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Abstract
This paper studies the bivariate HEAVY system of volatility regression equations and its var-
ious extensions that are directly applicable to the day-to-day business treasury operations of
trading in foreign exchange and commodities, investing in bond and stock markets, hedging
out market risk, and capital budgeting.We enrich the HEAVY framework with powers, asym-
metries, and long memory that improve its forecasting accuracy significantly. Other findings
are as follows. First, hyperbolic memory fits the realized measure better, whereas fractional
integration is more suitable for the powered returns. Second, the structural breaks applied to
the bivariate system capture the time-varying behavior of the parameters, in particular during
and after the global financial crisis of 2007/2008.

Keywords Asymmetries · Financial crisis · Forecasting · HEAVY model · High-frequency
data · Long memory · Power transformations · Realized variance · Risk management ·
Structural breaks

JEL Classification C22 · C52 · C58 · G01 · G15

1 Introduction

The volatility of financial returns constitutes a pivotal part of the empirical finance and
econometrics research, with crucial implications in portfolio optimization and risk man-
agement practices. Robust modeling and reliable forecasting of the volatility trajectory of
financial instruments has been the main task and objective of financial economics applica-
tions for business operations, given that volatility constitutes one of the fundamental input
variables in estimations and decision processes of any non-financial corporation on deriva-
tives pricing, portfolio immunization, investment diversification, firm valuation and funding
choices. There are several studies introducing non-parametric estimators of realized volatility
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using high-frequency market data. Andersen and Bollerslev (1998), Andersen et al. (2001)
and Barndorff-Nielsen and Shephard (2002) were the first that econometrically formalized
the realized variance with quadratic variation-like measures, while Barndorff-Nielsen et al.
(2008, 2009) focused on the realized kernel estimation as a realized measure which is more
robust to noise.

A large body of empirical research focuses on modeling and forecasting the realized
volatility. Various studies combine it with the conditional variance of returns. Engle (2002b)
proposed the GARCH-X process, where the former is included as an exogenous variable in
the equation of the latter. Corsi et al. (2008) suggested the HAR-GARCH formulation for
modeling the volatility of realized volatility.

Hansen et al. (2012) introduced theRealizedGARCHmodel that correspondsmost closely
to the HEAVY framework of Shephard and Sheppard (2010), which jointly estimates con-
ditional variances based on both daily (squared returns) and intra-daily (it uses the realized
kernel as a measure of ex-post volatility) data, so that the system of equations adopts to
information arrival more rapidly than the classic daily GARCH process. One of its advan-
tages is the robustness to certain forms of structural breaks, especially during crisis periods,
since the mean reversion and short-run momentum effects result in higher quality perfor-
mance in volatility level shifts and more reliable forecasts. Borovkova and Mahakena (2015)
employed a HEAVY specification with a skewed-t error distribution, while Huang et al.
(2016) incorporated the HAR structure of the realized measure in the GARCH conditional
variance specification in order to capture the long memory of the volatility dynamics.

This paper examines the HEAVY model by enriching the bivariate system with asymme-
tries and power transformations, through the structure of Ding et al. (1993). Among others,
Pérez et al. (2009, see the references therein for more details) show that the presence of
an asymmetric response of volatility to positive and negative returns shows up in non-zero
cross-correlations between original returns and future powers of absolute returns. One of our
main findings is that each of the two powered conditional variances is significantly affected
by the first lags of both power transformed variables, that is, squared negative returns, and
realized kernel (or, for the latter, its negative signed values).

We analyze the various specifications in depth and we investigate their performance over
six stock indices. We also take into account long memory (either fractionally integrated or
hyperbolic), by employing the framework of Davidson (2004) (see, Schoffer 2003 and Dark
2005, 2010, as well). We find that a fractionally integrated formulation better fits the squared
returns, whereas a hyperbolic type of memory is more suitable for the realized measure.
The long memory feature reinforces our main argument that the lagged values of the power
transformations of both aforementioned variables move the dynamics of the two powered
conditional variances. The fractionally integrated (asymmetric power) model for the returns
equation pools information across both low-frequency and high-frequency based volatility
indicators. Similarly, the more richly parametrized hyperbolic process for the realized kernel
equation is bolstered with low-frequency information as well since the lagged value of the
powered squared negative returns improves the forecasting performance of themodel. Finally,
in the presence of structural breaks,which are apparent in the twopower transformedvolatility
measures, we re-estimate the bivariate system including dummy variables, and we present
the time-varying behavior of the parameters. Focusing on the recent global financial crisis,
we observe that their values increase after the crisis.

With the advent of the crisis, when volatilities increased sharply and persistently with
crucial systemic risk externalities, we witnessed a resurgence of regulators’ and academics’
interest in meaningful volatility estimates, while, at the same time, practitioners remained
alert to improving the relevant volatility frameworks on a day-to-day basis. Financial eco-
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nomics scholars focused on volatility as a potent catalyst of systemic risk build-up, which
policymakers tried to limit. We demarcate this study from the extant finance bibliography
by extending the benchmark HEAVY model with asymmetries, power transformations and
long memory providing a well-defined framework that adequately fits the volatility process.
The bivariate system of the two volatility regression equations, we establish, is ready-to-use,
not only on stock markets returns, but also on multiple financial economics applications of
business operations research, such as bonds investing, foreign exchange trading and com-
modities hedging, core daily functions in the treasuries of most non-financial corporations,
besides the financial services sector.

Overall, our proposed volatility modeling framework improves the HEAVY model, with
major implications for market practitioners and policymakers on forecasting the financial
returns second moment. Volatility modeling and forecasting is essential for asset allocation,
pricing and risk management hedging strategies. A reliable volatility forecast, exploit-
ing in full the high-frequency domain, is the input variable of paramount importance for
the processes of derivatives pricing, effective cross-hedging, Value-at-Risk measurement,
investment allocation and portfolio optimization with different asset classes and financial
instruments. Moreover, the robust volatility modeling approach we introduce provides a tool
of utmost significance not only for market players but also for policymakers. Policymaking
includes continuous oversight duties and prudential regulation practices. In this vein, it is
imperative for the authorities to account for the volatility of financial markets across every
aspect of the financial system’s policy responses, both post-crisis through stabilization policy
reactions and pre-crisis through proactive assessment of financial risks.

