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Abstract: 26 

This study improved hydrologic data assimilation through integrating the capabilities of 27 

particle filter (PF) and ensemble Kalman filter (EnKF) methods, leading to two integrated 28 

data assimilation schemes: the coupled EnKF and PF (CEnPF) and parallelized EnKF and PF 29 

(PEnPF) approaches. The applicability and usefulness of CEnPF and PEnPF were 30 

demonstrated using a conceptual rainfall-runoff model. The performance of two new 31 

developed data assimilation methods and traditional EnKF and PF approaches was tested 32 

through a synthetic experiment and two real-world cases with one located in he Jing River 33 

basin and one located in the Yangtze river basin. The results show that both PEnPF and 34 

CEnPF approaches have more opportunities to provide better results for both deterministic 35 

and probabilistic predictions than traditional EnKF and PF approaches. Moreover, the 36 

computational time of the two integrated methods is manageable. But the proposed PEnPF 37 

may need much more time for some large-scale or time-consuming hydrologic models since 38 

it generally needs three times of model runs of EnKF, PF and CEnPF.   39 

 40 

Keywords: Hydrologic Prediction, Data assimilation, Ensemble Kalman filte, Particle filter, 41 

Uncertainty  42 

  43 



1. Introduction 44 

 45 

The great increase in computing power and hydrologic data availability has resulted in 46 

increasingly use of hydrologic models in real world applications (Montanari and Brath, 2004).  47 

However, significant uncertainties are associated with rainfall-runoff simulation and it is of 48 

great importance to account for these uncertainties in hydrologic predictions (e.g., 49 

Pappenberger and Beven, 2006; Schaake et al., 2006; Brown, 2010). Uncertainty in 50 

hydrologic predictions may result from several major sources, including errors in the model 51 

structure and model parameters, as well as model initial conditions and forcing data (e.g., 52 

Ajami et al., 2007; Kavetski et al., 2006a, b; Salamon and Feyen, 2010; Liu et al., 2012). 53 

Effective quantification and reduction of these uncertainties is necessary to provide reliable 54 

hydrologic forecasts for estimating designated variables in engineering practice, mitigating 55 

hydrological risks and improving water resource management policies (DeChant and 56 

Moradkhani, 2014; Fan et al., 2015a,c; Kong et al., 2015; Li et al., 2015; Yan et al., 2015).  57 

Previously, a great number of approaches have been proposed for quantifying the 58 

uncertainty in hydrologic predictions (De Lannoy et al., 2007; Parrish et al., 2012; DeChant 59 

and Moradkhani, 2014; Madadgar and Moradkhani, 2014; Su et al., 2014). Sequential data 60 

assimilation techniques are widely used for explicitly dealing with various uncertainties and 61 

for optimally merging observations into uncertain model predictions (Reichle et al., 2002; 62 

Moradkhani et al., 2005a; Vrugt et al., 2005; Clark et al., 2008; Xie and Zhang, 2013; Fan et 63 

al., 2015b). The state variables and parameters in a hydrologic model can be continuously 64 

updated when new measurements are available through sequential data assimilation 65 

techniques, and such a process can highly improve the model predictions. The ensemble 66 

Kalman filter (EnKF) and the particle filter (PF) are two of the most widely used sequential 67 

data assimilation schemes. 68 



The EnKF technique approximates the distribution of the system state using random 69 

samples, called ensemble, and replaces the covariance matrix by the sample covariance 70 

computed from the ensemble, which is used for state updating in the Kalman filter formula 71 

(Evensen, 1994). The EnKF approach is much attractive in hydrologic predictions due to its 72 

features of real-time adjustment and easy implementation (Reichle et al., 2002). It can 73 

provide a general framework for dynamic state, parameter, and joint state-parameter 74 

estimation in hydrologic models. For instance, Moradkhani et al. (2005a) initially proposed a 75 

dual-state estimation approach based on EnKF for sequential estimation for both the 76 

parameters and state variables of a hydrologic model. Weerts and EI Serafy (2006) compared 77 

the capability of EnKF and particle filter (PF) methods in reducing uncertainty in the 78 

rainfall-runoff update and internal model state estimation for flooding forecasting purposes. 79 

Parrish et al. (2012) integrated Bayesian model averaging and data assimilation to reduce 80 

model uncertainty. DeChant and Moradkhani (2014) combined ensemble data assimilation 81 

and sequential Bayesian methods to provide a reliable prediction of seasonal forecast 82 

uncertainty. Shi et al. (2014) conducted multiple parameter estimation using multivariate 83 

observations via the ensemble Kalman filter (EnKF) for a physically-based land surface 84 

hydrologic model. Pathiraja et al. (2016a, b) proposed EnKF-based approaches to detect 85 

non-stationary hydrologic model parameters in a paired catchment systems. 86 

In comparison with EnKF, the particle filter (PF) method also uses random samples (i.e. 87 

particles) to approximate the distributions of the model state. However, these particles are 88 

updated forward by using sequential Monte Carlo (SMC) simulation. The most significant 89 

advantage of PF is that it relaxes the assumption of Gaussian distribution in state-space model 90 

errors, which is required for EnKF. Furthermore, Liu et al. (2012) stated that the PF 91 

approaches can reduce numerical instability especially in physically-based or process-based 92 

models, since they performs updating on the particle weights instead of the state variables 93 



(Liu et al., 2012). The initial implementation of PF is based on sequential importance 94 

sampling, which usually leads to severe deterioration for particles (i.e. only several or even 95 

one particle would be available). Consequently, sampling importance resampling (SIR) 96 

techniques have been proposed to mitigate this problem (e.g. Moradkhani et al., 2005b; Li et 97 

al., 2015; Fan et al., 2016). However, previous studies in other fields have concluded that the 98 

PF method usually requires more samples than other filtering methods and the sample size 99 

would increase exponentially with the number of state variables (Liu and Chen, 1998; 100 

Fearnhead and Clifford, 2003; Snyder et al., 2008). Specifically, a great number of samples 101 

may be required for reliable characterization of the posterior probability density functions 102 

(PDFs) even for small problems with only a few unknown states and parameters (Liu et al., 103 

2012). Thus, the applications of PF suffer from the number requirement of particles, 104 

especially for physically-based distributed hydrologic models (Liu et al., 2012). Recent 105 

improvements for PF are to combine the strengths of sequential Monte Carlo sampling and 106 

Markov chain Monte Carlo simulation to achieve a more complete representation of the 107 

posterior distribution (Moradkhani et al., 2012; Vrugt et al., 2013). Such improvements can 108 

mitigate sample impoverishment (i.e. a decrease in the diversity of the particles or even a 109 

single particle available after resampling steps), and may lead to a more accurate streamflow 110 

forecast with small, manageable ensemble sizes (Moradkhani et al., 2012). Recently, Yan and 111 

Moradkhani (2016) demonstrated the application of integration of particle filter and Markov 112 

chain Monte Carlo (PF-MCMC) methods by a distributed Sacramento Soil Moisture 113 

Accounting (SAC-SMA) model. 114 

Both EnKF and PF have been widely used for characterizing uncertainties in hydrologic 115 

models. Each of them has its own advantages and drawbacks. The EnKF provides good 116 

estimates for very small ensembles but it suffers from its inherent Gaussian assumption (Shen 117 

and Tang, 2015). The PF relaxes the Gaussian assumption and is able to outperform the EnKF 118 



if the ensemble size is sufficiently large to prevent filter degeneracy (Moradkhani, 2008; 119 

Leisenring and Moradkhani 2012; Shen and Tang, 2015), but it may not recuperate quickly if 120 

the particle ensemble consistently over or underestimates the respective observation (Vrugt et 121 

al., 2013). Integration of EnKF and PF may be an alternative for overcoming the 122 

shortcomings in EnKF and PF, (Frei and Künsch, 2013; Rezaie and Eidsvik, 2012; 123 

Plaza-Guingla et al., 2013; Shen and Tang, 2015). For instance, Shen and Tang (2015) 124 

proposed a modified ensemble Kalman particle filter for non-Gaussian systems with 125 

nonlinear measurement functions by providing a continuous interpolation between the EnKF 126 

and PF analysis schemes. The results showed that the proposed method, given an affordable 127 

ensemble size, can perform better than the EnKF for nonlinear systems with nonlinear 128 

observations (Shen and Tang, 2015).  129 

As an extension of previous research, this study aims to develop integrated approaches 130 

for hydrologic data assimilation. In detail, two integrated data assimilation approaches are 131 

firstly proposed through integrating EnKF and PF: the coupled EnKF and PF (abbreviated as 132 

CEnPF) and the parallelized EnKF and PF (abbreviated as PEnPF). The CEnPF sequentially 133 

will employ the EnKF and PF to update model parameters and states, in which the EnKF is 134 

initially applied to correct model states and parameters, and PF is then adopted to eliminate 135 

insignificant particles. In comparison, the PEnPF approach simultaneously updates model 136 

states and parameters in parallel through EnKF and PF, and chooses the better estimates as 137 

the posterior distributions.  138 

 139 

2. Methodology 140 



In a sequential data assimilation process, the state variables in a hydrologic model can be 141 

evolved forward as follows: 142 

1 1 1( , , )t t t tx f x u  − − −= +  (1) 143 

where the subscript t denotes the time step; f is a nonlinear function expressing the system 144 

transition from time t - 1 to t; xt denote the state variables, and θ are the model parameters; 145 

1t −
 is considered as process noise (i.e. model error). The model output yt related to real 146 

measurements (e.g. streamflow) can be obtained through the measurement operator h(.), 147 

subject to model states and parameters as follows: 148 

( , )t t ty h x v= +  (2) 149 

where h is the nonlinear function producing forecasted observations; vt is the observation 150 

noise.  151 

The essence of the parameter and state estimation problem in the Bayesian filtering 152 

framework is to construct the posterior probability density functions (PDFs) of parameters 153 

and states conditioned on all previous observations (y1:t-1) and current available observation 154 

