
LINEAR-QUADRATIC TERM STRUCTURE
MODELS FOR NEGATIVE EURO AREA

YIELDS

Dr Marco Realdon
Northumbria University�

and
Dr Wachira Boonyanet

Chulalongkorn Business School, Chulalongkorn University

This version 16/3/2017

Abstract

Four factor linear-quadratic models (LQTSM) �t negative Euro yields
well, as short yields can be negative, but not the longest yields. LQTSM
outperform four factor quadratic models that permit negative yields, which
in turn outperform a¢ ne Gaussian models.

Key words: linear-quadratic term structure models, quadratic models,
discrete time, negative yields, Extended Kalman Filter.

JEL classi�cation: G12; G13.

1 Introduction

Until few years ago negative nominal Government bond yields were almost un-
known and economic theory ruled them out, since "investors can always hold
their cash". A¢ ne Gaussian term structure models (AGTSM) were regularly
criticised because they permitted negative bond yields. After the 2008 crisis,
academic research even concentrated on term structure models with a zero lower
bound, i.e. models that could rule out negative yields while at the same time
matching very low observed yields. However as of early 2017 negative yields
have been observed for extended periods in Japan, Euroland and elsewhere,
which somewhat vindicates AGTSM. Now we need models that can match at
least slightly negative yields. In this spirit this paper tests linear-quadratic term
structure models (LQTSM) whereby the short rate may turn negative, but not
the longest yields, since the central tendency of the factors driving the short
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rate is a quadratic non-negative function of Gaussian factors. This paper also
considers quadratic term structure models (QTSM) that do permit negative
yields. All tests use four factor models and AAA-rated euro area Government
bond yields of maturities up to 30 years.
The evidence shows that LQTSM perform much better than AGTSM and

much better than QTSM that rule out negative yields. LQTSM can match the
moderately negative yields for maturities up to ten years and at the same time
the higher positive yields observed for the longest maturities up to thirty years.
Also speci�cations of QTSM that permit negative yields perform better than
AGTSM and better than "classic" QTSM that rule out negative yields, but
slightly worse than LQTSM.
This paper tests a LQTSM that builds on Realdon (2011, 2016), who pro-

posed discrete time versions of the continuous time linear-quadratic pricing
model of Cheng and Scaillet (2007). The next section presents the pricing
models and another section illustrates their empirical performance.

2 Discrete time linear-quadratic term structure
models (LQTSM)

This section presents LQTSM in discrete time. Discrete time implies Gaussian
conditional transition density for the factors, which helps model estimation
through Kalman Filters. LQTSM encompass linear Gaussian models and quadratic
models as special cases. Let Vn;t be the time t value of a zero coupon bond with
n trading days to maturity, thus the bond matures on trading day t+ n. Each
time step is equal to � = 1

261 as we observe about 261 trading days per year.
rt is the continuously compounded risk-free interest rate for the trading day
[t; t+ 1], therefore V1;t = e���rt and rt =

� lnV1;t
� . Following Realdon (2011)
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we further assume

rt = �
0xt+x

0
t	xt + �

0yt (1)

xt = (x1;t; ::; xm;t)
0
; yt = (y1;t; ::; yp;t)

0 (2)

xt+1 � xt = � (�� xt) +��Qt+1 (3)

xt+1 � xt = �� (�� � xt) +��t+1 (4)

yt+1 � yt = �y (�y + diag (x0tLjxt) � 1p�1 � yt) + (�yx;�y)
�

�Qt+1
�Qy;t+1

�
(5)

yt+1 � yt = ��y
�
��y + diag (x

0
tLjxt) � 1p�1 � yt

�
+ (�yx;�y)

�
�t+1
�y;t+1

�
(6)�

�Q0t+1; �
Q0
y;t+1

�0
v N (0m+p; Im+p) ;

�
�0t+1; �

0
y;t+1

�0 v N (0m+p; Im+p) (7)

�Qt+1 =
�
"Q1;t+1; ::; "

Q
m;t+1

�0
; �t+1 = ("1;t+1; ::; "m;t+1)

0 (8)

�Qy;t+1 =
�
"Qy;1;t+1; ::; "

Q
y;p;t+1

�0
; �y;t+1 = ("y;1;t+1; ::; "y;p;t+1)

0 (9)

� = S
p
�; �yx = Syx

p
�; �y = Sy

p
� (10)

� = � � �; �� = � � ��; �y = � � �y; ��y = � � ��y; (11)