The remainder of the paper is structured as follows. In Sect. 2, we detail the HEAVY for-
mulation and our first extension, which allows for asymmetries and power transformations.
Section 3 describes the data and Sect. 4 presents the results for the asymmetric power specifi-
cation. The next section studies the longmemory process and discusses the relevant empirical
findings. In Sect. 6, we estimate multiple-step-ahead forecasts to measure the out-of-sample
performance of the various specifications. The following section takes into consideration
the presence of structural breaks. In Sect. 8, we discuss the dynamic conditional correla-
tions estimation procedure for the extended HEAVY models. Finally, Sect. 9 concludes the
analysis.

2 The framework

The benchmark HEAVY model of Shephard and Sheppard (2010) can be extended in many
directions. We allow for power transformations, leverage effects and long memory (see
Sects. 4 and 5 below) in the conditional variance process. We run the estimated bench-
mark specification of Shephard and Sheppard (2010), enriched with the three key features to
improve the volatility modeling and forecasting further.

2.1 The HEAVYmodel

The HEAVY model uses two variables: the close-to-close stock returns (rt ) and the realized
measure of variation based on high frequency data, RMt . We first form the signed square
rooted (SSR) realized measure as follows: ˜RMt =sign(rt )

√
RMt , where sign(rt ) = 1, if

rt ≥ 0 and sign(rt ) = −1, if rt < 0.
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Weassume that the returns and theSSR realizedmeasure are characterized by the following
relations:

rt = ertσr t , ˜RMt = eRtσRt , (1)

where the stochastic term eit is independent and identically distributed (i.i.d), i = r , R; σi t
is positive with probability one for all t and it is a measurable function of F (XF)

t−1 , which is

the filtration generated by all available information through time t − 1. We will use F (HF)
t−1

(X = H ) for the high frequency past data, i.e., for the case of the realized measure, or
F (LoF)
t−1 (X = Lo) for the low frequency past data, i.e., for the case of the close-to-close

returns. Hereafter, for notational convenience we will drop the superscript XF .
In the HEAVY/GARCH model eit has zero mean and unit variance. Therefore, the two

series have zero conditional means, and their conditional variances are given by

E

(
r2t |Ft−1

) = σ 2
r t , and E

(
˜RMt

2 |Ft−1

)
= E(RMt |Ft−1 ) = σ 2

Rt , (2)

where E(·) denotes the expectation operator.

2.2 Asymmetric power specification

The asymmetric power (AP) specification for the HEAVY(1, 1) model consists of the follow-
ing equations (in what follows for notational simplicity we will drop the order of the model
if it is (1, 1)):

(1 − βi L)
(
σ 2
i t

) δi i
2 = ωi + (αir + γir st−1)L

(
r2t

) δir
2

+ (αi R + γi Rst−1)L(RMt )
δi R
2 , for i = r , R (3)

where L is the lag operator, δi j ∈ R>0 (the set of the positive real numbers) are the power
parameters, and st = 0.5[1− sign(rt )], that is, st = 1 if rt < 0 and 0 otherwise; γi i , γi j
(i �= j) are the own and cross leverage parameters, respectively1; positive γi i , γi j means
larger contribution of negative ‘shocks’ in the volatility process (in our long memory AP
specification we will replace αi i + γi i st−1 by αi i (1 + γi i st−1); see Sect. 5 below, and, in
particular, Eq. (4)). In this specification the powered conditional variance, (σ 2

i t )
δi i /2, is a

linear function of the lagged values of the powered transformed squared returns and realized
measure.

We will distinguish between three different asymmetric cases: the double one (DA: γi j �=
0) and two more: own asymmetry (OA: γi i �= 0 , γi j = 0 for i �= j) and cross asymmetry
(CA: γi i = 0, γi j �= 0 for i�= j).

The αi R and γi R are called the (four) Heavy parameters (own when i = R and cross when
i �= R). These parameters capture the impact of the realized measure on the two conditional
variances. Similarly, the αir and γir (four in total) are called the Garch parameters (own
when i = r and cross for i �= r ). They depict the influence of the squared returns on the two
conditional variances. When all four Heavy parameters are zero the AP-HEAVY model is
reduced to a bivariate AP-GARCH process (see, for example, Conrad and Karanasos 2010).
If, on the other hand, all four Garch parameters are zero, then we have the AP-HEAVY
specification where the only unconditional regressor is the first lag of the powered RMt .
Finally, we should mention that all the parameters in this bivariate system should take non-
negative values (see, for example, Conrad and Karanasos 2010).

1 This type of asymmetry was introduced by Glosten et al. (1993).
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To sum up, the benchmark HEAVY(1, 1) model, to be extended in this study, is charac-
terized by two conditional variance equations:

(1 − βr L)σ 2
r t = ωr + αr R L(RMt ),

(1 − βRL)σ 2
Rt = ωR + αRRL(RMt )

Equation (3) gives the general formulation of our first HEAVY extension for both variables,
wherewe add asymmetries and power transformations.Wewill first estimate both conditional
variance equations in the general form with all Heavy, Garch and Asymmetry parameters
given by Eq. (3) and in case a parameter is insignificant, we will exclude it and this will result
in a reduced form that is statistically preferred for each volatility process. For example, in the
returns and realized conditional variances estimation, the own and cross Garch parameters
(αrr and αRr respectively) are proved insignificant and, therefore, excluded (see Sect. 4,
Table 2, Panels A and B) since this is the way to reach the returns and realized measure
formulations that are statistically preferred.