(yt) (Gordon et al., 1993; Fan et al., 2016). The posterior PDF can be calculated in two steps 155 

theoretically: prediction and update, in which the state PDF from the previous state would be 156 

integrated through the system model, and the update operation modifies the prediction PDF 157 

making use of the latest observations (Han and Li, 2008). The prediction step aims to obtain 158 

the prior
1: 1( | )t tp x y −

 through the following model: 159 

1: 1 1 1 1: 1 1( | ) ( | ) ( | )t t t t t t tp x y p x x p x y dx− − − − −=   (3) 160 

where
 

1( | )t tp x x − is the transition probability to describe evolution of states and can be 
161 

obtained by Equation (1). 1 1: 1( | )t tp x y− −  is the posterior distribution at time step t-1.When 
162 

new observations at time t are available, the prior can be corrected according to Bayes’ rule, 163 

formulated as follows: 164 



1: 1
1:

1: 1

( | ) ( | )
( | )

( | ) ( | )

t t t t
t t

t t t t t

p y x p x y
p x y

p y x p x y dx

−

−

=


 (4) 165 

where 
1: 1( | )t tp x y −

represents the prior information; ( | )t tp y x is the likelihood. 166 

The optimal Bayesian solution (i.e. Equations (3) and (4)) is difficult to determine since 167 

the evaluation of the integrals may be intractable (Plaza-Guingla et al., 2013). Consequently, 168 

approximation methods are applied to address the above issues. Ensemble Kalman filter 169 

(EnKF) and PF approaches are the two most widely used methods. The central idea of EnKF 170 

and PF is to represent the state probability density function (pdf) as a set of random samples 171 

and the difference between these two methods lies in the way of recursively generating an 172 

approximation to the state PDF (Weerts and EI Serafy, 2005).  173 

 174 

2.1. Ensemble Kalman Filter 175 

 176 

The EnKF and its variants use ensembles of states to approximate the covariance matrices to 177 

achieve suboptimal state estimations in which the error statistics are analyzed by numerically 178 

solving the Fokker-Planck equation using the Monte Carlo method (Evensen, 2003; Shen and 179 

Tang, 2015). EnKF-based filters normally distributed errors and the Monte Carlo approach is 180 

applied to approximate the error statistics, as well as compute an approximate Kalman gain 181 

matrix for updating model and state variables. A general framework of EnKF for states and 182 

parameters updating is described below, followed the description in Moradkhani et al. 183 

(2005b). 184 

 185 

In the implementation of EnKF, the prior and posterior distributions for model parameters 186 



and state variables are characterized by random samples name “ensembles”. At any given 187 

time t, the prior and posterior distributions of states and parameter are assumed to be denoted 188 

through a set of ensembles below  189 

,1 , ,( ,... , ,..., )f f f f

t t t i t neX x x x=  (1) 190 

,1 , ,( ,... , ,..., )f f f f

t t t i t ne   =  (2) 191 

a

,1 , ,( ,... , ,..., )a a a

t t t i t neX x x x=  (3) 192 

,1 , ,( ,... , ,..., )a a a a

t t t i t ne   =  (4) 193 

where the superscript f indicates the “forecast” values indicating the prior distributional 194 

information and the superscript a indicates the “analyzed” values after assimilation which 195 

denotes the posterior distributional information; the subscript i refers to the ith ensemble 196 

member, and ne denotes the total number of ensembles. Consider a stochastic dynamic-state 197 

model f(x, u, θ) described by state vector x, parameter vector θ and forcing data u, the state 198 

propagation can be expressed as: 199 

1, , , 1, ,( , , )f a f

t i t i t i t i t ix f x u  + += + , i = 1, 2, …, ne  (5) 200 

where ωt is the model error term, which follows a Gaussian distribution with zero mean and 201 

covariance matrix Pt. To implement model (5), parameter evolution should be conducted. A 202 

number of parameter evolution approaches have been developed (e.g. Fan et al., 2015b; 203 

Pathiraja et al., 2016a,b). Among these methods, the random walk method is widely used, in 204 

which stochastic perturbations with mean values of zero and heteroscedastic variances are 205 

added to the analyzed ensembles in the previous stage as follows: 206 

1, , , ,, ~ (0, )f a

t i t i t i t i tN    + = +   (6) 207 

where 
t

  is the covariance matrix of the analyzed parameter ensembles at time t.  208 



 209 

Based on the forecasts in model states and parameters, the corresponding observation values 210 

can be obtained through an observation equation characterized as: 211 

1, 1, 1, 1, 1, 1( , ) , ~ (0, )f f f y

t i t i t i t i t i ty h x v v N+ + + + + += +   (7) 212 

where h represents the operator to transfer the states into the observation space, 
1,t iv +

213 

indicates the random perturbation in model prediction, which is drawn from a normal 214 

distribution with a mean value of zero and a covariance of 
1

y

t+ . When new observations at 215 

time step t +1 are available, model states and parameters are corrected by assimilating the 216 

observation into modelling process, leading to analyzed ensembles indicating the posterior 217 

distributions for model states and parameters. Before assimilating observations, stochastic 218 

perturbations are usually added to the observations to account for the uncertainty in 219 

measurements. In this process, Gaussian noise is generally employed expressed as: 220 

1, 1 1, 1, 1, ~ (0, )
oo y

t i t t i t i ty y N + + + + += +    (8) 221 

where yt+1 represents the raw observation and 1

oy

t+  denotes the error covariance. Through 222 

assimilating the observations, the posterior states and parameters can be updated by the 223 

Kalman update equations: 224 

1, 1, 1, 1,[ ]a f o f

t i t i xy t i t ix x K y y+ + + += + −  (9) 225 

1, 1, 1, 1,[ ]a f o f

t i t i y t i t iK y y + + + += + −  (10) 226 

where Kxy, Kθy are Kalman matrix for states and parameters, which can be expressed as 227 

follows (DeChant and Moradkhani, 2012; Pathiraja et al., 2016a): 228 

1

1 1 1( )
oxy y y

xy t t tK −

+ + +=   +  (11) 229 

1

1 1 1( )
oy y y

y t t tK 



−

+ + +=   +  (12) 230 



where 
1

xy

t+  is the cross covariance of the forecasted states 1,

f

t ix +   and the simulated 231 

observation 1,

f

t iy + ; 
1

y

t



+  is the cross covariance between model parameters 1,

f

t i +  and the 232 

simulated observation 1,

f

t iy +  233 

  234 

2.2. Particle Filter 235 

The PF, similar to the EnKF, is a kind of sequential Monte Carlo method that calculates the 236 

posterior distribution of states and parameters by a set of random samples. But PF and its 237 

variants are different from EnKF since the ensemble members (or the particles) are not 238 

modified, but are combined with different weights (Shen and Tang, 2015). It was found that 239 

PF outperforms EnKF by relaxing the assumption of a Gaussian error structure, which allows 240 

PF to accurately predict the posterior distribution in the presence of skewed distributions 241 

(Moradkhani et al., 2005a; DeChant and Moradkhani, 2012).  242 

 243 

In detail, consider ne independent and identically distributed random variables , 1:~ ( | )t i t tx p x y244 

for i = 1, 2, …, ne, the posterior density, based on the sequential importance sampling (SIS) 245 

method, can then be approximated as a discrete function:  246 

1: , ,

1

( | ) ( )
ne

t t t i t t i

i

p x y w x x
=

= −   (13) 247 

where ,t iw  is the posterior (updated) normalized weight of the ith particle drawn from the 248 

proposed distribution; δ is the Dirac delta function. Assume the system state to be a Markov 249 

process, and apply the Bayesian recursive expression to the filtering problem. The updating 250 

expression for the importance weights (not normalized) is expressed as: 251 



, , 1,*

, ,

, 1,

( | ) ( | )

( | , )

f f f

t t i t i t ia f

t i t i f f f

t i t i t

L y x p x x
w w

q x x y

 



−

−

=    (14) 252 

where ,

f

t iw  is the prior weight, which is equal to the posterior weight at the previous time 253 

step. 
*

,

a

t iw  is the unnormalized posterior weight. Through Equation (14), the importance 254 

weights are sequentially updated when an appropriate proposal distribution , 1,( | , ) −

f f f

t i t i tq x x y is 255 

given. Consequently, the expression of the proposal distribution will significantly affect the 256 

efficiency and complexity of the PF method. Gordon et al. (1993) have suggested to set 257 

, 1,( | , ) −

f f f

t i t i tq x x y = , 1,( | ) −

f f

t i t ip x x , resulting in a simplified expression for importance weights: 258 

, , ,( | )=a f f

t i t i t t iw w L y x  (15) 259 

Therefore, the normalized updating weight can then be obtained via the following equation: 260 

, ,

,

, ,

1

( | )

( | )




=

=



f f

t i t t ia

t i ne
f f

t i t t i

i

w L y x
w

w L y x

 (16) 261 

,

a

t iw
 
is the normalized posterior weight. ,( | )

f

t t iL y x is the posterior likelihood function. The 262 

choice of an adequate likelihood function has been the subject of considerable debate in 263 

hydrologic and statistics literature (Vrugt et al., 2013). In the data assimilation process 264 

through PF, the Gaussian likelihood is widely used in a number of fields (Moradkhani et al., 265 

2005b; Weerts and EI Serafy, 2006; Salamon and Feyen, 2010; Fan et al., 2016). 266 

Consequently, this study will also adopt the Gaussian likelihood expressed as: 267 

2

, ,

1 1
( | ) exp( [ ] )

