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Abstract

The proliferation and ubiquity of Semantic Web technologies have transformed the way com-

puter society reshapes its technology through knowledge integration, knowledge reuse and

knowledge sharing. Ontology, one of the Semantic Web components, is a way to represent

domain knowledge into a human-understandable and machine-readable format. Ontology

in simulation has been seen as a conceptual model of a system in an explicit and unam-

biguous manner, where it can be applied to better capture the modeler’s perspective of the

domain. Regarding an ontology for simulation modeling, by reusing ontologies, it helps to

reduce time and effort in attaining the domain knowledge, and at the same time assist in

domain understanding. For a semantically-richer simulation ontology, it is useful to engage

with real data and existing ontologies. This research contributes a rigorous method that ex-

tracts domain knowledge, synthesizes processes performed within the domain, and builds a

minimal and viable ontology for simulation modeling, known as a Minimal Viable Simulation

Ontology (MVSimO). The research method initially applies ontology selection techniques in

Ontology Reuse Framework (ORF) to obtain suitable existing ontologies for reuse. ORF incor-

porates a module extraction technique during the domain conceptualization phase, where

the modules will represent domain knowledge as sub-ontologies. Formal Concept Analysis

is later applied to the real-world data to reveal the process details of the domain. Finally, the

development of MVSimO is completed by the derivation of event semantic of the processes.

The effectiveness of ontology selection and synthesizing methods, is reviewed by evaluating

the selected ontology knowledge extracted, and the detailed ontological model of MVSimO.

The evaluation of, MVSimO is performed to determine its agreement to the established sim-

ulation model of the domain. The evaluation results are encouraging, providing concrete

outcomes of the new technique of ontology reuse and new development to the research area.
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Chapter 1

Introduction

1.1 Background of the Problem

1.1.1 Ontology and Semantic Web

Semantic Web architecture has been vastly characterized in the academic literature with

the potential to better accommodate knowledge integration and knowledge sharing among

its community. Ontology, as a part of the Semantic Web component, is a “formal and ex-

plicit specification of a shared conceptualization” within the domain (Gruber, 1993). With

the emerging ontology-based application in fields such as data semantic management (Tao

et al., 2017; Daraio et al., 2016), context modeling for manufacturing industry (Giustozzi et al.,

2018), building information modeling for cost estimation (Lee et al., 2014), and simulation

modeling (Traoré et al., 2018), ontologies offer an efficient knowledge representation scheme

in making better-informed decisions (Sernadela et al., 2015a). An empirical study on con-

ceptual modeling by Verdonck et al. (2018), indicates that it is significant to have sufficient

knowledge prior to the development to provide more relevant application. The study shows

that modelers trained with ontology knowledge performed better in modeling the advance

aspect of a domain by 66.75% of total scores on content interpretation and content sophisti-

cation, compared to only 53.7% from the modelers who are not trained.

1



Recent developments in ontology-based applications have heightened the need for building

an effective ontology. Nonetheless, the development of the new ontological model can be

tedious and costly (Lonsdale et al., 2010; Grau et al., 2007; SIMPERL, 2010). Apart from that,

there is increasing concern over the inadequate amount of semantic terminology in devel-

oping an ontology (Feilmayr and Wöß, 2016; Balasubramaniam, 2015; Chandrasegaran et al.,

2013). The introduction of semantic content during the design stage of development leads to

the construction of a well-defined model, and helps in building an effective solution (Moreira

et al., 2016). The research presented in this thesis is the development of MVSimO that can be

beneficial for modeling a simulation for a complex and heterogeneous application domain,

such as A&E departments.

The domain conceptualization phase in building MVSmO provides the abstract view of the

underlying domain. To achieve a conceptually comprehensible context of the domain, an

efficient knowledge representation model is required. The decision regarding on what to

model, the level of abstraction, and the perspective view of the model provide positive im-

pacts on the overall process (Robinson, 2006). Perceivable understanding of the domain,

gets more refined as it moves towards its goal to help the modeler to make better informed-

decisions on what to model.

The development of MVSimO is revised at every stage to ensure the knowledge obtained

by the end of the research is close enough to have a metamodel of A&E departments. The

MVSimO definition is adopted from the definition of Minimal Viable Product by Ries (2009):

“the version of a new product which allows a team to collect the maximum amount of val-

idated learning about customers with the least effort”. Regarding ontology for simulation

modeling, the learning outcomes from artefacts collected uphold the execution of the re-

search, despite the fact no expert opinions being gathered. Domain knowledge from existing

ontology and generic pathways is used to perceive the domain understanding of A&E depart-

ments. The research is conducted by reusing the domain knowledge, thus saving the time

and effort spent in requirement gathering and ontology design process. During the evalua-

tion of MVSimO, an existing simulation model developed by experts is used for validation to

2



gain an insight into the proposed work as opposed to the existing model.

1.1.2 Simulation in A&E Departments

The emergency department, widely known as accident and emergency or A&E department 1

in healthcare services plays a major role to save people’s lives, and more importantly to re-

duce death and disease rate in public (Aringhieri et al., 2017). A&E departments refer to the

department or sub-system that provides medical treatment to urgent need patients, and is

the most critical unit since they are one of the first unit responsible in treating life-and-death

situation (Gul and Guneri, 2015). Figure 1.1 shows the process journey in A&E departments.

The figure is presented in a project “A Better A&E” by PearsonLloyd shows the different stages

from patient’s check in, assessment by staff, receiving treatment from medical staff, and the

outcomes of the process.

Figure 1.1: A&E Process Flow

In NHS ’Five Year Forward View’ 2, the rising demand in A&E departments has caused the

failure in meeting the 4-hour target despite additional funding. Stakeholders face the chal-

lenge to balance two withstanding goals: to fulfil the medical demand of an increasing popu-

lation and to keep within the allocated budget (Mielczarek and Uzialko-Mydlikowska, 2012).

1https://www.uhs.nhs.uk/OurServices/Emergencymedicine/EmergencyDepartment.aspx
2https://www.england.nhs.uk/five-year-forward-view/next-steps-on-the-nhs-five-year-forward-

view/urgent-and-emergency-care
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The stakeholders hold the responsibility in making decisions to ensure that the services are,

and to continually be accessible 24 hours a day, 365 days a year. The situation is intensi-

fied by multiple factors which include staff shortages, doctors’ turnover, high bed occupancy

and lack of resources in the department (Blunt et al., 2015). To investigate more about this,

simulation modeling has been used by decision-makers to understand the behaviour of the

complex system of A&E departments, and to provide support for the healthcare system man-

agement in an efficient use of resources for healthcare delivery (Traoré et al., 2018; Aringhieri

et al., 2017; Mohiuddin et al., 2017a).

For example, to help foresee A&E departments in the real-world situation, simulation pro-

vides a model to conduct a preliminary test or trial changes for a safe and efficient care deliv-

erable implementation (Günal and Pidd, 2009; Aringhieri et al., 2017). Simulation attributes

that resemble real-world situations help decision-makers to predict the output of a proposed

solution. Real-world phenomena modeled using Discrete-event simulation (Lebcir et al.,

2017), System Dynamic (Pidd, 2014) and Agent-based simulation (Chahal et al., 2013) pro-

vide guidance for stakeholders in implementing new solutions. Recent surveys indicate that

computer simulation facilitates the A&E model in finding optimal solution to improve pa-

tient flow and allocation strategy, in the effort to solve overcrowding (Eatock et al., 2011; Van-

nieuwenborg et al., 2015; Gul and Guneri, 2015; Baboolal et al., 2012; Coughlan et al., 2011).

Several simulation approaches have been proposed to facilitate various applications in A&E

departments, ranging from operation and system re-design (Baboolal et al., 2012; Eatock

et al., 2011), decision making in application implementation (Maull and Smart, 2009), con-

tagious disease modeling (Luppa et al., 2011), to other feasibility study on the A&E perfor-

mances in critical situations (Mielczarek and Uzialko-Mydlikowska, 2012). Though there is

an increasing interest in the usage of simulation modeling techniques and tools to alleviate

problem in healthcare, there are still limitations to existing models, such as the lack of re-

search with logical component in providing more complex simulation models (Mohiuddin

et al., 2017a), analysis reports in simulation are not detailed out comprehensively (Hay et al.,

2006; Maull and Smart, 2009), and difficulties in deducing experts knowledge a for decision-

4



making process (Grigore et al., 2016). Moreover, the lack of evidence shows that the proposed

simulation models are not being used despite the research effort (Mohiuddin et al., 2017a)

1.1.3 Simulation and the Role of Ontology

Simulation modeling for A&E departments is required to cater for aspects such as the rep-

resenting behaviours of each stakeholder and their interactions (Escudero-Marin and Pidd,

2011; Eatock et al., 2011; Ghanes et al., 2014), and analysing its properties (Isern and Moreno,

2016; Baboolal et al., 2012) to ensure the usefulness of the model in a complex and hetero-

geneous system. Pertaining to this idea, an ontology is generally assumed to play a role in

setting up a common ground to provide knowledge sharing among subject domain (Huang,

2016) and also describe, standardize and represent an object or instance in the domain (Park

et al., 2011; Schulz et al., 2012; Grolinger et al., 2012; Huang, 2016). This is because the foun-

dation of ontology itself is a formal specification of conceptualization (Gruber, 1993). The

idea can attentively define a domain using classes, properties, relationships and instances.

A number of research have been conducted to support the use of ontology with other meth-

ods to come up with a more innovative contribution to the fields of science, engineering,

technology and mathematics (STEM) (Tolk and Miller, 2011). To conduct a study in the

healthcare domain is not an easy task, as the data in healthcare is more complicated due

to the rapid growth in technology and human population (Stroetmann and Aisenbrey, 2012).

Even though most of healthcare data is publicly available, it has not been used in a way that

could contribute to the healthcare community strategically (Shafee Kalid, 2017). In addition,

regardless of the amount of the research effort in simulation modeling in the domain, there

is not enough evidence to show that the proposed models are being used (Mohiuddin et al.,

2017a). Taken together, this suggests that the aggregation of ontology-data analysis in simu-

lation and a well-presented knowledge scheme during the design phase may help to help un-

derstand the domain and its emerging issues better, thus making the proposed model more

usable and beneficial.
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1.2 Aim and Objectives

1.2.1 Aims

To design an effective domain knowledge extraction method that supports the design and

development of the minimal and viable ontology for simulation. The ontology minimizes

the effort required to build a semantically-rich simulation model for a complex healthcare

domain, A&E departments and more importantly, successful in producing the desired simu-

lation model. To achieve this, the thesis has five objectives as listed below:

1.2.2 Objectives

• Critically assess the existing simulation modeling methods, ontology reuse framework,

data analysis techniques and process mining methods to provide an understanding of

the state-of-the-art.

• Design and develop a methodological Ontology Reuse Framework (ORF) with a simu-

lation and modeling perspective, which is able to select suitable ontologies for ontol-

ogy reuse.

• Produce a Space-Time-Process (STP) map from a set of generic pathways as a means

to better represent the domain

• Analyse generic A&E processes and extract process elements from semi-structured data

• Derive event-semantics from the process elements extracted to further develop a Min-

imal Viable Simulation Ontology (MVSimO) model, and validate the research outcome

with a goal-free evaluation method
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1.3 Research Methodology

Design Science Research (DSR) has been adopted as a method for this research. The objective

of DSR is to produce a more effective and efficient solution for a domain problem (Hevner

et al., 2004). To conduct a research based on the DSR methodology, the set of methods and

techniques of the activities of research should be suitable to contribute to the understand-

ing of the knowledge and needs to be in the interest of research community (Vaishnavi and

Kuechler, 2004). DSR consists of a process of getting an effective solution while adapting to

changes and components, which results in products called artefacts (Hevner et al., 2004).

The process involves in the design science research activities are; build, evaluate, theorize,

and justify (March and Smith, 1995), and the result from the activities, which are known as

artefacts, are a form of materials or properties structured into a visible manner (Orlikowski

and Iacono, 2001). The artefacts of a research can be classified into four categories (March

and Smith, 1995);

• Construct: An interpretation to define problem and solution

• Model: A construct to represent a problem in real-world and its solution space

• Method: Are used to define processes and provide guidance on how to solve a problem

• Instantiation: The implementation of constructs, models and methods for artefacts

evaluation

The implementation of DSR allows for a search process to find effective solutions following

specific requirements, in order to obtain the result for the research community. To ensure

the effectiveness of the solution, DSR provides a brief and distinct mechanism of conceptual

framework and standard, in understanding, developing and assessing the research (Hevner

et al., 2004). The activities in DSR search for the effective solution in iteratively or incremen-

tally until a solution that satisfies the requirement is found.

The research aims to find an effective solution to the prevailing issue; hence the adoption of

DSR as a research methodology enables the research activities to iterate until it achieves its
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objectives (Vaishnavi and Kuechler, 2004). Through the iteration process involved in DSR,

the phases applied in accomplishing the research purpose is as follows:

• Problem Study: This phase involves reviewing of existing literature on ontology-based

simulation, ontology reuse in an ontology engineering process, domain process extrac-

tion and concept exploration in data analysis, and establishing the gap in the analytical

approach of data analysis in healthcare domain

• Recommendation: This phase is the process of introducing the preliminary idea on

conceptual modeling in ontology selection design, knowledge reuse and process and

events selection for the ontology-based simulation model

• Development: This phase involves the development of design artefact to select exist-

ing ontology for reuse, to extract the process elements constitute in pathways and to

derive an ontological model from the process-event description as research artefacts

• Evaluation: The evaluation process in the research involves the process of assess-

ing the derived ontology from reusing existing ontologies and similarity evaluation by

comparing the proposed ontological model with an existing simulation model

• Conclusion: This is the final phase of the DSR cycle for this research. The way this

research helps in modeling a simulation of A&E pathways by reusing existing ontology,

exploring the semi-structured data to extract process elements, and develop MVSimO

in healthcare is discussed in this phase.

The iterative approach is adopted in this research, in which the research processes involve

designing, building and evaluating iteratively (a little more is added each time) until the ob-

jectives are achieved. The iterative processes are the steps taken to design a construct, model,

method or instantiation piece by piece, followed by building of the construct, model, method

or instantiations piece by piece using suitable tools and techniques, and finally evaluating it

using appropriate approaches. The processes involved in this research are as below:
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• Iteration 1

Core framework development for ontology reuse based on domain’s specification and

the evaluation of the derived ontology with identified evaluation metrics.

• Iteration 2

Continuation of the work done in Iteration 1 by the creation of a Space-Time-Process

(STP) map in extension of generic pathways and the analysis of semi-structured data

using Formal Concept Analysis (FCA). The details of data analysis using FCA are ex-

plained. This iteration contributes an FCA-Relation Discovery Methodology (FDiMe)

model and a set of process relation using first-order rules.

• Iteration 3

The complete Minimal Viable Simulation Ontology (MVSimO) is developed using the

semantic derivation processes. The ontological model of MVSimO and existing simu-

lation as an exemplar model is used for similarity assessment.

1.4 Thesis Overview

In meeting the objectives of the research, the thesis is structured as follows:

Chapter 2: This chapter involves a systematic review of literature in an ontology-based sim-

ulation, emphasizing on healthcare domain, a domain where the study will be evaluated,

giving a general background on problems in ontology reuse and simulation modeling and

steps taken to overcome the problems. Ontology reuse framework, ontology-based simula-

tion challenges and domain conceptualization are also discussed in this chapter. This chap-

ter proceeds by discussing the methods to extract the ontology knowledge analytically and

how conceptual models help in simulation modeling.

Chapter 3: This chapter discusses the selection of Design Science Research as the research

method for conducting the research effectively. It elaborates on why DSR has been selected
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as a method to conduct this research, how to apply DSR in the research, the processes in-

volved in DSR for the research, the artefacts, the framework, the theory and the evaluation

conducted.

Chapter 4: This chapter presents the first iteration of DSR, the first task of developing the

Ontology Reuse Framework (ORF), as well as the steps involved in the framework, namely

Domain conceptualization, Ontology Discovery, Ontology Selection, Ontology Merging and

Integration, and Ontology Evaluation. All five phases are explained in detail. This chapter

also presents how the final candidate ontology, the Minimal Domain Ontology (MinDO), is

obtained through the framework, in accordance with the simulation modeling for healthcare

domain. The output of the iteration is presented as a set of DSR artefacts. An evaluation of

the products is then performed. This chapter concludes with the presentation of the learning

outcomes and discussion of future improvement.

Chapter 5: This chapter presents the implementation of the second DSR iteration. Here, the

existing data of the A&E departments are refined and analysed in order to extract the pro-

cess properties. It outlines the FCA-Relation Discovery Methodology (FDiMe), which is used

to guide the steps in obtaining the process properties using the FCA approach. In between

the steps, a new set of 3-dimensional map is derived to illustrate the processes in the de-

partment to depict the events in space and time dimension blocks. The map is known as

the Space-Time-Process (STP) map. This chapter also presents the elements extracted from

the processes, which are transformed into process relation to support the development of

MVSimO.

Chapter 6: The last research iteration is executed here to improve and validate the general-

ity of the framework and model. The full development of MVSimO is made by adding the

event semantics, applying the process relations produced in Iteration 2 and combining the

ontology elements of MinDO from Iteration 1. The simulation model is evaluated against an

existing expert model, to measure its effectiveness. Appropriate metrics are used to measure

the model’s precision.

Chapter 7: The thesis is concluded with the presentation of the contributions and key find-
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ings of this research. Limitations that were discovered from applying the DSR to solve the

proposed problem are also explained. An evaluation of the DSR process is performed in its

ability to meet the research aim and objectives, highlighting the research limitations. Lastly,

relevant conclusions will be drawn against the degree to which the proposed approach meets

its objectives, while an explanation of the research limitations suggesting future improve-

ments is presented.

Figure 1.2 shows an overview on how the research is conducted from defining and analysing

the issue, formulating the problem and setting the objectives, defining the research method-

ology, conceptual validation (Chapter 4), data analysis and knowledge extraction (Chapter

5), operational validation (Chapter 6), and to the conclusion.
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Chapter 2

Literature Review

2.1 Introduction

Recent studies in accomplishing knowledge sharing and reuse in diverse domain application

can be achieved by using ontology as knowledge representation, which provides an effec-

tive way of defining a domain with a set of concepts, characteristics and relationships. The

collaboration of ontology with an application such as simulation model, allows interoper-

ability across platforms, organizations and operating systems. In a rapidly changing require-

ments environment, reaching the full potential of ontology-based simulation model could

be challenging. Literature has shown that by adding ontology into simulation modeling, a

semantically richer and more expressive model can be developed. This chapter reviews rel-

evant literature on achieving ontology-based simulation model, discussing the challenges in

incorporating ontology semantic into requirement specification, and suggestions on how to

improve the design process. Ontology reuse frameworks offer a good starting point for ex-

isting ontology selection, followed by a formal concept for semantic-process enhancement.

Mapping of the ontology to the A&E pathways is discussed and analysed for the purpose of

developing an effective approach for a refined modeling formality.

This chapter is structured as follows. Section 2.2 describes a general review of Semantic
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Web and Ontology, introduces the need for ontology reuse and semantic knowledge repre-

sentation in developing an ontology-based simulation model. Section 2.3 presents a broad

overview of frameworks and tools for ontology reuse, and the conceptual modeling for knowl-

edge representation. Section 2.4 discusses simulation models in healthcare and the chal-

lenges of simulation modeling. Section 2.5 describes the need for adding semantics into

simulation modeling as a way for advancing the simulation model limitation and review ex-

isting literature to identify the most important approaches in the field. Section 2.6 classifies

existing semantic extraction approaches concerning the techniques applied, and the disci-

plines from which these techniques are borrowed. Section 2.7 introduces the application of

ontology-based simulation, detailing current work in the area, highlighting issues and chal-

lenges, as well as suggesting improvements.

2.2 Achieving Ontology-based Simulation

In an extension of the classic “Web of documents”, Semantic Web technology consists of a

stack to support a “Web of data”, where information is given a well-defined meaning, en-

couraging interaction between human and computers (Berners-Lee et al., 2001). Semantic

Web technologies extend the vision of W3C to have a Web of linked data. Semantic Web tech-

nologies permit the creation of data stores on the Web, build vocabularies, and write rules for

data manipulation. Linking of data in the Semantic Web is empowered by technologies such

as RDF, SPARQL, OWL, and SKOS 1. Through the increasing need for shared semantics and

a web of data, this is being achieved by the adoption of common conceptualization known

as an ontology (Shadbolt et al., 2006). An ontology can be defined as an “explicit, machine-

readable specification of a shared conceptualization” (Studer et al., 1998).

Over the past decade, most research in Semantic Web has placed an emphasis on the use of

ontology to understand systems across ranges of scale and distribution in various applica-

tions. With the growing number of complex and heterogeneous applications and high user

1https://www.w3.org/standards/semanticweb/
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demands, the current research has shifted from data-information level to human-semantic-

level interaction. Hence, the ontology-based applications such as simulation modeling (Traoré

et al., 2018), semantic search and question answering system (Collarana et al., 2016), process

mining (Sarno and Sinaga, 2016; Okoye et al., 2018), data semantic management (Tao et al.,

2017), and internet-of-thing (IOT) (Abinaya et al., 2015) are taking over. In general, the num-

ber of published research on the use of ontology is evident in the Semantic Web community,

providing a standard requirement for data and information integration.

Ontology-based application is an architectural approach with the potential to better accom-

modate deep level of interoperability, provided by publicly available data on the internet. In

the field of healthcare, ontologies are used as a knowledge representation of a domain, as

well the relations amongst attributes of the domain. (Okhmatovskaia et al., 2012) introduced

SimPHO, an ontology for simulation modeling of population health. SimPHO is an explicit

machine-readable specification of domain knowledge integrating both aspects of taxonomy

and vocabulary in the form of logical axioms. Silver et al. (2007) developed an ontology-based

simulation model that supports links between a domain ontology and a simulation ontology.

An ontology for discrete-event modeling and simulation (DeMO) by Silver et al. (2011), pro-

vides taxonomies for a discrete-event simulation model that captures the essential features

of the real world system. Recent study by Traoré et al. (2018) discusses on O4HCs, an On-

tology for Healthcare System Modeling and Simulation, which is a domain analysis model

based on System Entity Structure (SES), proposed by Zeigler (1984). O4HCs aims at facilitat-

ing communications amongst modelers, ensuring they share common semantics.