We conclude this section by highlighting the fact that the estimation (see Sect. 4) of our
extended asymmetric power specification proves that both powered conditional variances
receive the notable impact from the first lag of the power transformed negative returns.
Therefore, the conclusion that the realized measure of variation does all the work at moving
around the conditional variance of stock returns does not hold for themore richly parametrized
model.

3 Data description

The HEAVY framework is estimated for six stock indices returns and realized volatilities.
According to the analysis in Shephard and Sheppard (2010), the HEAVY formulation consid-
erably improves the volatility modeling by allowing momentum and mean reversion effects
and adjusting quickly to the structural breaks in volatility. We extend the benchmark spec-
ification in Shephard and Sheppard (2010), by adding the features of power transformed
conditional variances, leverage effects and long memory (see Sect. 5 below) in the volatility
process. Moreover, in order to identify the possible recent global financial crisis effects on
the volatility process and to take into account the structural breaks in the two powered series
(squared returns and realized measure), in Sect. 7 we incorporate dummies in our empirical
investigation. The analysis with the structural breaks can be considered as an alternative to
the long memory investigation.

3.1 Oxford-Man Institute’s library

We use daily data for six market indices extracted from the Oxford-Man Institute’s (OMI)
realized library version 0.2 of Heber et al. (2009): S&P 500 from the US (SP), Nikkei
225 from Japan (NIKKEI), TSE from Canada, FTSE 100 from the UK (FTSE), DAX from
Germany and Eustoxx 50 from the Eurozone (EUSTOXX). Our sample covers the period
from 03/01/2000 to 30/11/2017 for most indices. For the Canadian stock market index TSE
the data begin from 2002. The OMI’s realized library includes daily stock market returns
and several realized volatility measures calculated on high-frequency data from the Reuters
DataScope Tick History database. The data are first cleaned and then used in the realized
measures calculations. According to the library’s documentation, the data cleaning consists of
deleting records outside the time interval that the stock exchange is open. Someminormanual
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Table 1 Data description

Index Sample period r2t RKt

Start date End date Obs. Avol SD Avol SD

SP 03/01/2000 30/11/2017 4479 0.192 0.047 0.165 0.025

NIKKEI 04/01/2000 30/11/2017 4343 0.243 0.067 0.167 0.019

TSE 02/05/2002 30/11/2017 3894 0.165 0.035 0.117 0.014

FTSE 04/01/2000 30/11/2017 4502 0.183 0.039 0.144 0.015

DAX 03/01/2000 30/11/2017 4535 0.236 0.062 0.208 0.031

EUSTOXX 03/01/2000 30/11/2017 4540 0.233 0.056 0.201 0.032

Avol, annualized volatility; SD, standard deviation

changes are also needed, when results are ineligible due to the rebasing of indices.We use the
daily closing prices, PC

t , to form the daily returns as follows: rt = ln(PC
t ) − ln(PC

t−1), and
two realized measures as drawn from the library: the realized kernel and the 5-min realized
variance. The estimation results using the two alternative measures are very similar, so we
present only the ones with the realized kernels (the results for the realized variances are
available upon request).

3.2 Realizedmeasures

The library’s realizedmeasures are calculated in theway described in Shephard and Sheppard
(2010). The realized kernel, which we present in our analysis here, is chosen as a measure
more robust to noise, where the exact calculation with a Parzen weight function is described
as follows: RKt = ∑H

k=−H k(h/(H + 1))γh , where k(x) is the Parzen kernel function with
γh = ∑n

j=|h|+1 x j,t x j−|h|,t ; x jt = Xt j,t − Xt j−1,t are the 5-min intra-daily returns where
Xt j,t are the intra-daily prices and t j,t are the times of trades on the t-th day. Shephard and
Sheppard (2010) declared that they selected the bandwidth of H as in Barndorff-Nielsen
et al. (2009).

The 5-min realized variance, RVt , which we also employ as an alternative realized mea-
sure, is calculated with the formula: RVt = ∑

x2j,t (results are not reported but they are
available upon request). Heber et al. (2009) additionally implement a subsampling proce-
dure from the data to the most feasible level in order to eliminate the stock market noise
effects. The subsampling involves averaging across many realized variance estimations from
different data subsets (see also the references in Shephard and Sheppard 2010 for realized
measures surveys, noise effects and subsampling procedures).

Table 1 presents the main six stock indices extracted from the database and provides
volatility estimations for each one’s squared returns and realized kernels time series for the
respective sample period (see also the SP series graphs in the “Appendix”, Figs. 3, 4 and 5).
We calculate the standard deviation of the series and the annualized volatility. Annualized
volatility is the square rooted mean of 252 times the squared return or the realized kernel. The
standard deviations are always lower than the annualized volatilities. The realized kernels
have lower annualized volatilities and standard deviations than the squared returns since they
ignore the overnight effects and are affected by less noise. The returns represent the close-
to-close yield and the realized kernels the open-to-close variation. The annualized volatility
of the realized measure is between 12 and 21%, while the squared returns show figures from
17 to 24%.
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4 Estimation results

Building upon the introduction of theGARCH-Xprocess byEngle (2002b) to include realized
measures as exogenous regressors in the conditional variance equation, Han and Kristensen
(2014) and Han (2015) studied the asymptotic properties of this new specification with a
fractionally integrated (nonstationary) process included as covariate. Moreover, Pedersen
and Rahbek (2019) developed likelihood-ratio tests on the significance of the nonstationary
covariate in the above mentioned model, while Halunga and Orme (2009) provided some
asymmetry and nonlinearity tests. Lastly,Nakatani andTeräsvirta (2009) andPedersen (2017)
focused on the multivariate case, the so called extended constant conditional correlation,
which allows for volatility spillovers and they developed inference and testing for the quasi-
maximum likelihood estimator (QMLE) parameters (see also Ling and McAleer 2003 for
the asymptotic theory of vector ARMA-GARCH processes). Within the HEAVY framework
we first estimate the benchmark formulation as in Shephard and Sheppard (2010), that is,
without asymmetries and power transformations, obtaining very similar results (available
upon request).