22



= − −f f

t t i t t i

tt

L y x y y
RR

  (17) 268 

 269 

For the particle filter through SIS, a serious limitation is the depletion of the particle set, 270 

which means that, after a few iterations (time steps), all the particles except one are discarded 271 



because their importance weights are insignificant (Doucet, et al. 2001). To address the above 272 

issue, sampling importance resampling (SIR) algorithms are usually applied to eliminate the 273 

particles with small importance weights and replace them by particles with large importance 274 

weights. A number of resampling approaches have been developed, such as multinomial 275 

resampling, systematic resampling, residual resampling, and grouping-based resampling 276 

approaches (Li et al., 2015)  277 

 278 

2.3. Integration of EnKF and PF for Hydrologic Data Assimilation 279 

 280 

The application of EnKF is constrained by its assumption of Gaussian errors while the PF 281 

requires a large sample size for providing reliable predictions. In this study, we extend the 282 

previous research to provide two integrated data assimilation schemes: the coupled EnKF and 283 

PF (abbreviated as CEnPF) and the parallelized EnKF and PF (abbreviated as PEnPF) 284 

approaches to characterize uncertainty in hydrologic models.  285 

 286 

2.3.1. the coupled EnKF and PF (CEnPF) approach 287 

The CEnPF sequentially uses the EnKF and PF to update model parameters and states, in 288 

which EnKF is first applied to correct model states and parameters, and PF is then adopted to 289 

eliminate insignificant particles (see Figure 1). The detailed procedures for the 290 

implementation of CEnPF are presented as follows: 291 

Step 1. Similar to the implementation of EnKF and PF, the model initial conditions should be 292 

assumed before implementing CEnPF. In this study, the initial state variables and parameters 293 



are sampled from the corresponding uniform distributions: 294 

x1,i ~ U(xL, xU), i = 1, 2, …, ne, xN
x R  (18) 295 

θ1,i ~ ~ U(θ L, θ U), i = 1, 2, …, ne, N
R    (19). 296 

Step 1. Assign prior weights for the ensembles. In general, the prior weights are assigned 297 

uniformly as follows: 298 

wt,i = 1/ne, i = 1, 2, …, ne  (20) 299 

Step 3. At any time step t, model states at current step can be forecasted based the posterior 300 

states in step t-1 and the prior parameters in the current step by using model operator f:  301 

, 1, , , ,( , , )f a f

t i t i t i t i t ix f x u  −= + , ~ (0, )m

t tN  , i = 1, 2, …, ne  (21) 302 

where parameters ,

f

t i are obtained by Equation (6).  303 

Step 5. Observation simulation: Use the observation operator h to propagate the model state 304 

forecast: 305 

, , , ,( , )f f f

t i t i t i t iy h x v= + , 1, ~ (0, )y

t i tv N+  , i = 1, 2, …, ne (22) 306 

Step 6. Parameters and states updating: Update the parameters and states via the EnKF 307 

updating equations 308 

, , , ,[ ]a f o f

t i t i xy t i t ix x K y y= + −  
(23)

 309 

, , , ,[ ]a f o f

t i t i y t i t iK y y = + −
 

(24) 310 

where ,

a

t ix and ,

a

t i are the updated state and parameter values and 
xyK and 

yK
 are the 311 

Kalman matrix for states and parameters obtained by Equations (11) and (12).  312 

Step 7. Estimate the likelihood: 313 

2

, , , , ,

1 1
( | , ) exp( [ ( , )] )

22

a a o a a

t t i t i t i t i t i

tt

L y x y h x
RR

 


= − −

 

(25) 314 

, ,

, ,

, ,

1

( | , )
( | , )

( | , )

a a

t t i t ia a

t t i t i ne
a a

t t i t i

i

L y x
p y x

L y x





=

=


, , ,( ( , ) | )o a a

t i t i t i tp y h x R= −
 

(26) 315 



Step 8. update weight for the analyzed ensemble values: 316 

, , , ,

,

, , , ,

1

( ( , ) | )

( ( , ) | )

f o a a

t i t i t i t i ta

t i ne
f o a a

t i t i t i t i t

i

w p y h x R
w

w p y h x R




=

 −
=

 −
 

(27) 317 

where ,

f

t iw are the prior sample weights and are usually set to be 1/ne. 318 

Step 9. Resampling: Apply resampling procedure proposed by Moradkhani et al. (2 005a) to 319 

eliminate the abnormal samples in ,

a

t ix , and ,

a

t i , and generate resampled ensembles denoted 320 

as ,

a

t resamp ix − , ,

a

t resamp i − . 321 

Step 10. Parameter perturbation: take parameter evolution to the next stage through adding 322 

small stochastic error around the sample: 323 

1, , ,

f a

t i t resamp i t i  + −= + , , ,~ (0, ( ))a

t i t resamp iN S   −  
(28) 324 

where η is a hyper-parameter which determines the radius around each sample being explored; 325 

,( )a

t resamp iS  −  is the standard deviation of the analyzed ensemble values.   326 

Step 11. Check the stopping criterion: if measurement data is still available in the next stage, t 327 

= t + 1 return to step 3; otherwise, stop. 328 

 329 

In CEnPF, model parameters and states are initially updated through Kalman update 330 

equations, then the updated states and parameters are corrected again through PF procedure to 331 

eliminate abnormal or insignificant state and parameters and replace them by significant ones 332 

by sampling importance resampling procedure. Compared with EnKF, the CEnPF can be 333 

applicable for nonlinear and non-Gaussian systems. At any time step t, even though the EnKF 334 

procedure may not produce optimal states and parameters under nonlinear and non-Gaussian 335 

systems, the following PF procedure can remove non-optimal ensembles (i.e. insignificant 336 

samples) and replace them with significant ones. In comparison with PF, the proposed CEnPF 337 

firstly reduces the sample requirement for large-scale models since the inherent EnKF 338 



procedure can achieve satisfactory performance with a moderate sample size; it can also 339 

adjust the ensemble values to fit the observations well especially when the particle ensembles 340 

consistently over or underestimates the respective observations. 341 

2.3.2. the parallelized EnKF and PF (PEnPF) approach 342 

In comparison with CEnPF, the PEnPF approach simultaneously updates model states and 343 

parameters in parallel through EnKF and PF, and chooses the better estimates as the posterior 344 

distributions (see Figure 2). The full description of the PEnPF procedures is illustrated as 345 

follows: 346 

Step 1. Model state initialization: Initialize Nx-dimensional model state variables and 347 

Nθ-dimensional model parameters from uniform distributions expressed as Equations (18) 348 

and (19) 349 

Step 2. Sample weight assignment: Assign the prior weights uniformly to the particles 350 

expressed as Equation (20): 351 

Step 4. Model state forecast step: Propagate the ne state variables and model parameters 352 

forward in time using model operator f by Equation (21). 353 

Step 5. Observation simulation: Use the observation operator h to propagate the model state 354 

forecasts by Equation (22): 355 

Step 6. Parameters and states updating based on EnKF: This step is further divided into two 356 

procedures: model parameters and states are updated by Kalman updating scheme and the 357 

updated ensembles are evaluated by a mismatch index proposed by Gu and Oliver (2007). 358 

6a. Obtain the analyzed estimations through Kalman updating scheme expressed as Equations 359 

(23) and (24) 360 

6b. Evaluate the data match term for the analyzed estimation by the mismatch index 361 

expressed by: 362 
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Such an index has been adopted in several data assimilation literatures (e.g. Gu and Oliver 364 



2007; Chen and Oliver, 2013; Zhang et al., 2014) to evaluate history-matching results. In this 365 

study, this index is used to evaluate the performance of the updated states and parameters 366 

obtained from Kalman updating scheme.  367 

Step 7. Different from the CEnPF in which PF updates model parameters and states based on 368 

the analyzed state and parameter values from EnKF, the PF procedure in PEnPF also update 369 

model states and parameters from the priori states and parameters at time t. Therefore, the 370 

likelihood function can be expressed as: 371 

2

, , , , ,

1 1
( | , ) exp( [ ( , )] )

22

f f o f f

t t i t i t i t i t i

tt

L y x y h x
RR

 


= − −  (30) 372 

, ,

, ,

, ,

1

( | , )
( | , )

( | , )

f f

t t i t if f

t t i t i ne
f f

t t i t i

i

L y x
p y x

L y x





=

=


, , ,( ( , ) | )o f f

t i t i t i tp y h x R= −  (31) 373 

Then, the updated weights denoted as ,

a

t iw  for each particle can be obtained as: 374 
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Based on the updated weights, those particles can be resampled to remove those samples with 376 

insignificant weights. A number of resample methods have been developed and the 377 

multinomial resampling method proposed by Moradkhani et al. (2005a) is used. Therefore, 378 

the resampled particles denoted as 
,t resamp i −
and 

,t resamp ix −
can be obtained. The performance 379 

of the resampled particles is also evaluated by the mismatch index expressed as: 380 
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Step 8. Choose the posterior estimations for states and parameters by the following criteria: 382 

 If 
1 , 1 ,( , )t resamp i t resamp iS x + − + −

≤ 1, 1,( , )a a

t i t iS x + + , 
,t resamp i −
,

,t resamp ix −
would be the posterior 383 

estimations at current stage; otherwise, 1,

a

t ix + , and 1,

a

t i + would be the posterior estimations. 384 

Step 9 Parameter perturbation: take parameter evolution to the next stage through add small 385 

stochastic error around the sample (take the EnKF estimation as an example): 386 

1, , ,

f a

t i t i t i  + = + , , ,~ (0, ( ))a

t i t iN S    (34) 387 



where η is a hyper-parameter which determines the radius around each sample being explored; 388 

,( )a

t iS   is the standard deviation of the analyzed ensemble values.   389 

Step 10. Check the stopping criterion: if measurement data is still available in the next stage, t 390 

= t + 1 return to step 3; otherwise, stop. 391 

 392 

Through PEnPF, the better estimations from EnKF and PF will be chosen as the posterior 393 

states and parameters, which may lead to improved predications for model states and 394 

simulated observations. Similar to CEnPF, the PEnPF can be applicable for nonlinear and 395 

non-Gaussian systems where once the estimates from EnKF are non-optimal, the estimates 396 

from PF will be adopted. Also, the ensembles will be adjusted through EnKF when the 397 

resulting predictions are consistently over or underestimates the respective observations. 398 