A number of approaches that work in conjunction with either an ontology or a simulation

modeling to support an ontology-based application, have also been identified in the litera-

ture. The literature for each of the approaches (as below) will be discussed in detail in later

sections:

• Conceptual Modeling: In the early stage of ontology reuse, the process of domain con-

ceptualization to find which ontology to be selected to best represent the domain are

performed based on the ideas of conceptual modeling and simulation modeling. A
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conceptual model observes all aspects of the simulation model development by ab-

stracting a real-world to a simulation model. A well-designed conceptual model en-

hances the possibility of a more structured simulation model (Robinson, 2008b).

• Process Mining In the implementation of an ontology-based representation system,

process mining to model the processes in a real-world system helps in structuring the

ontology. Essentially, an ontology refers to the process and the representation of the

domain model (Thomas and Fellmann M.A., 2009).

• Formal Concept Analysis (FCA) provides an illustrative analysis of datasets, resulting

in more manageable and readable concepts to describe the data. This also contributes

to a more structured knowledge representation for simulation modeling (Andrews and

Orphanides, 2010; Wray and Eklund, 2014).

Moving towards an ontology-based simulation modeling can be conceptualized as a seman-

tic layer being added on to a simulation modeling. It intends to give a machine-readable and

well-defined semantic representation of a model (Berners-Lee et al., 2001; La-Ongsri and

Roddick, 2015; Traoré et al., 2018). It is also agreeable by Heath et al. (2009) that a concep-

tual model is an important feature in the simulation development process where it validates

system theories and assumptions before the concept is being transferred into a machine-

readable model. Even though a proposed semantic representation is used to depict the

model, they are not enough to provide a full assumption of the process. The problem lies

in connecting the real-world interpretation of the process and the machine-readable rep-

resentation (ontology) (Thomas and Fellmann M.A., 2009). The formalized concept of the

model provides a better way of representing concepts and relations than just in a taxonomy

order (Obitko et al., 2004).

2.2.1 Ontology

Literature clearly defines that ontologies form an important component of Semantic Web

(Balasubramaniam, 2015; Garcia, 2009; Ford, 2011). Ontologies can be classified by differ-
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ent criteria, and the most prevalent criteria are generality and level of detail (Nicola Guarino,

1998; Nicola Guarino and Staab, 2009). The first type of ontology based on level of gener-

ality is general or foundational ontologies. This type of ontology formalize notions that go

beyond particular domains (Van Heijst et al., 1997; Mizoguchi et al., 1995). Foundational

ontology plays a critical role in ontology development by giving developers a guideline of

how to view the target domain, and providing the basic concepts for the development of

any domain-specific ontology (Guizzardi and Wagner, 2004). Examples of foundational on-

tologies are: COmmon Semantic MOdel (COSMO)2, Descriptive Ontology for Linguistic and

Cognitive Engineering (DOLCE)3, Suggested Upper Merged Ontology (SUMO)4, Basic Foun-

dational Ontology (BFO)5, and Yet Another More Advanced Top Ontology (YAMATO) (Mi-

zoguchi, 2010).

The second type of ontology is the domain-specific and the task-specific ontology that de-

scribes concepts which belong to specific domains. Domain ontologies and task ontologies

outline the vocabulary related to a generic domain such as the Social Web (Peñalver-Martinez

et al., 2014), System Engineering (Tolk et al., 2014; Batres, 2017), Neonatal (Farinelli et al.,

2016), Medically Related Social Entities (Hicks et al., 2016a) and Biomedical Data (Sernadela

et al., 2015b) or a generic task for example Clinical Decision Support System (Bau et al., 2014;

Wilk et al., 2013), Data Semantic Management (Tao et al., 2017), Conceptual Modeling (La-

Ongsri and Roddick, 2015; Verdonck et al., 2015, 2018) and Simulation Modeling (Guizzardi

et al., 2015; Benjamin and Graul, 2006; Traoré et al., 2018). Typically, a domain ontology is a

model of a domain-specific definitions (Fernández-López et al., 2013; Corcho et al., 2004).

The third type is the application ontology, where ontologies are used to represent a concep-

tualization of a particular domain for a specific task. Task ontologies for an ontology-based

application comprise of domain ontology or task ontology, to achieve the interoperable ap-

plications that provides semantic interoperability and knowledge exchange (Benjamin and

Graul, 2006). It can be derived from a foundational ontology (Khan and Keet, 2012) and used

2http://micra.com/COSMO/COSMO.owl
3http://www.loa-cnr.it/ontologies/DOLCE-Lite.owl
4http://www.ontologyportal.org/translations/SUMO.owl
5http://www.ifomis.org/bfo
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as domain knowledge by playing a role on semantic domain which gives meanings to re-

quirements statements (Kaiya and Saeki, 2006).

With an increasing amount of available ontology on the Semantic Web, however, incorporat-

ing multiple ontologies from multiple sources to support ontology reuse and sharing requires

an infrastructure to make them available for the community. Ontology infrastructures such

as search engines, registries and repositories are systems that gather ontologies from differ-

ent sources, and act as a middleware to support ontologies finding and exploring for ontology

reuse (Baclawski and Schneider, 2009; d’Aquin and Noy, 2012). Ontology repositories used in

previous studies such as Swoogle (Ding et al., 2004), Falcons (Qu and Cheng, 2011), Watson

(D’Aquin et al., 2007), OntoSearch (Jiang and Tan, 2006), OntoKhoj (SIMPERL, 2010; Qu and

Cheng, 2011), OntoSelect (Buitelaar et al., 2004), SQORE (Anutariya et al., 2007), AktiveRank

(Duque-Ramos et al., 2013; Cantador et al., 2007), BioPortal (Whetzel et al., 2011; Baclawski

and Schneider, 2009; Amith et al., 2018), and Ontobee (Xiang et al., 2011; Hicks et al., 2016b)

are listed in literature. For ontologies to perform their role is facilitating interoperability for

the ontology community, the repositories must be accessible and return a desirable ontology

result.

2.2.2 Simulation Modeling

Since the introduction of computers, computer simulation has become popular for its ability

to mimic a real-world system to create a better understanding of a problem. The emerging

of Agent-based Simulation (ABS) model gaining its popularity in the 1990s has made a tran-

sition from the more traditional approach of Discrete-event Simulation (DES) model Heath

et al. (2009). ABS has been adopted to model complex systems comprising agents for ex-

ploring emergent behaviour of a system Anagnostou et al. (2013); Baker (2015). ABS mod-

els incorporate independent parameters to represents individual behaviour of the system

components (Liu et al., 2017). As opposed to ABS, DES is used to simulate a complex and

dynamic system, in which the variable state changes continuously (Varga, 2001). Moreover,

DES models allow for different resource allocations for model observations (Cimellaro et al.,
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2017; Komashie and Mousavi, 2005; Akbari Haghighinejad et al., 2016). A broader perspec-

tive of simulation modeling has been adopted by Pidd (2014) who observed how System Dy-

namic (SD) model investigates system structure and feedback control for grasping system

behaviour. Table 2.1 summarizes the types of simulation models and the tools used.

The rapid growth of simulation software technology comes with big opportunities, which in-

clude more revolutionary applications in fields such as operational research, computer sci-

ence, process modeling and healthcare. In the context of this thesis, this sections discusses

simulation modeling in Healthcare domain and A&E departments, and also issues in the de-

partment in brief. Due to the growing number of patients and the increasing demand of

effective healthcare services, A&E departments face a significant pressure to provide the best

for the community (Manley et al., 2016; Dakin et al., 2015). One of the major issue faces by the

departments is overcrowding (Saghafian et al., 2015; Baboolal et al., 2012). Overcrowding is

defined as limited healthcare resources to cope with the increasing demand from patients (Di

Somma et al., 2015).

Simulation Type Characteristic Tool

Discrete-Event

Models series of events at discrete

time intervals, focusing on operational

characteristics

ARENA, Programming Language,

SIMUL8, MedModel, ExtendSim

System Dynamic
Models interrelations between

different units in a complex system

VENSIM, Ithink/Stella, DYNAMO,

Programming Language

Agent-Based
Perform some kind of

behaviour in a shared environment

NetLogo, REDsim,

Repast symphony

Table 2.1: Types of Simulation Model

A number of simulation studies have been carried out in order to understand how simula-

tion model helps to solve overcrowding in A&E departments. Integrated simulation and data

development analysis by Aminuddin and Ismail (2016) is a study on resource allocation in de-

termining the A&E performance, while Akbari Haghighinejad et al. (2016) on the other end

focuses on queuing theory and simulation modeling to reduce the waiting time in A&E de-
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partments. A survey by Mohiuddin et al. (2017b) is an attempt to investigate the contribution

of various computer simulation for the analysis of patient flow in A&E departments.

Apart from finding a solution to overcome overcrowding problem, a number of research

have been carried out to cover the topic of providing good healthcare service, particularly

in A&E departments. The topics range from point-of-care testing (POCT) to reduce the cost

in emergency department (Wilk et al., 2013) using early health economic device evaluation

(David Bell, 2016), Big Data analysis to increase patients’ privacy risk (Li et al., 2015), mathe-

matical modeling to increase interaction between patients and their environment (Lee et al.,

2011), to simulation in helping decision-making processes (Eatock et al., 2011; Vannieuwen-

borg et al., 2015; Gul and Guneri, 2015). For stakeholders, the decision-making process is the

key in defining which solution will help in overcoming the issues in A&E departments (Mar-

shall et al., 2016). Overall, these studies highlight the need for an efficient simulation to help

in decision-making process.

2.2.3 Ontology and Simulation Model

A framework by Uschold and Jasper (1999) has been adopted by Charles Turnitsa (2006) to

define four types of ontology usage in simulation modeling:

• Ontology-based search: For the discovery and selection of domain knowledge or compo-

nent

• Neutral authoring: For data exchange between systems

• Ontology as specification: For specifying the definition and process of the domain, to

guide decision-making

• Common access to information: Extending the purpose of neutral authoring, allowing

knowledge of the data to be transmitted

In the first and second usage, ontologies play a role in search, select and representing signif-

icant knowledge for knowledge exchange (Beck et al., 2010; Leidig et al., 2011). Ontologies
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in the third and fourth category will result in artefacts that are primarily intended to bene-

fit the systems’ users; in the specification for development (Saghafian et al., 2015) and pro-

vide a meaning for knowledge based systems respectively (Tolk et al., 2015). In modeling a

healthcare system, a survey by Isern and Moreno (2016) reports that use of ontological repre-

sentation of medical staff and patients and the dependencies amongst them are the typical

use of intelligent agents in Healthcare organizations-centred applications. The agent-based

simulation models normally employ shared ontologies among entities in the system. For

discrete-event simulation model, DeMO is introduced by Silver et al. (2011) comprises of four

first-level subclasses, based on DES principal: state-oriented model, event-oriented model,

activity-oriented model, and process-oriented model.

On a different note, Durak and Ören (2016)develops an ontology for simulation systems en-

gineering based on IEEE standard of Distributed Simulation Engineering and Execution Pro-

cess (DSEEP), to create a common shared conceptualization of products, information ex-

change, data stores, roles, steps, activities and tasks of the process. To support simulation

component reuse, Trajectory Simulation ONTology (TSONT) by Durak et al. (2011), has been

developed as a conceptual model for trajectory simulations. The trajectory simulation model

is constructed by conforming to TSONT. Another study by Grolinger et al. (2012) introduces

application-oriented simulation packages to facilitate comparison among simulation mod-

els, querying, making inferences and reusing of existing simulation models, where the simu-

lation models are represented as instances of the ontologies.

2.3 Why Ontology Reuse?

Constructing ontology from scratch is a tedious and costly task (Lonsdale et al., 2010). With

a significant number of ontologies that have been built during the last decades (Pinto and

Martins, 2000), a large amount of ontologies are available on the web. An ontology provides

a knowledge-sharing infrastructure that supports the representation and sharing of domain

knowledge (Park et al., 2011; Pinto and Martins, 2001; Trokanas and Cecelja, 2016; Kamdar
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et al., 2017). This feature of ontologies allows researchers to develop cost-effective and high

quality ontologies instead of building new ones. However, finding an ontology that satisfies

all of the user’s needs according to pre-defined requirement is not possible (Park et al., 2011).

This is due to the fact that each application is unique to the domain that utilizes the ontology,

the purpose of the ontology, and also the objectives of the application that the ontology is

used for.

It is agreed that the divide and conquer strategy to build an ontology should use the same

approach as Software Engineering Borst (1997). A study by Borst (1997) stated that domain

knowledge should be divided into “small, manageable pieces with strong internal coherence

but relatively loose coupling”. The approach of separating domain knowledge into small

manageable ontologies leads to the idea of ontology reuse. This mechanism build an ontol-

ogy by combining parts of other ontologies where “assembling, extending, specializing and

adapting” the candidate ontologies into one final ontology Pinto (1999b). Simperl (2009) in

the study about reusing ontologies on the Semantic Web, has listed reasons why a relatively

large number of ontologies with the same or related domains of interest, are not being shared

or reused, though they are accessible. This is because the ontology is being developed inde-

pendently, or the ontologies are too general, thus demanding a modification before it can be

reused for the intended purpose. These situations give an indication that more work could

be done to promote ontology reuse and sharing.

2.3.1 Ontology Reuse as Part of Ontology Engineering

The decision to reuse fragments of ontologies from existing ontological sources, is one of the

activities performed in an ontology engineering process SIMPERL (2010). As pointed out by

Lonsdale et al. (2010) “Ontology reuse involves building a new ontology through maximizing

the adoption of pre-used ontologies, or ontology components”. In view of all that have been

mentioned so far, this section emphasises that ontology reuse is an integral part of ontology

engineering. Of all the steps of ontology engineering, in the context of this research, four

processes are highlighted (Ontology Discovery, Ontology Selection, Ontology Merging and
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Integration, and Ontology Evaluation).

For the development of an ontology-based simulation, finding a suitable ontology to achieve

the simulation objective based on pre-defined requirements (SIMPERL, 2010) is similar to

the process of conceptual modeling, where the abstraction process involves some level of

simplification of the real-world system (Zeigler et al., 2000). The reason is because, pre-

defined requirements necessitate the simplification of the system with minimal, easy to eval-

uate requirement, and capable of making a feasible component of the model. Hence, sug-

gesting that the process of discovering potential reuse candidate ontologies corresponding to

the domain conceptualization will impact the development of the simulation model. Though

many ontologies are available to be selected as candidate ontologies, which ontology should

be chosen? Malone et al. (2016) outlined ten rules for selecting a bio-ontology which are ap-

plicable to other ontologies, because the rules covered common domain and are not only for

biologists and bioinformaticians. In addition to finding candidates ontologies, selecting an

ontology requires the user to understand the domain requirements.

With the growing utilization of ontologies, the problem of overlapping knowledge is unavoid-

able (Stumme and Maedche, 2001). To overcome the problem, Stumme and Maedche (2001)

suggested a method of FCA-MERGE to merge two or more source ontologies. The method

extracts unique and non-repeatable instances of source ontologies given a domain-specific

text documents. It then applies the mathematical method of FCA, to produce a lattice of

concept and the produced result is explored and transformed into merged ontology by ex-

perts. The process of ontology merging involves the building of an ontology in one area of

the domain by reusing two or more different ontologies from the same domain. Whereas on-

tology integration is the process of building an ontology in a domain by reusing one or more

ontologies from different domains (Pinto, 1999a).

Ontology evaluation is a step to assess the functional adequacy and to guide developers or

researchers in making informed decisions on which ontology to be reused under given cri-

teria (Cantador et al., 2007). A study by Duque-Ramos et al. (2013) has outlined an ontology

evaluation characteristics known as an Ontology Quality Evaluation Framework (OQuaRE).
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For the ontology quality metrics, OQuaRe has reused existing metrics developed by ontology

engineering community, with the following notion:

C1;C2; . . . ;Cn: Classes of the ontology.

RC1;RC2; . . . ;RCk: Relationships of the class Ci.

PC1;PC2; . . . ;PCz: Properties of the class Ci.

IC1;IC2; . . . ;ICm: Individuals of the class Ci.

SupC1;SupC2; . . . ;SupCm: Direct superclasses of a given class Ci.

Thing: Root class of the ontology.

Ontology Evaluation Metrics

• Tangledness (TMOnto): Mean number of classes with more than one direct parent.

TMOnto=Σ| RCi| / Σ|Ci|-Σ |C(DP)i|; where Ci is the i-th class in the ontology and C(DP)i is

the i-th class in the ontology with more than one direct parent

• Attribute Richness (AROnto): Mean number of attributes per class.

AROnto=Σ|AttCi| / Σ|Ci|

• Relationships per class (INROnto): Mean number of relationships per class.

INROnto=Σ| RCi| / Σ|Ci

• Number of Children (NOCOnto): Mean number of direct subclasses. It is the number of

relationships divided by the number of classes minus the relationships of Thing.

NOCOnto=Σ| RCi| / (Σ|Ci| -| RThing|)

• Number of properties (NOMOnto): Number of properties per class.

NOMOnto=Σ| PCi| / Σ|Ci

2.3.2 Ontology Reuse Framework

Knowledge representation structures for an efficient and effective reuse of ontological knowl-

edge require methodologies and tools to perform the ontology reuse processes. The ontology
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reuse framework or methodology maximises the adoption of existing ontologies or ontology

components, in a way to abstain from creating new ontology, which is a tedious and costly

task (Pinto, 1999b). Gómez-Pérez and Rojas-Amaya (1999) discussed about re-engineering

work of ontology reuse to capture the conceptual model of the implemented source on-

tologies to transform the more detailed ontology. The re-engineering method proposed by

Gómez-Pérez and Rojas-Amaya consists of three steps: Reverse engineering, Restructuring

and Forward engineering. With respect to the complexity of the source ontology and the need

for automatic means, the study was restricted to several hundreds of concepts. Nevertheless,

the proposed method was conducted manually and has taken 18 months to complete with

the small size of ontologies.

On a different perspective, a study by Lonsdale et al. (2010) presents a generic architecture

for automated ontology reuse to fit the scope of natural language web pages. The reuse

process takes two inputs; natural language (NL) documents and source ontologies. The

NL documents provide a description of targeted ontology for the automated ontology reuse

system to identify all the required domain concepts. Then the relations, concept and con-

straint of new ontology are automatically gathered from the source ontology. The system

reuses source ontologies to create small domain ontology within the scope description of NL

documents. Though the results of the study were encouraging, the relationships and con-

straints reuse were not discussed in detailed. It has been suggested that the adaptive reuse of

sub-ontologies into modeling point of view creates a new perspective to ontology matching

(Stecher et al., 2008). The adaptive ontology reuse approach suggesting similar existing sub-

ontologies, and provides an alternative for the user to integrate them with the draft ontology.

The adaptive algorithm focuses on ontology discovery, ontology matching and automatically

propose an alignment to the user.

Park et al. (2011) conducted a study on ontology selection and ranking model comprised

of selection standards and metrics grounded by semantic matching capabilities. The study

aimed to overcome problems of finding a suitable ontology that meets users’ requirements

and complementing semantic matching capability to adapt the ontology selection and rank-
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ing model. The model selected ontologies from ontology repositories (OntoSelect, OntoSearch2,

Swoogle, OntoKhoj, AktiveRank) based on keywords, and rank the selected ontologies ac-

cording to pre-defined semantic similarity measures. The semantic similarity is measured

using concept matching, relation matching and taxonomy matching. The measurement fac-

tors such as the relevancy of search keyword to the concepts defined in the ontology, and the

usefulness of the search keyword to obtain the ontology, are used for the study.

A descriptive research by Kamdar et al. (2017) was conducted to study the current extent

of term reuse and overlap among biomedical ontologies stored in BioPortal repository. The

study estimated the term reuse and term overlap, extracted reuse patterns from BioPortal

ontologies; and extracted reuse patterns from time-stamped BioPortal Import Plugin logs

using method motivated by text mining, graph theory and unsupervised learning. The result

from the study has shown that most ontologies reused less than 5% of the terms from a small

set of popular ontology, and have not used terms from the unpopular ontologies. It has been

showed that ontology developers used incorrect representation to reuse despite the intention

to reuse. In contrast to the studies by Gómez-Pérez and Rojas-Amaya (1999) and Lonsdale

et al. (2010), this study focused on biomedical ontologies in BioPortal, and the result was

based on Bioportal Import Plugin Logs.

In understanding the applicability of ontologies from process’s point of view, SIMPERL (2010)

provided a set of guidelines for ontology reuse, by investigating how the objective of the on-

tology has impacted the development of a particular application. Prior to the ontology reuse

process, a domain requirement analysis was conducted to form the basis requirement for the

potential ontology reuse candidates. The requirement provides requirement specification

that entails important features of the final ontology. In her study, SIMPERL (2010) adopted

the ontology engineering Conceptualization, Implementation and Evaluation paradigm as

part of the reuse process. The first step, which is identified as Ontology Discovery, is where

a list of candidate ontologies are obtained with the help from Semantic Web-specific search

engine. The second step is the Ontology Evaluation and Selection. During this stage, an

in-depth evaluation of the candidate ontologies was conducted, to select the reusable on-
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tologies. The final stage is the Ontology Integration.

Providing a criteria of the participant and context of eReqruitment solution provider, the au-

thor conducted the study that led to the adoption of domain and ontology-specific approach.

The method was evaluated through a case study research, and compared with existing on-

tology reuse approaches, using the method of goal-free evaluation, the method of evaluating

different solutions of the same problem against a set of pre-defined criteria (House, 2010;

Scriven, 1991). SIMPERL (2010) has concluded that the ontology reuse process is a process

in which the final new ontology comprised of input generated from a set of existing ontology

knowledge. Regardless of its context-oriented focus, the study demanded experts’ involve-

ment in the system analysis and design to execute this research. The studies presented thus

far provide evidence that the conceptualization of the domain does not start as early as the

design phase and if so, it was not discussed in detail. Table 2.2 shows the Ontology Reuse

Frameworks discussed in this chapter.
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Framework Method Domain

Gómez-Pérez and

Rojas-Amaya (1999)

Reverse Engineering

Restructuring

Forward Engineering

Formal Ontologies:

DOLCE-Lite, SUMO-OWL,

OpenCyc, BFO, Sowa’s

Lonsdale et al. (2010)

Natural Language and

source ontologies for

Automated Extraction

of new ontology

Ontologies of Web

page content

Park et al. (2011)
Ontology Selection

Ontology Ranking

Ontologies from repositories:

OntoSelect, OntoSearch2,

Swoogle, OntoKhoj, AktiveRank

Kamdar et al. (2017)
Term Reuse

Term Overlap

Ontologies from BioPortal

repository

Simperl (2010)

Conceptualization

Implementation

Evaluation

eReqruitment Solution Provider

Table 2.2: Ontology Reuse Framework

2.4 Ontology-based Simulation Challenge

In the context of this thesis, the discussion on the challenges faced by ontology-based simula-

tion modeling focuses on the issues raised by previous studies in the aspect of 1) simulation

modeling in healthcare domain and 2) semantic enrichment of the simulation model. For

simulation modeling in healthcare domain, the literature review was conducted by extending

the preliminary work on the impact of simulation model to the delivery of A&E departments

by Mohiuddin et al. (2017a). The study shows that the selective use of the available data

makes the analysis and decision to define the objects and processes involved in the model

unclear. In addition, conceptual models for domain requirements are lacked of semantics of

the terminology of the underlying model Verdonck et al. (2018). By its very nature, getting

the suitable ontologies for ontology-based simulation is an expensive and time consuming

task, therefore an effective ontology-based simulation requires an efficient knowledge rep-
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resentation scheme, where knowledge is captured from earlier design decisions (Robinson,

2013; Chandrasegaran et al., 2013).