Table 2 presents the estimation results for the chosen asymmetric power specifications.
Wald and t tests are used to test the significance of the Heavy and Garch parameters, reject-
ing the null hypothesis at 10% in all cases. We should highlight the fact that since all the
parameters take non-negative values, we use one-sided tests. Following Pedersen and Rah-
bek (2019), we first test for arch effects and after rejecting the conditional homoscedasticity
hypothesis we apply one-sided significance tests of the covariates added to the estimated
GARCH-X processes.

For the returns, we statistically prefer the double asymmetric power (DAP) specification
since the own estimated power term is 1.18 ≤ δrr ≤ 1.59 in all cases (see Table 2, Panel A;
see also the Wald tests for the power terms, Table 8, Panel A, in the “Appendix”, where the
hypotheses of δrr = 1 and δrr = 2 are rejected in most cases).

Since when we tried to estimate both power terms simultaneously there was no con-
vergence, we estimated them separately with a two-stage procedure, as follows: We firstly
estimate for the realized measure univariate asymmetric power specifications, that is, without
the effect from the returns, and, then, in the second stage we use the estimated powers in the
returns equations. The sequential procedure produces power term values close to the ones
estimated for the realized measure in the respective DAP specification (compare the values
of δr R with those of δRR in Table 2, Panels A and B).

The Heavy asymmetry parameter, γr R , is significant and around 0.05 (min. value) to 0.16
(max. value).2 Although αrr is insignificant and excluded in all cases, the own asymmetry
parameter (γrr ) is significant with γrr ∈ [0.07, 0.14]. In other words, the lagged values
of both powered variables, that is, the negative signed realized measure and the squared
negative returns drive the model of the power transformed conditional variance of the returns.
Moreover, the momentum parameter, βr , is estimated to be around 0.87–0.91. All six indices
generated very similar DAP specifications.

Similarly, for the realized measure the most preferred specification is the DAP one, as the
estimated power is δRR ∈ [1.05, 1.28] in all cases (see Table 2, Panel B). TheWald tests of the
power terms (see Panel B in Table 8) mostly reject the hypotheses of δRR = 1 and δRR = 2.
The δRr is the power termof the returns estimated separately using the univariate specification,

2 The DAP-HEAVY-r equation for returns is also estimated with the direct Heavy effect from the power
transformed realized measure, αr R , instead of the Heavy asymmetry, γr R (these results are available upon
request).
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Table 2 The DAP-HEAVY model. Estimation results

SP NIKKEI TSE FTSE DAX EUSTOXX

Panel A: Stock returns

(1 − βr L)(σ 2
r t )

δrr
2 = ωr + γrr st−1L(r2t )

δrr
2 + γr Rst−1L(RMt )

δr R
2

βr 0.87
(73.46)∗∗∗ 0.87

(51.51)∗∗∗ 0.91
(72.00)∗∗∗

0.88
(50.10)∗∗∗ 0.90

(73.10)∗∗∗ 0.88
(66.48)∗∗∗

γrr 0.08
(2.24)∗∗∗ 0.07

(1.47)∗
0.08

(1.51)∗
0.14

(1.80)∗∗
0.10

(2.61)∗∗∗ 0.11
(2.68)∗∗∗

γr R 0.14
(2.72)∗∗∗ 0.07

(1.46)∗
0.05

(1.48)∗
0.06

(1.93)∗∗∗ 0.16
(2.28)∗∗∗

0.05
(1.75)∗∗

δrr 1.39
(14.71)∗∗∗ 1.59

(8.46)∗∗∗
1.19

(7.37)∗∗∗ 1.46
(11.54)∗∗∗ 1.18

(11.46)∗∗∗ 1.59
(13.91)∗∗∗

δr R 1.25 1.26 1.08 1.33 1.32 1.29

Panel B: Realized measure

(1 − βRL)(σ 2
Rt )

δRR
2 = ωR + (αRR + γRRst−1)L(RMt )

δRR
2 + γRr st−1L(r2t )

δRr
2

βR 0.66
(71.64)∗∗∗ 0.67

(14.49)∗∗∗ 0.66
(33.41)∗∗∗ 0.64

(19.79)∗∗∗ 0.67
(21.05)∗∗∗ 0.69

(16.31)∗∗∗
αRR 0.25

(18.83)∗∗∗ 0.26
(6.47)∗∗∗ 0.28

(14.47)∗∗∗ 0.31
(9.33)∗∗∗

0.26
(8.35)∗∗∗ 0.24

(4.61)∗∗∗

γRR 0.07
(4.26)∗∗∗

0.02
(1.49)∗

0.02
(1.89)∗∗ 0.001

(1.53)∗
0.02

(1.99)∗∗∗ 0.03
(1.51)∗

γRr 0.33
(6.23)∗∗∗

0.23
(1.52)∗

0.11
(7.12)∗∗∗ 0.10

(1.86)∗∗ 0.11
(2.26)∗∗∗ 0.32

(1.72)∗∗

δRR 1.16
(56.23)∗∗∗ 1.21

(5.48)∗∗∗ 1.05
(67.37)∗∗∗ 1.28

(6.09)∗∗∗
1.22

(6.01)∗∗∗ 1.25
(7.60)∗∗∗

δRr 1.45 1.56 1.22 1.44 1.27 1.64

The numbers in parentheses are t-statistics
Bold (underlined) numbers indicate minimum (maximum) values across the six indices
∗∗∗, ∗∗, ∗Significance at the 0.05, 0.10, 0.15 level respectively

as discussed previously. Both Heavy parameters, αRR and γRR , are significant: αRR is around
0.24 (min. value) to 0.31 (max. value), while γRR , is between 0.001 and 0.07. Moreover, the
cross asymmetry Garch parameter is always significant with γRr ∈ [0.10, 0.33]. This means
that the power transformed conditional variance of˜RMt is significantly affected by the lagged
values of both powered variables: squared negative returns and realized measure. Lastly, the
momentum parameter, βR , is estimated to be around 0.64–0.69.

