisfies the parabolic

variational inequality

%, b—u) +a é-u) > (Q, p-u) | (2.15)
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for all ¢ ek (t) = {¢ ¢ H (D): ¢ = g(t) on 0D,,¢=0 on 0D,, ¢$= 0},

where K(t) is the space of time-dependent constraints. In (2.15)

(., .) and a(., .)are the inner products
(W)= | updx : (2.16)
a(u,d) = jDVuw) dx (2.17)

and H'(D) is the Sobolev space for ¢ and its first space derivatives

being square integrable over D. Theoretical properties of such
solutions are discussed in Brezis (1972), Bensoussan, Lions and
Papanicolaou (1975), Elliott (1976). Integration of (2.15) with
respect to time gives the corresponding weak form, see

Brezis, Elliott

2
ﬂ(ﬁ o —u)+a(d.d- u)} dt > ;—|¢<T> —u(m)] - Lo —u, |-

0 ot~
(2.18)
The inequalities (2.15) or (2.18) can also be expressed in
differential rather than integral variational form as
(2 viu-Qu =0,
aat (2.19)
u 2
—=V u - >0,u >0,
ot Q

see Brezis, Bensoussan et al, Elliott. Inequality (2.19) is a
continuous linear complementarity problem which, on suitable discretisation,
leads to a quadratic programming (minimisation) problem at each time level,

with simple constraints consisting of bounds on the variables, see Elliott.

A corresponding variational inequality (and complementarity

problem) can be developed for problems with the classical MB condition
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(1.22) as proposed by Duvaut (1973) for the one-phase problem

@=V2u , t>0(x) , (2.20)
ot
u=0 , t<i(x) (2.21)
u=g((t)>0 , xeoD, , (2.22)
u=u,(x)>0, t=0 , (2.23)
u=0

on t=/(x) ’ (2.24)
VuV / =-L

(2.25)

where the conditions t greater than or less than /(x) are
equivalent to x belonging to D, x or D, (i. e. the MB curve f (x,t)=0
is the function t = /(x) , the time at which x is first in D,(u>0)
given that it is initially in D,(u=0), e.g. the melting ice problem
D; = water, D, = ice.
Duvaut used the Baiocchi (see FB references) type transformation

ofu

v =[ uendt L)

(2.26)
v=0 ) tﬁf(é) )
to transform the explicit MB condition (2.25) into the implicit
form:
v=0
ov 0 t =0(x) , (2.27)
on
(2.28)
Equation (2.20) — (2.23) become
%:Vzu—i-uo—L , t>0(x) (2.29)
v=0 ,  t<U(x) , (2.30)

v = '[Otg(t)dt = G(1), x£dD, . 2.31)
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The transformation (2.26) is essentially the inverse of the

transformation v=u, see (1.15), given by Schatz (1969).

The two-phase problem is dealt with by a similar transformation,
see Duvaut in Ockendon (1975), Aguirre - Puente and Frémond (1975)
where (2.26) is termed the 'freezing index . The variational
inequality and complimentarity problems corresponding to (2.27)-
(2.31) follow as before. These ideas can also be used to develop
elliptic variational inequalities, see section 7.

Elliott (1976) has shown that discretisations of the parabolic
inequalities derived from the transformations of Duvaut are equivalent
to corresponding discretisations derived from the enthalpy formulation.

This is true for both explicit and implicit time discretisations.
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3. Analvtical solution techniques

The need for analytical solutions arises when there is a
singularity in the region of solution or on the boundary, e.g.
Fox, in Ockendon (1975, p.228), discussed the need for a short-
time analytical solution in the case of discontinuous agreement
of initial and boundary conditions. Such solutions are also useful
if only the short or long term behaviour of the solution is
required, or if an independent check for a numerical solution
is needed.

The complexity of the MBF means that only a few analytical
solutions are available in closed form, and then only for the one-
dimensional case of an infinite or semi-infinite body with relatively
simple initial and boundary conditions and constant thermal properties.
These exact solutions are usually in the form of error functions of
the similarity variable, x/t”? , and are known as Neumann's solutions,
see the reviews by Cho and Sunderland (1969), Crank (1975). Corresponding
solutions for heat and mass transfer in a semi-infinte region are
given by Mikhailov (1975, 1976), and for the non-linear filtration
problem (1.10) by Kamin (1976), Peletier and Gilding (1976).

Approximate analytical solutions are needed for more general
problems in finite regions. Many problems have been tackled by
reducing the problem to an integral equation, or to a system of
integro-differential equations, of Volterra type with kernels consist-

ing of Green s functions.
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Integral equation formulations were first given by Evans et al.
(1950) who used Laplace transforms to obtain an integral form for the
solution u(x,t) to a one-phase MBP. Ockendon (1975) has discussed the use
of both Fourier and Laplace transforms to develop integral equations
for u. Similar equations can be developed for a wide class of problems
by the use of Green's functions, Rubinstein (1971), Chuang and Szekely
(1971), Chuang and Ehrxch (1974), Hansen and Hougaard (1974), Chuang et
al. (1975), Katz (1977). Collatz (1977) has described how these
integral equations may be used to find practical error bounds. If a
series solution for the MB, x= s(t), or an asymptotic expansion for
small or large time, is valid then substitution of this into the
integral equation completes the solution. In general, a numerical

solution is needed.