 399 

3. Synthetic Experiments 400 

3.1. Rainfall-Runoff Model 401 

 402 

In this study, the Hymod, is adopted to test the efficiency of the CEnPF and PEnPF 403 

approaches. Hymod is a non-linear rainfall-runoff conceptual model which can be run in a 404 

minute/hour/daily time step (Moore, 1985). In Hymod, the soil moisture storage is 405 

characterized by a spatial probability distribution function and the runoff is routed to the 406 

catchment outlet by a fast linear-routing process (nominally event runoff) and a slow 407 

nonlinear routing process (nominally baseflow), as shown in Figure 3 (Moore, 2007). A 408 

cumulative distribution function (CDF) is proposed to describe such variability of soil 409 

moisture capacities, expressed as (Moore, 1985, 2007): 410 
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, 0 ≤ c ≤ Cmax  (35) 411 

where Cmax [L] is the maximum soil moisture capacity within the catchment and bexp [-] is the 412 

degree of spatial variability of soil moisture capacities and affects the shape of the CDF. Five 413 

parameters are involved in Hymod for calibration based on observations: (i) the maximum 414 

storage capacity (Cmax), (ii) spatial variability of soil moisture capacity (bexp), (iii) the 415 

partitioning factor between the two series of reservoir tanks (α), (iv) the residence for the 416 

time quick-flow tank (Rq), and (v) the residence time for the slow-tank (Rs). Two inputs are 417 

required to force this model: precipitation, P (mm/day), and potential evapotranspiration, ET 418 

(mm/day).  419 

 420 

--------------------------------------- 421 

Place Figure 3 Here 422 

--------------------------------------- 423 

 424 

3.2. Synthetic Experiments 425 

 426 

In this study, synthetic experiments are initially applied to test the applicability of the CEnPF 427 

and PEnPF approaches. The “true” observations are first defined when the model is run for a 428 

set of meteorological and initial conditions in the synthetic experiment (Moradkhani, 2008). 429 

The “true” model parameters are predefined before the synthetic experiment. The model 430 

inputs, including the potential evapotranspiration, ET (mm/day), and mean areal precipitation, 431 

P (mm/day), are generated based on onsite meteorological data, in which the mean areal 432 

precipitation data are generated based on the rain station measurements in the watershed, and 433 

the potential evapotranspiration values are interpolated based on data from national weather 434 



stations near the watershed.  435 

 436 

Stochastic perturbations are required in a data assimilation framework to account for the 437 

uncertainties in model inputs, parameters and structures. In the synthetic experiments, 438 

random perturbations are added to precipitation and potential evapotranspiration (ET) 439 

observations to account for their uncertainties. For potential evapotranspiration, a Gaussian 440 

noise distribution is recommended by a number of researchers (e.g. DeChant and Moradkhani, 441 

2012; Moradkhani et al., 2012; Chen et al., 2013; Rasmussen et al., 2015). For precipitation, 442 

some studies have applied Gaussian noise (e.g. Rasmussen et al., 2015), while other studies 443 

have concluded that log-normal noise may perform better (e.g. DeChant and Moradkhani, 444 

2012; Moradkhani et al., 2012). In this study, the log-normal noise is adopted for the 445 

synthetic experiments, while Gaussian noises are employed for potential evapotranspiration, 446 

synthetic observations and model predictions. The proportionality factors are set to be 0.2 for 447 

all data in the synthetic experiments.  448 

 449 

3.3. Evaluation Criteria 450 

The root-mean-square error (RMSE), and the Nash-Sutcliffe efficiency (NSE) 451 

coefficient will be adopted to evaluate the performance of different data assimilation methods. 452 

These two indices also served as the responses in the multi-level factorial design to 453 

visualizing the effects of stochastic perturbations. The formations of RMSE and NSE are 454 

expressed as follows: 455 
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where N is the total number of observations (or predictions), Qi are the observed values, Pi 458 

are the estimated values, and Q
−

 is the mean of all observed and estimated values. 459 

 460 

Both RMSE and NSE merely measure the accuracy of the expected value and show the 461 

ability of each data assimilation technique to track the observations (Dechant et al., 2012). 462 

However, they are unable to evaluate the performance of predictive distribution from 463 

ensemble forecasts (Renard et al., 2010). Consequently, probabilistic measures are required to 464 

further provide a description of ensemble forecasts for different data assimilation schemes. In 465 

this study, the continuous ranked probability score (CRPS) and resolution (π) are used, which 466 

are formulated as follows (Murphy and Winkler, 1987; Hersbach, 2000; Madadgar et al., 467 

2014): 468 
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where where Ff and Fo are CDFs for forecasts and observations, respectively  470 
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where E[yt,i] is the expected value of ensemble predictions at time t and σ[yt,i] is the standard 472 

deviation of ensemble predictions at time t. 473 

 474 

The CRPS is a measurement of error for probabilistic prediction. A small CRPS value 475 

indicates a better model performance, with the value of zero suggesting a perfect accuracy for 476 

model prediction. The index of resolution provides a description of precision of ensemble 477 

predictions with greater values suggesting larger uncertainty of forecasts (Madadgar et al., 478 



2014) 479 

 480 

3.4. Results Analysis 481 

 482 

To demonstrate the capability of the proposed CEnPF and PEnPF approaches in parameters 483 

and state quantification for hydrologic models, synthetic experiments were performed with 484 

Hymod. Table 1 shows the “true” parameter set for the synthetic experiments. The initial 485 

ensembles for the five parameters (i.e. i.e. Cmax, bexp, α, Rs Rq) are sampled uniformly from 486 

predefined intervals as shown in Table 1. The initial ensembles for the state variable of 487 

storage are sampled from a normal distribution with a mean value of 0.05 and a standard 488 

deviation to be proportional to the mean value (the proportional factor is set to be 0.1). The 489 

initial samples for the slow flow tank are also sampled from a similar normal distribution 490 

with a mean value of 2.14. The initial samples for the three quick flow tanks are set to be 0, 491 

and the sample size used in the synthetic experiment was 200. 492 

 493 

Figure 4 shows the comparison between the ensemble predictions and the synthetically 494 

generated true discharge values obtained from the EnKF, PF, CEnPF and PEnPF approaches. 495 

The results indicate that the ensemble means of streamflow predictions from the four 496 

methods can track well the observed discharge data. The ranges formulated by 5% and 95% 497 

percentiles (i.e. 90% confidence intervals) of streamflow predictions can adequately bracket 498 

the observations. In addition, ensemble predictions for two state variables, namely the storage 499 

and the flow in the slow tank of Hymod are plotted and compared with their true values in the 500 

experiment, as shown in Figure 4. The results show that, for all the four data assimilation 501 

schemes, the deterministic predictions (i.e. predictive means in this study) of state variables 502 

can well trace the fluctuation of their true values. Moreover, almost all the true values for the 503 



two state variables are located in the predictive intervals of the ensemble predictions of the 504 

four approaches.  505 

 506 

Figure 5 describes the comparison of the convergence of each parameter from the EnKF, PF, 507 

CEnPF and PEnPF approaches. It is observed that identifiability of one parameter depends on 508 

the filtering approaches. For instance, all five parameters in Hymod are identifiable if the PF 509 

is employed, while in comparison the parameters of Cmax and bexp are unidentifiable for EnKF. 510 

For the two developed methods, CEnPF and PEnPF, the five parameters of Hymod can be 511 

well identified by CEnPF. Moreover, compared with PF, the proposed CEnPF can still 512 

rejuvenate ensembles in larger spaces than PF, which may lead to more reliable estimations 513 

for parameter posterior distributions. In comparison, parameter evolution patterns generated 514 

by PEnPF are similar with those from EnKF, which means that Cmax and bexp are 515 

unidentifiable in this data assimilation scheme. This is due to the mechanism of ensembles 516 

rejuvenation in PEnPF. In PEnPF, parameters and states are updated simultaneously by EnKF 517 

and PF, and the better estimations are shoes as the posterior distributions. If at each time step, 518 

EnKF performs better than PF, evolution characteristics of parameters and states would be 519 

identical to those generated by EnKF. The results in Figure 5 suggest that, parameter and state 520 

estimations from EnKF are chosen as the corresponding posteriors in the data assimilation 521 

experiment through PEnPF. 522 

 523 

Moreover, to further explore the reliability of the four data assimilation approaches, five 524 

sample size scenarios (i.e. {20, 50, 100, 200, 500}) are tested. For each scenario, the 525 

synthetic experiment is performed for 30 replicates to identify the robustness of the proposed 526 

approaches. The performances of EnKF, PF, CEnPF and PEnPF are evaluated through two 527 

deterministic indices (i.e. RMSE and NSE) and two probabilistic indices (i.e. CRPS and 528 



Resolution). Figure 6 compares the performance of EnKF, PF, CEnPF and PEnPF through a 529 

boxplot. The results indicate that all four methods will perform better with an increase in 530 

sample size, and the sample size influence PF more significantly than the other three data 531 

assimilation approaches. In detail, the PEnPF produce best deterministic predictions with 532 

lowest values for NSE and RMSE, followed by EnKF, CEnPF and PF. The performance of 533 

CEnPF is not as well as EnKF in this synthetic experiment. However, it performs better than 534 

PF. Especially when the same size is larger than 50, CEnPF would generate more reliable 535 

predictions than PF. For probabilistic predictions, the PEnPF would lead to lowest values for 536 

CRPS, indicating closest distance between the predictive and observed cumulative 537 

distribution functions (CDFs). Moreover, similar with deterministic predictions, the proposed 538 