Overall, our results show strong Heavy effects (captured by the γr R , αRR and γRR param-
eters), as well as asymmetric Garch influences (as the estimated γrr and γRr are significant).

5 Longmemory

In this section we extend the DAP-HEAVY framework by incorporating long memory.

5.1 Hyperbolic specification

First, we present the most general hyperbolic (HY) specification (see, for example, in the
context of a univariate GARCHmodel Davidson 2004; Dark 2005, 2010 and Schoffer 2003):
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(1 − βr L)
[
(σ 2

r t )
δrr
2 − ωr

]
= Ar (L)(1 + γrr st )

(
r2t

) δrr
2 + (αr R + γr Rst−1)L(RMt )

δr R
2 ,

(1 − βRL)
[
(σ 2

Rt )
δRR
2 − ωR

]
= AR(L)(1 + γRRst )(RMt )

δRR
2 + (αRr + γRr st−1)L

(
r2t

) δRr
2 ,

(4)

with

Ai (L) = (1 − βi L) − (1 − φi L)[(1 − ζi ) + ζi (1 − L)di ], i = r , R,

where |φi | < 1, di , is the fractional differencing parameter with 0 ≤ di ≤ 1, and ζi , is the
amplitude or hyperbolic parameter with 0 ≤ ζi ≤ 1. In other words, we have three long
memory parameters, φi , ζi , and di . So now the Heavy parameters are six in total. Similarly,
the Garch parameters are six.

If ζi = 0 and φi − βi = αi i , the HYDAP specifications reduce to the DAP ones (see Eq.
(3)), since in this case Ai (L) = αi i L .

The HY specification also nests the fractional integrated (FI) one (see, for example, Baillie
et al. 1996; Tse 1998; Karanasos et al. 2004, and Conrad and Karanasos 2006) by imposing
the restriction ζi = 1. In this case Ai (L), in Eq. (4) becomes

Ai (L) = (1 − βi L) − (1 − φi L)(1 − L)di . (5)

Finally, note that the sufficient conditions of Dark (2005, 2010) for the non-negativity of
the conditional variance of a HYAPARCH (1, di , 1) specification are: ωi > 0, βi − ζi di ≤
φi ≤ 2−di

3 and ζi di (φi − 1−di
2 ) ≤ βi (φi − βi + ζi di ), i = r , R (see also Conrad 2010).

When ζi = 1 they reduce to the ones for the FIGARCH (1, di , 1) model (see Bollerslev and
Mikkelsen 1996).

5.2 Estimatedmodel

We further extend the HEAVY framework by incorporating long memory. For the returns the
chosen specification is the FIOAP, whereas for the realized measure we select the HYDAP
one. In all cases the power terms of the covariates are presented as fixed parameters since
they are estimated separately using univariate models.

In the FIOAP specification for the returns (see Table 3, Panel A) δrr is around 1.27–1.57
and dr close to 0.50 (around 0.42–0.49). In most cases the Wald tests (see Table 9) reject the
null hypotheses of dr = 0 or 1 and δrr = 1 or 2. The other two long memory parameters, φr

and the hyperbolic one, ζr , were insignificant and, therefore, they were excluded. The own
asymmetry parameter, γrr , is significant and around 0.26–0.60. The Heavy parameter, αr R ,
is significant as well and with estimated values between 0.04 and 0.15. In other words, the
lagged values of both powered variables (the squared returns and the realized measure) drive
the model of the power transformed conditional variance of returns.

In the HYDAP specification for the realized measure (see Table 3, Panel B) δRR is around
1.13–1.43. There is also strong evidence of hyperbolic memory as not only dR but also ζR
is significant, with estimated values 0.57–0.68 and 0.86–0.92, respectively, while the Wald
tests always reject the null of either a FIDAP (H0 : ζR = 1) or a DAP formulation (H0 :
ζR = 0). The own and the cross (Garch) asymmetric parameters, γRR ∈ [0.06, 0.24] and
γRr ∈ [0.08, 0.22], are also significant. This means that the power transformed conditional
variance of ˜RMt is significantly affected by the lagged values of both powered variables:
realized measure and squared negative returns.
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Table 3 The HYDAP-HEAVY model. Estimation results

SP NIKKEI TSE FTSE DAX EUSTOXX

Panel A: Stock returns, FIOAP specification

(1 − βr L)[(σ 2
r t )

δrr
2 − ωr ] =

[
(1 − βr L) − (1 − L)dr

]
(1 + γrr st )(r2t )

δrr
2 + αr R L(RMt )

δr R
2

βr 0.43
(3.02)∗∗∗

0.43
(2.11)∗∗∗

0.38
(2.77)∗∗∗ 0.35

(3.98)∗∗∗ 0.39
(3.14)∗∗∗ 0.38

(4.15)∗∗∗

dr 0.48
(3.34)∗∗∗ 0.49

(2.20)∗∗∗
0.42

(3.11)∗∗∗ 0.42
(6.20)∗∗∗ 0.46

(6.53)∗∗∗ 0.43
(5.46)∗∗∗

γrr 0.60
(1.67)∗∗

0.26
(1.46)∗

0.39
(3.04)∗∗∗ 0.56

(3.22)∗∗∗ 0.46
(4.71)∗∗∗ 0.54

(2.36)∗∗∗

αr R 0.05
(2.22)∗∗∗ 0.04

(2.36)∗∗∗ 0.07
(2.83)∗∗∗ 0.07

(3.01)∗∗∗ 0.14
(1.90)∗∗ 0.15

(1.51)∗
δrr 1.36

(2.17)∗∗∗ 1.57
(2.67)∗∗∗

1.27
(7.69)∗∗∗ 1.41

(6.63)∗∗∗ 1.41
(10.17)∗∗∗ 1.46

(5.64)∗∗∗

δr R 1.24 1.21 1.13 1.25 1.44 1.50

Panel B: Realized measure, HYDAP specification

(1 − βRL)[(σ 2
Rt )