Integral equations also arise in the heat-balance (Goodman's)
integral method in which the governing equation is integrated with
respect to x over each phase. Assumption of a temperature profile
valid over the whole of each phase reduces the system of integral
equations to one of ordinary differential equations in t, Goodman
(1961), Cho and Sunderland (1969). The method has been extended to
temperature-dependent thermal properties, Imber and Huang (1973),
and to two dimensions, Foots (1962), Poots and Rodgers (.1976). Both
Fox and Noble in Ockendon (1975, pp. 208, 233) suggest that the
simplicity of the method merits further attention, particularly
with regard to a finite-element method. Another method in the heat -
balance category is based on Biot's variational principle, a
Lagrangian formulation of which leads to a system of ordinary
differential equations. The solution then proceeds by assuming a

suitable profile for u, Agrawal in Ockendon (1975, p. 242).
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Integro-differential equations arise from use of either
the embedding or moving heat source methods. Boley (1961)
introduced the concept of a fictitious body of constant geometry
in which is 'embedded' the real body whose geometry varies with
time. The fictitious body then has a fictitious flux, f(t),
introduced on the boundary. The problem is then one of finding
f(t) and the MB x » s(t) from two or four integro-differential
equations, depending on whether the problem has one or two phases.
These equations are then solved for short time by series expansions
or for large time numerically. Sikarskie and Boley (1965), Boley
and Yagoda (1969) extended these ideas to two—dimensional problems;
the method is reviewed by Boley in Ockendon (1975, p.150). Ferriss
and Hill (1974) have applied the method to the one-dimensional,
oxygen consumption problem.

Rathjen and Jiji (1971) applied the idea of using a moving
heat source of strength Lpds/dt on the MB to determine the
temperature distribution for the two-dimensional problem of freezing
in a right-angled corner x, y > 0. An integro-differential equation
for the MB is derived, and an approximate solution obtained by
using superhyperbolae to approximate the MB position. Budhia
and Kreith (1973) extended this method to a wedge with angle
between 0 and 360°.

Asymptotic expansions (other than for integral or integro-
differential equation formulations) can be developed for large or
small x, t or L (latent heat). Asymptotic expansions for L are
discussed by Ockendon (1975, p.143). Pertubation solutions are
useful in certain cases, see Spaid et al. (1971), Pedroso and Domoto

(1973), Atthey, Fox in Ockendon (1975, pp.38, 237).
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Numerical solution techniques

The finite-difference (FD) method has been used extensively
for the numerical solution of MBPs, sce the reviews of Furzeland
(1974), and Crank, Fox in Ockendon (1975, pp. 192, 210) and in
recent years several finite-element (FE) methods have been proposed.
The increased speed and storage capacity of present day computers
has allowed various sophistications to be tried out with both these
methods. A collection of computer programs is given in Hoffmann (1977, II).
The techniques used for the numerical solution of MBPs either
belong to the class of 'front-tracking' methods, where the position
of the MB is predicted along with the solution of the governing equations
in each phase, or they belong to the class of enthalpy and variational
inequality methods where the reformulated governing equations are
solved over a fixed domain and the position of the MB is determined a
posteriori. These methods are now reviewed in detail:

Front-tracking methods

The two important features of a front-tracking solution for
a MBF are the ways in which approximations are developed for the new
position of the MB and for the derivatives of the solution near the
MB. For example, consider the one-phase, one-dimensional MBP given
by equation (1.1) - (1.6) then the Euler (FD) approximation in time
for (1.6) gives the explicit scheme for the new position of the MB

s(t™) =s(t")-8t Du™ (4.1)
where t" =ndt is the time at the nth level, n=0, 1, 2, ..., and
Du™ denotes the FD or FE approximation for du/dxat x =s (t").

In practice, the 0(dt) accuracy of this scheme is usually sufficient,

as long as 6t is reasonably small.
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Alternatively, an implicit scheme such as
s(tn“):s(tn)—%& {Du™ +Du ™} | (4.2)

where an iterative scheme is used to successively approximate the
unknown Du |, can be employed, Bonnerot and Jamet (1974). Since
this involves resolving (1.1) at each iteration, even just two
iterations (a predictor-corrector scheme) would be very expensive.
If necessary, an 0((8t)?) approximation for ds/dt can be developed
from the three-point, backward (implicit) difference scheme