CEnPF does not perform as well as EnKF in this synthetic experiment, but it provide more 539 

accurate predictions than PF, especially when the sample size is larger than 50. 540 

 541 

4. Real Case Study 542 

4.1. Site Description 543 

Two real watersheds will be used test the applicability of the proposed data assimilation 544 

schemes, as presented in Figure 7. The first catchment is the Huanjiang river, located in the 545 

northern part of Jing river basin with a drainage area of 4,640 km2. This catchment has two 546 

main tributaries, which converge together at Hongde (107.19 E, 36.76 N). In general, the Jing 547 

river basin is characterized by a semi-arid and sub-humid continental monsoon climate, 548 

resulting in significant temporal-spatial variations in precipitation. From the northern to 549 

southern part, the corresponding annual precipitation ranges from 240 to 710 mm, with 550 

approximately 50~60% precipitation occurring in the Summer and Fall seasons. In particular, 551 

the Huanjiang in this case is located in the northern part of the Jing River watershed, and the 552 



annual precipitation there fluctuates from 240 to 350 mm with mean annual precipitation of 553 

approximate 309 mm. For Huanjiang river, the daily precipitation data from Ganjipan, 554 

Fanxue, Shancheng, Wuqi, Gengwan, Honglaochi, Siheyuan and Hongde are employed to 555 

generate areal precipitation over the entire sub-catchment. The potential precipitation values 556 

were obtained through the Penman–Monteith equation, based on meteorological 557 

measurements from national meteorological stations (i.e. Changwu, Xifengzhen, Guyuan, 558 

Huanxian, Tongchuan) in the Jing river basin. Tables 2 and 3 provide the location information 559 

for the rain gauge stations and the national meteorological stations. 560 

 561 

The second case is the Xiangxi river basin, located in the Three Gorges Reservoir area, China. 562 

The Xiangxi river is located between 30.96 ~ 31.67 0N and 110.47 ~ 111.130E in the Hubei 563 

part of the China Three Gorges Reservoir (TGR) region, with a draining area of 564 

approximately 3,200 km2. The Xiangxi river originates in the Shennongjia Nature Reserve 565 

with a main stream length of 94 km and a catchment area of 3,099 km2 and is one of the main 566 

tributaries of the Yangtze river (Han et al., 2014; Yang and Yang, 2014; Miao et al., 2014). 567 

The watershed experiences a northern subtropical climate. The annual precipitation is about 568 

1,100 mm and ranges from 670 to 1,700 mm with considerable spatial and temporal 569 

variability (Xu et al., 2010; Zhang et al., 2014). The main rainfall season is from May 570 

through September, with a flooding season from July to August. The annual average 571 

temperature in this region is 15.6 0C and ranges from 12 0C to 20 0C. For this case, 572 

meteorological and streamflow data at Xingshan (31013’N, 110045’E) station will be used. 573 

 574 

https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwijgeP1s4bNAhUp8IMKHQ6fDykQFggpMAE&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPenman%25E2%2580%2593Monteith_equation&usg=AFQjCNF_fS5e-6MnwXoiM3qAXdICr_Y0fw&sig2=pRbLrghn8y70EZr5TIpElg&bvm=bv.123325700,d.aXo


--------------------------- 575 

Place Figure 7 here and Tables 2 and 3 here 576 

--------------------------- 577 

4.2. Results Analysis for Huanjiang river 578 

In hydrologic sequential data assimilation, two issues are generally predefined before 579 

implementation of the sequential data assimilation. The first one is how many ensembles or 580 

particles are going to use to represent the distributional information in parameters, state 581 

variables and predictions. The other one is that how to account for uncertainty existing in 582 

forcing data, model prediction, and streamflow measurements. In the real case study, the 583 

sample size is set to be 200 for all the four data assimilation schemes based on the results of 584 

the synthetic experiment. Moreover, random perturbations are added to model inputs, outputs, 585 

and parameters to reflect their inherent uncertainties. In this study, the precipitation is 586 

assumed to follow a lognormal distribution with the proportional factors being 20% of the 587 

true, while the potential evapotranspiration, streamflow measurements, and model prediction 588 

are normally distributed with the standard errors being 20% of the true values. 589 

 590 

Figure 8 shows the comparison between ensemble predictions of the four data assimilation 591 

methods and observations. Figure 8(a) indicates the comparison between the mean 592 

predictions and predictive intervals from EnKF and model and observations. The result 593 

shows that the predictive intervals from EnKF can generally bracket the observations during 594 

the low flow period, while underestimations occur during the high flow period. Similar 595 

characteristics can be found for both PF. However, as shown in Figure (8b), PF provide better 596 



predictions than EnKF. Especially for the high flow periods, the predictive intervals from PF 597 

can catch the peak flow better than those from EnKF. In comparison with EnKF and PF, the 598 

proposed CEnPF can generate more reliable predictions. As shown in Figure (8c), the 599 

predictive intervals from CEnPF can generally bracket the observations while the ensemble 600 

means can well track the fluctuation of real discharges for both low and high flow periods. 601 

For the PEnPF, it seems to perform slightly worse than CEnPF. In particular, the PEnPF 602 

would generate worse (i.e. underestimation) predictions than PF during the high flow periods. 603 

However, the PF would produce overestimations in a quite long period after the highest peak 604 

flow while PEnPF can provide accurate predictions in this period. In this case, the predictions 605 

from CEnPF lead to a NSE value of 0.911, a RMSE value of 5.897, a CRPS value of 2.209 606 

and a Resolution value of 41.685. The four indices (i.e. NSE, RMSE, CRPS and Resolution) 607 

correspond to the predictions of PEnPF are 0.861, 7.372 , 1.675 and 15.058, respectively. The 608 

four indices for the predictions of EnKF are 0.767, 9.540, 2.234, and 21.697, and those 609 

indices for PF predictions are 0.776, 9.354, 4.026, and 38.596. Consequently, the CEnPF 610 

leads to best deterministic predictions while the PEnPF generates best probabilistic 611 

predictions 612 

 613 

------------------------------- 614 

Place Figure 8 here 615 

------------------------------- 616 

 617 



To further demonstrate the applicability of the proposed data assimilation methods, four 618 

sample scenarios (i.e. {50, 100, 200, 500}) are further tested for this real case with 10 619 

replicates conducted for each sample scenario. Figure 9 compares the performance of EnKF, 620 

PF, CEnPF and PEnPF through a boxplot. It shows that as the increase of sample size, the 621 

proposed CEnPF, PEnPF as well as traditional EnKF would generate reliable predictions with 622 

the four evaluation indices varied within limited intervals. In comparison, the PF can also 623 

generate unsatisfactory results even the sample size of 500. Tables 4 to 7 provide the mean, 624 

minimum and maximum values for NSE, RMSE, CRPS and Resolution for the 10 replicates 625 

by different data assimilation schemes under different sample size scenarios. The results 626 

indicate that the proposed CEnPF can generally provide best results for deterministic 627 

predictions with lowest NSE and RMSE values. For instance, the CEnPF can lead to a mean 628 

NSE value of 0.78 under a sample size of 100, which is higher than the other three 629 

approaches (i.e. the mean NSE values would be 0.72, 0.69 and 0.65 for PEnPF, EnKF and 630 

PF). In comparison, the PEnPF would produce better probabilistic predictions than CEnPF, 631 

EnKF and PF, which generally has lowest CRPS and Resolution values, as presented in 632 

Tables 6 and 7. In general, even though the prediction from CEnPF has large degree of 633 

uncertainty (i.e. large Resolution values), the proposed CEnPF and PEnPF can provide better 634 

results for both deterministic and probabilistic forecasts for the Huanjiang river basin  635 

 636 

---------------------------------- 637 

Place Figure 9, Tables 4 to 7 here  638 

---------------------------------- 639 



 640 

4.3. Results Analysis for Xiangxi river 641 

 642 

The developed data assimilation approaches are further applied for hydrological data 643 

assimilation in Xiangxi river, which is an main tributary of Yangtze river in Hubei Province. 644 

The Xiangxi river basin experiences a northern subtropical climate with higher temperature 645 

and precipitation than the Huanjiang river basin which has a semi-arid climate. To clearly 646 

account uncertainties in meteorological data and streamflow measurements in Xiangxi river, 647 

the proportional factor is set to be 30% of the true measurements. In current case, the sample 648 

size is 500.  649 

 650 

Figure 10 shows the performance of the developed CEnPF and PEnPF as well as traditional 651 

EnKF and PF approaches for hydrological data assimilation in Xiangxi river. As presented in 652 

Figure (10a), the EnKF approach provide accurate deterministic and probabilistic predictions 653 

during the low flow periods, but these predictions cannot well track observations during high 654 

flow periods and show underestimated results in these periods. Compared with EnKF, the PF 655 

approach seems to provide better predictions, as shown in Figure (10b). Especially in high 656 

flow periods, PF performs better than EnKF, but it still provides underestimations in these 657 

time steps. In comparison, the developed CEnPF and PEnPF are able to generate reliable 658 

results for both deterministic predictions and the associated predictive intervals. As shown in 659 

Figures (10c) and (10), the predictive intervals of CEnPF and PEnPF can bracket the real 660 

observations at most time periods for this case. Meanwhile, the corresponding deterministic 661 



predictions (i.e. predictive means) can trace the variation in streamflow in both high and low 662 

flow periods.  663 

---------------------------------- 664 

Place Figure 10  665 

---------------------------------- 666 

 667 

Table 8 shows the performance of the four approaches for hydrological data assimilation in 668 

Xiangxi river basin under different sample size scenarios. The results shows that for 669 

deterministic predictions, the proposed CEnPF and PEnPF approach performs better than 670 

EnKF in all selected sample scenarios, and these two methods provide better deterministic 671 

predictions than PF in three of the four sample scenarios. However, in terms of the 672 

probabilistic forecasts, the performances of the fours approaches show different features. 673 