δRR
2 − ωR ] = γRr st−1L(r2t )

δRr
2 + (1 − φRL)[(1 − ζR) +

ζR(1 − L)dR ](1 + γRRst )(RMt )
δRR
2

βR 0.58
(15.08)∗∗∗ 0.54

(7.55)∗∗∗ 0.56
(11.65)∗∗∗ 0.54

(10.76)∗∗∗ 0.68
(16.38)∗∗∗

0.68
(13.18)∗∗∗

φR 0.30
(6.65)∗∗∗ 0.27

(5.93)∗∗∗ 0.32
(7.20)∗∗∗ 0.24

(8.97)∗∗∗ 0.37
(7.60)∗∗∗

0.35
(7.26)∗∗∗

ζR 0.86
(77.36)∗∗∗ 0.90

(63.01)∗∗∗ 0.87
(70.16)∗∗∗ 0.92

(90.13)∗∗∗
0.89

(88.20)∗∗∗ 0.87
(54.09)∗∗∗

dR 0.62
(17.01)∗∗∗ 0.63

(15.76)∗∗∗ 0.57
(19.92)∗∗∗ 0.65

(23.37)∗∗∗ 0.68
(19.33)∗∗∗

0.68
(16.95)∗∗∗

γRR 0.24
(5.02)∗∗∗

0.08
(1.83)∗∗ 0.12

(2.45)∗∗∗ 0.06
(3.21)∗∗∗ 0.12

(2.84)∗∗∗ 0.13
(1.95)∗∗

γRr 0.22
(11.05)∗∗∗

0.19
(6.93)∗∗∗ 0.11

(8.65)∗∗∗ 0.11
(9.66)∗∗∗ 0.08

(10.36)∗∗∗ 0.10
(4.36)∗∗∗

δRR 1.13
(7.31)∗∗∗ 1.24

(7.04)∗∗∗ 1.17
(11.24)∗∗∗ 1.29

(3.88)∗∗∗ 1.43
(7.25)∗∗∗

1.43
(8.21)∗∗∗

δRr 1.33 1.49 1.25 1.42 1.38 1.39

See notes in Table 2

All in all, our long memory extension of the asymmetric power specification proves
once more that both powered conditional variances receive the notable impact from the first
lags of both power transformed variables. Intriguingly, this result stands in sharp contrast
to the benchmark HEAVY model, where the intradaily realized measure is not affected by
squared daily returns and the daily returns conditional variance is only determined by the
lagged realized measure and the lagged returns variance since the asymmetries from negative
returns are completely neglected.

6 Forecasting performance

Following the estimation of all possible extensions to the HEAVY framework of equations,
we perform multistep-ahead out-of-sample forecasting in order to compare the forecasting
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Table 4 Root mean square error (RMSE) of m-step ahead forecasts for SP as a Ratio of the benchmark model

Specifications ↓ Restrictions ↓m-steps → : 1 5 20 120 231

Panel A: Stock returns

Benchmark HEAVY αrr = γrr = γr R = 0
δr j=2( j=r ,R), in Eq. (3)

1.000 1.000 1.000 1.000 1.000

DAP-HEAVY αri = 0
(i=r ,R), in Eq. (3)

0.907 0.861 0.878 0.979 0.989

FIOAP-HEAVY φr = ςr = γr R = 0
in Eq. (4)

0.626 1.256 1.619 1.456 1.626

Panel B: Realized measure

Benchmark HEAVY αRr = γRr = γRR = 0
δRR=2, in Eq. (3)

1.000 1.000 1.000 1.000 1.000

DAP-HEAVY αRr = 0
in Eq. (3)

0.884 0.612 0.386 0.156 0.126

HYDAP-HEAVY αRr = 0
in Eq. (4)

0.893 0.396 0.245 0.086 0.070

Bold numbers indicate minimum values across the different specifications

accuracy of the different specifications proposed in this study. We re-estimate the benchmark
model, the DAP process and its long memory extension, for the shortened sample from
3/1/2000 up to 30/12/2016 (4,248 observations: in-sample estimation) and keep the remaining
231 observations from 3/1/2017 to 30/11/2017 for out-of-sample comparison purposes. With
the shortened sample, for each specification we estimate the 1-, 5-, 20-, 120- and 231-
step-ahead forecasted (power transformed) conditional variances and calculate the standard
measure of forecasting performance, that is the Root Mean Square Error (RMSE) based on
the out-of-sample observations up to 30/11/2017.

The results, presented in Table 4 for the SP index (similar forecasting results for the other
five indices available upon request), clearly show the preference for our extensions over
the benchmark models across all time horizons. Regarding the returns equations (see Panel
A), the FIOAP is the best performing specification in the 1-day forecasted variance, while
for the one-week and up to the eleven-month-forecasts the DAP formulation dominates the
alternative extensions with the lowest RMSE. In the realized measure equation, we get the
best 1-step-ahead forecasting performance from the DAP specification (see Panel B). For the
remaining time horizons the preferred formulation is the Hyperbolic one.

Overall, the extensions of the HEAVY specification proposed in our study perform sig-
nificantly better than the benchmark one in the short- and the long-term horizons.