Vn;t = exp (An +B
0
nxt + x

0
tCnxt +D

0
nyt) (12)

where: diag (x0tLjxt) is a diagonal matrix whose j-th diagonal entry is x
0
tLjxt;

Lj is a m � m matrix and 1p�1 is a p � 1 matrix whose elements are all
equal to 1; xt; �; ��; �

Q
t+1; �t+1;Bn are m�1 vectors; 	; �; ��; �; ��;Cn;�;S;Lj

are m � m matrices; rt; An; A0 are scalars; �yx;Syx are are p � m matrixes;
yt; �y; "

Q
y;t+1; "y;t+1;Dn are p � 1 vectors; �y; ��y; �y; ��y;�y;Sy are p � p ma-

trixes; N
�
0(m+p)�1; Im+p

�
denotes the multivariate normal density with mean

0(m+p)�1 and covariance matrix Im+p; 0(m+p)�1 is a (m+ p)�1matrix of zeros;
Im+p is the (m+ p)�(m+ p) identity matrix; "1;t+1; ::; "m;t+1; "y;1;t+1; ::; "y;p;t+1
and "Q1;t+1; ::; "

Q
m;t+1; "

Q
y;1;t+1; ::; "

Q
y;p;t+1 are scalar Gaussian random shocks re-

spectively in the real and risk-neutral measures. The processes of the factors x
and y are speci�ed under both the real measure and the risk-neutral measure
Q. The discount bond value Vn;t is exponential linear in yt and exponential
linear-quadratic in xt. This discrete time linear-quadratic model is a special
case of Realdon (2011), whereby we can compute An;Bn;Cn;Dn appearing in
12 as

An = An�1 +B
0
n�1��+D

0
n�1�y�y + (��)

0
Cn�1��+ ln

jj
abs j�j+ (13)

+
1

2

�
Gn�1 +D

0
n�1�

0
yx�

�1� 0 �Gn�1 +D
0
n�1�

0
yx�

�1�0 + 1
2
D0
n�1�y�

0
yDn�1

B0n = ���0+B0n�1 (Im � �)+2 (��)
0
Cn�1 (Im � �)+D0

n�1�yx+2
�
Gn�1 +D

0
n�1�

0
yx�

�1� 0C0n�1 (Im � �)
(14)
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Cn = ��	+(Im � �)0Cn�1 (Im � �)+
pX
j=1

Dj;n�1�Lj+2 (Im � �)0Cn�10C0n�1 (Im � �)

(15)

Dn = ��� + (I � �y)0Dn�1 (16)

Gn�1 = B
0
n�1 + 2 (��)

0
Cn�1

 =
��
��0

��1 � 2Cn�1��1=2
A0 = 0; B0 = 0m�1; C0 = 0m�m; D0 = 0p�1:

We compute An;Bn;Cn;Dn with 261 steps per year and � = 1=261. The
stochastic factors are latent. In this paper we focus on the following special
cases.

2.1 The linear-quadratic model LQ2.2

LQ2.2 is such that � = 12�1, 	 = 02�2 and � = 02�1 so that rt = y1;t + y2;t
and

S =

�
�1 0

�12 � �2
p
1� �212 � �2

�
; � =

�
�1
�2

�
; �� =

�
��1
��2

�
; � =

�
�1;1 0
�2;1 �2;2

�
; ��=

�
��1;1 0
��2;1 ��2;2

�
�y =

�
�y1 0
0 �y2

�
; �y = �

�
y =

�
0
0

�
; diag (x0tLjxt) � 12�1 =

�
x21;t
x22;t

�

(Syx;Sy) =

0@ �y1

�
�1;y1 ; Q2;y1 ;

q
1� �21;y1 �Q

2
2;y1
; 0
�

�y2

�
�1;y2 ; Q2;y2 ; Qy1;y2 ;

q
1� �21;y2 �Q

2
2;y2

�Q2y1;y2
� 1A ; � �Qt+1

�Qy;t+1

�
=

0BBB@
"Q1;t+1
"Q2;t+1
"Qy;1;t+1
"Qy;2;t+1

1CCCA
Q2;y1 =

�2;y1 � �12 � �1;y1p
1� �212

; Q2;y2 =
�2;y2 � �12 � �1;y2p

1� �212
; Qy1;y2 =

�y1;y2 � �1;y1�1;y2 �Q2;y1 �Q2;y2q
1� �21;y1 �Q

2
2;y1

:

�12 is the conditional correlation between x1;t+1 and x2;t+1, �1;y1 between x1;t+1
and y1;t+1, �2;y1 between x2;t+1 and y1;t+1 and �y1;y2 has similar meaning. LQ2.2
is of interest since the factors y1;t and y2;t drive the short interest rate rt, while
longer term yields are driven by x1;t and x2;t. Therefore short term and long
term yields can move quite independently. y1;t tends to revert toward the level
x21;t and y2;t tends to revert toward the level x

2
1;t, therefore long term yields

tend to be positive when �y1 ; �y2 > 0 and �y1 ; �y2 � 0. In LQ2.2 we impose
�y = ��y = 02�1; �1 = �2; �

�
1 = ��2 for the sake of parsimony and without

much loss. The model can match very low and even negative short term yields
and at the same time also positive long term yields. The main contribution of
this paper is to provide evidence that LQ2.2 outperforms the other a¢ ne or
quadratic models.
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2.2 The quadratic models: Q4.0 and Q2.2

Q4.0 is a "classic" four factor quadratic model where � = 0p�1, � = 04�1 and
	 = I4, so that rt = x21;t + x

2
2;t + x

2
3;t + x

2
4;t. Q4.0 rules out negative yields.

Q4.0 also assumes

S =

0BB@
�1 0 0 0

�12 � �2
p
1� �212 � �2 0 0

�13 � �3 Q32 � �3
p
1� �213 �Q232 � �3 0

�14 � �4 Q42 � �4 Q43 � �4
p
1� �214 �Q242 �Q243 � �4

1CCA
Q32 =

�32 � �12 � �13p
1� �212

; Q42 =
�42 � �12 � �14p

1� �212
; Q43 =

�43 � �13�14 �Q32 �Q42p
1� �213 �Q232

(17)

� =

0BB@
�1
�1
0
0

1CCA ; �� =
0BB@
��1
��1
0
0

1CCA ; � =
0BB@
�1;1 0 0 0
�2;1 �2;2 0 0
0 0 �3;3 0
0 0 0 �4;4

1CCA ; ��=
0BB@
��1;1 0 0 0
��2;1 ��2;2 0 0
0 0 ��3;3 0
0 0 0 ��4;4

1CCA :
�12 is the conditional correlation between x1;t+1 and x2;t+1. �13, �23, �41, �42,
�43 have similar meaning. �1; �2; �3; �4 are volatility parameters. The para-
meter restrictions in �; ��; �; �� ensure that Q4.0 has a factor structure similar
to LQ2.2 and the same number of "free" parameters as LQ2.2. Except for
�2;1; �

�
2;1 6= 0 Q4.0 corresponds to the quadratic model canonical form in Ahn,

Dittmar and Gallant (2002), whereby 	 = I4, �� � 0, ���� � 0, S is triangular
while �; �� are diagonal. The empirical evidence shows that Q4.0 clearly under-
performs LQ2.2, i.e. a "classic" four factor quadratic model underperforms the
four factor linear-quadratic model.
All else as in Q4.0, Q2.2 is another four factor quadratic model where � =

0p�1, � =(0; 0; 1; 1)
0 and 	 =

0BB@
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

1CCA, so that rt = x21;t+x22;t+x3;t+
x4;t and rt may turn negative. Q2.2 has the same parameter restrictions and the
same number of parameters as Q4.0. The empirical evidence shows that Q2.2
clearly outperforms Q4.0, as the ruling out negative yields by Q4.0 becomes
a shortcoming rather than a strength in recent years. However Q2.2 performs
worse than LQ2.2. The four factor linear-quadratic model seems preferable even
to the four factor quadratic model that permits negative yields.

2.3 The a¢ ne model A4

A4 is a four factor a¢ ne Gaussian model, which in unreported tests performed
best across various four factor a¢ ne models we tested on our sample. A4 is such
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that � = 0p�1, � =(1; 1; 1; 1)
0, 	 = 04�4 and

rt = x1;t + x2;t + x3;t + x4;t

� =

0BB@
�1
0
0
0

1CCA ; �� =
0BB@
��1
0
0
0

1CCA ; � =
0BB@

�1 0 0 0
��2 �2 0 0
0 ��3 �3 0
0 0 ��4 �4

1CCA ; ��=
0BB@

��1 0 0 0
���2 ��2 0 0
0 ���3 ��3 0
0 0 ���4 ��4

1CCA :
The empirical evidence below indeed shows that the four factor linear-quadratic
model clearly outperforms also A4.