EnKF seems to lead to lowest CRPS values for all sample scenarios. However, at least one 674 

proposed approach (i.e. CEnPF or PEnPF) can provide better probabilistic predictions than 675 

PF for all selected sample scenarios. 676 

---------------------------------- 677 

Place Tables 8 here  678 

---------------------------------- 679 

 680 

5. Discussion 681 

In this study, both CEnPF and PEnPF integrate traditional PF and EnKF into combined 682 

framework. This means that the computational demand would increase for CEnPF and 683 



PEnPF since they have additional procedures. Figure 11 presents the computation demand for 684 

EnKF, PF, CEnPF and PEnPF. The results show that, among these four approaches, PF 685 

requires least computational time, and both CEnPF and PEnPF require more computational 686 

time than EnKF and PF since they have more steps. However, the computational time for the 687 

two developed methods is manageable. In detail, the PEnPF needs more computational 688 

requirement than the other three approaches. For instance, the computational time for PEnPF 689 

would be about 590 seconds when the sample size is 500, while the time for EnKF, PF and 690 

PEnPF would be 347, 102 and 443 seconds, respectively. This is because that, in spite of 691 

update procedures of EnKF and PF, the PEnPF needs two additional steps for putting the 692 

updated parameters from EnKF and PF into the original hydrological model to evaluate the 693 

mismatch between the resulting outputs and the real observations at each time step. This 694 

suggests that for some large hydrological models requiring much computation time, the 695 

PEnPF may need much more time than EnKF, PF and PEnPF since the hydrological model 696 

would be run for 3*ns (ns is the sample size) times at each time while the other three 697 

approaches only need to run the hydrological model ns times. 698 

---------------------------------- 699 

Place Figure 11 here  700 

---------------------------------- 701 

6. Conclusions 702 

This study proposed two integrated data assimilation schemes, i.e. the coupled EnKF and PF 703 

(CEnPF) and the parallelized EnKF and PF (PEnPF) approaches through the integration of 704 

the capabilities of EnKF and PF. The CEnPF sequentially adopts EnKF and PF to update 705 



model parameters and states, in which EnKF is first applied to correct model states and 706 

parameters, and PF is then employed to eliminate insignificant particles. In comparison, the 707 

PEnPF approach simultaneously updates model states and parameters in parallel through 708 

EnKF and PF, and chooses the better estimates as the posterior distributions. The proposed 709 

CEnPF and PEnPF approaches were applied for hydrologic data assimilation in two 710 

real-world cases to demonstrate their applicability in quantifying uncertainty in hydrologic 711 

prediction  712 

 713 

A synthetic application firstly illustrated procedures of the proposed CEnPF and PEnPF 714 

approaches and compared them with traditional PF and EnKF methods. Five sample size 715 

scenarios were tested to evaluate the performance of the proposed methods. The results 716 

suggested that PEnPF performed best for both probabilistic and deterministic predictions, 717 

while CEnPF could provide better predictions than PF. The improvement of the proposed 718 

CEnPF and PEnPF upon EnKF and PF was further illustrated by two real-world catchments 719 

with different climate conditions. The results for the Huanjiang river, located in the northern 720 

part of Jing river, demonstrated that PEnPF would produce better probabilistic predictions 721 

than CEnPF, EnKF and PF, which generally has lowest CRPS and Resolution and the CEnPF 722 

could provide better results in deterministic predictions but lead to large uncertainty in its 723 

ensemble outputs. For the Xiangxi river located in the Yangtze river basin, the results 724 

indicated that the proposed approach improved EnKF and PF in terms of deterministic 725 

predictions. For all selected sample size scenarios, at least one method could give better 726 

probabilistic predictions than PF.  727 



 728 

The ensemble Kalman filter (EnKF) and particle filter (PF) methods have been extensively 729 

applied for hydrologic data assimilation. However, both of them have their inherent 730 

disadvantages which restrict their application for many cases. In this study, two integrated 731 

sequential data assimilation approaches are proposed by integrating the capabilities of EnKF 732 

and PF into a general framework. The case studies for synthetic experiment and two 733 

real-world hydrologic data assimilation problems demonstrate the significant potential of the 734 

proposed CEnPF and PEnPF approaches. Moreover, the computational time for CEnPF and 735 

PEnPF is manageable when compared with EnKF and PF. However, the PEnPF may require 736 

much more computational time for large-scale or time-consuming hydrological models than 737 

EnKF, PF and CEnPF.  738 

 739 

 740 

Acknowledgement 741 

This work was jointly funded by the Natural Science Foundation of China (51520105013), 742 

the National Key Research and Development Plan (2016YFC0502800), and the Natural 743 

Sciences and Engineering Research Council of Canada.   744 



References 745 

Ajami N.K., Duan Q.Y., Sorooshian S., (2007). An integrated hydrologic Bayesian multimodel 746 

combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic 747 

prediction. Water Resources Research, 43, W01403. 748 

Brown, J. D. (2010). Prospects for the open treatment of uncertainty in environmental research, Prog. Phys. 749 

Geog., 34, 75–100, doi:10.1177/0309133309357000. 750 

Chen, H., Yang, D., Hong, Y., Gourley, J.J., Zhang, Y., 2013. Hydrological data assimilation with the 751 

Ensemble Square-Root-Filter: use of streamflow observations to update model states for real-time flash 752 

flood forecasting. Advance in Water Resources 59, 209-220. 753 

Chen Y., Oliver D.S., (2013). Levenberg–Marquardt forms of the iterative ensemble smoother for efficient 754 

history matching and uncertainty quantification. Computational Geosciences 17(4), 689-703.  755 

Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., and Uddstrom, 756 

M. J., (2008). Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow 757 

observations to update states in a distributed hydrological model, Adv. Water Resour., 31, 1309–1324, 758 

doi:10.1016/j.advwatres.2008.06.005. 759 

DeChant C.M., Moradkhani H., (2012). Examining the effectiveness and robustness of sequential data 760 

assimilation methods for quantification of uncertainty in hydrologic forecasting. Water Resources 761 

Research, 48, W04518, doi:10.1029/2011WR011011 762 

DeChant C.M., and H. Moradkhani (2014), Toward a Reliable Prediction of Seasonal Forecast Uncertainty: 763 

Addressing Model and Initial Condition Uncertainty with Ensemble Data Assimilation and Sequential 764 

Bayesian Combination, Journal of Hydrology , 519, 2967-2977, doi: 10.1016/j.jhydrol.2014.05.045. 765 

De Lannoy, G. J. M., Reichle, R. H., Houser, P. R., Pauwels, V. R., and Verhoest, N. E., (2007). Correcting 766 

for forecast bias in soil moisture assimilation with the ensemble Kalman filter, Water Resour. Res., 43, 767 

W09410, doi:10.1029/2006WR005449. 768 

Doucet, A., N. De Freitas, and N. Gordon (2001), Sequential Monte Carlo Methods in Practice, vol. 1, 769 

Springer, N. Y. 770 

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte 771 

Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans, 99(C5), 772 

10143-10162. 773 



Evensen, G. (2003), The Ensemble Kalman Filter: theoretical formulation and practical implementation, 774 

Ocean Dynamics 53, 343–367. 775 

Fan Y.R., Huang G.H., Baetz B.W., Li Y.P., Huang K., Li Z., Chen X., Xiong L.H., (2016). Parameter 776 

uncertainty and temporal dynamics of sensitivity for hydrologic models: A hybrid sequential data 777 

assimilation and probabilistic collocation method. Environmental Modelling & Software 86, 30-49 778 

Fan Y.R., Huang G.H., Huang K., Baetz B.W., (2015a). Planning Water Resources Allocation under 779 

Multiple Uncertainties through A Generalized Fuzzy Two-Stage Stochastic Programming Method. 780 

IEEE Transactions on Fuzzy Systems, 23(5), 1488-1504. 781 

Fan Y.R., Huang W.W., Li Y.P., Huang G.H., Huang K., Li Y.P., (2015b). A coupled ensemble filtering and 782 

probabilistic collocation approach for uncertainty quantification of hydrological models. Journal of 783 

Hydrology, 530, 255-272.  784 

Fan Y.R., Huang W.W., Huang G.H., Huang K., Zhou X., (2015c). A PCM-based stochastic hydrological 785 

model for uncertainty quantification in watershed systems. Stochastic Environmental Research and 786 

Risk Assessment, 29, 915-927 787 

Frei, M., and H. R. Kunsch (2013), Bridging the ensemble Kalman and particle filters, Biometrika, 100(4), 788 

781–800 789 

Fearnhead, P. and Clifford, P.: On-line inference for hidden Markov models via particle filters, J. R. Stat. 790 

Soc. B Met., 65, 887–899, 2003. 791 

Gordon, N.J., Salmond, D.J., Smith, A.F.M., 1993. Novel approach to nonlinear/nonGaussian Bayesian 792 

state estimation. IEEE Proceedings F: Radar Signal Process. 140 (2), 107e113. 793 

Gu Y., Oliver D.S., (2007). An iterative ensemble Kalman filter for multiphase fluid flow data assimilation.  794 

SPE Journal, 12(4), 438–446 795 

Han X.., Li X., (2008). An evaluation of the nonlinear/non-Gaussian filters for the sequential data 796 

assimilation. Remote Sensing of Environment, 112, 1434-1449. 797 

Kavetski, D., Kuczera, G., and Franks, S. W. (2006a). Bayesian analysis of input uncertainty in 798 

hydrological modeling: 1. Theory, Water Resour. Res., 42, W03407, doi:10.1029/2005WR00436. 799 

Kavetski, D., Kuczera, G., and Franks, S. W., (2006b) Bayesian analysis of input uncertainty in 800 

hydrological modeling: 2. Application,Water Resour. Res., 42, W03408, doi:10.1029/2005WR004376. 801 