3s(t") — 4s(t" ")+ s(t"" %) = 28tDu (M) (4.3)
as mentioned by Meyer (1976).
Often it is more important to approximate Du™ accurately.
If a fixed grid spacing x,=1h, i=0, 1, 2, ...... , 1s used then, in
general, the MB falls in between two grid points and this unequal
spacing near the MB greatly diminishes the accuracy with which DG ™
can be computed. It will be described later how the grid spacing
can be arranged so that the MB coincides with a mesh point and thus

equally spaced u(x,.) approximations can be used. Non-steady, heat

flow or diffusion depends on 0°u/ox’ being appreciably different from

zero and so 0(h?) Taylor series (FD) approximations for Du™ are
preferable rather than O(h) ones. Typically, a three-point end on
(quadratic extrapolation) formula is used, Murray and Landis (1959),
Lazaridis (1970). On a coarse grid, this extrapolation scheme may
not always give good results and so Furzeland (1977, Ch. 4) proposed
the central difference formula (centred on the MB) for Du™ in
conjunction with use of (1.1) at the MB to eliminate the 'fictitious'

u value. This scheme is of an interpolatory nature and has a smaller

truncation error. Improved accuracy for Du'™ can also be obtained
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by refining the grid near the MB, Ciment and Guenther (1974),

or by the use of the 'extrapolation to the limit' method of

global grid refinement, Schmidt in Hoffmann (1977, III).

An alternative formulation of the MB condition (1.6) is

s() = — [ u@odr - 5O uodx (4.4)

as used by Douglas and Gallie (1955), and the integrals may be

evaluated using various quadrature schemes, Schmidt (ibid).

MB conditions (1.14) of the implicit (X-0) type can be
dealt with by transformations (1.15) to obtain the explicit
(A#0) form. Alternatively, the condition (1.13) on x = s(t)
may be differentiated with respect to t (as many times as is
necessary) to give an expression for ds/dt in terms of higher

derivatives of u, e.g. Crank and Gupta (1972a) obtain

3
E:8—11 , on x=s(t) |, (4.5)
dt 8x3

for the oxygen consumption problem, A = Hp = By = 0 (113)
and (1.14).

In more than one dimension, the MB condition (1.22) can
be written in the form of (1.23) or (1.24). Considering the two-
dimensional case (1.24), then it is only necessary to form

approximations for du/dy (rather than for du/0x as well) at the
MB y = s (x,t") in order to find the y ordinate of the MB at time

n+l

t along each line X, . In the three-dimensional case, (1.23)

can be used to find the z value of the MB at t**! for each point
(x,y) on z = s(x,y,t").
For the approximation of the governing equation and the

position of the MB on a fixed grid where the MB x = s(t) falls
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between two grid points, several special FD schemes have been
proposed to deal with the unequal intervals near the MB. Crank.
(1957), with recent use by Crank and Gupta (1972a), used an
explicit FD method with special formulae based on Lagrangian
interpolation near the MB. Ehrlich (1958), Koh et al. (1969),
employed a Crank-Nicolson scheme and Taylor expansions in time
and space near the MB. Murray and Landis (1959), used an
explicit FD method with 3-point end-on formulae developed
from the first two terms of the difference form of the Taylor's
expansion for Du  (they also give a variable space scheme, see
later). Saitoh (1972) used both Crank-Nicolson and fully implicit

schemes with unequal formulae near the MB.

The problem in two dimensions was first tackled by Allen
and Severn (1962) who used a relaxation scheme with iterative
adjustment of initial guesses at each time level for the MB

position so as to fit the condition u=uy, on the MB. The

problem in both two and three dimensions has been solved by
Lazaridis (1970) who used explicit FD approximations based on
auxiliary equations and MB conditions such as (1.23) and (1.24)
near the MB. Quadratic profiles and 3-point formulae are used
to maintain 0(h?) accuracy over the unequal intervals near the
MB. However, the complexity of such 'irregular star’ FD schemes
can be avoided if the MB is chosen so that it coincides with a
grid point or, in two dimensions, a grid line. To accomplish

this many methods have been proposed:
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(1) Douglas and Gallie (1955) chose each time step ot so that
the MB always moved from one grid point to another. A fully
implicit FD scheme was used and iterations for 6t were calculated from
the integral form (4.4). Douglas (1961) later suggested an
alternative formula for 6t which avoided iteration. Vasilev
(1964), Nogi (1974) have extended the method to more general

one-dimensional problems.

(i1) Murray and Landis (1959) reformulated the governing
equations so that there was a fixed integer number, [ say, of
space intervals between the moving and fixed boundaries, where
I is constant for all time. Their explicit FD method was extended
to cover convection problems by Heitz and Westwater (1970).
Bonnerot and Jamet (1974, 1975) used a similar variable space
grid with finite element quadrilaterals in space and time for the
non-rectangular (x,t) grid. The governing equation was expressed
in weak (integral) form and solved using numerical quadrature and
isoparametric finite elements. The resulting approximations were
shown to be a generalisation of the Crank-Nicolson, implicit FD
formula. Recently (1977), they have extended the method to two-

dimensional problems (see also Furzeland (1977, Ch.4)).

(111) Crank and Gupta (1972b) used an explicit FD scheme on a
uniform grid which moved with the MB; the main benefit of this
was a smoother tracking of the MB since the unequal space intervals
were transferred to the fixed boundary. This moving grid method
necessitated interpolation in order to calculate u values from the

old grid to the new grid at the next time step. Gupta (1973)
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avoided these interpolations by using Taylor series expansions

in time and space.