In view of all that have been mentioned so far, the main challenge is minimising the effort

in developing a simulation ontology, which will have its validated learnings about the do-

main are collected throughout the research iterations. Thereby, enabling domain conceptu-

alization in the ontology selection phase to offer a good starting point for clarification of its

real-world semantics and simplifies the model, leading to a higher overall quality, and for a

wider use of the simulation Guizzardi and Wagner (2010); Wu et al. (2016). Applying knowl-

edge extraction technique to a set of semi-structured A&E data to complement the selected

ontologies allows the user to add more semantic meaning to the existing ontological struc-

ture, for the purpose of facilitating the process of simulation ontology development(Wray

and Eklund, 2014; Bau et al., 2014).

Semantic meaning need to be added at different levels; therefore, to obtain the ontology

that faithfully represent the domain knowledge, it is important to integrate the domain un-

derstanding iteratively. The literature highlights the importance of domain conceptualiza-

tion for a faster ontology development. Adopting prominent formalism in data analysis task

for knowledge discovery adds more meanings to the knowledge Kuznetsov and Poelmans

(2013a). Deriving semantic content from syntactic domain descriptions and representing

such semantics in ontological models provides process-oriented aspects to the ontological

model to reach its full potential Bell et al. (2007).

2.5 Domain Conceptualization

One of the most difficult parts in modeling a simulation is understanding the real system and

determining the abstraction of a model from a real-world (Robinson, 2013). In fact all simu-

lation models are an abstraction of real-world model (Zeigler et al., 2000). Conceptual mod-

eling is a process to determine the model limitation on what to model and what not to model

(Robinson, 2006). In developing an ontology-based application, a conceptual model is rep-
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resented by a domain ontology where it gives semantic meaning to the requirements (Kaiya

and Saeki, 2006). Ontology as a fundamental of domain-specific conceptualization (Guiz-

zardi, 2005), have benefited the ontologist, the simulation modeler and researcher through

the formalization of model semantics, the ability to query and infer, as well as in the reuse of

the developed model (Grolinger et al., 2012; Kontopoulos et al., 2013).

A simulation model with a clearly-defined semantic of a real-world produced is of a higher

quality model that it is clearly understood to work with other systems, easy to maintain, and

has the capacity of adaptive evolution (Guizzardi and Wagner, 2010). The domain knowledge

is represented by domain ontology, where it gives semantic meaning to the requirements

(Kaiya and Saeki, 2006). Robinson (2008a) concluded that a well-designed conceptual model

enhances the success of a simulation study. Zeigler et al. (2000) outlined the elements in a

conceptual model for simulation modeling, namely the ’experimental frame’, ’base model’

and ’lumped model’. The experimental frame is a set of specific input–output behaviours.

The base model is a hypothetical explanation of the real system, producing all possible in-

put–output behaviours based on system requirements. In the lumped model, the compo-

nents of a model are grouped and simplified. The aim is to generate a model that follows the

requirements and reproduces the input–output behaviours with feasible solution.

To date, various method have been developed and introduced for conceptual modeling. The

Unified Foundational Ontology (UFO) developed by Guizzardi et al. (2015) is a foundational

ontology with an aim for advanced conceptual modeling. UFO is grounded by the results

associated by OntoUML (Guizzardi, 2005), an ontologically well-founded version of UML 2.0.

In a study of an ontology-driven conceptual modeling (ODCM) by Verdonck et al. (2015), a

conceptual model is defined from formal ontology, cognitive science and philosophical logic

to develop engineering artefacts. Both studies (Guizzardi et al., 2015; Verdonck et al., 2015)

are performed on an ontology-based conceptual model which required prior knowledge of

ontology to build new artefacts (UFO and ODCM). A study by (Guizzardi, 2007) presents the

relations between domain conceptualization, abstraction, modeling language and model.

The relations is visualized in Figure 2.1.
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Figure 2.1: Relations between Conceptualization, Abstraction, Modeling
Language and Model (Guizzardi, 2007)

Referring to Figure 2.1, the studies reviewed so far begins with Modeling Language (e.g ontol-

ogy) interpreted by Conceptualization (conceptual model) used to compose the Abstraction

of the domain Model. However, all the previously mentioned studies have not captured the

abstraction of Model (domain) as an instance of Conceptualization that will be represented

by the Modeling Language. For the purpose of ontology reuse and simulation modeling, an

early made conceptual model with adequate specification of semantic terminology of the do-

main may lead to the consistent interpretation and efficient use of the knowledge (Verdonck

et al., 2018).

2.5.1 Process Mining

Apart from ontology reuse and simulation modeling, this chapter aims to reveal the domain

conceptualizaton process to work cooperatively with ontology reuse to achieve the objec-

tives of this research. This is based on the ontology design idea presented by (Noy et al.,

2001) that a simulation modeler makes design decisions based on the functional property

of the domain to be modelled, while an ontology engineer makes design decisions based on

the structural properties of the ontology class (Noy et al., 2001). The decision of structural

property of the domain is discovered during the ontology development process, whereas the
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functional property of the domain can be discovered prior to the selection of existing on-

tology, in the course of understanding the domain. In understanding the domain and man-

aging the available knowledge, accepting the fact that knowledge is often transformed from

real-world system processes is inevitable (Labrousse and Bernard, 2008). Therefore, process

mining is carried out to gain an insight into what happens in A&E departments.

The study by Arcelli and Christina (2007) defines that the capability of a simulation model

can be improved over time to meet the rapidly changing requirements by improving the per-

ception of the domain. Overall, there seems to be some evidence to indicate that information

gained from process mining can be useful to understand the domain, and it is important to

understand the activities involved for a well-presented simulation ontology. Afterall, series

of domain processes organize the relationships among objects in the domain (Goodale et al.,

2012). Recently, process mining has become an approach to discover significant information

from the event data logs and the derived process models (Okoye et al., 2018). In a domain

like healthcare, as pointed out by Poelmans et al. (2013) a process mining “is a bottom-up

approach that tries to gain an understanding of the as-in process realities that are existing

at the operational work floor”. Günal and Pidd (2009) suggested that the principal inputs

to the simulation model are requirement data, details of emergency department resources

and process and its process times. Together these studies provide valuable insights into the

introduction of process mining as a basis for domain conceptualization and abstraction.

2.6 Domain Knowledge Acquisition and Processing

Extracting, structuring and organizing domain knowledge is one of the key activities in sim-

ulation modeling. Apart from the existing ontology knowledge, information is obtained from

data sources, to be converted to domain knowledge. In a recent study in evaluating the re-

silience of hospitals to disaster using DES Cimellaro et al. (2017), analysis input data of inter-

views with medical staffs were used to develop an emergency plan, while the data provided

by hospital database was used to determine patient arrival distribution. A study by Khanna
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et al. (2016) is performed to identify optimal inpatient discharge time target by resconstruct-

ing the A&E pathways using patients’ transfer data. Data from routine information systems

provide the baseline for the arrival patterns in a study by Mould et al. (2013). The simula-

tion built helps to identify the missing data as an evidence for evidence-based management.

The data obtained not only assisted in the simulation model development, but also helped

in understanding the domain through data analysis processes (Günal and Pidd, 2009).

2.6.1 Formal Concept Analysis

Data sources used as inputs for simulation models ranged from primary data, secondary

data and experts’ opinions (Eatock et al., 2011; Jahangirian et al., 2014). The functional and

operational elements of the domain can be obtained by understanding the dependencies

among the attributes in the data. Formal Concept Analysis (FCA) analyzes the dependen-

cies between a set of objects and a set of attributes (Davey and Priestley, 2002). Not only de-

scribing the dependencies between attributes, the hierarchical property of concept lattices in

FCA also makes a good foundation in defining the structural property of the applied domain

(Kuznetsov and Poelmans, 2013b). FCA was first introduced as a mathematical perception for

concept formalization and conceptual thinking by Wille (1982). In the field of software engi-

neering, FCA is used to organize the concept-knowledge representation for software process

appraisal and reasoning purpose (Roongsangjan et al., 2017). In the knowledge discovery

and processing application, FCA organizes features and software product configuration in

product development (Carbonnel et al., 2016). FCA also helps in the matrix evaluation in a

software project, as a supporting tool for processing large, complex and dynamical data sup-

plemented with additional knowledge (Kester, 2016). In information retrieval, FCA is com-

bined with fuzzy ontology framework for conceptual clustering, data analysis and knowledge

representation (Balasubramaniam, 2015).

The input data in FCA is represented in a matrix form known as the formal context (refer

example in Table 2.3). Formal context comprises rows indicating the objects of the domain

and columns indicating the attributes of the domain. From the table, an entry containing x
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indicates that the corresponding object coffee has the corresponding class (attribute). For ex-

ample, if the objects are coffee name as Caffé Latte and the attribute is from class Milk Foam,

then x indicates that the particular coffee has milk foam. A cross-table with an empty entry

indicates that a particular object does not have a particular attribute. For example, Cappuc-

cino does not have whipped cream.

Coffee
Milk

Foam

Stream

Milk

Whipped

Cream

Chocolate

Syrup

Espresso x

Cafe’ Latte x x x

Capuccino x x x

Mocha x x x x

Macchiato x x

Table 2.3: Example of Formal Context

Derivation operators in a formal context link object and attribute subsets and are used to

define formal concept (Kuznetsov et al., 2007) (see Table 2.4). FCA produces results in two set

of output data. The first set is a hierarchical relationship of all the established concepts of

the domain known as the concept lattice (refer Figure 2.2). The second set of the output is the

list of all the interdependecies among the attributes in the formal concept. The followings are

the formal definitions of FCA:

• Definition 2.1 Formal context

A formal context is a triplet (X, Y, I) where X is a set of objects and Y is a set of attributes and

I is a binary relation between X and Y, i.e., I ⊆ X ×Y . (x,y) ∈ I indicates that the object x has

attribute y.

• Definition 2.2 Intent and Extent

Let (X, Y, I) be a context, X’ ⊆ X and Y’ ⊆ Y , the function Intent maps a set of objects to the

set of attributes, whereas the function Extent maps a set of attributes to the set of objects:
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Intent (X’) = y ∈ Y ′ | ∀y ∈ Y ′, (x,y) ∈ R

Extent (Y’) = x ∈ X ′ | ∀x ∈ X ′, (x, y) ∈ R

For X’ ⊆ X , Intent (X’) is the set of attributes owned by all objects of X’, and Extent(Y’) is

the set of all objects that own the attributes Y’. The two functions form a Galois connection

and formal concepts.

• Definition 2.3 Formal Concept

A Formal Concept C in a context is a pair (X’, Y’) that satisfies Y’ = Intent (X’) and X’ =

Extent(Y’)

i.e., C is a Formal Concept ⇔ for X’ ∈C andY ′ ∈C , Extent(Intent(X’)) = X’,

and symmetrically, Intent(Extent(Y’)) = Y’.

• Definition 2.4 Implications

An implication A ⇒ B holds in (X,Y,I) if and only if B ⊆ A”, which is equivalent to A’ ⊆ B ’. It

then automatically holds in the set of all concept intents

I Coffee
Milk

Foam

Stream

Milk

Whipped

Cream

Chocolate

Syrup

Espresso x

Cafe’ Latte x x x

Capuccino x x x

Mocha x x x x

Macchiato x x

Table 2.4: Example of Formal Concept

The corresponding formal context (X, Y, I) contains the following formal concepts:

C0 = (Espresso, Caffé Latte, Cappuccino, Mocha, Macchiato, Coffee),

C1 = (Caffé Latte, Cappuccino, Coffee, Milk Foam, Steamed Milk),

C2 = (Mocha, Macchiato, Coffee, Steamed Milk),

C3 = (Mocha, Coffee, Steamed Milk, Whipped Cream, Chocolate Syrup),

C4 = (Caffé Latte, Cappuccino, Mocha, Macchiato, Coffee, Steamed Milk).
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The construction of line diagram or concept lattice can be done manually or by using soft-

ware like Concept Explorer or ConExp (Yevtushenko, 2000), QuDa (Grigoriev and Yevtushenko,

2004), Conexp-clj 6, Tockit (Framework for Conceptual Knowledge Processing) 7, ToscanaJ (Becker

et al., 2002), OpenFCA (Borza et al., 2010), and FCART (Neznanov and Kuznetsov, 2013).

Figure 2.2: Example of Concept Latice

Figure 2.2 shows a concept lattice for coffee example built by Concept Explorer. Attribute in-

terdependencies or attribute implications are derived from concept lattice. Concept Explorer

software use Duquenne–Guigues to generate the basis of formal context, named implication

basis. An implication asserts a certain relationship between two attribute sets, called premise

and conclusion by the definition of “an implication is valid in the data set if every object that

has all attributes from the premise of the implication also has all attributes from its conclu-

sion” (Kuznetsov and Obiedkov, 2008).

2.6.2 Concept Exploration

The concept exploration task is conducted to integrate and organize the ontology knowledge

of healthcare topic into simulation modeling concepts. Formal concepts are the conceptual

6http://daniel.kxpq.de/math/conexp-clj/
7http://www.tockit.org
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representations of relationships between ontology classes. The conceptual result of formal

concept is concept lattices, that provides hierarchically organized domain knowledge based

on the class and properties of the ontology. The design of ontologies and the aim of the re-

sult of FCS supplement each other while aiming at concept modeling (Cimiano et al., 2004).

In providing the formalism of a concept, concept lattice provides clear interpretability and

describes the data, mutual relationships, similarities, as well as inconsistencies better than

other classification, clustering and probability techniques (Cigarran et al., 2016). In con-

junction with the Semantic Web initiatives, La-Ongsri and Roddick (2015) have conducted

a research on a richer conceptual model by incorporating ontology-based semantics into

conceptual modeling. With the growing number of web services, the use FCA formalism

to leverage and organize the structured topic correlation has been studied by Aznag et al.

(2014). While Yao et al. (2009), on the other hand have conducted a study on reducing the

dimensionality of input data before applying the FCA for association rules mining.

2.7 Summary

Literature has illustrated the importance of a sound understanding of the domain, indicat-

ing the realization of the benefits of an existing ontology, and its capability of building a new

ontology for a feasible simulation model. Understanding a variety of domain data sources

and analysing the role of ontology in the Semantic Web have provided a deeper understand-

ing of the need to apply conceptual modelling in order to advance the ontology up-take.

The literature review has shown the different classification of ontology reuse techniques

and approaches, and identified their applicability to complex and heterogeneous domain.

It is highly acknowledged in the literature that ontology development is a costly and time-

consuming process, requiring the services of highly qualified experts both in ontology engi-

neering and the domain of interest. Widespread adoption of ontology development can be

very difficult to achieve. Ontology reuse can assist in this direction by introducing domain

conceptualization through conceptual modelling to extract the important elements of the

domain, to ensure the success of the simulation model built from the ontology.
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With the growing number of ontologies and data resources available, literature has also shown

that an efficient knowledge representation scheme in ontology helps designers to organize

resources and make better-informed decisions to model a simulation (Chandrasegaran et al.,

2013; Kettouch et al., 2015; Verdonck et al., 2018). Since most of the research of ontology for

simulation are carried out by developing a foundational ontology, there has been less work

completed on the mixing techniques and developing a simulation ontology by iteratively and

analytically extract the domain knowledge from existing sources. Consequently, combin-

ing conceptual modelling technique, process mining approach and Formal Concept Anal-

ysis (FCA) that deals with structuring different format of domain data to machine-readable

ontology format to build a simulation model, remains an open research area.
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Chapter 3

Design Science Research Methodology

3.1 Introduction

A set of systematic activities or rules agreed by the research community need to be applied

to the research activity that is considered suitable for the extraction and evaluation of the

knowledge gained. In a field of diverse discipline such as the Information System, there are

a number of research methodologies to accommodate for the requirements of the research

problems. These methodologies have their own characteristics in conducting a research.

As for this research, a method known as the Design Science Research has been selected to

achieve its aim. This chapter investigates and presents Design Science Research in a detailed

context, techniques, phases and structure which entails the execution of the research. Design

Science Research employs a set of techniques to implement research in Information Science.

The notion of Design Science Research includes applying knowledge in producing artefacts,

as well as analysing the use and potential of the designed artefact. Adopting Design Science

Research as a valid methodology for Computer Science research, provides the justification

for the selection of Design Science as the framework to conduct this research.

This chapter introduces the background of Design Science Research and the justification of

encompassing design in research method in Section 3.2. Section 3.3 highlights Design Sci-
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ence Research as a general methodology for information system research. It provides a state-

of-the-art of information system research frameworks and outlining the important strategy

in those frameworks. Section 3.4 presents Design Science Research evaluation criteria asso-

ciated with Design Science Research artefacts and evaluation methods. In Section 3.5, out-

lining the design plan of this thesis and explains how Design Science Research is applied

in this study. Section 3.6 presents the research evaluation of artefacts produced throughout

this research. In Section 3.7, illustrates the Design Science Research iterations involve in this

research. Finally, in Section 3.8 presents the overall summary for this chapter.

3.2 Design Science Research Background

Information System design is defined as “the purposeful organization of resources to accom-

plish a goal” (Hevner et al., 2004). The field of Information Systems(IS) is a multidisciplinary

field extends of varies disciplines such as computer science, management science, engineer-

ing and others (Baskerville and Myers, 2002). IS research conducted using a variety of re-

search approaches, techniques, methods, methodologies and paradigms. Hevner et al. (2004)

described research as producing new and innovative artefacts to research problem. Edelson

(2002) and Winter (2008) perceive Design Science Research as a productive perspective of

research development thus can be incorporated into a broader situation that leads to design

science. Simon (1996) in his paper “The Sciences of The Artificial” differentiate the concepts

of behavioral science and design science, in yielding the meaning science of the artificial.

Simon introduced that artefacts lie between the inner and outer activities in the search of

finding a solution that achieved the fundamental objectives with satisfactory design rather

than an optimal solution. Here, the design is the learning process of producing an explicitly

applicable artefact to a problem.

March and Smith (1995) introduced the idea of Design Science Research as two-dimensional

frameworks that incorporates design and natural research activities with Design Science Re-

search outputs, as in Figure 3.1
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Figure 3.1: A Research Framework (March & Smith 1995)

Adapting March and Smith’s framework, the research outputs classification can help in iden-

tifying an appropriate procedure to build, evaluate, theorize and justify the research. The

artefacts of research can be classified into four categories;

• Constructs: Constructs are sets of concepts or terms that form a specific knowledge

within a domain to define problem and solution (Hevner et al., 2004).

• Models: Models use constructs to describe a real-world situation of the design problem

and its solution space (Hevner et al., 2004); models can be used to define associations

between constructs (March and Smith, 1995).

• Methods: Methods are a set of steps that define the solution space. They provide guid-

ance on how to solve problems using the constructs and the models. Methods can be

thought of as methodological tools that are created by design science and applied by

natural scientists (March and Smith, 1995). Methods are used to define processes and

provide guidance on how to solve problem

• Instantiation: Instantiations are the implementation of constructs, models and meth-

ods for artefacts evaluation. They prove the feasibility and effectiveness of the models,

methods and constructs allowing for an actual evaluation (March and Smith, 1995). In-

stantiation plays an important role in enabling researchers to learn about the working
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artefact in a real-world scenario. As highlighted by Newell and Simon (1975), the signif-

icance of instantiations is in providing a better understanding of the problem domain

and consequently to offer better solutions.

As mentioned by Takeda et al. (1990) and Owen (1998) knowledge is generated by process of

knowledge manipulation and accumulation that iterates through knowledge building activ-

ities. Design means “to invent and bring into being” (Webster’s Dictionary and Thesaurus,

1992) and design is considered as a process of creating a plan or convention for the construc-

tion of an object. Vaishnavi and Kuechler (2004) presented the steps involved in a design pro-

cess. Design can be employed as research that generates knowledge. A number of research

attempted to link theories and design to justify Design as a research approach leading to

theories (Brown, 1992; Kelly and Lesh, 2012), while others attempted to put emphasis on the

learning aspect of Design Science Research, and identify the types of learning that can evolve

when a researcher immerses in the design process as demonstrated by Edelson (2002).

A general methodology comprises of five phases of design as proposed by Vaishnavi and

Kuechler (2004) and adopted from Takeda et al. (1990) inspire the iterative process that takes

learning as a key attribute of general Design Science Research methodology. The five phases

are; problem awareness, suggestion, development, evaluation and conclusion. The initial

phase, the problem awareness, is the phase of problem recognition through various sources,

including the current development of the issue. It followed by a suggestion that input a pro-

posal and produces a tentative design. The third step, development of artefacts extends the

tentative design that motivates learning and improvement of phase 1, the problem aware-

ness. The design is the main contribution, and not the development of the artefact.The Eval-

uation phase is the vital stage to determine artefacts performance and the progress measured

during this phase. The last step is the conclusion, which emphasizes on the result of the De-

sign Science Research, which contributes knowledge to the solution capacity, or contributes

to the next cycle. System development (artefact construction) is considered as a research

methodology that can lead to an improved, and a more effective design when applied with

other research methodologies, while at the same time making a thorough contribution to
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knowledge (Nunamaker Jr et al., 1990).

Conforming with utility and truth as two important aims of Design Science Research and

behavioural science respectively, Design Science Research is proposed by March and Smith

(1995) as well as Hevner et al. (2004) as a research framework, where IT research can occur by

integrating two complementary disciplines. The first of these is behavioural science, where

the research is more focused on theorizing and justifying, and the second is design science

research, where the research is more focused on the building and evaluating process.