Value at risk application
The forecasting performance of the proposed models can be further examined in a real-

world business operation. Value-at-Risk (VaR) is a daily metric for market risk measurement,
defined as the potential loss in the value of a portfolio, over a pre-defined holding period,
for a given confidence level. The most important input in the VaR calculation is the 1-day
volatility forecast of the risk factor relevant to the trading portfolio under scope. We directly
apply our conditional variance forecasts in a long position to a portfolio of 10,000 S&P 500
index contracts starting from 30/12/2016. We calculate 231 daily VaR values from 3/1/2017
to 30/11/2017 using the 1-day conditional variance forecasts of each model for returns and
realized measure (6 models in total). Given that the conditional mean return is zero and the
returns follow the normal distribution, we first calculate the 1-day VaR with a 99% and 95%
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Table 5 VaR backtesting for the
SP portfolio. No. of exceptions of
the 99% and 95% VaR

Specifications 99% VaR 95% VaR

Panel A: Stock returns

Benchmark HEAVY 2 6

DAP-HEAVY 2 3

FIOAP-HEAVY 1 3

Panel B: Realized measure

Benchmark HEAVY 2 5

DAP-HEAVY 1 2

HYDAP-HEAVY 1 2

confidence level. According to the parametric approach to VaR calculation, we multiply the
daily portfolio value by the 1-day conditional volatility forecast (equal to the square root of
the conditional variance forecast) and the left quantile at the respective confidence level of
the normal distribution (the z-scores for 99% and 95% confidence level are 2.326 and 1.645,
respectively). Secondly, we calculate the daily realized return of the portfolio (gains and
losses) and, thirdly, we perform the backtesting exercise comparing the 231 realized returns
to the respective 1-day VaR for the 99% and 95% confidence levels. In the cases where the
realized loss exceeds the respective day’s VaR value, we record it as an exception in the
backtesting procedure, meaning that the VaR metric fails to cover the loss of the specific
day’s portfolio value.

Table 5 reports the backtesting results that prove the superiority of the long memory
asymmetric power HEAVY models in forecasting the 1-day-ahead volatility since they give
fewer exceptions than the VaR estimates of the benchmark models for both confidence levels
applied. The robustness check of the VaR model through the backtesting exercise results in
the critical number of exceptions which should be, first, in line with the selected confidence
level (the 99% and 95% confidence levels allow for 1 and 5 exceptions, respectively, every
100 days) and, second, the lowest possible. The higher number of exceptions means higher
market risk capital requirements for financial institutions. This is the way regulators heavily
penalize banks’ internal VaR models that do not cover trading losses.

7 Structural breaks

In this section, we investigate the impact of structural changes (detected in the two time
series used) on the Heavy and Garch estimated parameters. The time-varying behavior of
these parameters can be significant, specifically around a financial crisis break, indicative of
the crisis effects on the volatility pattern. As an alternative to the long memory specification,
we incorporate structural break dummies in the DAP specification. We identify the structural
breaks in the two volatility series for SP, focusing mainly on the recent global financial crisis,
and study their impact on the HEAVY framework.We test for structural breaks by employing
the methodology in Bai and Perron (1998, 2003a, b), who address the problem of testing for
multiple structural changes in a least squares context and under very general conditions on the
data and the errors. In addition to testing for the presence of breaks, these statistics identify
the number and location of multiple breaks. So, we identify the structural breaks in the two
powered series (power transformations of squared returns and realized measure) with the Bai
and Perron methodology (see Table 6 and Figs. 1, 2). We use the breaks of the two series in
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Table 6 The break dates for SP 1st break 2nd break 3rd break

r 02/04/2003 31/10/2007 30/11/2011

R 11/04/2003 23/07/2007 13/09/2010

Bai and Perron breaks identification: results selected from the repartition
procedure for 1% significance level with 5 maximum number of breaks
and 0.15 trimming parameter
Dates in bold indicate that the corresponding dummy coefficient is used
in the DAP-HEAVY model

Fig. 1 SP power transformed squared returns with breaks

order to build the slope dummies for the various parameters. We observe that a break date for
the recent financial crisis of 2007/2008 is detected, so that we can focus on the crisis effect.
We also detect one break date before and one after the crisis.

We present the estimation results for the SP index in Table 7 (similar results for the other
five indices available upon request), where we choose to use the 3 breaks of the power
transformed squared returns series: (1) 02/04/2003: pre-crisis break, (2) 31/10/2007: crisis
break and (3) 30/11/2011: post-crisis break. The three dummy variables multiplied by the
respective Heavy and Garch parameters (to construct the slope dummies) are defined as
follows: Di,t = 0, if t < Ti and Di,t = 1, if t ≥ Ti , i = (1), (2), (3) the three break dates. In
the returns equation, the own asymmetry (Garch) parameter, γrr , receives a decreasing impact
(− 0.04) from the pre-crisis break, while the cross asymmetry (Heavy) parameter is increased
by the crisis dummy (+ 0.05) and decreased by the post-crisis dummy (− 0.04). Regarding
the realized measure equation, the Heavy impact, as captured by the own asymmetry γRR ,
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Fig. 2 SP power transformed realized kernel with breaks

Table 7 The DAP-HEAVY model with structural breaks for SP. Estimation results

Panel A: Stock returns

(1 − βr L)(σ 2
r t )

δrr
2 = ωr + (γrr + γ

(1)
rr D1,t−1)st−1L(r2t )

δrr
2 + (γr R + γ

(2)
r R D2,t−1

+γ
(3)
r R D3,t−1)st−1L(RMt )

δr R
2

βr γrr γ
(1)
rr γr R γ

(2)
r R γ

(3)
r R δrr δr R

0.86
(70.92)∗∗∗ 0.10

(2.23)∗∗∗ −0.04
(−1.83)∗∗ 0.13

(2.27)∗∗∗ 0.05
(2.52)∗∗∗ −0.04

(−2.46)∗∗∗ 1.39
(12.57)∗∗∗ 1.25

Panel B: Realized measure

(1−βRL)(σ 2
Rt )

δRR
2 = ωR +[αRR +α

(3)
RRD3,t−1 + (γRR + γ

(2)
RRD2,t−1)st−1]L(RMt )

δRR
2

+(γRr + γ
(1)
Rr D1,t−1)st−1L(r2t )

δRr
2

βR αRR α
(3)
RR γRR γ

(2)
RR γRr γ

(1)
Rr δRR δRr

0.65
(26.94)∗∗∗ 0.25

(10.91)∗∗∗ −0.06
(−2.43)∗∗∗ 0.04

(1.97)∗∗∗ 0.06
(2.17)∗∗∗ 0.36

(2.66)∗∗∗ −0.08
(−1.70)∗∗ 1.19

(12.09)∗∗∗ 1.45

See notes in Table 2. Superscripts in parentheses indicate the break date

rises with the crisis break, and the Heavy parameter αRR falls post-crisis, whereas the Garch
asymmetric influence (captured by γRr ) falls after the pre-crisis break.