(iv) Ciment and Guenther (1974) used a fixed space grid with
refinement of the grid near the MB such that the MB coincided
with one of the refined grid points. A fully implicit FD scheme
was used and the time step was chosen so that the MB did not

pass more than one of the coarse grid points.

(v) One of the most popular methods has been that of fixing
the MB at the same grid point or line for all time by a suitable
co-ordinate transformation. For example, for the MBP (1.1) -

(1.6), the transformation
E=x/s(t), (4.6)

fixes the MB at £ =1 for all time. Equations (1.1) and (1.6)

become

2
ou L 07w §ds ou sy <o, (4.7)
ot 2 g2 s dt ot
Tow o 8 ne=1 150, (4.8)
s o dt

Thus fixing the MB is at the expense of transforming the essential
non-linearity of the problem to the governing equation (4.7) in the
form of coefficients which are functions of the MB position and
velocity. This non-linearity is easily coped with in a numerical
solution since s and ds/dt are already known from (4.8) before the
solution of (4.7) is advanced to the next time level. If the fixed

boundary is at infinity, rather than at x = 0, then (4,6) becomes

E = x —s(t) . (4.9)
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Such transformations were first proposed by Landau
(1950), and used in FD schemes by Crank (1957), Lotkin (1960).
Their use in one-dimensional problems has been reviewed by
Crank (1975, p. 314). The idea has been extended to problems
with implicit MB conditions by Ferriss and Hill (1974), to
non-linear problems by Mastaniah (1976). Two-dimensional
problems have been treated by Spaid et al. (1971), Duda et al.
(1975), Furzeland (1977, Ch.4)" who use transformations such

as
n =y/sxt (4.10)

for the MB y = s(x,t). Further applications of the method
are discussed in Hoffmann (1977, III, pp. 4,49,91).

(vi) The above co-ordinate transformations are just simple
examples of the general idea of transforming a curved-shaped
region in two or more dimensions into a fixed, rectangular
(say) domain. Such transformations may be carried out by a
variety of body-fitted, curvilinear co-ordinate methods which
are determined by the numerical solution of a set of subsidiary
equations. These ideas have been applied to the solution of
two dimensional MBPs by Furzeland (ibid). The use of conformal
transformations for two-dimensional problems has been discussed

by Goldstein and Segal (1970), Kroeger and Ostrach (1974).

(vii) A similar idea to (vi) is that of a suitable change of
dependent with independent variables so that the curved MB
becomes a straight line in the new plane. This concept has

been ised in flow problems where the curved free streamline,

* Available as Technical Report TR/77, Department of Mathematics,
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y = constant, in the (x,y) plane becomes a straight line in
the (¢,y) plane, ¢ and y being harmonic conjugates’ , also
where the new independent variables are p=0Ju/ox,q=0u / 0y,
as in the hodograph method, Cryer (FB, 1976), or where the
stream function y(x,y) is transformed into a relationship
expressing y as a function of y and x''.

This last idea has been applied to MB problems and is
known as the isotherm migration method'(IMM) . In one dimension,
the MBP (1.1) - (1.6) is rewritten so that x(u,t) becomes the
dependent variable. Using (1.2), equation (1.1) and (1.6)

become

_2 2
0x (axj 07x > O<ux<l,t<0,

ot \ou ou?

%Z_(Z_ﬂl ., u=0, t>0
The non-linear equation (4.11) can be readily solved using an
explicit FD scheme. Crank and Phahle (1973) , to calculate the
way in which an isotherm (fixed u) moves through the medium.
Crank and Gupta (1975) have extended the method to two
dimensions by rewriting the problem as y = y(u,x,t). Crank
and Crowley (1977) have recently proposed a novel approach for
multi-dimensional MBPs by tracking the movements of the isotherms
along the flow lines which, in an isotropic medium, are
orthogonal to the isotherms. They use explicit F-D to solve a
locally one-dimensional, IMM form of the radial heat conduction
¥ A. Thorn and C.J. Apelt (1961), "Field Computations in

Engineering and Physics", van Nostrand.

1 J.D. Boadway (1976), Int.J.Num.Math.Engng. 10, 527 - 533.

(4.11)

(4.12)
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equation and cater for the changing shape and orientation of
the orthogonal system by a geometric procedure.

Front-tracking methods of different nature are required
if the problem is first discretised with respect to time
('the method of lines'). In one dimension, this reduces the
problem to a sequence of ordinary differential equations with
free boundaries. The solution of the problem can then be
expressed in an integral form and solved numerically to give
the position of the boundary at each time step, Sackett
(1971a,b), George and Damle (1975). Alternatively, the
reduced problem can be solved by the method of invariant
imbedding, Meyer (1970, 1972, 1975a, b).The method can
be extended to two dimensions by working in alternating
directions along each co-ordinate in turn, Meyer (1977),
and is suitable for use with general, non-linear MB
conditions.