3.3 Design as an IS Research methodology

The aim of Design Science Research framework is to provide the Information System com-

munity with a Design Science Research Methodology (Hevner et al., 2004; March and Smith,

1995). To achieve the aim, a process of an iterative design cycle is employed as a problem-

solving process throughout the activities in the research. A well-grounded research is at-

tained along with the design, building and evaluation process of the designated artefact. In-

formation Science (IS) research is no different from other research as defined by Blake(1978),

where research is a “systematic, intensive study directed toward fuller scientific knowledge

of the subject studied”. Baskerville and Myers (2002) described Information System disci-

pline as a reference discipline due to the successful development of its own research per-

spective and research tradition. Information System research is considered a multi-related

disciplinary field, made up of social and natural sciences management and engineering field,

circled by inter-related methods of research, which promotes persistent knowledge evolution

to satisfy the multi-nature of information system field (Nunamaker Jr et al., 1990).

Research in Information Technology is commonly categorized into two types; the first type

is the descriptive research, where aimed in understanding the nature of IT, and the second

type is the prescriptive research, where knowledge-using activities are aimed at improving IT

performance (March and Smith, 1995). For both descriptive and prescriptive, research plays

a role in bringing together community, organizations and technology, therefore IS consoli-

43



dates IT research. Simon (1996) made a clear distinction between natural science and science

of the artificial (design science), where the first is concerned with naturally occurring phe-

nomenon, while the second relates to artificial human-made artefacts. With this distinction

being made clear, it has led the IS community to realize and justify the need for design as a

research discipline that combines the two Hevner et al. (2004); Nunamaker Jr et al. (1990);

March and Smith (1995).

Design Science Research as an Information Systems valid research methodology, is com-

posed by incorporating two inter-related disciplines, design and behavioural science, in a

way that a researcher engages in designing an artefact for the design science aspect; and

the implication of truthfulness and usefulness of research on community and organization,

hence the behavioural science aspect (Hevner et al., 2004). In design science research, the

truthfulness and usefulness are important and gained through an implicit cycle between de-

sign science and behavioural science, where truthfulness is provided by the theories and the

usefulness is provided by the artefacts (Hevner et al., 2004). The design cycle is executed in

an iterative incremental process that can be initiated by simple conceptualization providing

the necessary learning that feeds into consequent iterations, where the final iteration results

is an improved product that satisfies the problem requirements and constraints.

Nunamaker Jr et al. (1990) presented an earlier Design Science Research framework that con-

nects aspects of design and design science. In the framework, Nunamaker Jr et al. (1990)

assigned system development with a central role in the research life cycle, again showing

an integrated approach that includes design science as a core component in an Informa-

tion Systems methodological research framework. The process for conducting the research

is left for the researcher to infer. On the contrary, Hevner et al. (2004) propose a descrip-

tive Design Science framework that incorporates both natural science and design science as

shown in Figure 3.2 Research rigour can be achieved by effectively applying knowledge (the-

ories) from the knowledge base to develop and build an IS artefact, while relevance can be

accomplished by assessing whether the artefact satisfies business needs. The justify-evaluate

process is used to assess the applicability of the artefact in the appropriate environment.

44



Figure 3.2: Information Systems Research Framework Hevner et al. (2004)

In (Hevner et al., 2004) a concise IS research framework is presented and used to induce De-

sign Science Research methodological guidelines that can be followed to identify, execute

and evaluate an IS research. Build and evaluate are considered to be an iterative process

through which both method and product are carefully assessed by the researcher and used

to assess and refine the developed product. This evaluation process typically applies mea-

sures from the knowledge base to assess the utility, efficacy and quality of the designed arte-

fact. (Hevner et al., 2004) proposed a set of evaluation methods that can be used to evaluate

the designed artefact, as discussed in the Design Science Research evaluation.

3.4 Design Science Research Evaluation

Evaluating the research artefacts is important in Design Science Research as there is a need

to determine artefacts’ performance and progress, measured according to designated met-
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Artefact Type Evaluation Criteria

Constructs Completeness, simplicity, elegance, understandability
and ease of use.

Model Fidelity with real world phenomena, completeness,
level of detail, robustness and internal consistency.

Method Operationality (ability of others to efficiently use the
method), efficiency, generality and ease of use.

Instantiations Efficiency, effectiveness and impact on an environment
and its users.

Table 3.1: Summarized Evaluation Criteria with Artefact Types (Hevner et al., 2004

rics (March and Smith, 1995). Problem assessment made in the problem space when the arte-

facts are built to perform a specific task demonstrates its usefulness, therefore validates the

research. Apart from that, evaluation and validation play a role in iterative research (design

science) where the knowledge generated can contribute to the next iteration cycle. Hence,

developing appropriate evaluation metrics to assess the performance of the research arte-

facts for proving the evaluation criteria is critical (March and Smith, 1995).

Evaluation criteria proposed by March and Smith (1995) known as quality attributes, which

is based on artefacts type is summarized in Table 3.1. Once the evaluation metrics and crite-

ria are identified, an empirical work is applied March and Smith (1995), where an evaluation

method is chosen appropriately. Hevner et al. (2004) emphasized that the selection of the

evaluation method should be carefully considered, and when it matches with the suitable

artefact, the evaluation metric are typically withdrawn from the knowledge base. An inclu-

sive set of evaluation methodologies is summarized in Table 3.2, adopted from Hevner et al.

(2004). The classifications represent the most common evaluation methods, from which a

suitable method/s can be applied based on the type of artefact and the evaluation metrics

used.
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Design Science Research Evaluation Method Types and their Description

1. Observational
Case Study: Study artefact in depth in business environment.

Field Study: Monitor use of artefact in multiple projects.

2. Analytical

Static Analysis: Examine the structure of artefact for static quali-
ties(e.g., complexity).

Architecture Analysis: Study fit of artefact into technical IS architec-
ture.

Optimization: Demonstrate the inherent optimal properties of arte-
fact, or provide optimality bounds on artefact behaviour.

Dynamic Analysis: Study artefact in use for dynamic qualities(e.g.,
performance).

3. Experimental
Controlled Experiment: Study artefact in a controlled environment
for qualities (e.g., usability).

Simulation: Execute artefact with artificial data.

4. Testing
Functional (Black Box) Testing: Execute artefact interfaces to dis-
cover failures and identify defects.

Structural (White Box) Testing: Perform coverage testing of some
metric (e.g., execution paths) in artefact implementation.

5. Descriptive
Informed Argument: Use information from the knowledge base(e.g.,
relevant research) to build a convincing argument for the artefacts’
utility.

Scenarios: Construct detailed scenarios around the artefact to
demonstrate its utility.

Table 3.2: Design Evaluation Methods (Hevner et al., 2004)

3.5 Applying Design Science Research

The contribution of this research is the development of ontology reuse framework to select

existing ontology, the comprehensive model of A&E departments and a framework for de-

riving semantic event element from A&E processes and an ontological model resulting from

instantiating the frameworks. To meet the research aim, Design Science Research is adopted

from Vaishnavi and Kuechler (2004), as an overall research methodology. March and Smith

(1995) research products classification is also adopted to illustrate the research output. Re-
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search products are identified in the form of constructs, models, methods and instantiations.

The Design Science Research methodology employed for developing the research artefacts is

an iterative design cycle (build and evaluate). In design science, build is concerned with the

development of the artefact, and evaluation is concerned with the development of an assess-

ment method or metric to assess the quality and effectiveness of the artefact in its context

(March and Smith, 1995). The main design artefact is the ontology selection framework, an

iterative process involving the five design process steps; problem awareness, suggestion, de-

velopment, evaluation and conclusion, as illustrated in Figure 3.3.

Figure 3.3: Steps of Design Science Research Hevner et al. (2004)

• Awareness: This phase involves reviewing existing literature of available ontology and

simulation model, ontology reuse approaches, as well as domain knowledge acquisi-

ton and processing methods, while establishing the gap in having a well-designed spec-

ification of the semantic terminology of the domain. The problem awareness was

achieved in Chapter 2.

• Suggestion: This phase is the process of introducing the preliminary idea of how a

well-defined conceptual model can help to select candidate ontologies for ontology

reuse, as well as the application of Formal Concept Analysis(FCA) and event-ontic
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commitment to have an explicit detail of domain knowledge. This steps began in It-

eration 1, which is the development of an appropriate ontology reuse process, and

making a new suggestion for process relation and event semantic in consequent iter-

ations. As new knowledge was gained during the development and evaluation of the

developed method, new suggestions from the build and evaluate cycles are used to

initiate subsequent iterations.

• Development: The development phase was carried out as a Minimal Viable Simula-

tion Ontology (MVSimO). The development consists of the process of reusing existing

ontology, creating detailed domain mapping and extracting domain process elements.

MVSimO is aimed to provide an ontological model for the creation of DES model.

• Evaluation: The evaluation process was carried out through an evaluation strategy that

measures the effectiveness of the research, based on the significant performance im-

provement of the developed techniques over existing techniques, in finding the effi-

cient way for simulation modeling in a complex and heterogeneous domain. An evalu-

ation of the 1) Minimal Domain Ontology (MinDO), 2) MVSimO was carried out using

Design Science Research evaluation criteria to examine the efficiency and generality

of the techniques. In Iteration 1, to assess the efficiency and effectiveness of Ontology

Reuse Framework (ORF) in A&E domain has resulted in the evaluation of the instan-

tiation of the framework, MinDO using the ontology evaluation metrics. Finally, in

Iteration 3, the final research artefact, MVSimO, was validated by comparing it with

existing DES model by Bell et al. (2007).

• Conclusion: This is the final phase of DSR cycle for this research, where the research

output was summarized, and the results of the evaluation were identified, and rec-

ommendation for future improvement was made towards improving ontology sharing

and reuse for simulation modeling. Limitation of the research and suggestions for fu-

ture work are also presented in this section.
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3.6 Research Evaluation

Two common evaluation metrics for Design Science Research are novelty and effectiveness

(Edelson, 2002). The novelty of this work lies in the development of a new ontology reuse

framework model, designed to extract ontological knowledge from candidate ontologies arte-

facts, FCA-relation derivation method and event semantic extraction framework, and hence

resulting in development of a simulation ontology. In evaluating the novelty and effective-

ness of the research, DSR artefacts will need to be formally evaluated to determine whether

progress has been made in the ontology reuse process and MVSimO development processes.

The effectiveness of the framework model and the derivation method is in detailing domain

semantic, as well as reducing the cost and time of the simulation modeling process. When the

research objective is to achieve intelligent behaviour, instantiations are used to illustrate the

effectiveness and provide proof of the proposed method. It is the means through which de-

ficiencies and improvements are identified (March and Smith, 1995). Determining whether

progress is made in the ontology reuse process and in MVSimO development requires apply-

ing the appropriate metrics and similarity assessment with an established model. Due to the

fact that the ontological model is the final artefact, the evaluation method can be classified

according to the existing simulation model. The research artefacts can be primarily classi-

fied into two main types: (1) quality of the selected ontologies, based on specific standards,

and (2) comparing the ontological model with an existing model which can be either man-

ual evaluation by domain experts or by using the method of goal-free evaluation against an

existing simulation model.
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Evaluation approaches can be further subcategorized according to the measure used and

what they intend to measure in terms of the functional, structural and descriptive aspects as

summarised in Figure 3.4. The figure illustrates how the evaluation is categorized into two

main groups: first, evaluation of MinDO in Iteration 1, and second, evaluation of MVSimO

in Iteration 3. The evaluation of MinDO is conducted twice; first is using Bio-Ontology Se-

lection Guidelines by Malone et al. (2016) in Ontology Discovery phase of ORF to generally

select the ontologies to ensure that the ontology is about a specific domain of knowledge

and has the appropriate amount of knowledge to cover the modules. Then, in Ontology Eval-

uation phase of ORF, only MinDO is evaluated rigorously based on OQuaRe Quality Model

by Duque-Ramos et al. (2011). For the purpose of this research, the criteria of functional,

structural and descriptive are being measured in obtaining structural and functional prop-

erties of the model to assist the development of an ontology-based simulation, by which the

metrics used for the evaluation strive to cover these criteria. The metrices are Annotation-

Richness, Relationshipperclass, Tangledness, LackofCohesioninMethods, Numberofproperties

and NumberofChildren.

The final artefact of the research, MVSimO, is evaluated using similarity analysis using Task-

based Approaches and Criteria-based Approaches of goal-free evaluation. These approaches

are selected ideally expecting the artefacts are appropriate and adequate to model an-ontology

based simulation. Tasks and criteria of both model, MVSimO and Cumberland model (Bell

et al., 2017) are assessed with the purpose of comparing different solutions of the same prob-

lem (Scriven, 1991).
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Chapter 4

Iteration 1

4.1 Introduction

This iteration addresses the ontology selection task as the main component for an effective

ontology reuse methodology (Stecher et al., 2008). The aim of an ontology selection process

is to identify existing ontology with the most similar concept in helping developers and re-

searchers to refine their decisions on which ontology to be reused (Minyaoui and Gargouri,

2012). Reusing ontologies saves time, effort and also the cost of ontology engineering (Lons-

dale et al., 2010). Notably, and in contrast to the existing approach in the ontology reuse field,

this chapter highlights the activity of introducing the real-world system component during

the domain conceptualization phase, to provide more feasibility for domain-oriented ontol-

ogy reuse. This iteration includes the development of an ontology reuse framework as the

artefact and evaluation of the framework with quality assessment of the resulting ontology.
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The rest of the chapter is organised as follows. To begin with, Section 4.2 discusses the way

Design Science Research is applied for this iteration. Research artefacts are identified along

with the iteration plan and research products as a design component of DSR methodology.

Section 4.3 introduces the building stage of the DSR component through the presentation

of a framework for domain ontology reuse. A framework consisting of the process of domain

conceptualization, ontology discovery, ontology merging and integration, as well as ontology

evaluation, was developed at the end of the section. Section 4.4 concludes the framework by

discussing the framework evaluation. The iteration feedback and the learning outcome are

presented in Section 4.6. The chapter is then summarized in Section 4.7.

4.2 Design Science Research and Output Artefacts

This iteration applies Design Science Research as a chunk of iterative processes where learn-

ing of the problem space is achieved through artefact development and evaluation. A method

can be seen as a set of steps that can be followed to accomplish a particular task (March

and Smith, 1995). Design science research, as the other side of the IS research cycle, cre-

ates and evaluates IT artefacts intended to solve identified organizational problems (March

and Storey, 2008). From the steps, an artefact of ontology reuse framework is proposed, as

a guideline in reusing existing ontologies. Provided with no prior knowledge of the available

ontologies for reuse, the framework has been of assistance in the selection of the candidate

ontologies by performing domain conceptualization beforehand. As illustrated in Table 4-1,

an iterative cycle of artefact building, development and evaluation is employed and adopted,

based on the general methodology of Design Science Research by Vaishnavi and Kuechler.

As discussed in chapter 2, a number of data sources for simulation modeling in healthcare

have been identified. The applicability of the structured data, which is usually collected from

hospital department and online patient’s management system, make it more common to be

used in researches because less effort is required to determine their tailoring ability to rep-

resent the domain (Günal and Pidd, 2009; Weber et al., 2012; Gul and Guneri, 2015). On
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the other hand, the unstructured data collected from experts’ opinions also form part of the

data resources in the simulation modeling (Komashie and Mousavi, 2005; Virtue et al., 2011).

In most studies in simulation modelling in healthcare, semi-structured data are not treated

as a resource in much detail (Mohiuddin et al., 2017a). This iteration aims is to systemat-

ically manipulate the semi-structured data available in existing ontology, together with the

conceptual representation of the domain to build a generic concept for an A&E simulation

modeling. A generic simulation model of A&E department can be built provided there is a

sufficient representation of the domain (Günal and Pidd, 2009).

The concept of Design Science Research is closely associated with the idea of Minimum Vi-

able Product (MVP). The term MVP was first coined by Frank Robinson in 2001, and was

continuously evolving, later defined by (Ries, 2009) as “a version of a new product, which al-

lows a team to collect the maximum amount of validated learning about customers with the

least effort”. Eric Ries proposed the idea of a combined business-driven hypothesis experi-

mentation with iterative product release to reduce the product development process. Taking

this idea into the ontology development for simulation modeling, this iteration plays a role

to answer the question of “How to select suitable ontology for A&E departments?”. Each iter-

ation corroborates to the research aim, and keep iterating while constantly achieving the

objectives. The final simulation ontology known as Minimal Viable Simulation-Ontology

(MVSimO) created for the A&E simulation metamodel.
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Figure 4.1: Research Iteration for Chapter 4

In line with one of the characteristics of ontology engineering; ontology reuse for knowledge

sharing, the knowledge can be gained in a cost-effective way without having to develop the

ontology from the beginning. This chapter provides an initial understanding of the ontol-

ogy selection for knowledge reuse, and the development environment for Design Science

Research cycle for domain conceptualization and ontology reuse to evolve. The fact that on-

tology provides a knowledge-sharing infrastructure that allows for knowledge sharing across

domains, researchers and developers are able to gain benefits by sharing a common ontology

for heterogeneous systems or resources to operate. However, with the vast development of

available ontologies to be shared, as well as the complexity and heterogeneity of healthcare

domain, it is difficult to find the exact ontology that fits the purpose. Ontology knowledge

extracted from this iteration facilitates the process of simulation modeling by customary rep-

resentations of the domain, and provides more refinement for a semantically-richer model.

The approach for obtaining suitable ontologies for the domain focuses on the domain knowl-
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edge and a set of standard or guidelines for the application, which in this case is a simulation

modeling. In the context of this research, the focus is on the process flow in A&E. This is

due to the fact that the performance in A&E is one of the contributing factors in determining

the aspects for an improved procedure, reduced waiting time and increased efficiency of the

employees in A&E (Sklar et al., 2010; Saghafian et al., 2015; Ghanes et al., 2014). By following

the A&E process flow adapted from the project “A Better A&E” by PearsonLloyd as a guide-

line, this framework provides its’ novelty through the use of existing ontologies for a more

generic knowledge with revisions, improvements and variations to fit the intended use of the

application.

4.2.1 Design Science Research Artefact

The purpose of this iteration is to develop a framework - Ontology Reuse Framework (ORF)

that models an ontology selection process for ontology reuse, based on conceptual modeling

terminology, and evaluation of the framework by assessing the quality of the final ontology,

Minimal Domain Ontology (MinDO). The framework captures domain abstraction by incor-

porating techniques of an ontology-driven conceptual model to provide real-world compo-

nents for simulation modeling. As illustrated in Figure 4.1, the manual process is applied in

each step of the input artefact, resulting in an output that will be used as input for the next

iteration. The framework in this iteration works in two folds: First, a process for selecting

candidate ontologies to be reused using the domain abstraction technique. Second, imple-

menting the evaluation techniques to assess the final ontology for reuse using the OQuare

Quality Model.

The quality of ontologies is assessed using ontology evaluation method named OQuaRE (Duque-

Ramos et al., 2011). OQuaRE is an evaluation method based on the standard ISO/IEC 25000:2005

for Software product Quality Requirements and Evaluation known as SQuaRE. OQuaRE ele-

ments cover the criteria for ontology evaluation: evaluation support, evaluation process and

metrics. OQuaRE quality model reuses and adapts the following characteristics from soft-

ware implementation to ontology implementation. Evaluation of this iteration is aimed at
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assessing the structural, functional adequacy, compatibility and operability of MinDO. More

on ontology evaluation criteria will be discussed later in Section 4.3.4

Steps Method Input Artefact Output Artefact

1.Define domain’s
requirement

Domain Problem
Identification

Literature
Review

Conceptualization of
the Domain

2.Decide on a suitable
Ontology Repository

and search terms

Popular Search
Repository

Literature
Review

Repositories
and Search

Terms

3.Discover candidate
ontology

Ontology
Discovery

Process

Repositories,
Search Terms

Candidate
Ontologies

4.Identify ontology
evaluation

characteristics

Ontology
Evaluation

Strategy

Literature
Review

Ontology
Evaluation

Characteristics

5.Extract ontology
classes

and properties

Protégé and
Eclipse

SPARQL Query

Candidate
Ontologies

Selected
Ontologies

6.Combine, modify
assemble and

restructure ontologies

Ontology Classes
Discovery

Ontology Classes,
Instances

and Properties

Final
Ontology

7.Decide on a
suitable framework
evaluation method

Framework
Evaluation

Strategy

Framework
Evaluation

Characteristics

Evaluated
Framework

Table 4.1: Iteration 1 - Input Output Model

4.3 Artefact Building and Development

The building stage involves problem awareness and suggestion. This iteration indicates the

identification of the initial steps for the process and explaining what involves in each step. It

begins with the review and analysis of existing ontology reuse methodology, assessment of

ontology repositories, review of the suitable ontology evaluation method, and suggestion on

the appropriate technique for framework evaluation. Review of the state-of-the-art existing

standards, methods and techniques has provided a deeper understanding of the limitation
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of the current approach, the gaps and improvements to fill the gap. This eventually led to the

identification of relevant techniques for ontology reuse in the context of simulation modeling

in healthcare domain.

Figure 4.2: Ontology Reuse Framework

4.3.1 Domain Conceptualization

In understanding the domain, the process flow from the project “A Better A&E” by PearsonL-

loyd, as depicted in Figure 4.3 is adopted, as a representative model of the A&E. Stages from

patient’s check-in, assessment by staff, receiving of treatment from the medical staff and the

outcome of the process, mimic the general process. In the UK, the A&E process flows varies

from one hospital to another, therefore it is agreeable to employ a world view in general (Hay

et al., 2006). In particular, understanding of the process of the A&E helps to identify key sce-

narios that lead to the most common problem in the UK’s emergency department, namely

overcrowding (Mohiuddin et al., 2017a).

As depicted in Figure 4.2, the first step of the ORF is domain conceptualization. At the do-

main conceptualization stage, the concept of the domain is grasped to assist in the ontol-

ogy discovery process. These are outlined by the idea of a conceptual model by Stachowiak

(1973). According to Stachowiak (1973), the conceptual model is composed of three main

attributes: (1) a mapping feature, or a representation of a real-world system; (2) a reduction

feature, a minimised version or part of the original system, and (3) the pragmatic side of the

model which is designated to have a final purpose. The conceptual model helps to increase
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Figure 4.3: The A&E Process Flow

the understanding of the domain and functions an abstraction of the model from the real-

world (Robinson, 2013). This criteria fits into the application context of the research, which

is not to cover the whole NHS, but the critical part of the healthcare system, namely the A&E

process flow. Based on Stachowiak (1973), the A&E department is conceptualized as below:

1. Mapping: To map the process in the A&E department, the A&E process flow (Figure

4.3 is divided into modules. For the setting of overcrowding in the A&E, the modules

comprise of healthcare and hospital setting. From here, “healthcare” and “hospital”

are inferred as modules.