Kong X.M., Huang G.H., Fan Y.R., Li Y.P., (2015). Maximum entropy-Gumbel-Hougaard copula method 802 



for simulation of monthly streamflow in Xiangxi river, China. Stochastic Environmental Research and 803 

Risk Assessment 29, 833-846. 804 

Leisenring, M., & Moradkhani, H. (2012). Analyzing the uncertainty of suspended sediment load 805 

prediction using sequential data assimilation. Journal of Hydrology, 468, 268-282 806 

Li T., Bolic M., Djuric P.M., (2015) Resampling Methods for Particle Filtering: Classification, 807 

implementation, and strategies. IEEE Signal Processing Magazine, 32(3), 70-86 808 

Li Z., Huang G.H., Fan Y.R., Xu J.L., Hydrologic Risk Analysis for Nonstationary Streamflow Records 809 

under Uncertainty. Journal of Environmental Informatics 26 (1), 41-51. 810 

Liu, J. S. and Chen, R.: Sequential Monte Carlo methods for dynamic systems, J. Am. Stat. Assoc., 93, 811 

1032–1044, 1998. 812 

Liu Y., Weerts A.H., Clark M., Hendricks Franssen H.-J., Kumar S., Moradkhani H., Seo D.-J., 813 

Schwanenberg D., Smith P., van Dijk A.I.J.M., van Velzen N., He M., Lee H., Noh S.J., Rakovec O., 814 

Restrepo P., (2012). Advancing data assimilation in operational hydrologic forecasting: progresses, 815 

challenges, and emerging opportunities. Hydrology and Earth System Sciences, 16, 3863-3887. 816 

Madadgar, S. and H. Moradkhani (2014). Improved Bayesian Multi-modeling: Integration of Copulas and 817 

Bayesian Model Averaging. Water Resources Research, 50, 9586-9603, doi: 10.1002/2014WR015965. 818 

Montanari A., Brath A., (2004), A stochastic approach for assessing the uncertainty of rainfall-runoff 819 

simulations. Water Resources Research, 40, W01106 820 

Moor, R.J., 1985. The probability-distributed principle and runoff production at point and basin scales. 821 

Hydrological Science Journal 30, 273-297. 822 

Moor, R.J., 2007. The PDM rainfall-runoff model. Hydrology and Earth Systems Science 11 (1), 483-499. 823 

Moradkhani, H. (2008). Hydrologic remote sensing and land surface data assimilation. Sensors, 8(5), 824 

2986-3004. 825 

Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. Houser (2005a), Dual state – parameter estimation of 826 

hydrologic models using ensemble Kalman filter. Advances in Water Resources, 28, 135 – 147. 827 

Moradkhani H., Dechant C.M., Sorooshian S., (2012). Evolution of ensemble data assimilation for 828 

uncertainty quantification using the particle filter-Markov chain Monte Carlo method, Water Resources 829 

Research, 48, W12520, doi:10.1029/2012WR012144. 830 

Moradkhani, H., Hsu, K. L., Gupta, H., & Sorooshian, S. (2005b). Uncertainty assessment of hydrologic 831 



model states and parameters: Sequential data assimilation using the particle filter. Water Resources 832 

Research, 41(5) 833 

Pappenberger, F. and Beven, K. J., (2006). Ignorance is bliss: Or seven reasons not to use uncertainty 834 

analysis, Water Resour. Res., 42, W05302, doi:10.1029/2005WR004820, 2006. 835 

Parrish, M., H. Moradkhani, and C.M. DeChant (2012). Towards Reduction of Model Uncertainty: 836 

Integration of Bayesian Model Averaging and Data Assimilation, Water Resources Research, 48, 837 

W03519, doi:10.1029/2011WR011116. 838 

Pathiraja, S., L. Marshall, A. Sharma, and H. Moradkhani (2016), Detecting non-stationary hydrologic 839 

model parameters in a paired catchment system using Data Assimilation, Advances in Water Resources, 840 

94, 103-119, doi:10.1016/j.advwatres.2016.04.021. 841 

Pathiraja, S., L. Marshall, A. Sharma, and H. Moradkhani (2016), Hydrologic Modeling in Dynamic 842 

catchments: A Data Assimilation Approach, Water Resources Research, doi: 10.1002/2015WR017192 843 

Plaza-Guingla D. A., De Keyser R., De Lannoy G. J. M., Giustarini L., Matgen P., and Pauwels V. R. N., 844 

(2013). Improving particle filters in rainfall-runoff models: Application of the resample-move step 845 

and the ensemble Gaussian particle filter, Water Resource Research, 49, doi:10.1002/wrcr.20291. 846 

Rasmussen J., Madsen H., Jensen K.H., Refsgaard J.C., (2015). Data assimilation in integrated 847 

hydrological modeling using ensemble Kalman filtering: evaluating the effect of ensemble size and 848 

localization on filter performance. Hydrology and Earth System Sciences, 19, 2999-3013. 849 

Reichle R., Mclaughlin D., Entekhabi D., (2002). Hydrologic data assimilation with the ensemble Kalman 850 

filter. Monthly Weather Review, 130(1), 103-114. 851 

Rezaie, J. and Eidsvik, J. (2012). Shrinked (1 − α) ensemble Kalman filter and α Gaussian mixture filter. 852 

Computational Geosciences, 16:837–852. 853 

Schaake, J., Franz, K., Bradley, A., and Buizza, R., (2006). The Hydrologic Ensemble Prediction 854 

EXperiment (HEPEX), Hydrol. Earth Syst. Sci. Discuss., 3, 3321–3332, 855 

doi:10.5194/hessd-3-3321-2006. 856 

Salamon, P. and Feyen, L. (2010). Disentangling uncertainties in distributed hydrological modeling using 857 

multiplicative error models and sequential data assimilation, Water Resour. Res., 46, W12501, 858 

doi:10.1029/2009WR009022. 859 

Shen Z., and Tang Y., (2015). A modified ensemble Kalman particle filter for non-Gaussian systems with 860 



nonlinear measurement functions. Journal of Advances in Modeling Earth Systems, 07, 861 

doi:10.1002/2014MS000373. 862 

Shi, Y., K. J. Davis, F. Zhang, C. J. Duffy, and X. Yu (2014), Parameter estimation of a physically based 863 

land surface hydrologic model using the ensemble Kalman filter: A synthetic experiment. Water 864 

Resources Research, 50, 1-19, doi:10.1002/2013WR014070 865 

Snyder, C., Bengtsson, T, Bickel, P., and Anderson, J.: Obstacles to high-dimensional particle filtering, 866 

Mon. Weather Rev., 136, 4629–4640, 2008. 867 

Su, C.H., Ryu, D., Crow, W.T., Western, A.W., 2014. Beyond triple collocation: applications to soil 868 

moisture monitoring. J. Geophys. Res. Atmos. 119, 6419–6439. 869 

http://dx.doi.org/10.1002/2013JD021043. 870 

Vrugt, Jasper A., ter Braak, Cajo J.F., Diks Cees G.H., Schoups, Gerrit, (2013). Hydrologic data 871 

assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications. 872 

Advances in Water Resources, 51, 457-478. 873 

Vrugt J.A., Diks C.G.H., Gupta H.V., Bouten W., Verstraten J.M., (2005). Improved treatment of 874 

uncertainty in hydrologic modelling: Combining the strengths of global optimization and data 875 

assimilation. Water Resources Research, 41, W01017. 876 

Weerts A.H., EI Serafy G.Y.H., (2006). Particle filtering and ensemble Kalman filtering for state updating 877 

with hydrological conceptual rainfall-runoff models. Water Resources Research, 42, W09403. 878 

doi:10.1029/2005WR004093 879 

Xie X., Zhang D., (2013). A partitioned update scheme for state-parameter estimation of distributed 880 

hydrologic models based on the ensemble Kalman filter. Water Resources Research, 49, 7530-7365 881 

Yan, H., DeChant, C.M., Moradkhani, H., 2015. Improving soil moisture profile prediction with the 882 

particle filter-Markov chain Monte Carlo method. IEEE Transactions on Geoscience and Remote 883 

Sensing. 53, 6134–6147. http://dx.doi.org/10.1109/TGRS.2015.2432067. 884 

Yan, H., C.M., Moradkhani, H., 2016. Combined assimilation of streamflow and satellite soil moisture 885 

with the particle filter and geostatistical modeling. Advances in Water Resources, 94, 364–378 886 

Zhang Y., Oliver D.S., Chen Y., Skaug H.J., (2014). Data Assimilation by Use of the Iterative Ensemble 887 

Smoother for 2D Facies Models, SPE Journal, 20(1), 169–185. 888 

http://dx.doi.org/10.1002/2013JD021043
http://dx.doi.org/10.1109/TGRS.2015.2432067


 889 

Initialize

Specify ensemble size (ne), total period of assimilation (T), 

consider (f) as forecast, (a) as update

Assign the particle weights uniformly:

wt,i = 1/ne

Use the observation operator h to propagate the model state 

forecast:

   i = 1, 2, …, ne

t = 1

Sampling the model state and parameter vectors from a 

uniform distribution

i = 1, 2, …, ne,              ; θt,i, i = 1, 2, …, ne,,

f

t ix xN
x R

N
R  

Propagate the ne state variables and model parameters forward 

using model operator f:

   i = 1, 2, …, ne1, , , 1, 1,( , , )f a f

t i t i t i t i t ix f x u  + + += +
1 ~ (0, )m

t tN + 

1, 1, 1, 1,( , )f f f

t i t i t i t iy h x v+ + + += + 1, 1~ (0, )y

t i tv N+ +

Update the parameters and states via the EnKF updating equations:

   
1, 1, 1 1, 1,[ ]a f f

t i t i xy t t i t ix x K y y+ + + + += + + − 1, 1, 1 1, 1,[ ]a f f

t i t i y t t i t iK y y  + + + + += + + −

Estimate the likelihood:

   2

1 1, 1, 1 1, 1,

1

1 1
( | , ) exp( [ ( , )] )

22

a a a a

t t i t i t t i t i

tt

L y x y h x
RR

 


+ + + + + +

+

= − −

1 1, 1,

1 1, 1, 1 1, 1, 1

1 1, 1,

1

( | , )
( | , ) ( ( , ) | )

( | , )

a a

t t i t ia a a a

t t i t i t t i t i tne
a a

t t i t i

i

L y x
p y x p y h x R

L y x


 



+ + +

+ + + + + + +

+ + +

=

= = −



Update the weight for the analyzed ensembles:

1, 1 1, 1, 1

1,

1, 1 1, 1, 1

1

( ( , ) | )

( ( , ) | )

f a a

t i t t i t i ta

t i ne
f a a

t i t t i t i t

i

w p y h x R
w

w p y h x R





+ + + + +

+

+ + + + +

=

 −
=

 −

Implement resampling procedure proposed by Moradkhani et al. 