Enthalpy and variational inequality (fixed domain) methods

The policy of using front-tracking methods to follow
the MB explicitly is not always a good one since an a priori
assumption with such methods is that the MB varies smoothly
or monotonically with time. This is not always the case,
particularly in more than one dimension, for the MB may have
sharp peaks, or double back, or even disappear. The alternative
is to essentially ignore the MB position by solving the
reformulated problems given in section 2-over a fixed domain.

The enthalpy method can be applied with a smoothed
enthalpy function H(u), see (.2.3) and Figure 2, or in the

discontinuous form u(H), see (2.5) and Figure 3. The smoothed
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H(u) approach was first applied to multi-dimensional MBPs
by Budak et al. (1965), Moiseynko and Samarskii (1965),

who used various order smoothings and locally one-dimensional
FD methods, two dimensional,implicit FD and FE schemes with
successive over-relaxation were given by Couch et al.(1970), Elliott (1976),

Meyer (1973/6).Three-time level, FD and FE schemes have been
used by Bonacina et al. (1973), Comini et al. (1974), Fisher

and Medland (1974). Convergence results for the FD schemes
to weak solutions have been given by Kamenomostskaja (1961),
Oleinik (1960), Meyer (1973).

The discontinuous form u(H) was proposed by Atthey
(1974) who used explicit FDs for a one-dimensional problem
with a 'mushy'region. The method has been extended to two-
dimensional problems using explicit and implicit FDs by Furzeland (1974,1977,
Ch.5), Crowley (1976), and using FEs by Hodgkins in Ockendon
(1975, p.26). Implicit FD schemes have been given by Fedorenko
(1975), Longworth in Ockendon (1975, p. 54), Shamsundar and
Sparrow (1975). Ciavaldini (1975) introduced the use of the
u(H) enthalpy formulation analogous to (2.1)

99 _
e AAG + Q (4.13)
where u = Ag = H'(¢p) . (4.14)

Ciavaldini discretised the weak form of (4.13) by a quadrature
rule and solved the resulting problem using both explicit and
implicit FE schemes. Convergence proofs for the explicit FD
and FE schemes were given by Atthey and Ciavaldini, and for the
implicit schemes by Jerome (1976), Schafer in Hoffmann (1977, 111).
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Another fixed domain approach is the 'truncation method'
proposed by Berger et al.(1975a) for one-phase problems with
implicit MB conditions. They considered the oxygen consumption
problem (see section 5) where u must be positive and equals
zero on the MB. The problem is solved with either FD or FE
methods over a fixed domain (0,b) with u = 0 at b. The
position of the MB is then given by the nodes at which u = 0,
any negative values being set (truncated) to zero'. The method
has been extended to two-phase problems by alternating the use
of the truncation method in each phase, Berger et al. (1975b),
and has been used for solving variational inequalities such as

(2.15) and (2.19) where u > 0, Berger (1976).

Elliott (1976), using FE methods, has expressed the
variational inequalities of section 2 in terms of quadratic
programming problems which can be solved using projected,
successive over-relaxation or conjugate gradient methods.
He has noted how the MB position with fixed domain methods
can be located more accurately than just between two grid
points' by using quadratic extrapolation based on the last

two grid points in conjunction with the MB conditions.

E.g. for u = 0u/0x - 0 at x = s(t) then

1
s= (I-Dh + h/{(up_,/u_)?* -1
for the last two grid points Xy 5, x;_;. This can also be

carried over to two dimensions by working along one co-ordinate

line.

(4.15)

1t This method has also been used in two dimensions, Evans and Gourlay (1977).
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Numerical comparisons

In one dimension, as described in section 3, there are
exact analytical solutions available for comparison with numerical
solutions. For the melting ice problem, Crank and Phahle (1973)
have given comparisons of the exact solution with the IMM, heat-
balance (Goodman), and Lagrangian interpolation methods. For non-
linear problems, Hoffmann (1973, III) has given several constructed

(exact) solutions for comparisons with his numerical methods.

In two dimensions, constructed solutions are usually needed
to serve as exact solutions for numerical comparisons, see Ciavaldini
(1975), Meyer (1976, 1977). The approximate analytical solutions
described in section 3, and the experimental results of Jiji et al.
(1970), Saitoh (1976), are also useful for comparisons. For the
problem of the inward solidification of a square prism of liquid,
Crowley (1976) has given comparisons between the experimental results
of Saitoh and the numerical results of relaxation, front-tracking FD,

IMM and enthalpy methods.

In recent years, the one-dimensional, oxygen diffusion with
consumption problem of Crank and Gupta (1972a) has been solved by a
large number of different methods and it is thus suitable for detailed
numerical comparisons. Although the conclusions of such a study tend
to be open-ended due to the number of variable factors involved, they

do give a fair indication of the performance of each method.