2. Reduction: The A&E department is a large system involving several resources and het-

erogeneous patient types within a complex and well-organized process (Ghanes et al.,

2014). Building and understanding the whole A&E system is a difficult and tedious task

(Steward et al., 2017; Mohiuddin et al., 2017a). Hence, one needs to identify the as-

sumptions and ontological commitments that each module should comply with. The

description of the conceptual model is the commitments outlined in the specification

requirements of future ontology.

3. Pragmatic: The purpose of the ORF is to obtain a suitable ontology to reuse for the de-

velopment of a final ontology, the Minimal Viable Simulation Ontology (MVSimO). The

simulation developed using MVSimO is intended to model the patient flow through the

processes in the A&E or emergency department. The following processes in the ORF
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will adhere to this purpose.

From these attributes, five modules are deduced; “healthcare”, “hospital”, “emergency de-

partment”, “process” and “patient data”.

In order to determine whether the deduced modules are used to model a simulation in the

A&E departments, a systematic review has been conducted based on the identification and

inclusion process by Mohiuddin et al. (2017a). The review extends the work by Mohiuddin,

through the inclusion of literature from the year 2016-2017. Through the inclusion of the

identification and inclusion criteria as illustrated in Figure 4.4, a systematic review on litera-

ture has been conducted to produce a list of objects, processes and data involved in simula-

tion models between the year 2016 and 2017. With keywords;(1) “computer simulation” AND

“emergency department” and; (2) “computer simulation” AND “patient flow”, eight biblio-

graphic databases (MEDLINE, EMBASE, COCHRANE, WEB OF SCIENCE, CINAHL, INSPEC,

MATHSCINET and ACM DIGITAL LIBRARY) were searched to investigate if any simulation

methods were used to capture patient flow within A&E departments, as recognised by the

UK National Health Service hospital.

Generally, 25 studies met the inclusion criteria, showing flow process of object patient and

data resources from hospital records. From the study, 16 out of 25 mentioned processes

in A&E departments and the same figure (16 out of 25) mentioned about patients’ data.

Throughout the review, it was found that more than half of the study included Process and

Patient Data in their simulation model. Overall, all the simulations in the review are in accor-

dance to the Healthcare, Hospital and Emergency Department modules, as the review were

conducted for simulation models in A&E bounded by the Healthcare domain. Therefore, five

modules have been selected to be integrated into the next ORF phases.
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Figure 4.4: Identification and Inclusion Criteria

4.3.2 Ontology Discovery

Ontology discovery is a process to find available ontologies based on predefined concepts

to represent the knowledge involved in simulation modeling. The aim of this process is to

find the available candidate ontologies to be integrated into MVSimO as ontology for simu-

lation. During the early stage of this research, an analysis on the type of simulation that best

represents the domain problem in general is conducted. For agent-based simulation (ABS),

codes are developed in PHP and JavaScript to parse JSON data to investigate the movement of

agent or entity in A&E departments. ABS describes the system as constituent units and shows

the interactions between agents Bonabeau (2002). The simulation is constructed to gain ad-

ditional insight into a complex system behavior and to demonstrate the real situation for

decision making. The simulation demonstrated a Sepsis patient within emergency room en-

vironment to determine patient’s duration of stay based on their condition (Bell et al., 2016).

The example of ABS model is shown in figure 4.5.
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Figure 4.5: The example of ABS for Sepsis patient in Emergency Room

While the aim of this thesis is to obtain an ontology for simulation that represents the pro-

cess flow of multiple departments in emergency unit rather that the behavior of one unit

or department, ABS is not suitable . DES is more suitable for the reason that the underly-

ing concepts of DES, convey the fundamental simulation paradigm (Guizzardi and Wagner,

2010),and it focuses more on queuing especially in state changes in discrete time and model-

ing operations and for analysis of patient flows (Bedoya-Valencia and Kirac, 2016; Cimellaro

and Pique, 2016). This makes DES more appropriate in modeling a workflow and process

simulation.

Why domain ontology? Benjamin et al. (2006) suggested using domain ontologies in sim-

ulation modeling process for making simulation models unambiguous and consistent. To

obtain a list of existing ontologies that are domain-related, or having a similar structure with

the domain of study, a comprehensive search has been carried out using the databases of

ACM, IEEE, ScienceDirect and Scopus. With keywords: (1) “ontology search”; (2) “ontology

discover” and; (3) “ontology reuse” from year 2011-2017, has resulted in the discovery of

40 papers and the search engines or repositories listed are Swoogle, Falcons,Watson, On-

toSearch, OntoSearch2, OntoKhoj, OntoServer, OntoRank, OntoSelect, SQORE, Sindice, Se-

mantic Search, SWSE, Dome, AktiveRank, Vocab.cc, Yars, BioPortal, Oxford and TONES. Out

of these, 5 most popular ontology repositories have been ranked, based on the number of

appearance in Google Scholar since 2015. These five search engines give a significance result
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with the web URL search using the Google scholar result. The summary of the comprehen-

sive literature search is shown in Table 4.2 according to its popularity and Google Scholar

search result.

From these repositories/search engine, only BioPortal and Ontobee are under active devel-

opment, while Falcon and Swoogle were last updated about 10 years ago and Watson is unac-

cessible. For this reason, the search process is performed only using BioPortal and Ontobee

repositories. A comprehensive search or discovery strategy supports the process of standard-

ization by using the information that is publicly relevant. To ensure the ontologies describe

the considerable amount of data for healthcare and A&E, the ontologies should be about the

domain and reflect the current understanding (Malone et al., 2016).

Search
Engine

URL Google
Scholar
result

BioPortal http://bioportal.bioontology.org/ 588 results

Swoogle http://swoogle.umbc.edu 159 results

Ontobee http://www.ontobee.org/ 131 results

Watson http://watson.kmi.open.ac.uk/WatsonWUI/ 51 results

Falcons http://ws.nju.edu.cn/falcons 29 results

Table 4.2: Google Scholar result

4.3.2.1 Ontology Repositories

With an increasing amount of available ontology on the Semantic Web, however, incorporat-

ing multiple ontologies from multiple sources to support ontology reuse and sharing require

an infrastructure to make the ontologies available for the community. To have current on-

tology knowledge, it is important to search available ontologies from search engines that are

under active development.

Funded by the National Institute of Health of United States, BioPortal supports biomedical
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researchers in The National Centre for Biomedical Ontology (NCBO) to provide access to a li-

brary of ontologies and terminologies 1, via the NCBO web services. The web services enable

multi-layered access to ontology data, capturing all terms in the ontology and extracting the

metadata of the term (Whetzel et al., 2011). It provides the opportunity for the community

to engage by evaluating, adding new content and submitting a review. BioPortal, a service-

oriented architecture, stores more than 700 ontologies with almost 9 million classes, from

various groups, not only from the biomedical organizations, but also the non-biomedical or-

ganizations. With access to multiple formats of ontologies and terminologies: Web Ontology

Language (OWL), Resource Description Framework (RDF), Open Biological and Biomedical

Ontologies (OBO) format, Protégé frames and Rich Release Format, the integrated web ser-

vices contribute to ontology evolution.

The Ontobee 2 program was originated from a Vaccine Ontology (VO) web browser devel-

oped by The He Group based at the University of Michigan Medical School. Ontobee is a

project to support the Linking Open Data (LOD) community to make RDF datasets available

on the internet. The linked-data server mapped searched term to RDF through the web. The

ontologies featured in Ontobee are mostly from OBO Foundry Library 3. The browser re-

sponds to the search requests by SPARQL querying from the RDF triple store. The search re-

sults of the SPARQL queries are given in the JSON format or OWL format to produce machine-

readable RDF files (Xiang et al., 2011).

4.3.2.2 Ontology Selection

The most important thing in selecting an ontology to be reused is understanding the re-

quirements before making a decision to involve any particular ontology. Considering the

integration step has started earlier at the conceptualization level, it simplifies the process

of selecting available ontologies (Pinto, 1999b). The discovery process follows the guideline

developed by Malone et al. (2016), to ensure that the ontology is about a specific domain

1http://bioportal.bioontology.org/
2http://www.ontobee.org/
3http://www.obofoundry.org/
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of knowledge, or in this case an appropriate amount of knowledge to cover the modules.

Assumption was made that BioPortal and Swoogle are contributed by domain experts from

the Semantic Web community and are under active development. Although the guidelines

are for selecting a Bio-ontology, however, its generality and the nature of healthcare domain

makes the guidelines applicable to this research. (see Table 4.3)

Rule 1: The Ontology Should Be about a Specific Domain of Knowledge

Rule 2: The Ontology Should Reflect Current Understanding of Healthcare Systems

Rule 3: The Ontology Classes and Relationships Should Persist

Rule 4: Classes Should Contain Textual Definitions

Rule 5: Textual Definitions Should Be Written for Domain Experts

Rule 6: The Ontology Should Be Developed by the Community but Not Incapacitated by It

Rule 7: The Ontology Should Be under Active Development

Rule 8: Previous Versions Should Be Available

Rule 9: Open Data Requires Open Ontologies

Table 4.3: Rules for Selecting a Bio-Ontology (Malone et al., 2016)

Modules obtained from domain conceptualization : “healthcare”, “hospital”, “emergency

department”, “process” and “patient data”, are used to perform ontology search using se-

lected repositories, the search returned 31 results for BioPortal and 23 results for Ontobee

(see Figure 4.6 and 4.7). From the total of 54 ontologies minus duplicate ontologies from the

same keywords, only 7 ontologies fit the criteria as outlined by Malone et al. (2016). The list

of 7 the selected ontologies is shown in Table 4.4
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Ontology Name
1. (HEIO) Regional Healthcare System Interoperability and
Information Exchange Measurement Ontology
2. (OMRSE) Ontology of Medically Related Social Entities
3. (GENEPIO) The Genomic Epidemiology Ontology
4. (OOSTT) Ontology of Organizational Structures of Trauma centres and Trauma systems
5. (TRIAGE) Nurse Triage
6. (TRANS) Nurse Transitional
7. (RNPRIO) Research Network and Patient Registry Inventory Ontology

Table 4.4: List of Selected Ontology

Figure 4.6: Result from BioPortal

4.3.3 Ontology Merging and Integration

The search for ontology reuse aims to provide a list of ontologies which are relevant to the do-

main requirements. The ontologies have provided the researcher with a representation, on-

tology definition, classes, data and object properties, as well as relations between the classes.

Further on, the reuse process is completed with the merging and integration of the candidate

ontologies into an application setting as stated in the conceptual model. Technically, it will

produce a new final ontology built by importing candidate classes into a new ontology. The

final ontology is called the Minimal Domain Ontology (MinDO). Top-down approach is used
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Figure 4.7: Result from Ontobee

to create classes, by introducing the higher-level class first, then the medium-level class and

the lower-level class. Information extraction is conducted using the Protégé 5.1.0 4, in the

following steps:

• Input: Selected ontologies

• Steps:

1.1 Load URI or Ontology file (owl or RDF/XML) into Protégé.

1.2 Analyse each class, object, property and instance of the class

1.3 Define the relationship between the class and modules described in the conceptual

model. 1.2 Get all objects, instances, classes and properties (instance if any) of

the class 1.3 Load ontology objects, instances, classes and properties

• Output: Ontology classes, instances, properties and relations

The extracted classes for a manual ontology development is shown in Table 4.5. The manual

development of the new ontology is performed by importing selected ontologies into Pro-

tégé. The imported ontologies displayed the direct and indirect imports for the active (final)

ontology. The ontologies are loaded into Protégé by loading its RDF/XML file. The location

or hyperlink where the ontology is loaded from is shown. Later the selected classes are in-

4https://protege.stanford.edu/
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tegrated and rearranged accordingly to fit the domain and application specification require-

ments. Class re-definition started with the general class of the domain, ’Hospital’ followed

by ’Process’ class and ’Role’ class. After the classes were aligned, the relationships between

the classes were added.

The steps performed to obtain the final ontology are as follows:

• Input: Selected ontology

• Steps:

1.1 Import ontology elements from the selected ontology (classes or properties)

1.2 Create a new class(’Hospital’ > ’Process’ > ’Role’)

1.3 Re-arrange the class and remove class redundancy according to the process flow.

1.4 Add a new property (object property, data type property) and annotation.

1.5 Save as a new ontology.

• Output: Final ontology (MinDO)

Figure 4.8 shows the classes in the final ontology, MinDO, with Hospital, Process and Role

classes. See Appendix A for the full version of MinDO.
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Ontology Class Modules Representation

HEIO ’Electronic Health Information Type’ Hospital

OMRSE ’health care facility’
Healthcare; Hospital;

Emergency Department

OOSTT process
Process;

Emergency Department

Nurse Triage Nurse; Patient; Triage_Nurse
Process;

Emergency Department

Nurse Transitional

Bed_Occupancy_Indicator;

Nurses_Dependent_Role;

Nurse_Independent_Role;

Nurse_interdependent_Role;

Referrals

Process;

Emergency Department

RNPRIO Patient_Population Patient Data

GENEPIO
Organism datum;

’personal health datum’
Patient Data

Table 4.5: List of Extracted Classes

Figure 4.8: MinDO Classes
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4.3.4 Ontology Evaluation

Instantiation can be viewed as an existing implementation of a framework, and is used to

evaluate constructs, models and methods (March and Smith, 1995). To meet the objective of

this iteration, the framework was developed and implemented following the steps to search

for ontology for reuse. The evaluation of this process was made by assessing the usefulness

of the framework in conceptualizing the domain, discovering the ontologies, selecting the

ontology, as well as merging and integrating the ontologies, leading to the development of

the final ontology. For this research, the aim is to evaluate the structural, functional ade-

quacy, compatibility, operability and quality of the final ontology. The process measures the

ontology for its consistency, tangledness, degree of accomplishment of its functional require-

ment, its capability to perform under stated condition, and the efforts needed for using the

ontology. In order to evaluate the quality of the MinDO, a SPARQL query was formulated for

subclass count, class hierarchy, direct subclass and superclass, the length of path between

nodes, and the class annotation. Example in Table 4.6 shows a snippet of the SPARQL used

to calculate the path between classes.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

select ?super ?sub (count(?mid) as ?distance) {

?super rdfs:subClassOf* ?mid .

?mid rdfs:subClassOf+ ?sub .

}

group by ?super ?sub

order by ?super ?sub

Table 4.6: Snippet the SPARQL Query: To calculate the path between classes
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Based of the deduced criteria in the domain requirement, the ontologies selected should ac-

complish the task as modules in a simulation modeling environment, the completeness of

the final ontology is determined by having the classes represented by the reused ontolo-

gies. OQuaRe evaluation metrics are used: Tangledness (TMOnto); Annotation Richness

(ANOnto); Relationships per class (INROnto); Number of Children (NOCOnto); Number of

properties (NOMOnto); Lack of Cohesion in Methods (LCOMOnto). The metrics were used in

association with OQuaRe evaluation subcharacteristics. After the characteristics were evalu-

ated based on the metrics, the values are ranged from 1 to 5; where “1 means not acceptable,

3 is minimally acceptable, and 5” “is exceeds the requirements”(ISO25000, 2005). The evalua-

tion metrics used are as follows:

• Tangledness (TMOnto) TMOnto=Σ| RCi| / Σ|Ci|-Σ |C(DP)i|;

• Annotation Richness (ANOnto) ANOnto=Σ|ACi| / Σ|Ci|

• Relationships per class (INROnto) INROnto=Σ| RCi| / Σ|Ci

• Number of Children (NOCOnto): NOCOnto=Σ| RCi| / (Σ|Ci| -| RThing|)

• Number of properties (NOMOnto) NOMOnto=Σ| PCi| / Σ|Ci

• Lack of Cohesion in Methods (LCOMOnto) NOMOnto=Σ| Length(path(|C(leaf)i|))/m

Ontology evaluation is performed to assess the functional adequacy and quality of the on-

tology for reuse that has fulfilled the structural, functional adequacy, compatibility and ad-

equacy characteristics. The characteristics are based on the OQuare Quality Model (Duque-

Ramos et al., 2011). The model adapted the SQuaRE characteristics to be applied into the

ontology quality. The evaluation metrics used in this iteration are intended to satisfy the

OQuare Quality Model characteristics. Based on a complete description of the OQuaRE Qual-

ity Model 5, The Structural is the characteristic for formal and semantic ontological proper-

ties. The capability of the ontologies to provide concrete functions, the appropriateness for

its intended purpose (Stevens and Lord, 2009) is measured by its Functional Adequacy. The

5http://miuras.inf.um.es/evaluation/oquare/Contenido.html
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Compatibility and Operability characteristics are to evaluate the ability of two or more on-

tologies and the effort needed for using an ontology respectively.

Table 4.7 shows the OQuaRe scores for the characteristics and metrics used in evaluating the

quality of MinDO. The evaluation of a particular characteristic and the association metrics is

important in understanding how the quality of MinDO is being measured. OQuaRe adopted

the Compendium of Software Quality Standards and Metrics (Lincke and Löwe, 2007) for the

association between metrics and the scores for each characteristic. The scores for each met-

rics were transformed into a 1-5 range before the score for each characteristic was obtained.

The weighted average of the scores of all the quality characteristics was calculated for the

overall quality of MinDo following the formula:

• x = (w1x1 + w2x2 + ... + wnxn) / (w1 + wi + ... + wn) Where, wi are weights and xi are values

The weighted average for the OQuaRe Score (Refer Table 4.7) is 4.25. The OQuaRe quality

model does not define the quality level of the evaluated ontology, but describes the main

feature of the ontology (Duque-Ramos et al., 2011).

Characteristics Metrics Values Score

Tangledness (TMOnto) 7.167 2
Structural

Annotation Richness (ANOnto) 159% 5

Annotation Richness (ANOnto) 159% 5
Functional

Relationships per class (INROnto) 0.95% 5

Number of Children (NOCOnto) 1 5
Compatibility

Number of properties (NOMOnto) 0.413 5

Number of Children (NOCOnto) 1 5
Operability

Lack of Cohesion in Methods (LCOMOnto) 1.465 2

Table 4.7: OQuaRe Score
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4.4 Framework Evaluation

This section concludes ORF by discussing the framework evaluation following a study by Ven-

able et al. (2016).

4.5 Learning Outcome

The primary points of learning are:

• Modules integration may identifies ontology integration possibility (Pinto and Martins,

2001). This agrees to the hypothesis that domain fragments add domain knowledge

into the final ontology to provide a structure to the final ontology (SIMPERL, 2010).

The identification of modules as knowledge representative are relevant for this study,

as no prior knowledge is required about the ontologies but the identification allows

the organization of MVSimO into thematic-based concepts that will be understood as

relevant domain knowledge.

• Usually, a decision tree is built after the application of specific objectives specified by

a modeler or an ontology engineer to determine the characteristics required in the ap-

plication setting (Sure et al., 2002; Benjamin and Graul, 2006). Rather than having to

encode information multiple times to make decisions in different application settings,

the idea of modules is to have revisable domain elements, which can be put into several

uses such as ontology integration, evaluation and maintenance.

• It is clearly evident that there are duplications in ontology and classes of ontology se-

lected, which can be dealt at different stages of the ontology reuse process. The first

option would be to remove the redundant ontology with the same search keyword.

Involving the manual selection at an earlier stage to resolve redundancies before the

ontology was actually built can result in more accuracy. Second would be to remove

redundant and unaffiliated classes during the merging and integration process after

list of the classes, instances, properties and relations are derived. At this stage the re-
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moving activity is carried out in a stricter manner before they are added to the final

ontology, to eliminate most of the duplicity created in the new relations and concepts.

This could potentially result in achieving a higher precision ontology.

• As illustrated in the sample taken from the merged final ontology, MinDO in Figure 4.8

Hospital, Process and Roles are the super-classes from the selected ontologies, the sub-

classes that fall under these classes might be unrelated. At this stage, manual prunning

can refine the final ontology by eliminating the duplication or undesirable classes and

links concepts in different ways to provide more modeling possibilities. An automatic

refinement based on the exact string matching can also be done to perform deeper on-

tology merging to accurately check for the existing concepts before they are added into

the ontology. Hence, integrating the automatic refinement with ontology matching

techniques before the ontology merging is a desirable improvement that should lead

to the elimination of the majority of the redundant concepts. This should also reduce

the efforts of the ontology engineer in the pruning step.

• The merging and integration of the final ontology is an iterative process. Ontology

elements such as classes, properties and instances can be later refined once new on-

tology is selected during the ontology selection process by the domain expert. The

refinement process in every part of the ontology reuse framework allows customary

requirements and feedback for the reuse process to evolve. This enables an efficient

knowledge representation scheme to allow for the designer to make better-informed

decisions (Chandrasegaran et al., 2013).

• The evaluation of the final ontology requires manual identification of desirable and

undesirable concepts beforehand. This is performed during the refinement in the on-

tology merging and integration phase. The total number of classes, instances, proper-

ties and relations are determined by the manual identification. The number changes

accordingly, therefore, the evaluation scores might vary. Eventually, the OQuaRe qual-

ity model that is used to evaluate the quality of MinDO does not discuss the ‘level’ of

the quality but rather, focuses on defining the characteristics of the ontology
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4.6 Summary

This chapter validates the theory of this research, that reusing structured domain knowledge

as modules to represent sub-ontologies may lead to the building of a new ontology. This iter-

ation contributes to an improved ontology reuse framework. A formal definition of the out-

put of the phases consisting of the framework is provided. Another main contribution of this

chapter is the thorough ontology discovery and the selection processes to prove the applica-

bility of the candidate ontologies, despite the inexistence of experts’ opinion. The evaluation

has demonstrated that there is enough domain knowledge in MinDO. The approach adopted

in ORF has proven to be efficient in reusing domain ontologies and building new ontology,

according to domain and application specification requirements. Overall, the method has

proven to be efficient by introducing the new technique of module integration that not only

guides the domain study but explicitly justifies the choice of underlying modeling decisions.

The learning that emerged from this iteration highlights a number of issues and challenges

that can be developed to direct future research.
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Chapter 5

Iteration 2

5.1 Introduction

Classes and properties are basic elements provided through ontology languages irrespective

of the underlying formalities. Data from the real system complements the semantic meaning

in ontology by using its relation to represent ontology properties. In simulation modeling

of A&E, the process-element related semantics from the data can disentangle the scope for

interpretation connected with the use of natural language and improve simulation ability.