3 Empirical tests

The sample comprises daily yields for AAA-rated Euro area Government bonds
for maturities from one year up to thirty years, i.e. thirty yields for each trading
day. The yields cover 2; 991 trading days from 6-9-2004 to 12-5-2016 and can
be downloaded from the European Central Bank�s web-site. To compute such
yields, the ECB employs a Svensson-type interpolation to market prices of AAA-
rated Euro area Government bonds. In this paper the "in sample" period, used
to estimate parameters, is from 6-9-2004 to 8-7-2010 and is made up of 1; 496
trading days. The "out of sample" period from 9-7-2010 to 12-5-2016 is made
up 1; 495 trading days and is used to test each model after the model parameters
are estimated "in sample". We also provide alternative "in sample" parameter
estimates using the whole sample of 2; 991 days.
Table 1 presents summary statistics of observed yields during the two peri-

ods. In the second period average yields and yield standard deviations are lower
and even persistently negative short term yields are observed. Therefore we need
term structure models that predict time varying yield volatilities, negative short
term yields and higher longer term yields. LQTSM have these features.

[TABLE 1]

For estimating all models we employ Quasi-Maximum-Likelihood estimation
through the Extended Kalman Filter (EKF) and use yields of all maturities from
one year to thirty years. The quasi-log-likelihood function lk is maximised with
the Nelder-Mead simplex method. hj for j = 1; ::; 30 denotes the standard de-
viation of the observation errors for the j years�yield. As in Sarno, Schneider
and Wagner (2016) we assume hj = e�(c0+j�c1+j

2�c2) where c0; c1; c2 are con-
stants to be estimated. To avoid arbitrary prior probability densities, the time
t = 0 latent factors x0 and y0, which the Kalman Filter requires, are treated as
parameters to be estimated.
Table 2 presents the estimation results. The BHHH estimator provides the

estimates of the standard deviations of the parameter estimates. RMSEj is the
root mean square error for the j year yield. The errors are the daily di¤erences
between observed yields and model predicted yields of any given maturity. For
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each model Avg RMSE =
P30

j=1 RMSEj

30 , lk is the value of the log-likelihood
function and AIC the value of the Akaike information criterion. RMSEj show
that all models match short term yields, such as one-year yields, less well than
yields of longer maturities, as is typical in the literature.

[TABLE 2]

With AIC = �708:307 for the �rst 1:496 days and AIC = �1:396:223 for
the whole sample, LQ2.2 �ts yields better than any other model, followed by the
quadratic model that permits negative yields Q2.2 with AIC = �703:234 for
the �rst 1:496 days and AIC = �1:374:986 for the whole sample. Unreported
tests showed that LQ2.2 beats Q2.2 even as we relax some of the parameter
constraints of Q2.2. The estimates of �y1 and �y2 for LQ2.2 are positive and
signi�cant, implying that y1;t and y2;t tend to revert respectively to x21;t and x

2
2;t

under the Q measure, as expected. The "classic" quadratic model Q4.0, which
rules out negative yields, is the worst performer. With Avg RMSE = 0:0059
Q4.0 is especially disappointing in the out of sample period from 9-7-2010 to
12-5-2016, in which observed yields are lower or negative. The ruling out of
negative yields is now a shortcoming, not a strength of quadratic models. The
a¢ ne model A4 beats Q4.0 but performs clearly worse than LQ2.2 and Q2.2.
Both AIC and RMSE support the following ranking: �rst LQ2.2, second Q2.2,
third A4 and fourth Q4.0. LQ2.2, Q2.2 and Q4.0 all have 29 parameters, while
A4 has 27 parameters. LQ2.2 allows negative yields up ten years, but non-
negative long term yields, such as 30 year yields, which is consistent with the
data. In fact 30 year yields have never been negative. Linear quadratic models
seem preferable even to quadratic models that permit negative yields.

4 Conclusion

This paper has tested discrete time linear-quadratic, a¢ ne and quadratic Gaussian
term structure models using Euro area AAA rated Government bond yields. The
linear-quadratic models outperform a¢ ne Gaussian models as well as "classic"
quadratic models that rule out negative yields. Quadratic models that permit
negative yields perform slightly worse than the linear-quadratic models, but
much better than quadratic models that do rule out negative yields.
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