In non-dimensional form, the problem is to solve for the

concentration of oxygen, c(x,t), and the MB, x,(t), the equations:
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2
oc _ 97c , O0<x<xy(t) , t>0 (5.1)
ot 8x2
ﬁzo . x=0 , t> 0 (5.2)
ox

_ 53
x(0) = 1. (5-3)

t=0,

c=%(l—x)2, 0<x<l (54)
c=0 (5.5)
oc onx=x0(t), t>0 .
-0 , :
~ (5.6)

The problem has two interesting characteristics, first, there is a
discontinuity in the initial and boundary conditions (dc¢/0x =-1,
t=0; dc/0x=0,t>0 at x = 0) and thus any numerical solution
starting at t = 0 will contain 'persistent' discretisation errors
for all t (see Part I, ref. [11]). Second, the MB is moving towards
x = 0, i.e. the domain of solution is shrinking, and the MB speeds up
as it approaches x = 0.

The concentration values at x = 0 and the MB position x( (1),

for the given time step ot and grid length h, are shown in Tables 1
and 2. Reading from left to right, the different methods are:

(1) FD formulae based on Lagrangian interpolation for the unequal
intervals near the MB and the Taylor series expansion for x, (t)

201_1 ) )
Xg = X[ + v X[_1 the last grid point , (5.7)

Crank and Gupta (1972a). These results start at t = 0 and thus
involve the persistent discretisation errors mentioned earlier.
These results were repeated (1972a) by starting at t = 0.0025

and using the approximate analytical expression, see method.(12), for

t <0.0020. Due to a fortuitous 'cancellation of errors' effect
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the earlier results seem better (when compared with the

analytical ones).

Unless stated, the following methods start at t = 0.0025
and use (5.7) for the MB position:

Heat balance method using a fourth-degree polynomial profile

for the concentration and using the observed profile (see also

(12))

c(x,t) = 3-2+t/m on x =0,

to give a differential equation for the MB which is solved
numerically using the Runge-Kutta method, Crank and Gupta
(1972a).

Moving grid method without interpolation, Gupta (1973).
The moving grid approach gives a smoother tracking of the
front since the unequal intervals are transformed to x = 0,
however these unequal intervals result in less accurate

values as the MB approaches x = 0.

Variable space (Murray and Landis) grid using 10 intervals
for all time, Gupta (1973). This gives particularly good

results for large time since h decreases as the domain decreases.

(5.8)

FE method using linear basis functions and 10 elements, Aral and Yazici

(1974), no details are given so it is assumed that the solution
starts at t = 0.

Fixing of the boundary by using the transformation n = x/x (t)

solution by a Crank-Nicolson implicit FD scheme and iterations
based on the method of 'false position' to locate the MB,
Ferriss and Hill (1974) .
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Embedding method using the fictitious heat flux dc/0x = f (t)

at x = 1, numerical solution of the resulting integro-differential
equation with ot = 0.01, Ferriss and Hill (1974).

FE solution with finer mesh near the MB and x,(t) calculated

from the extrapolation scheme (5.9), c.f. equation (5.7),

Miller and Morton (1977).

_ 12 ¢4
Xo =X + 5 X1

1 the last grid point. (5.9

FE solution of the variational inequality form of (5.1) - (5.6)

c(oc/ot—Ac + 1) = 0

(5.10)
c>0 oc/lot - Ac+1 =20,

using linear basis functions with h = 0.05 and Crank-Nicolson
implicit (FD) in time with 6t = 0.005, Elliott (1976). The
minimisation of (5.10) was carried out using projected successive
over-relaxation at each time step and the position of the MB was

found by the extrapolation formula (4.15).
As (9) but with h =- 0.01, 6t = 0.001.
Hansen and Hougaard (1974) developed an integral equation for

Xo(t) and an integral formula for c(x,t) using Green's function
techniques. The integral equation and formula were solved
asymptotically for small times and numerically for all time to
produce what seem to be the most consistently accurate results,

particularly for large time.

Crank and Gupta (1972a) developed an approximate analytical
solution by assuming that the boundary does not move initially.
Solving the fixed boundary value problem using Laplace transform

techniques, and taking the first terms in the resulting series,
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gives the approximation
1

S(x,t) = %(1—x2) “ 24t/ exp (—x2/4t) + xerfc (x/2t7), (5.11)

valid for 'small' t.

Hansen and Hougaard's asymptotic expansion allows for the

movement of the MB and can be expressed as

c(x,)~e(x,1) + 4/n {E@-xt) + EQ+x.t)} , (5.12)

valid for 1-x << I-x,(t) and with a relative error of 0(t).

In the above

E(x,t) = Lz exp(—x*/4t) . (5.13)

The additional term:in (5.12) account for the change in ¢

caused by the motion of the boundary, and since these terms

are always > 0 for x and t > 0, ¢ provides a lower bound for
the exact solution.