In studies by Noy et al. (2001); Labrousse and Bernard (2008) as discussed in Chapter 2, the

structural and functional decisions to model an ontology-based simulation are derived from

the understanding of real-world system processes. Therefore this iteration has conducted

process mining and formal concept analysis to extract the formalism of A&E processes. The

aim of this iteration is to syntactically and semantically discover the attribute relation from

semi-structured data without the involvement of experts’ judgement (Benjamin et al., 2006;

Mohiuddin et al., 2017a). This discovery process is an attempt to prevail in the definition

of Minimal Viable Simulation Ontology (MVSimO) as a specification of simulation modeling

conceptualization by continuing the effort done in Iteration 1 using Formal Concept Analysis

(FCA).
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The processes started with the introduction of the FCA as a mathematical method involving

semi-structured qualitative data; followed by the formal context acquisition in a form of cross

table from the domain requirement understanding; concept lattice and implication basis

generation; as well as attribute exploration to select the implication basis convenient to the

context. Here attributes relations are identified based on the output of the FCA and these

representations are then utilized for the semantic enrichment of MVSimO. The attributes

relations are instantiated using FCA-Relation Discovery Methodology (FDiMe) that is used

to develop MVSimO for simulation modeling in the next iteration.

This chapter is structured as follows: Section 5.2 provides the research design and the re-

search outputs for this iteration. Section 5.3 describes the incorporated elements that con-

tribute to the concept analysis in the perspective of; Discrete-event Simulation (DES) in the

A&E department. Section 5.4 presents the building and development of the design artefacts,

FDiMe - illustrating and detailing the notion of concept exploring theory; including a formal

context formation in a representation of a certain, well-defined sense and rigorous knowl-

edge extraction. Section 5.5 discusses the attribute exploration of implication basis to repre-

sent the domain. Section 5.6 describes the validation of the research outputs. The learning

outcome of this iteration is presented in section 5.7, and finally, the chapter is summarized

in section 5.8.

5.2 Design Science Research and Output Artefacts

As discussed in Chapter 2, a collaboration technique of process mining and ontology de-

velopment works to have a deep understanding of the domain (Verdonck et al., 2018; Wray

and Eklund, 2014). In sharing a common understanding, an ontology architecture provides

a connection between multiple domain data resources (Kettouch et al., 2015). The purpose

of this Design Science Research iteration is to build an FCA-relation discovery methodology

by incorporating the mathematical analysis funded by FCA to a set of healthcare data which

later complements the ontology acquired from the previous iteration to build the MVSimO.
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The methodology necessitates finding objects and attribute relations in the A&E data. This

iteration extends the framework in Iteration 1 to include techniques for concept exploration

by applying the FCA theory of lattices and implication basis. As mentioned in Chapter 2, FCA

is used to organize knowledge and enriching it using Web Ontology Language (OWL) to trans-

form information into reusable knowledge and also to identify conceptual structures among

the dataset. This method allows for the discovery of fundamental concepts and relations in

real dataset, as well as support ontology development in a way suitable for knowledge ex-

change, information retrieval, and in the context of this research - ontology for simulation

modeling. This chapter proposes a methodology for objects-attributes relations task and se-

mantically link the relations to ontology knowledge gained in the previous iteration in the

quest for answering the question of - “How to generate detailed healthcare processes from

pathways and data?”. Figure 5.1 shows the research iteration for Chapter 5.

Figure 5.1: Research Iteration for Chapter 5
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5.2.1 Design Research Artefacts

This chapter introduces a concept exploration technique to acknowledge object-attribute re-

lations in semi-structured data. The approach executes the segregation of knowledge map-

ping into blocks. The first step started with the pre-processing of the A&E data from Hilling-

don Hospital. During this step, a modeler should know clearly the real-world problem that

needs to be modeled or analysed. The mapping of objects and attributes onto the cross-table,

which is also known as the formal context, helps to construct the data in the way intended by

the modeler, so that it conforms to the simulation requirement. Secondly, formal concepts

are derived from the formal context using the FCA software. Finally, the third phase involves

the disaggregation of the knowledge captured from the analysis, and correlations between

the process, as well as the analysis result are shown. To achieve the objective, this iteration

executes the steps in Table 5.1.

Steps Method Input Artefact Output Artefact

1. Data
preprocessing

Data
generalization,

Plain Scaling
A&E Data Refined Data

2.Formal context
mapping

Pathways mapping,
Line of Best Fit

Analysis

Refined data
A&E pathways

Cross-table
STP Map

3.Formal concept
exploration

Concept Analysis
using ConExp

and FCART

Formal context
STP Map

Formal concepts
Implication basis
Concept Lattice

4.FCA-Relation
transformation

Process
relation

extraction

Implication
basis

Process relation

Table 5.1: Iteration 2 - Input Output Model
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5.3 Artefact Building and Development

The proposed FCA-Relation Discovery Methodology (FDiMe) is developed in a four-phase

approach. In Figure 5.2 depicts the complete process of the methodology development.

The contextual or logical structure of the data is generated because the data is required to

be in a standard form, known as the formal context. (Ganter and Obiedkov, 2016). Each

step on FDiMe is further described in the following subsections which starts with data pre-

processing; formal context formulation process and cross-table development; formal con-

cept generation using the FCA software and; the FCA-relation transformation of the set of

implication basis. The application of the methodological framework using the real A&E data

collected from April 2014 until March 2015 to replicate the domain is detailed and demon-

strated in the following subsection.
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Figure 5.2: FCA-Relation Discovery Methodology (FDiMe)
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5.3.1 Data Pre-Processing Phase

Before the start of FDiMe, the A&E data are pre-processed by first, normalizing the column

name 1 2 of the dataset into a more understandable name (See Appendix B for the list of

column name, Normalized Data Element Name (DEN) and its description), and second, by

removing the null and redundant records. The many-valued columns are then transferred

into one-valued columns using the plain scaling method. The plain scaling method substi-

tutes attributes in the original many-valued context with a set of columns representing each

one of the allowed values for the attributes (Jiang and Chute, 2009). The process converts

25 many-valued columns to 98 single-valued columns. The application of the plain-scaling

method enables multiple attributes to be grouped accordingly. For example, EMAttendance-

Date is grouped into weekdays and sub-grouped into two 12-hour periods. The first 12-hour

period is designated as a.m. It runs from midnight to noon. The second period, marked p.m,

covers the 12 hours from noon to midnight. Table 5.2 shows examples of many-valued to

single-valued transformation.

5.3.2 Formal Context Phase

The formal context of the data is illustrated using a rectangular table, a cross-table with one

row for each object (represents Patient ID) and one column for each attribute, having a cross

in the intersection of row x with column y if and only if object x has attribute y. The formal

context phase adopted here is a process of describing data into a more understandable con-

text according to this research. During this phase, the Line of Best Fit analysis is conducted to

ensure that useful and manageable (Andrews and Orphanides, 2010) lattices are generated

and to avoid any exceptions during the analysis by demonstrating a correlation between the

number of implication and the number of objects using samples of 50, 100, 200, 300, 400 and

500 objects.

1http://www.datadictionary.nhs.uk
2https://www.nhscc.org
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Process Element Extraction

The data provided for this research came in the form of comma-separated value (CSV), a

and manual semantic selection is conducted to improve the representation of the data for

simulation modeling purpose. For this research, the aim is to model patient flow in the A&E

thus, discrete-event simulation is selected to show a discrete sequence of events in the de-

partment. The Space-Time-Process (STP) mapping process helps to derive all of the possible

process element that will lead to MVSimO and simulation modeling. The process flow from

the A&E pathways is used in this phase as the guideline. To obtain the STP map, the pro-

cess element based on space, time and event has adopted the dataset analysis as proposed

by Sider et al. (2001) and De Cesare et al. (2014), for the ontology development method.

5.3.3 Formal Concept Phase

The FCA-relation discovery technique in this methodology describes the process of gener-

ating the concept and its implication basis; and incorporating the elements that contribute

to the discrete-event simulation modeling to produce MVSimO. The technique requires an

understanding of the domain and the research context, as described in the following sub-

sections.

5.3.4 FCA-Relation Transformation Phase

From the set of implications obtained in the earlier phase, relevant implications between the

attributes of the process elements are selected and transformed into a natural language state-

ment and used to represent the class properties in MVSimO. This phase is the assignment of

the concept formalized as process relations to model ontology class properties with a logi-

cal reasoning mechanism (Xiao Hang Wang et al., 2004). Thus the semantic of the process

element formulated in the natural language can be represented formally and in a machine-

processable way through MVSimO. The transformation relation process is conducted using

the first-order predicate - a subject, a verb and an object. For example, from the implication-
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transformed natural language: “patient attended A&E by ambulance; on Friday (PM), assessed

into A&E departments; admitted as lodged patient” can be described as “Patient, attended, by

ambulance; “Patient, assessed, Friday (PM)”; and “Patient, admitted, lodged patient”. The

chosen implications as relations (and their underlying descriptions) are described in more

detail in Section 5.5.1

5.3.5 Methodology Validation

A domain expert is typically used to validate and modify the resulting relation property and

filter out any irrelevant relations or concepts. An implementation of the next stage of MVSimO,

is described in the next iteration. Further validation of MVSimO is made in the simulation

modeling for A&E, which provided the required development environment for implement-

ing the ontology. The user is then able to view the generated ontology, model a simulation

and make any further changes or amendment to the rules or ontology to fit the simulation

purpose.
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Original Column Name Revised Column Name

zNHSNumberPseudo PatientID

ProviderCode HospitalCode

ProviderName HospitalName

zArrivalDateTime ArrivalDate

zEMAttendanceConclusionDateTime EMAttendanceDate

zEMDateTimeSeenforTreatment EMDateSeen

Arrivalmonth ArrivalMonth

YearMonth YearMonth

FiscalYearLabel_1 FiscalYear

CoreHRG CoreHRG

hrg_desc HRGDescription

EMModeofArrival EMModeofArrival

EMModeofArrivaldesc EMModeofArrivalDescription

EMReferralSource EMReferralSource

EMReferralSourcedesc EMReferralSourceDescription

A&E_DepartmentDescription DepartmentDescription

GPPracticeCode GPPracticeCode

GPPracticeName GPPracticeName

Age Age

CCG CCG

EMDiagnosisFirst EMDiagnosisFirst

diag_desc DiagnosisDescription

EMAttendanceDisposal EMAttendanceDisposal

Attendance_disposal AttendanceDisposal

PostcodeSectorofUsualAddress PostcodeSectorofUsualAddress

Table 5.3: Revised Columns Names
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5.4 Implementation of FCA-Relation Discovery Methodology

The initial data has 126,986 rows with 25 columns. For categorisation and generalisation

of the attributes, the column names are revised to a more meaningful name suitable to this

research (Refer Table 5.3), and is transformed into 98 single-valued columns. Columns with a

null record are removed, and rows are randomly generated for the formal context in the form

of cross-table . The basic structures of FCA are context and concept hierarchy. A context is

comprised of a set of Patient ID as objects, a set of attributes, and a binary relation describing

which objects possesses which attributes. As introduced in Chapter 2, the followings are the

formal definitions of FCA:

• Definition 2.1 Formal context

A formal context is a triplet (X, Y, I) where X is a set of objects and Y is a set of attributes

and I is a binary relation between X and Y, i.e., I ⊆ X ×Y . (x,y) ∈ I indicates that object x has

attribute y.

• Definition 2.2 Intent and Extent

Let (X, Y, I) be a context, X’ ⊆ X and Y’ ⊆ Y , the function Intent maps a set of objects to the

set of attributes, whereas the function Extent maps a set of attributes to the set of objects:

Intent (X’) = y ∈ Y ′ | ∀y ∈ Y ′, (x,y) ∈ R

Extent (Y’) = x ∈ X ′ | ∀x ∈ X ′, (x, y) ∈ R

For X’ ⊆ X , Intent (X’) is the set of attributes owned by all objects of X’, and Extent(Y’) is the

set of all objects that own attributes Y’. The two functions form a Galois connection and

formal concepts.

• Definition 2.3 Formal Concept

A Formal Concept C in a context is a pair (X’, Y’) that satisfies Y’ = Intent (X’) and X’ =

Extent(Y’)

i.e., C is a Formal Concept ⇔ for X’ ∈C andY ′ ∈C , Extent(Intent(X’)) = X’,

and symmetrically, Intent(Extent(Y’)) = Y’.

• Definition 2.4 Implications
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An implication A ⇒ B holds in (X,Y,I) if and only if B ⊆ A”, which is equivalent to A’ ⊆ B ’. It

then automatically holds in the set of all concept intents

5.4.1 Line of Best Fit Analysis

From 126,986 rows of data with 98 single-valued columns - 50, 100, 200, 300, 400 and 500

objects are selected to produce six cross-tables. Each cross-table represents the Patient ID

in rows and attributes in columns. The number of implications derived from the six cross-

tables are then compared to identify the line of best fit to show the correlations between the

number of rows and the number of implications, as shown in table 5.4. Using FCART soft-

ware, the basis of implications are calculated in 3 cycles - 2,000; 3,000; and 4,000 iterations. At

this stage, no concept or implication is selected because the purpose of the analysis is to de-

termine the best approximation number of rows to be selected to represents the data set, and

to determine the correlation between the number of rows and the number of implications.

The line of best fit is produced by the following steps:

• Step1 Calculate the mean of the x-values and the mean of the y-values

X =

∑n
i=1 xi

n
;

Y =

∑n
i=1 yi

n
;

• Step 2 The following formula gives the slope of the line of best fit

m =

∑n
i=1(xi −X )(yi −Y )∑n

i=1(xi −X )2

• Step 3 Compute the y-intercept of the line by using the formula

b = Y −mX

• Step 4 Use the slope m and the y-intercept b to form the equation of the line

From the steps, table of 5.4 is produced with;

Slope = 0.005390795 and Intercept =15.50737808

From the graph generated, as shown in 5.3, the number of rows affect the number of impli-

cations; more rows generate more implications. Considering the data is quantitative data, by
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margin of error at a 95% confidence level, 500 objects are selected as samples to best repre-

sent the data and the result is used throughout this research. 3.

No. of Rows 50 100 200 300 400 500

Average Lines 16.167 15.667 16.633 16.8 17.933 18.2

Table 5.4: The Average Implications per Cycle

Figure 5.3: Line of Best Fit

5.4.2 Space-Time-Process Map

The graphical representation of the process elements is mapped to show the process flow in

A&E department based on the generic pathways. The Space-Time-Process (STP) graphical

representation with the textual description of the process activities and the roles involved

in each activity is depicted in Figure 5.4. From the map, the processes are separated into

blocks of activity and entity. The blocks are lined into sequence order to resemble the flow in

A&E. STP map provides the first insight on how to model a simulation from a modeler’s per-

spective. From the pathways, the processes are categorised into 4 main processes: Check-In,

Assessment; Treatment; and Outcome. Each process block is labelled as process, activity and

3https://help.surveymonkey.com/articles/en_US/kb/How-many-respondents-do-I-need
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entity. The process-event block illustrates each event that will be modeled for the discrete-

event simulation.

Figure 5.4: A Space-Time-Process of ’Patient Flow in A&E Departments’

The process begins with a patient check-in, either by walking to the hospital or by using

an ambulance service, patient then waits to be assessed by a nurse before proceeding to

the triage assessment, receives treatment by a nurse or a medical staff, and finally waits for

the outcome of whether to be discharged from the hospital or admitted to the ward. The

processes take place in their designated space or location in the department within a specific

time. During the transition from one process to another, the patient has to wait in a queue.

This suggests a delay in the process, for example between t2 and t3 of the process Check-

In/Assessment, the event of Wait for Assessment with the entity of Patient occurs. In another

example between t3 and t4, the entity of Patient and Nurse are involved in the process of

Assessment for Urgency Assessment event. During this event, there is also a sub-event which

occurs in a sub-location in the department. The Triage process is conducted by a Triage

Nurse to run Priority Identification.

From a 3D perspective, STP determines which terms such as space, time and event, in de-

ciding the way the process element can be extracted and modelled. Starting at this point, all

steps taken are based on STP because it maps the outline process of A&E; determines object’s

roles and boundary, as well as the level of details; and models events for the discrete-event
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simulation. In MVSimO, there are various kinds of objects, properties and relations between

kinds and their instances (Benjamin et al., 2006). STP acts as a bridge for the modeler and

the user, and translating the real-world knowledge into a process definition. The rationale

behind STP in this iteration is to identify the process elements which can then be applied

in the conceptual exploration to extract suitable concepts, and their taxonomic and non-

taxonomic relation.

5.5 Conceptual Exploration

In this research, FCA is used to determine all the concepts of a given context, and to de-

scribe the dependencies between the attributes. Focus is given to two algorithms; first, to

produce a relevant concept and second, to construct the minimal set of implications. The

conceptual exploration process emphasizes on the process in the A&E thus the minimum set

of attributes are determined to define the process concepts and its hierarchy in the formal

context (Yan et al., 2015). For the definition of formal concept in FCA, refer to subsection 5.4.

Initially, the conceptual exploration using FCART, with 500 objects and 98 attributes has gen-

erated 6920 concepts (Refer figure Figure 5.6). FCART returns all 6920 concepts describing

pairs that satisfy all objects (Patient ID) sharing all attributes (Intent) and all attributes shared

by all objects (Extent). The concepts generated at this stage included all the attributes with-

out focusing on attributes with process elements only. This is performed earlier to determine

how the number of objects affect the number of implications, therefore 500 objects are se-

lected for concept extraction.

The formal concept extraction process comprised of four steps that are applied to object and

attributes from the cross table to describe the processes in A&E department. Firstly, a set of

process elements from STP - Check-In; Assessment; Treatment; and Outcome are compared

semantically to find any associated elements from the data. The elements can be process

name, process entity, process date and time, and process location according to STP. Here

the attribute reduction is performed to reduce the number of attributes when the number of
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Patient ID remains. The attributes selected are shown in Figure 5.5. This is to obtain con-

cepts with process-related attributes. Concept reduction by reducing the attributes makes

implicit knowledge discovery easier, and also makes the representations of implication basis

more process-oriented. The reduced concepts focused on process element by including the

attributes of:

Age (Age)

EMAttendanceDate (Attendance Date/Time)

EMModeofArrivalDescription(Mode of Arrival)

AttendanceDisposal (Outcome - Admitted or Discharged)

DepartmentDescription (Department)

Figure 5.5: The Selected Attributes

Secondly, after selecting the process element by its column, the initial formal context is re-

duced giving a more accurate concept of the domain. Figure 5.7 shows the formal context of

500 objects and 32 attributes after the concept reduction generated using FCART. The con-

cepts have been reduced to 1019 concepts. As a result, five concepts with two or more objects

are selected from the reduced concepts for concept lattice development. Table 5.5 shows the
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list of selected formal concepts in natural language statement. After the initial concepts are

reduced to get the concepts that contain process elements, a new formal context and concept

lattice is generated using ConExp.

Formal concept, expressed in natural language No.of Object

Fri: pm, MOA:Brought in by Ambulance, Dept: A and E, Age: 65 and

above, AD:Admitted to hospital bed/LODGED Patient
3

Thu: pm, MOA:Other, Dept: Mount Vernon MIU, Age: 65 and above,

AD: Discharged - did not require followup
2

Sun: pm, MOA:Other, Dept: UCC, Age: 0-4,

AD: Discharged - did not require followup
2

Mon: am, MOA: Brought in by Ambulance, Dept: A and E,

Age: 19-64, AD: Admitted to hospital/LODGED Patient
2

Wed: pm, MOA: Other, Dept: mount Vernon MIU, Age: 5-18,

AD: Discharged - did not require followup
2

Table 5.5: Selected Formal Concepts
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Figure 5.6: The Formal Context with 500 rows and 98 attributes

Figure 5.7: The Reduced Concepts
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Thirdly, the concept lattice is developed using ConExp. Initially, FCART is used but from

here, an analysis is performed using ConExp software because FCART only support line di-

agrams but not concept lattice, while ConExp on the other hand cannot support large data

for cross-table and formal concept generation. Figure 5.8 shows the formal context for the

selected attributes. The purpose of generating the formal context from ConExp is to gener-

ate a new concept and a concept lattice from the reduced attributes. A concept lattice pro-

vides a hierarchical order visualization between the discovered formal concepts as shown in

Figure5.9. The concept lattice of (X,Y,I) is the set of all the formal concepts of (G,M, I), or-

dered by the subconcept–superconcept relation. For X’ ⊆ X , Intent (X’) is the set of attributes

owned by all objects of X’, and Extent(Y’) is the set of all objects that own attributes Y’.

Figure 5.8: Formal Context with Reduced Attributes

In a cross-table, associating an object to the attributes created a concept hierarchy that can

be visualized using the concept lattice. Based on the definition of concept intent and concept

extent in subsection 5.4, a detailed of concept example of hierarchy as shown in figure 5.10

described that set A contains five objects (Patient ID: 5AED-D8A9-9990-4289; 5572-7DC4-

F411-4433; 7C3A-DFB9-E6EA-4A7E; 8DF0-0177-A3ED-4318; and 1CF1-BA5C-ED6A-4A5E) as

known as extent consists of objects that have all the attributes of the intent, and set B contains

attributes (MOA: Brought in by Ambulance) that all objects in the extent have in common.

Other attributes that fall under B are called its subconcept. Concept intent B and intent B

will lead to the generation of the implication basis in the next section.
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5.5.1 Implication Relation Extraction

From the definition of implication in subsection 5.4, an implication A ⇒ B holds in (X,Y,I)

if and only if B ⊆ A”, which is equivalent to A’ ⊆ B ’. It then automatically holds in the set of

all concept intents. ConExp generates all the implication for the formal context. Figure 5.11

shows 19 valid implications (with one or more objects) for the formal context that implicitly

described the process relation in A&E department and class properties in MVSimO. Transla-

tion of the implication to class properties using the logical reasoning method by (Xiao Hang

Wang et al., 2004), led to the development of a new set of class properties. Considering at-

tribute Age and Attendance Date/Time belonging to Patient class (Subject) in MVSimO, only

attributes Mode of Arrival, Admission or Discharge and Department are taken as class prop-

erties to describe the process in A&E departments. Based on the logical reasoning of the

first-order predicate - a subject, a verb and an object and referring to the classes in MVSimO,

a subject is a class e.g Patient, a verb is a properties-derived implication, and an object is a

class e.g Department.