(2005a) to eliminate and replace the abnormal samples

Take parameter evolution to the next stage through adding small 

stochastic error around the sample:

2, 1, 1,

f a

t i t i t i  + + += +  
1, 1,~ (0, ( ))a

t i t iN S  + +

t < T t = t + 1

No

Stop

 890 

Figure 1. The flow chart of CEnPF  891 
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Figure 2. The flow chart of PEnPF 893 
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Figure 3 Description of Hymod  896 



 897 

Figure 4: Comparison between ensemble predictions and synthetically generated true discharge: Four methods are used including EnKF, PF, CEnPF and PEnPF. The cyan 898 

region indicates the 90% predictive intervals, the red stars denote the synthetic observations, and the black line indicates the predictive mean values. 899 
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Figure 5: Convergence of the parameter distributions for the EnKF, PF, CEnPF and PEnPF for the synthetic experiments: The cyan region indicates the 90% intervals, the 

black line denotes the mean values, and the triangle is the predefined parameter value.  
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Figure 6. Performance comparison among EnKF, PF, CEnPF and PEnPF through a boxplot: The results show that all four methods will perform better with an increase in 

sample size. Generally, the PEnPF performs best than the other in both deterministic and probabilistic predictions, followed by EnKF, CEnPF and PF, if they are evaluated 

through NSE, RMSE and CRPS. However, the EnKF produces predictions with a lower resolution thn PEnPF. 
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Figure 7. The location of the studied watersheds. Two watersheds are used to demonstrate the applicability of 

the proposed data assimilation schemes. One watershed named Huanjiang, located in the the north part of Jing 

River. Precipitation data from the seven rain stations in this catchment are used to generate the areal 

precipitation in the studied sub-catchment. The potential evapotranspiration (PE) are interpolated based on the 

PE results at the five national meteorological stations. The streamflow observations at Hongde station are used 

to evaluate the performance of the proposed methods. For the Xiangxi river watershed, meteorological and 

streamflow observations at Xingshan (31013’N, 110045’E) station will be used. 

  

Jing River

(a) Huanjiang

Hongde

(b) Xiangxi River



 Figure 8. Comparison between the predication intervals and observations for Huanjiang river through different 

data assimilation schemes: (a) EnKF, (b) PF, (c) CEnPF, (d) PEnPF. 
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Figure 9. Performance comparison among different data assimilation schemes by using NSE, RMSE, CRPS and 

Resolution 
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Figure 10. Comparison between the predication intervals and observations for Xiangxi river through different 

data assimilation schemes: (a) EnKF, (b) PF, (c) CEnPF, (d) PEnPF.  
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Figure 11. Computation demand for EnKF, PF, CEnPF and PEnPF under different sample size scenarios 
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Table 1. The predefined true values (used in synthetic experiment), initial fluctuating ranges 

of Hymod parameters 

Description Parameter Range Synthetic true value 

Maximum storage capacity of watershed Cmax (mm) [100, 700] 428.18 

Spatial variability of soil moisture capacity bexp [2, 15] 8.79 

Factor distributing flow to the quick-flow tank α [0.10, 0.70] 0.28 

Residence time of the slow-flow tank Rs (1/day) [0.001, 0.20] 0.042 

Residence time of the quick-flow tank Rq (1/day) [0.2, 0.99] 0.79 

 

 



 1 

Table 2. the location of rain gauge stations in Huanjiang river basin 2 

Name Longitude Latitude 

Ganjipan 107.22  37.30  

Fanxue 107.58  37.08  

Shancheng 107.03  36.95  

Gengwan 107.27  36.88  

Honglaochi 106.78  36.87  

Siheyuan 107.45  36.82  

Hongde 107.20  36.77  

 3 

Table 3 Locations of National meteorological stations in Jing river basin 4 

Name Longitude Latiude 

Changwu 107.80  35.20  

Xifengzhen 107.63  35.73  

Guyuan 106.27 36.00 

Huanxian 107.30 36.58 

Tongchuan 109.07 35.08 

 5 

 6 

  7 



Table 4. The NSE coefficient between the ensemble predictions and real observations in 8 

Huanjiang river. 9 

  50 100 200 500 

 Mean 0.7548 0.7803 0.7736 0.8007 

CEnPF Min 0.2174 0.6047 0.6620 0.6429 

 Max 0.8943 0.9044 0.8464 0.9109 

 Mean 0.6739 0.7175 0.7294 0.7899 

PEnPF Min 0.6249 0.6613 0.6563 0.7137 

 Max 0.7555 0.7702 0.8471 0.8607 

 Mean 0.6532 0.6907 0.7448 0.7181 

EnKF Min 0.3035 0.5223 0.6134 0.6738 

 Max 0.8140 0.8056 0.7977 0.7667 

 Mean 0.6470 0.6458 0.6509 0.6660 

PF Min 0.4521 0.4721 0.4176 0.4885 

 Max 0.7656 0.7318 0.8383 0.7633 

  10 



 11 

Table 5. The RMSE values between the ensemble predictions and real observations in 12 

Huanjiang river. 13 

  50 100 200 500 

 Mean 9.2789 9.0914 9.3338 8.6391 

CEnPF Min 6.4205 6.1079 7.7408 5.8972 

 Max 17.4726 12.4186 11.4827 11.8033 

 Mean 11.2552 10.4769 10.1872 9.0089 

PEnPF Min 9.7672 9.4682 7.7224 7.3720 

 Max 12.0960 11.4950 11.5790 10.5680 

 Mean 11.3404 10.8787 9.9398 10.4714 

EnKF Min 8.5184 8.7083 8.8827 9.5404 

 Max 16.4840 13.6516 12.2815 11.2803 

 Mean 10.5186 10.5716 10.4382 10.2374 

PF Min 8.6479 9.2499 7.1836 8.6903 

 Max 13.2215 12.9784 13.6322 12.7747 

  14 



Table 6. The CRPS values between the ensemble predictions and real observations in 15 

Huanjiang river. 16 

 17 

  50 100 200 500 

 Mean 2.7980 2.5831 2.7709 2.5238 

CEnPF Min 2.3589 1.9576 2.1644 2.1624 

 Max 4.1678 3.0720 3.1563 3.0222 

 Mean 2.4414 2.2300 2.2268 1.9614 

PEnPF Min 2.0791 1.9265 1.6249 1.6750 

 Max 2.6434 2.5651 2.5963 2.1885 

 Mean 3.3559 2.5764 2.3244 2.4289 

EnKF Min 2.1443 2.0683 2.2054 2.2345 

 Max 5.2723 3.7094 2.7044 2.6382 

 Mean 3.9765 4.0262 4.1305 4.2854 

PF Min 2.9877 2.7904 2.5652 3.2007 

 Max 5.4238 4.8530 5.0780 5.5043 

 18 

  19 



Table 7. The Resolution between the ensemble predictions and real observations in Huanjiang 20 

river. 21 

 22 

  50 100 200 500 

 Mean 52.4690 48.8849 42.4754 43.7232 

CEnPF Min 43.2976 39.0868 36.1500 38.7363 

 Max 66.7200 62.8025 46.6733 57.6743 

 Mean 19.4104 17.2911 17.6186 16.6493 

PEnPF Min 17.5940 14.0080 16.0280 15.0580 

 Max 20.9610 19.4370 18.6260 18.6290 

 Mean 35.9948 29.0739 24.6598 21.9759 

EnKF Min 28.9328 25.4233 23.6961 21.0699 

 Max 42.5571 31.6062 25.1039 22.7798 

 Mean 41.5654 39.6750 39.8738 38.5949 

PF Min 33.4221 33.5924 21.0764 31.9602 

 Max 48.1742 49.7531 55.9405 45.8325 

  23 



Table 8. Comparison of different data assimilation approaches at Xingxi River 24 

  NSE RMSE CRPS Resolution 

 EnKF 0.5553 43.9565 15.2674 23.5072 

50 PF 0.6837 36.4071 19.0750 32.4610 

 CEnPF 0.6951 36.3942 18.4432 39.8297 

 PEnPF 0.7294 33.6750 21.2260 24.2767 

 EnKF 0.6014 41.6133 14.1384 21.8007 

100 PF 0.7338 34.0062 18.5035 23.0801 

 CEnPF 0.7127 35.3301 17.1706 24.2102 

 PEnPF 0.7166 35.0884 21.0474 12.9162 

 EnKF 0.6110 41.1089 13.8818 20.8912 

200 PF 0.7163 34.4767 19.5430 19.4740 

 CEnPF 0.6725 37.7190 17.6068 21.2002 

 PEnPF 0.7465 33.1868 16.8556 21.7079 

 EnKF 0.5231 45.5183 14.8714 22.2468 

500 PF 0.6786 36.6998 18.6901 22.2949 

 CEnPF 0.7530 32.7555 15.8585 20.2561 

 PEnPF 0.7403 32.9869 15.7859 24.3501 
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