Surprisingly, expression (5.12) remains good for large time,
the exponential terms E increasing extremely slowly. This can be
explained on the physical grounds that the results of an instantaneous
change of boundary conditions on x=0 at t=0 take a long time to
diffuse through to the MB. More surprising, still is the fact
that (5.11) is comparable with (5.12) up tot =0.15 (to the fourth
decimal place). Physically speaking, fixing ¢ = 0 on x = 1 and fixing
the MB means that the diffusion with absorption process is allowed to
continue so that ¢ becomes negative and this extra diffusion accounts for
the lower values ¢ in Table 1. The reader is referred to the works of
Constable and Evans (1975/6), Murray and Taylor (1977) for a more detailed
account of the physical background. Expressions (5.11) and (5.12) are

also reasonable approximations for values of ¢ away from x = 0,
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e.g. c(0.2,0.18) =0.0149, 0.0156, 0.0161 for (5.11), (5.12) and
method (12) respectively, and for the time to completion tenq = 0.1963,
0.1968, 0.1976 (similarily).

Berger et al. (1975a, 1976) have solved this problem using
the truncation method, and have compared their results graphically
with those of Crank and Gupta (1972a). Their truncation method is
based on that of solving the equation over a fixed domain 0 < x <1
with the negative values of ¢ truncated to zero at each time level.
The above comments on (5.11) help to explain why this apparently
crude approximation works so well. Elliott also solves the problem
over a fixed domain but the inequality (5.10) leads to better results
since it takes into account the complementarity constraint
oc/0t - Ac + 1 >0 as well as the non-negativity constraint ¢ > 0.

Finally, an enthalpy formulation of the problem has been
described by Elliott (p.88) and, since discretisations of the
enthalpy and variational inequality formulations are equivalent
(see the comment at the end of section 2), it is expected that

similar results would be obtained.
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Table 1 - Concentration values x 104 at the sealed surface (x = 0), values are for h = ,05,6

* Values starc from t = ,0025 unless marked with an asterisk, then start at t = 0.

<———Most accurate——»
t = 001 unless stated.
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A list of practical problems involving MBPs

Heat conduction

Melting and solidification (metals, glass, plastics, etc.)
Cho and Sunderland (1969), Ockendon (1975); ablation and space
vehicle design, Boley (1961, 1972), Koh. et al. (1969); freezing
and thawing of water/ice - manufacture of ice, preservation of
foodstuffs, Albasiny (1956), Bonacina and Comini (1974), Fisher
and Medland (1974); humid porous media, Mikhailov (1975/6),
Aguirre-Puente and Fremond (1975); moist soils (permafrost),
Couch et al. (1970), Meyer et al. (1972), Meyer (1973); storage
of thermal enerzv, Shamsundar and Sparrow (1974/5); heat transfer
at high rates - thermal explosions, Ockendon (1975); cryosurgery,
Comini and del Guidice (1976); icing of a cable, Poots and Rodgers
(1976); heat conduction with convection, Heitz and Westwater (1970),
Kroeger and Ostrach (1974).

Chemical and diffusion processes

Corrosion, tarnishing, coating, Crank (1975), Meyer (1975a),
Peel in Ockendon (1975); crystallisation, Evans et al. (1950),
Chuang and Ehrich (1974); evaporation, condensation, precipitation,
bubble growth, Bankoff (1966); diffusion flames, Saitoh (1972);
diffusion by chemical reactions or by discontinuous diffusion
coefficients, Crank (1975); diffusion of oxygen in absorbing tissue,
Evans and Gourlay (1977), Constable and Evans (1975/6), Murray and
Taylor (1977), see also section 5.

Decision theory

Statistical decision theory - optimal stopping times (e.g. for a gambler),
Breakwell and Chernoff (1964), Sackett (1971b), Kotlow (1973), Moerbeke
C1974); space-ship control, inventory control, Bather and Chernoff (1967),
Bather (1976).
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Industrial problems

Glass-melting and growth, Gelder and Guy in Ockendon (1975); thermal
switching, Crowley (1975). Plastics - Bingham plastic flow, Rubinstein
(1971). Metals - melting and solidification, Szekely and Themelis (1971),
Boley (1972), Chuang et al. (1975); casting, Rubinstein (1971), Kroeger
and Ostrach (1974); precipitation hardening, scrap melting, welding,
cutting, Ockendon (1975); dip soldering, Tadjbakhsh and Liniger (1964);
lightning and arc studies, Crowley (1977); oil - Rubinstein (1971),
Watts (1976), see also permafrost in (1).

Astrophysics/meteorology/geophysics/nuclear physics

Growth and decay of stars, Eggleton in Ockendon (1975); clouds;
melting and solidification of rock, Rubinstein (1971); freezing and
thawing of lakes, polar ice, Stefan (1889), Rubinstein (1971); seepage
and filtration, Ventcel (1960), see also equation (1.9) and references,
Ciment and Guenther (1974); geothermal power (e.g. geysers),
Ockendon (1975); nuclear reactor safety, Boley (1972), Peckover (1977).

Coupled or non-linear problems

Coupled heat and mass transfer - temperature and moisture content,
Aguirre-Puente and Fremond (1975), Mikhailov (1975/6); heat and
concentration diffusion, Mebditch, Tayler in Ockendon (1975, pp. 112,
120); temperature and pressure distributions in multi-phase flow, Koh
et al. (1969); non-linear governing equations, see equation (1.9) and
references; functional or non-linear MB conditions, see equation (1.16)

and references.