Figure 5.11: Set of Implications Basis
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Implication Natural Language

<2 >Wed: pm ==>MOA:Other

Dept: Mount Vernon MIU Age: 5-18

AD: Discharged - did not

require followup;

2 patients attended on Wed (pm) also

checked-in by walk in;

received treatment in MIU;

and with discharged no followup

<2 >Thu: pm ==>MOA:Other

Dept: Mount Vernon MIU Age: 65

and above AD: Discharged - did not

require followup

2 patients attended on Thu (pm) also

age 65 and above; checked-in by walk in;

received treatment in MIU; and

discharged with no followup

<2 >Fri: pm ==>MOA:Brought

in by Ambulance Dept: A and E

Age: 65 and above AD:Admitted to

hospital bed/LODGED Patient;

2 patients attended on Fri (pm) also

age 65 and above; checked-in by

ambulance; received treatment in A&E;

and admitted to hospital

<2 >Sun: pm ==>MOA:Other

Dept: UCC Age: 0-4

AD: Discharged - did not

require followup

2 patients attended on Sun (pm)

also age 0-4; checked-in by walk in;

received treatment in UCC; and

discharged no followup

<4 >Dept: Mount Vernon MIU ==>

MOA:Other AD: Discharged - did not

require followup;

4 patients received treatment in MIU

also arrived by walk in; and discharged

with no followup

Table 5.6: Implications to Natural Language

From 19 valid implication, only 11 implications that have all process element - Mode of

Arrival; Outcome - Admitted or Discharged; and Department are selected to represent pro-

cess relation. This is to ensure this step provides as significant results as possible. Valid

implication-translated to natural language statement is summarized in Table 5.6. From the

table, the subject-verb-object predicate are derived. Concisely, Subject represented by Pa-

tient; Verb is represented by Check-in; Treatment; Outcome and Object is represented by

Department; Hospital; Ambulance. From this, properties like Process is takes place at Depart-

ment; Check-in, Treatment, Outcome is a Process and Patient has a Patient ID are derived.
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Figure 5.9: Concept Lattice

Figure 5.10: Concept Intent and Concept Extent
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5.6 Concept Validation

Applying FCA to extract domain concepts and process relations has resulted in the produc-

tion of a hierarchy model of concept lattice that captures the clustered relationship of the

data. The lattices output represent data in an ordered manner of subconcept-superconcept

relation. The translation of statements derived from generic A&E pathways (e.g “Patient

check-in by ambulance”) to ontology-class-property statement (e.g “Process is taking place at

Department”) justify the purpose of this iteration to transform process relation into ontology

class property using FCA techniques. The building and evaluation of the research artefacts is

an attempt to justify the research processes for meeting the objectives of the iteration (March

and Smith, 1995).

The effectiveness of FCA technique in extracting domain concepts and relations are eval-

uated in next iteration, where MVSimO is created to develop an ontology-based simulation

model. The evaluation strategy of this iteration composes of comparing the simulation mod-

eled using MVSimO with an existing simulation model (Castellanos et al., 2017). The artefact

of this iteration, the activity here is the A&E process elements-extraction using FCA that will

be used as MVSimO class properties that need to be evaluated after.

5.7 Learning Outcome

The primary points of learning are:

• Single-valued column is defined based on the application objectives. As illustrated in

the sample taken from Table 5.2 of the many-valued to single-valued transformation,

a many-valued of EMAttendanceDate is transformed to single-valued of day and AM

(Ante meridiem) or day and PM (Post meridiem). This is to minimise the efforts in

building MVSimO, where the grouping will only reflect the relations between one at-

tribute to another as a larger group (of AM or PM), rather than of smaller groups (of

hour or minutes). As the aim of the minimal viable ontology, the research is to operate
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with manageable data that is capable to work successfully through which the learning

can be validated (Ries, 2009).

• The transformation of implication to relation process using the first-order predicate: a

subject, a verb and an object, may lead to the identification of implication-transformed

natural language. Implication basis with one or more objects are selected.

• The formal context is generated twice, first to find the best number of Patient ID to

best represent the relationship between objects, secondly, generated and reduced to

attributes with process elements for a minimal abstraction of the domain. The mini-

mal abstraction may lead to the identification of another type of process that exists in

A&E departments. As for example in subsection 5.5, the focus is on the process after

receiving the treatment (Outcome) - either the patient is being admitted or discharged.

Another process can also be selected, e.g CheckIn, Assessment or Treatment. The selec-

tion of the Outcome process is made based on the availability of the data.

• The concepts from the concept lattices can be used in simulation modeling by pro-

viding the class properties in MVSimO. In order to create a model of object-oriented

approach that complies with the system’s functional requirements that is indepen-

dent of implementation constraints, the requirements are organized around the ob-

jects, which bind both behaviours (processes) and states (data) based on real world

scenario that the system interacts with. The artefacts produced in this phase are the

formal concepts of the data and its taxonomic relations of superconcept and subcon-

cept. Non-taxonomic relations such as is a; has a and is takes place at are also semanti-

cally derived from the implications basis. Apart from that, the Space-Time-Process map

is developed earlier has an influence on the decision in the selection of the process el-

ements throughout this iteration.
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5.8 Summary

This chapter validates the theory of this research, that understanding and abstracting the

domain is essential in making explicit assumptions in modeling a simulation, or in the con-

text of this research, developing a simulation ontology for DES model, understanding and

abstracting the domain is essential. This iteration contributes to a detailed mapping of A&E

departments and integrates the element Space, Time and Process of DES model. The iteration

also upholds the finding in previous iteration with the abstraction of process component to

achieve minimal working research output. The approach adopted in FDiMe has proven to

be efficient in detailing and generating the process relation to be used in MVSimO develop-

ment. Overall, the method has proven to be efficient through the introduction of the process

mining technique to support process relation extraction for MVSimO class properties. The

learning that emerged from this iteration highlights number of issues and challenges that

can be employed to direct future research.
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Chapter 6

Iteration 3

6.1 Introduction

Providing an efficient phase-refined knowledge representation scheme that covers the se-

mantics of the terminology, is one of the challenging tasks in making a better-informed de-

cisions tool (Chandrasegaran et al., 2013; Verdonck et al., 2018; Robinson, 2013). The result

achieved in the previous iteration from applying FDiMe framework on the A&E data followed

by performing the concept analysis, has resulted in the development of a set of process rela-

tions and transformation rules that can be applied to the final ontology - the Minimal Viable

Simulation Ontology (MVSimO). As mentioned earlier in this research, MVSimO is used for

semantic-based simulation modeling for the A&E domain. The process relations extracted

from the previous iteration contribute to the ontology development by providing proper-

ties to the classes. This iteration extends the earlier work by emphasizing the process of ex-

tracting the semantic elements of the A&E processes and MVSimO development. Deriving

semantic elements from existing domain knowledge like ontologies and real dataset descrip-

tions, provides process-oriented semantic representations of the ontological models to reach

its full potential (Bell et al., 2007). Furthermore, it contributes to a detailed practical evalua-

tion of the simulation model, addressing the different aspects of the simulation.
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The rest of the chapter is organised as follows. The chapter starts with Section 6.2 that dis-

cusses how Design Science Research is applied to execute this iteration. Section 6.3 explains

the first mini iteration that introduces the framework for the semantic event elements extrac-

tion that fulfils the realm of Discrete-Event Simulation (DES), called an event. The framework

is structured into three series of operation; Event Interpretation; Event-Content Scoping; and

Event Harmonization. Section 6.4 presents the second mini iteration of MVSimO refinement

and domain expert evaluation, detailing the extraction techniques and the findings. The im-

plementation of the framework and the evaluation measures to evaluate the framework as

the second mini iteration is discussed in Section 6.5. The learning outcome of this iteration

is discussed in section 6.5. Finally the chapter summary is presented in Section 6.6.

6.2 Design Science Research and Output Artefacts

The learning outcome of Chapter 4 and Chapter 5 have directed the development and im-

plementation of MVSimO in this iteration towards proving the semantics satisfactory and

the ability to provide feedback for future ontology and simulation development (Ries, 2009).

In essence, it provides the theoretical grounding for the research, to illustrate how and why

the approaches proposed previously, can be used for simulation modeling. In order to take

this research to the next level, it is vital to validate the generality of the obtained ontolo-

gies, the Space-Time-Process map and the developed process relations by understanding

how and why they are applicable for semantic-based simulation modeling. The purpose of

this iteration as a whole is to achieve a minimal semantic terminology of the domain to be

used for simulation modeling, and applying a rigorous evaluation to the simulation ontol-

ogy developed. The proposed framework demonstrates the formalization of event element-

related semantics, leading to a consistent interpretation and use of existing domain knowl-

edge to develop a semantic-based simulation model. Figure 6.1 shows the research iteration

for Chapter 6.
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Figure 6.1: Research Iteration for Chapter 6

This iteration follows a design science research approach which first identifies the problem

area and its relevance, by suggesting new refinement to the research artefacts (ontologies

and process relations). Second, it builds the framework as a design artefact. These steps op-

erate collectively as one mini iteration. Two artefacts, namely the Event Ontic Commitment

(EOC) and the Event Harmonized Model were produced through the first mini iteration and

finally evaluated the application of the framework through a relevant scenario as the second

mini iteration. This chapter proposes a framework for deriving a semantic event element

from A&E processes, which attempts to answer the query of ”How to build a semantic-based

simulation model?“. The framework adopts the implementation of deriving semantic web

services framework by Bell et al. (2007) in deriving the event semantics. As illustrated in Ta-

ble 6.1, the iterative cycle of this iteration is performed based on the general methodology of

Design Science Research by Vaishnavi and Kuechler (2004).
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Steps Method Input Artefact Output Artefact

1. Event

Interpretation

Real-world

commitment

interpretation

STP map,

Ontologies,

Process

Relations

Event Ontic

Commitment (EOC)

2. Event-Content

Scoping

Incorporation of

classes, properties

and individuals

STP map,

Ontologies,

Process

Relation

Event-Content

Representation

3. Event

Harmonization

Integration and

Semantic Binding
EOC

Event Harmonized

Model, MVSimO

4. Framework

evaluation

Framework

Evaluation Strategy

Framework

Evaluation

Characteristics

Evaluated

Framework

Table 6.1: Iteration 3 - Input Output Model

6.3 Artefact Building and Development

A framework is developed for extracting the semantic content from syntactic A&E pathways

and representing such semantics in ontological models. An analysis of obtaining MVSimO

is carried out iteratively begins with Iteration 1 for decisions to select existing ontologies,

followed by Iteration 2 for domain attributes and process associations, and finally in this

iteration, to develop and implement MVSimO. The framework is based on the principles of

Content Sophistication presented by Partridge (1996) as well as Daga et al. (2005). Content

Sophistication constitutes a process for improving the semantic contents of the system by

providing a model of the domain that focuses on the semantics and relationships of objects

existing in the real world. The framework proposed in this chapter follows the same manner

and provides the basis for enacting the semantics of A&E processes.

The proposed framework addresses three objectives: (1) Semantic derivation of previously

extracted process relations; (2) Representation of the derived semantic in an ontological

106



model; and (3) An integration of process semantic with an existing domain ontological model.

In essence, the framework aims to iteratively develop an ontological model within and across

the domain for Semantic Web. These objectives define the scope and the process of the

framework in the first mini iteration. The process, which drives the discovery and repre-

sentation of semantic contents of the process, is summarized in three series of operations,

Event Interpretation; Event-Content Scoping; and Event Harmonization. The evaluation of

the framework is evaluated in the second mini iteration. The framework incorporates Space-

Time-Process map (refer Figure 6.2) to replicate the A&E domain; and the domain knowledge

from existing ontologies is supported by the process relations from Formal Concept Analysis.

Figure 6.2: A Space-Time-Process of ’Patient Flow in A&E Departments’
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6.3.1 Event Interpretation

Event Interpretation model as shown in Figure 6.3 transcribe the events experienced by a

patient or a medical staff in A&E as described in Space-Time-Process(STP) map that has lim-

ited semantic underpinning. The event in STP is outlined by the process block in space and

time dimensions. Events here are in the form of a process block with the location and the

entity involved during the event. For example, in Hospital space of Check-In process, a de-

scription can be found in STP as a combination of event activity Patient Check-In and Wait

for Assessment performed by the entity of Patient and Nurse. Interpretation of the events are

performed under the capacity to have an effective DES, and its semantic description is en-

hanced through the integration of existing ontology artefacts obtained in Iteration 1.

Figure 6.3: Event Ontic Commitment (EOC)
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Event interpretation aims to add a perceivable semantic description based on its commit-

ment towards the process. This means disentangling and making as explicit as possible the

real objects of which their existence are recognized by. Interpretation activity breaks events

into its fundamental parts, which incorporates DES elements of process, date/time, loca-

tion and resource. Each part is modeled as Event Ontic Commitment (EOC) to represent its

real-world commitment towards a process. The concept of the EOC models adopt the Object

paradigm by Partridge (1996), which was specifically designed to represent real-world se-

mantics in business modeling. Clarifying the ontic commitment of the process enables the

extraction of explicit information that a process commits to. Furthermore, the interpretation

of event into an EOC model as an object allows the object to be reused later in the application

domain.

6.3.1.1 Event Ontic Commitment (EOC)

The minimalism aspect of MVSimO drives this activity to create objects focuses on process,

date and time, location and resource based on the simplified version of the simulation model

in Pidd (2014). The activity has extracted Process EOC, DateTime EOC, SpaceLocation EOC

and Resource EOC. The process name in the EOC represents the process that is going to be

built in a simulation modeling. For this research, the simulation model observes the pro-

cesses of Patient Check In and Patient Assessment processes, which are renamed to getPa-

tientCheckIn and getPatientAssessment respectively. Technically, multiple events are per-

formed to complete the process and patient coded with unique Patient ID served by the

events. For example, Check-in, a Patient waits in a queue for triage (Event 1); Patient be-

ing assessed by Nurse (Event 2); and Patient waits for Treatment (Event 3). Date and time

commitment for the simulation is a time taken in a specific date while patient waits in a

queue. EventDateTime for Patient Check-In and Patient Assessment processes indicate the

time patients enter the queue until the time patients leave the queue. For example, from STP,

the queue between the Check-In and Assessment is represented by the Check-in/Assessment

block with queue a between t2 to t3.
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The location of each event takes place in A&E department is denoted by EventLocation. From

STP, the Hospital represents a bigger physical space where all the processes or events are per-

formed, while the smaller blocks such as the Triage and Treatment Rooms are smaller physi-

cal locations where specific events are performed. The process relations extracted from FCA

shows the ”Process is takes place at Department“ where Department is a location in Hospi-

tal. The resources involved in the execution of the events is denoted as EventResource. In

EOC, the resources commitment for the events are Patient and Staff. Here, Staff can be a

Nurse, a Medical Staff, a Paramedic or a Receptionist. The resources commit to the event

by supporting it, or served by it. By inputting the process relations from the real data, event

interpretation activity reaches its best, in fact, the real input greatly help in clarifying the

meaning of type-level data (Bell et al., 2007).

6.3.2 Event-Content Scoping

The activity of Event-Content Scoping aims at allocating process-dedicated object from EOC

models to existing ontological model obtained from Iteration 1, the Minimal Domain Ontol-

ogy (MinDO). The domain requirement analysis conducted in Iteration 1 revealed an impor-

tant relation and object depictions, thus providing the semantic content of the research area

. The objects identified in the previous activity and represented with their relationships are

scoped to MinDO. The process is conducted using a restricted set of the first-order formula (a

subject, a verb and an object) with reference to Ontology Web Language (OWL), where sub-

jects and objects represent the class; and a verb represents the class’s property. For example,

”Process hasOccuranceOf Event“ is denoted by Class Process, hasOccuranceOf property, and

class Event. At this stage, classes in MinDO is refined and extracted to create a new ontology,

MVSimO

110



6.3.2.1 Incorporating Existing Ontologies into MVSimO

Incorporating MinDO enables the detailing of the relationship of the real world knowledge.

The artefact can be regenerated to incorporate new ontologies to extract new classes and re-

lationships. This step is necessary to allow for the flexibility of the framework, and to enable

the ontology engineer to go back to this step to add new classes and properties and create

new ontology. The process of existing ontology adoption in this activity has resulted in the

creation of new classes, properties and individuals. Apart from class properties from the ex-

isting ontologies, as mentioned earlier, new properties of MVSimO are also derived from the

real-world knowledge through the formal concept analysis. Individuals or instances are from

the A&E data. Table 6.2 summarizes the decisions made and actions taken to incorporate

MinDO into MVSimO. Each object is combined and to create the initial ontological model.

Objects MinDO Class MVSimO Class

Process hasOccuranceOf Event Process
Process,
new class (Event)

Patient codedBy Patient ID
Patient,
Electronic Health
Information Type

Patient,
new class (Patient ID)

Patient waitsIn Queue Patient
Patient,
new class (Queue)

Queue codedBy Date/Time
new class (Queue),
new class (Date/Time)

Event takesPlaceAt Location Facility
new class (Event),
renamed (Facility)
to (Location)

Patient servedBy Event Nurse Designation
Patient,
new class (Staff) with
subclass (Nurse)

Event supportedBy Staff Nurse
new class (Event),
new class (Staff) with
subclass (Nurse)

Table 6.2: Event-Content Scoping

The EOC models identified in the previous activity and represented with their relationship

are scoped into MinDO to illustrate the first version of MVSimO. Figure 6.4 shows the first cut

of MVSimO. The initial version of MVSimO ontological model shows patient flow during the
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events of Check-In and Assessment. It is called the initial model because only two processes

has been interpreted as the example from this research. This iteration enables further de-

velopments with a range of processes to refine the model. Classes from MinDO like Nurse,

Patient, Date/Time and Location derived from MinDO proves the semantic relation from ex-

isting ontology and the EOC models. Further refinement in harmonization of the first-cut

MVSimO ables to create a more detailed ontological model.

Figure 6.4: First-cut MVSimO

6.3.2.2 Event Harmonization

A preliminary analysis of domain requirement performed in Iteration 1 has led to the iden-

tification of Discrete-event Modeling Ontology (DeMO) to support this research. DeMO

bridges the gap among the semantic concepts deduced in the DES world views and software

tools (Silver et al., 2011). In the event harmonization activity, the first-cut domain model is

combined with DeMO. To be more specific, this activity uses a process-oriented ontology
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subclass in DeMO named the ProcessOrientedModel or PIModel. Ontologically this enables

an explicit mapping between real-world DES elements and the domain they serve. The har-

monized model is mapped into DeMo PIModel accordingly, and may be translated later to an

XML and then into a simulation model. This allows researchers, domain experts and mod-

ellers to share a common understanding of the concepts and the relationship of the domain.

Ontologically, harmonized model enables an explicit mapping between a process (with its

parts), and the domain it serves supported by A&E data.

Figure 6.5 presents the harmonization model derived from the previous Event Interpreta-

tion and Event-Content Scoping activities. The getPatientCheckIn and getPatientAssessment

processes are defined within DeMO and their parameter are typed in relation to the respec-

tive classes. From the diagram, Process and Patient classes are derived from MinDO; , Loca-

tion, Event, Staff, Nurse, Queue, Patient ID and Date/Time are new classes or renamed classes

after the Event-Concept Scoping activity. Class Check-In, Assessment, Treatment, Outcome,

Paramedic and Medical Staff are from Space-Time-Process map, and finally Activity, Entity,

Queue, Location, Resources, and Process are mapped-out from DeMO.
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Figure 6.5: The Harmonized Model

The initial MVSimO ontological model (Appendix D - MVSimO Ontological Model) devel-

oped from EOC models shows the processes of getPatientCheckIn and getPatientAssessment.

The processes are defined within DeMO and their parameter are typed in relation to the re-

spective MinDO. The result is a combined semantic graph in which both domain objects are

represented and linked together. Figure 6.6 exemplifies the fragment of mapping of getPa-

tientAssessment event-domain topology provided by the subclasses of DeMO (Process, Loca-

tion, Entity, Queue, and Resource).

114



Figure 6.6: ’getPatientAssessment’ Process-Ontology Topology

6.4 MVSimO Similarity Evaluation

The evaluation of MVSimO is a step to evaluate the functional adequacy and quality of the

ontology provided its context and goal are given (Cantador et al., 2007). The evaluation in-

volves assessing the quality of MVSimO, by conducting an object-by-object analysis to judge

the model. The evaluation process is conducted by comparing MVSimO with an existing

simulation model and measure their similarity. Existing model by Bell et al. (2017) known

as Cumberland model is developed using the same set of data as this research is selected as

an evaluation baseline. The hybrid model focuses on the distributions and routing patterns

before and after A&E departments, tested on a number of different scenarios. Even though

MVSimO model illustrates the process happening in A&E departments, both models assess

the same objects to establish the process.

The model represents the possible strategic change scenario accepting data from System Dy-

namic model (SD) to DES model. The hybrid model focuses on the distributions and routing

patterns, tested on a number of different scenarios. Table 6.3 shows the similarity assess-
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ment of the elements in MVSimO with elements in the Cumberland Model. Each element

in MVSimO is compared to the elements in Bell’s model to assess its representation of real-

world phenomena. The assessment checks the viability of MVSimO in conforming to various

characteristics or qualities that are expected of it. The process of calculating the similarity

starts by manually extracting the elements in both models. Then the elements are catego-

rized into different features as presented in Bell et al. (2017). The categories are: 1) Scope; 2)

Scenario; 3) Data Group; and 4) Objects. Each category is then compared with the elements

in MVSimO model. Finally, element-by-element analysis of both models is conducted to find

the similarities.

116



Category Cumberland Model MVSimO
Scope Before and after A&E During A&E

Discharge by hour getPatientAssessment
Length of stay by hour getPatientCheckIn
Pediatric arrival

Scenario Bed number
Care home support
Ambulatory services
Additional primary care

Data Group Patient Age Age
Arrival Method EMModeofArrivalDescription
Arrival Time EMAttendanceDate

DepartmentDescription
AttendanceDisposal

Objects Departments Process
Demographic Data Activity
Resources Location

Patient
Resources
Queue

Table 6.3: First-cut MVSimO Objects Assessment

In the Scope category, Cumberland model focuses on non-elective care and its associated

services before and after A&E departments capacity. But for MVSimO, the ontological model

aims at the processes within the department. Though each model has diverged into a differ-

ent perspective, both enfolded the same domain structure. For the simplification of this re-

search, no scenario has been presented because the research aims at developing the minimal-

viable ontology as a foundational ontology. New scenarios and the detailed scope or pro-

cesses can be added during the refinement process of a detailed simulation model. Data

grouping similarity of MVSimO elements is categorised based on the analysis of its class in-

stances. The analysis checks whether the instance serves the same purpose of the data group

in Cumberland model. If it does, the column belongs to the instance is considered to be

similar to the data group in Cumberland model. For example, in Cumberland model the Ar-

rival Method matches the EMModeofArrivalDescription column name in MVSimO; with in-

stances of Ambulance and Other. Please see Appendix C for a snippet of A&E Data Instances

of MVSimO classes.
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6.4.1 Similarity Analysis

The evaluation to assess the similarities is conducted by assessing the interception of both

models in term of shared elements. Based on the four categories described in Table 6.3,

the Scope and the Scenario categories of Cumberland model do not have any similarity with

MVSimO due to the fact that each model has different aims and has different level-of-detail.