Inverse Stefan problem

Applications to oil problems, Rubinstein (1971), to space vehicle
design, Jochum in Hoffmann (1977, III).
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Free boundary problems

Free boundary problems (FBPs) involve the solution of
an elliptic (steady-state), partial differential equation
subject to an unknown, free boundary (FB). Such problems
arise in fluid mechanics (cavities, jets and waves), in
porous flow, in elastic - plastic torsion and in magneto-
hydrodynamics. Comprehensive reviews of porous flow problems
and their solution are given in Baiocchi et al.(1973), Cryer
(1976a). For a general survey of FBPs and the numerical solution,
see Cryer (1976Db).

The seepage of water through an earth dam (see Figure 4)
has received a great deal of attention and serves as a model
problem. In this problem water from a higher reservoir seeps
through a rectangular earth dam to a lower reservoir. A more
detailed account of the physical processes involved is given in

Baiocchi et al. (1973), Cryer (1976a).

Impervious foundation

Figure 4. Seepage through a dam .



42

The mathematical formulation leads to the determination

of the velocity potential ¢ which satisfies
Ad = 0 in the region R bounded by OABCD ,
subject to ¢ = H on OA ,
op/on = 0 on OD ,
¢ =h on DC |,
6=y on DC |,
with the FB conditions

b=y ,

on AB .
op/on =0, }

The problem can also be formulated in terms of the hydraulic
head or pressure, see Cryer.

The numerical solution of such problems has been carried out

using iterative or 'trial FB' methods where, given initial

approximations C(O), ¢(O) to the FB and the potential, the sequences
{C(k)}, {d)(k)}are generated by solving (7.1) to (7.6), and readjusting
the FB to fit (7.7), repeatedly. Alternatively, (7.7) may be used
with (7.1) - (7.5) to determine (I)(k) and (7.6) used to adjust the FB.
These ideas were first used with relaxation methods by Southwell (1946),
and then with finite-difference methods by Cryer (1968, 1970), Aitchison
(1972), Fox and Sankar (1973), Doha (1977), and with finite-element
methods, Taylor and Brown (1967). In the works of Cryer, a quadratically
convergent algorithm is given for the determination of the {C(k)} based

on an equivalent class of boundary conditions to (7.6) and (7.7).

Doha (1977) has given numerical comparisons for various finite-difference

methods of iteratively computing the FB position. He notes that the {C*)}

should be determined using total derivatives of ¢, considered as a

(7.1)
(7.2)
(7.3)
(7.4)
(7.5)

(7.6)
(7.7)



43

function of x,y and C'®, so that both the positional change of
the FB and the effect of the change in domain on the solution are

taken into account.

A more recent approach, which avoids the need for iterative
(trial) FB methods, is to reformulate the problem as a variational
inequality over a fixed domain, typically the extension of R to
the rectangle Q (OLMD in Figure 4), based on the transformation
due to Baiocchi (1972)

w(xy) = - Jg [0(x,8) ~E1d &, (7.8)

for points (x,y) on the boundary OABCD,

w(x,y) = ¢ (x,f(x)) for (x,y)e Q —R. (7.9)

Applications to other porous flow problems are discussed in
Baiocchi and Magenes (1974). The resulting variational inequality
has proved useful not only from a theoretical point of view, to
prove existence and uniqueness of a solution, Bensoussan and Lions
(1974), Stampacchia (1974), Kinderlehrer and Stampacchia (1975),
but also from the point of view of numerical solutions based on
finite-element methods, Baiocchi et al. (1973), Hunt and Nassif (1975),
Elliott (1976), Kikuchi (1977), Aitchison (1977).

Alternative methods based on integral equations, see references
in Cryer (1976b), hodograph transformations, Maria-sube (1974), Cryer
(1976a), have been proposed. Difficulties occur in the numerical
solution of FBPs near the singularity that arises at the 'separation’
point B between fixed and free boundaries. Aitchison (1972, 1977) used
complex variable analysis to obtain an expansion for the FB in the

neighbourhood of B. Doha (1977) studied the singularity at the
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separation point in the problem of axisymmetric cavitational
flow past a circular disc, Fox and Sankar (1973). An asymptotic
expansion for the solution near the separation point was

developed and used to improve his finite-difference results.

Practical applications of FBPs in fluid mechanics and
porous flow problems are the seepage through dams, canals,
ditches and wells, the reclamation of land, and the water-
coning of oil wells, see Cryer (1976a). Recent applications of FBPs
include the magnetohydrodynamic equilibria of a plasma subject
to a magnetic field e.g. in nuclear fusion reactors, Field et al.
(1977); the determination of the space charge layer in semiconductors,
Hunt and Nassif (1975). McGeough and Rasmussen (1974) have given
a quasi-steady model for an electrochemical machining problem where
the governing equation is elliptic (steady-state), but the electrodes
change shape with time. Numerical and perturbation solutions are
compared in Christiansen and Rasmussen (1976), McGeough and Rasmussen
(1976). A numerical solution based on a variational inequality

formulation has been given by Elliott (1977).
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