In the context of assessing the similarity, only two categories are measured; the Data Group

and the Objects. The similarity assessment is evaluated as depicted in Figure 6.7.

Figure 6.7: Harmonized Model

From Figure 6.7, it can be concluded that MVSimO has 83.33% similarity with Cumberland

model (see below) and more elements are extracted from MVSimO.

Number of elements extracted from Cumberland Model = 6

Number of elements extracted from MVSimO = 10

Number of similarities = 5

Similar elements from MVSimO divided by the number of elements extracted from Cumberland Model = 5/6

The percentage of similarity = 5/6 × 100 = 83.33%

118



6.5 Learning Outcome

The primary point of learning are:

• The analysis of the structural layer of MVSimO revealed that there are few elements

in Cumberland model, that MVSimO has missed, and also a few concepts in Cum-

berland that can be improved by MVSimO elements. Identifying new scopes and sce-

narios for intended model may lead to a further refinement of MVSimO, which is also

known as Ontological Improvements (Sabou, 2005). The minimal viable ontology pro-

duced during this iteration is derived from ongoing research processes initiated by the

Ontology Selection Framework (OSF) followed by FCA-Relation Discovery Methodol-

ogy (FDiMe). The preliminary analysis of applying the previous artefacts to produce

MVSimO has led to the identification of the need to extend it to adopt other processes

in A&E domain.

• Clarifying the ontic commitment may lead to the identification of the simulation com-

ponents for reuse. For example, in Figure 6.3 the process of getPatientCheckIn in Pro-

cess EOC is represented by the commitment of Process, Event and Patient ID. This in-

terpretation allows the reuse of getPatientCheckIn as a process component not only for

the DES model within the domain, but also across the domain.

• The existing ontology from Iteration 1, the Minimal Domain Ontology (MinDO) is in-

corporated into the framework artefacts to enrich the semantic content of existing

knowledge. It is clearly evident that the knowledge captured from earlier design deci-

sion has enabled the simulation of scenarios (Chandrasegaran et al., 2013). The union

between the components of the representation and the real world determines the se-

mantic content of the data being represented (Benjamin et al., 2006).
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6.6 Summary

This chapter validates the theory of this research that efficient phase-refined knowledge rep-

resentation schemes, that covers the semantics of the terminology can support data sharing

and reuse across applications. This iteration contributes to an event semantic derivation

framework. A formal definition of the output of the phases consisting of the framework is

provided. Another main contribution of this chapter is a thorough analysis of discrete-event

modeling, mapped into the Space-Time-Process map and offers real-world effects by data

instantiations. The first-cut of MVSimO contains less detailed process and fewer objects

compared to the existing simulation model due to the fact that its creation is without any

expert’s opinion, but yet produced 83.33% similarity. This proves that the framework used

to derive the event semantic in developing the DES model of A&E departments has led to

the creation of a competent model equivalent to the existing simulation model. The learning

that emerged from this iteration highlights a number of issues and challenges that can be

developed to direct future research.
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Chapter 7

Research Summary

7.1 Research Summary

Domain knowledge is one of the important factors for the accomplishment of a good quality

requirements specification, given adequate time and effort for acquiring the knowledge for

building an efficient application for the domain, especially if ontology development is in-

volved. With the emerging ontology-based application in fields such as data semantic man-

agement (Tao et al., 2017; Daraio et al., 2016), context modeling for manufacturing indus-

try (Giustozzi et al., 2018), information modeling for cost estimation (Lee et al., 2014), and

simulation modeling (Traoré et al., 2018), semantically annotated domain knowledge in do-

main ontology provides shared knowledge representation. Domain ontology also allows an

opportunity for interoperability of the application that used the ontology across platforms,

organizations and operating systems Lee et al. (2004); Gil et al. (2016); Daraio et al. (2016).

Apart from that, ontologies offer an efficient knowledge representation scheme in making

better-informed decision (Sernadela et al., 2015a). Despite the growth in ontology-based

application, there is an increasing concern over the sufficient amount of semantic terminol-

ogy in the design phase (Chandrasegaran et al., 2013; Verdonck et al., 2018). Therefore, the

omnipresent adoption of the integration of semantic content at each stage of the ontology-
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based application development may lead to the construction of a well-defined model (Mor-

eira et al., 2016).

To make ontology-based application a practical reality, one needs to have a well-defined and

suitable ontology that fits the application purposes. Building an ontology from scratch, nev-

ertheless, is expensive, time consuming and requires the intervention of experts (Kaiya and

Saeki, 2006; Lonsdale et al., 2010). The significant amount of ontologies has been built during

the last decade (Pinto and Martins, 2000), has resulted in a large amount of ontologies make

available on the web. An ontology provides a knowledge-sharing infrastructure that supports

the representation and sharing of domain knowledge (Park et al., 2011; Pinto and Martins,

2001; Trokanas and Cecelja, 2016; Kamdar et al., 2017). The notion of domain knowledge

as ”small, manageable pieces with strong internal coherence but relatively loose coupling“

(Borst, 1997) leads to the idea of reusing existing ontologies to save time and effort, rather

than building new ones. Consequently, this thesis sought to assist ontologists and simula-

tion modelers in building a time efficient ontological model for simulation modeling.

This aim was achieved by analytically extracting domain knowledge and developing the min-

imal viable simulation-ontology to help minimise the efforts made on modeling a complex

and heterogeneous A&E departments’ system. The objectives as set out in Chapter 1 are

summarised below:

• Objective 1

Critically assess the existing simulation modeling methods, ontology reuse framework,

data analysis techniques and process mining methods to provide an understanding of

the state-of-the-art

• Objective 2

Design and develop a methodological Ontology Reuse Framework (ORF) with a simu-

lation and modeling perspective, and is able to select suitable ontologies for ontology

reuse

• Objective 3
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Produce a Space-Time-Process (STP) map from a set of generic pathways as a means

to better represent the domain

• Objective 4

Analyse generic A&E processes and extract process elements from semi-structured data

• Objective 5

Derive an event-semantics from the process elements extracted to further develop a

Minimal Viable Simulation Ontology (MVSimO) model, and validate the research out-

come with a goal-free evaluation method

In achieving the aim and objectives of the work, Chapter 2 reviewed the varieties of existing

ontology-based simulations, ontology reuse frameworks and applicable techniques of do-

main conceptualization, through the provision of an in-depth understanding of the theory

and practice of currently available approaches. In the context of this research, the literature

provided the basis for proving how ontology reuse and a well-defined domain conceptual-

ization can assist in a faster simulation ontology development processes (Chandrasegaran

et al., 2013; Robinson, 2013; Verdonck et al., 2018; Mohiuddin et al., 2017a). Although apply-

ing ontology to a simulation model is mainly limited to the use of application-specific built

ontology as the foundation, each real-world model is unique with its own set of requirement

specifications. Current research is mainly focused on 1) selecting candidate ontologies from

a set of pre-defined requirements, with users’ involvement for process modeling in system

analysis and design (SIMPERL, 2010; Lonsdale et al., 2010); 2) building a new ontology, or

reusing a whole set of existing ontologies for simulation modeling (Durak and Ören, 2016;

Grolinger et al., 2012; Silver et al., 2011). Consequently, an opportunity for contribution lies

in the introduction of domain modules integration in the conceptualization phase of the on-

tology reuse framework (Chandrasegaran et al., 2013; Verdonck et al., 2018) and the explicitly

detailed domain process mapping for semantic extraction (Mohiuddin et al., 2017a).

Chapter 3 set out the means for achieving the objectives via Design Science Research. This

approach provided a means by which to engage the design problem - providing the neces-
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sary learning to improve the proposed solution, while at the same time enriching the solution

space with the Design Science Research output. The main Design Science Research artefact

is the Minimal Viable Simulation Ontology (MVSimO). The overall research methodology is

executed in incremental iterations, where each of the three iterations forms a design problem

that executes the build and evaluates design activities (Vaishnavi and Kuechler, 2004). The

iterations were designed in a way that; Iteration 1 developed the core framework for the on-

tology reuse, which include a domain conceptualization technique, Iteration 2 extended the

effort performed by adding a process elements extraction method, and Iteration 3 strength-

ened the design artefacts by adding the ontic commitment derivation technique , scoping

it around simulation model topology, and validating the artefacts through an established

model similarity assessment.

Given that the literature review exhibited limited understanding and effort in the proposed

research area, Design Science Research was particularly appropriate, allowing an iterative

learning process to feeding the ongoing understanding of the design problem. More specifi-

cally, in the case of ontology-based simulation, domain conceptualization in the design anal-

ysis was identified as an important stage at the beginning of each cycle. Practical conceptual-

ization methods were not yet well defined, thereby posing another learning challenge in the

knowledge space. The products of Design Science Research included constructs, methods

and models to facilitate the artefacts development. The build and evaluate design activities

were applied in incremental iterations to build and effectively evaluate each of the Design

Research products as illustrated in Table 7.1. The evaluation for the Design Science Research

products was made by synthesizing the Design Science Research evaluation criteria, as the

table illustrates, to create a suitable evaluation method derived from the MVSimO knowl-

edge base as presented in Chapter 3. The evaluation demonstrated a successful application

of each product in the final MVSimO method and tool.
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Chapter 4 described the first iteration, which concentrated on developing an ontology reuse

framework and incorporating comprehensive domain conceptualization for a deeper under-

standing of the domain. An approach of ontology reuse utilizing existing ontology and pro-

motes knowledge sharing among the Semantic web community has been adopted in this

chapter. The Ontology Reuse Framework (ORF) has implemented domain conceptualiza-

tion in the earlier phase of ORF development, defined a conceptual model and derived a set

of modules as ontology search keywords. An initial set of constructs, models and a method

was build and evaluated, meeting Objectives 1 and 2 of the study. The domain conceptual-

ization technique formed the pre-processing stage of Ontology Discovery of ORF. The first

stage laid out the foundation of the ontology reuse framework by fulfilling the domain speci-

fication requirements study. The conceptualization technique applied started by identifying

the problem to be modelled and performing modules extraction based on domain require-

ments. The modules extracted were used as keywords to search for available ontologies using

popular ontology repositories.

A thorough study was conducted to determine the most used and recent ontology repos-

itories utilized by researchers of Semantic Web. As a result of ontology discovery, a list of

candidate ontologies based on modules-derived keywords was obtained, contributing to the

next phase of ORF, the Ontology Selection phase. This early form of ORF output was selected

and evaluated based on the selection guidelines for the ontologies to fit the research purpose.

The final ORF artefact, the Minimal Domain Ontology (MinDO) was revised and customised,

and rigorously evaluated with the OQuaRe Quality Model, where the objectives of this iter-

ation directed the next iteration towards analysing and synthesizing A&E data of Hillingdon

Hospital to form another dimension of the semantic model. This iteration highlighted the

need to further investigate how to extract process elements in A&E departments, and initi-

ated the following Design Science Research iteration that allows for a process relation that

leads to property definitions between ontology classes.

Chapter 5 extended the work to produce Minimal Viable Ontology (MVSimO), and addressed

Objectives 2 and 3 of this study by adding Formal Concept Analysis (FCA) to the A&E dataset
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to derive process relations of the domain. The processes of FCA-relation derivation followed

FCA-Relation Discovery Methodology (FDiMe). This second iteration contributed to another

set of Design Science Research artefacts facilitating the extraction of process relations based

on Space-Time-Process map derived from the generic A&E pathways. The functional aspects

of MVSimO were learned through the application of FCA, where minimising implications

basis is important to focus on the set of implications basis scoped by the research context.

A technique known as Concept Exploration was applied by implementing natural language

statement approach to the set of implication basis to identify the class relation properties. 11

implications with process elements of Mode of Arrival; Outcome - Admitted or Discharged;

and Department were selected to represent the process relations.

An instantiation of FDiMe as process relations was made and used to prove and evaluate the

method. The output of FDiMe, the process elements obtained by following STP scope were

compared to the elements from generic A&E pathways to demonstrate the efficiency and

effectiveness of FDiMe. It was clearly visible that the process relations derived have produced

a more-detailed semantic of the domain by providing properties to the MVSimO classes. It

was evident by the end of Chapter 5, that in order to justify and theorize the development of

MVSimo, a further iteration was required to take the research to the next level.

Chapter 6 addressed Objectives 4 and 5, showing that the effort of developing MVSimO could

be minimised using its validated learning, which were collected throughout the research it-

erations. The effort was continued by Event-Derived Semantic Framework (EDSF) processes

to extract event semantic from the artefacts gathered from previous iterations. The EDSF

has demonstrated that there was enough knowledge from which existing ontologies can be

reused, complemented by domain data can effectively build a feasible simulation ontology.

Overall, the framework has proven to be efficient by introducing the event semantic of do-

main processes. This last iteration used the learning produced by evaluating, theorizing and

justifying the activities, to develop the final ontology, MVSimO for a semantically-rich and

well-represented simulation model. A deeper understanding of how and why the MVSimO

worked was achieved in the last iteration, by performing a thorough evaluation that enabled
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knowledge and learning to emerge while MVSimO was applied and allowed to be refined it-

eratively. Finally, the learning that emerged from the third iteration highlighted a number of

issues and challenges that could be employed to direct future research.

In summary, figure 7.1 provides the clear description of the process that has been developed

throughout this research, ontology reuse and synthesis. Following the typical methodology

of Design Science Research (March and Smith, 1995), the blueprint categorized the tasks for

each iteration as requirement analysis, analysis and design, development and evaluation to

develop research artefacts. In the swimlane ’Ontology Selection’, shows the process of On-

tology Reuse Framework (ORF) development in Iteration 1. The steps taken started with

Domain Conceptualization & Ontology Discovery, followed by Ontology Selection, Ontol-

ogy Merging and Integration, and Ontology Evaluation. The framework produced an initial

ontology, named a Minimal Domain Ontology (MinDO), as the main artefact for Iteration 1.

MinDO complemented the development of MVSimO in the third iteration. In the ’Process

Mining’ swimlane, it explains the activities of extracting the processes or events performed

in the department used Formal Concept Analysis (FCA) approach. Here, the research pro-

duced a Space-Time-Process (STP) map from a set of generic pathways as a means to bet-

ter represent A&E departments to guide the ‘journey’ in extracting the processes involved

in the departments. Formal Context Mapping and Formal Concept Exploration tasks were

performed before the process of FCA-Relation Transformation set of process elements to

be implemented as class properties of MVSimO. Further development of MVSimO is shown

in ’Ontology Development’ swimlane through ’Event Interpretation, Event-Content Scoping

and Harmonization. The validation of MVSimO was conducted by similarity evaluation to

finalize the processes in getting the minimal and viable simulation ontology.
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Figure 7.1: Ontology Reuse and Synthesis Blueprint

7.2 Contributions and Conclusions

Research contributions are categorized according to Design Science Research product clas-

sification (March and Smith, 1995). In overall terms, the contributions of this research are

a novel ontology reuse approach that applied domain conceptualization to transform do-

main knowledge into modules, which played a role as sub-ontologies. FDiMe which was

used to transform process relations to ontology class properties is also one of the contribu-

tions. Within the literature, a number of ontology reuse frameworks have been identified,

but the studies did not specify it in a context of simulation modeling. The Reuse framework

by SIMPERL (2010) provided a guidelines for ontology reuse and, was applied in eRecruit-

ment solution provider environment. A systematic analysis by Kamdar et al. (2017) focused

on reusing ontology with a collaboration of term reuse and term overlap across Biomedi-
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cal Ontologies. A methodological guidelines study by Fernández-López et al. (2013) applied

FCA to a set of axioms and its definition to decide which ontology to be reused. All of these

approaches, however, are aimed solely at existing ontology knowledge and decisions from

domain intervention to assist in decision making, thereby posing a greater challenge for the

ontology engineers and simulation modelers to understand the domain within a limited time

and budget.

More specifically, the main research contributions and their value are detailed below:

• The Ontology Reuse Framework (method) is one of the main contributions made by

this research, and it can be applied in different scenarios in a reuse-oriented ontol-

ogy development lifecycle. The framework emphasizes on ontology selection task as

a main component for effective ontology reuse (Stecher et al., 2008). Identifying ex-

isting ontology with the most similar concepts and being able to refine the selection

decision on which ontology to select require a clear definition of the domain which

can be achieved through conceptual modeling (Robinson, 2006). ORF can be applied

in different scenarios in a reuse-oriented ontology development lifecycle. Therefore,

this approach has the potential to be integrated as the first step of a more complex on-

tology engineering process. The ORF targets different ontology reuse task; (1) Domain

conceptualization, (2) Ontology Discovery, (3) Ontology Selection, (4) Ontology Merg-

ing and Integration, and (5) Ontology Evaluation to have the best represented existing

ontology for the new domain ontology for simulation modeling.

• The Domain conceptualization process (method) The first process in ORF, grasped

domain knowledge to assist in the ontology discovery process, by following the idea

of conceptual model by Stachowiak (1973). The mapping, reductive and pragmatic

features of the conceptual model contributed to the improvement of the modeler’s un-

derstanding of the domain, and focused on only the intended purpose of the model,

resulting in a well-defined specification of the domain.

• The State-Time-Process Map (model) is a novel generic method that enabled delin-

eation of the state of space and the continuous progress of process existence in any
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scenarios. This model contributed to a generic structured representation correspond-

ing to Discrete-Event Simulation standard of modeling. It can be effectively applied

prior to simulation modeling to identify and extract space-time-process relations given

a domain pathway. The literature applied a heuristic strategy for business process gen-

eration as proposed by Sider et al. (2001) and De Cesare et al. (2014), which imple-

mented the strategy with no intention of simulation modeling. The model contributed

by this research is a systematic approach to map a real-world model to its abstraction.

• The FCA-Relation Discovery Methodology (FDiMe) process (method) is an effective

method that can be applied to identify a process and its elements involved in a domain.

The process was aimed at developing a set of transformation rules that can be easily

applied in a process-based ontology development to extract process relations using

FCA approach. The transformation of FCA attributes to ontology class properties using

natural language statement is a novel method specifically tailored to map real-world

phenomena to suitable ontology properties between classes.

• The Event-Semantic Derivation Framework (ESDF) (method) is another contribution

made by this research and can be applied in different scenarios in an ontology devel-

opment lifecycle. The ESDF was aimed at extracting event-semantic for a detailed on-

tological model. Apart from that, the event-semantic model derived is a novel model in

identifying the simulation component for reuse. This model interpretation allowed the

reuse of process component not only within the domain but also across the domain.

• The Minimal Viable Simulation Ontology (instantiation) is an application prototype

that implemented the ORF, the FDiMe and the ESDF. The ontology can be applied to

build a discrete-event simulation model in different scenario efficiently. In the context

of this research, the focus were Patient Checkin and Patient Assessment, but it can also

be applied in other scenarios based on the objectives of the simulation model. The

learned ontological model can be easily pruned and modified by domain engineers

and simulation modelers. The generality of the ORF, the FDiMe and the ESDF in ex-

tracting process, events and its semantic elements was clearly demonstrated through
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the achievement of similar evaluation results in comparison with the Cumberland Model,

with 83.33% of similarity percentage.

7.3 Limitations and Areas for Future Research

Though the research has made a number of valuable contributions to the ontology reuse

for simulation modeling in complex and heterogeneous domain both in the process and the

tools, a number of limitations and challenges have been noted:

• It was noted in Chapter 4 that the concept of ontology reuse as part of ontology de-

velopment by Pinto and Martins (2000) consisted of finding a suitable existing ontol-

ogy to be merged and integrated into a new ontology, the Minimal Domain Ontology,

MinDo. The ORF has successfully discovered and select the ontologies and proved its

applicability by identifying its strength and weaknesses, despite no involvement of do-

main expert. As discussed in Chapter 2, the evaluation using OQuaRe quality model is

used to demonstrate the difference between ontologies in the same domain, which is

useful for supporting users in making informed decisions, thus no global score to the

ontology if there is no comparison. Identifying the difference between ontology within

the same domain by having a gold-standard ontology could lead to certain instances

or criteria to evaluate. This area was not explored in this research and can be further

investigated.

• A number of limitations have been noted in Chapter 5. First, it was observed that in

the data pre-processing phase, the transformation of many-valued column to single-

valued column was conducted manually. With a high frequency of data, the trans-

formation could be performed automatically to save time and effort. This can be ad-

dressed by applying a set of pre-defined rules and generating a programming algo-

rithm. Investigating the effectiveness of the algorithm on the transformation process

is therefore an important area for a research. Second, the concepts were explored to

generate class properties using concept lattice hierarchy notion by Wille (1992). The
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concept lattice generated by ConExp tool was explored with minimal abstraction. A

bigger context may lead to a bigger abstraction of the domain, thus more process rela-

tions can be extracted.

• Chapter 6 also noted several areas in which the approach may be improved. First, the

analysis of the structural layer of MVSimO revealed that there were few elements in

Cumberland model, that MVSimO has missed and also few concepts in Cumberland

that can be improved by the MVSimO elements. This area could be investigated more.

Secondly, identification of new scopes and scenarios for the intended model may lead

to further refinement of MVSimO, which is also known as the Ontological Improve-

ments (Sabou, 2005). Thirdly, learned outcomes from Chapter 4 and 5 to produce

MVSimO has identified the need to extend it to adopt other processes in A&E domain

and opens a possibility of identifying simulation components through clarifying the

ontic commitment in the ESDF. This area was not explored in this research and can be

further investigated. Finally, further development of the first-cut of MVSimO model

using ontology software like Protégé could be performed to create more details and to

be used effectively.

• This research was conducted manually due to time constraint, whereby automated

tool for future research could open more possibilities for the research development

in the area of ontology for simulation. The research aim to design an effective domain

knowledge extraction method that supports the design and development the ontology

for simulation using existing knowledge when access to expert’s opinions are limited.

Through out this research, the processes of design, development and evaluation were

conducted by the same person, hence the evaluation of the final ontology, MVSimO, by

another person could be useful. By following the blueprint (Figure 7.1), the evaluation

can eliminate an inherent bias as other’s knowledge about this research is limited.
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