Overall, our finding is that the dummy parameters corresponding to the 2003 and 2011
breaks are negative, whereas the ones for the 2007/2008 crisis are positive.
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8 Dynamic correlations

Lastly, we estimated the bivariate system of the extended HEAVY models (Eqs. (3)–(4))
with four alternative correlationmodels: the Constant Conditional Correlations (CCC)model
of Bollerslev (1990), the Dynamic Conditional Correlations (DCC) specification of Engle
(2002a), the Asymmetric DCC process (see Cappiello et al. 2006) and the Dynamic Equicor-
relations (DECO) model of Engle and Kelly (2012).

The conditional covariance matrix for the 2-dimensional vector rt = [rt ,˜RMt ]′,
Var(rt |Ft−1 ) = Ht , is given by:

Ht =
[

σ 2
r t σr R,t

σr R,t σ 2
Rt

]
,

where σ 2
i t , i = r , R, are the conditional variances (see Eq. (2)), and σr R,t denotes the condi-

tional covariance, that is σr R,t = Cov(rt ,˜RMt
[
Ft−1

]
). Ht can be written as:

Ht = DtRtDt ,

while Dt is a diagonal matrix of standard deviations, that is Dt = dg(H
1
2
t ), and Rt is

the conditional correlation matrix with unit diagonal elements and off-diagonal elements
given by ρr R,t = σr R,t/σr tσRt . In our HEAVY model in Eqs. (3)–(4) we, initially, assumed
that the conditional covariances and dynamic correlations are zero: ρr R,t = σr R,t = 0
for all t . This implies that, Rt = I2 (the identity matrix) and Ht is a diagonal matrix
(Ht = D2

t ). Allowing for non-zero conditional correlations does not alter our results because
the estimation of various non-zero correlation models-the four alternative specifications,
namely the CCC, DCC, ADCC, and DECO-is a two-step procedure, where in the first
step the parameters in the Dt matrix are estimated (using Eqs. (3)–(4)), while the second
step consists of estimating the (off-diagonal) parameters in Rt . To see this more explic-
itly, we present the quasi-likelihood function (QL). But first, note that rt can be written
as: rt = Dtet or equivalently, et = D−1

t rt , where et = [ert , eRt ]′. Then QL is given
by

QL = QL1 + QL2

= −
T∑

t=1

(n log(2π) + 2 log |Dt | + r′
tD

−2
t rt )

︸ ︷︷ ︸
QL1

−
T∑

t=1

(log |Dt | + e′
tR

−1
t et + e′

tet )

︸ ︷︷ ︸
QL2

.

Thus in the first-step the parameters of the bivariate (HY)DAP-HEAVY process, see again
Eqs. (3)–(4), are estimated using QL1, and in the second-step we estimate the off-diagonal
element in Rt using the standardized residuals: êt = D̂−1

t rt in QL2. In all cases, the three
alternative dynamic models (DCC, ADCC and DECO) estimate the average conditional cor-
relations for the two volatility measures around 0.80–0.90 similar to the constant correlation
values that we get from the CCC model.

All in all, the conditional correlations extension provides identical results for the condi-
tional variance equations and estimates similar correlation levels for all indices formulation
(results not reported but are available upon request).
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9 Conclusions

Our study examined the HEAVY model and extended it by taking into consideration lever-
age, power transformations and long memory characteristics. For the realized measure our
empirical results favor the most general hyperbolic asymmetric power specification, where
the lags of both powered variables—squared negative returns, and realized kernel—move the
dynamics of the power transformed conditional variance of the latter. Similarly, modeling
the returns with an asymmetric power process, we found that not only the powered realized
measure, but the power transformed squared negative returns, as well, help in forecasting the
conditional variance of the latter.

The long memory (hyperbolic or fractionally integrated) of volatility, its asymmetric
response to negative and positive shocks and its power transformations ensures the supe-
riority of our contribution, which can be implemented in the areas of asset allocation and
portfolio selection, as well as in several riskmanagement practices. Further, for the U.S. stock
index we proved the forecasting superiority of our extensions over the benchmark HEAVY
model through the out-of-sample forecasting across multiple short- and long-term horizons.
Finally, the detection of structural breaks and the inclusion of break dummies in the asym-
metric power formulation capture the time-varying pattern of the parameters, as the break
corresponding to the financial crisis of 2007/2008, in particular, increases the values of the
parameters.

Our empirical findings on the nexus between low-frequency daily squared returns and
high-frequency intradaily realized measures provide a volatility forecasting framework
with major implications for policymakers and market practitioners, from investors, risk
and portfolio managers up to financial chiefs, leaving ample room for future research on
further HEAVY model extensions. Thereupon, policymakers and market players should
use our HEAVY framework to closely watch and forecast financial volatility patterns
in the process of devising drastic policies, enforcing the financial system’s regulations,
deciding on asset allocation, hedging strategies and investment projects. Future research
should focus on extending the multivariate HEAVY formulation of Noureldin et al.
(2012) with long memory, asymmetries and power transformations, as in the recent study
of Dark (2018), who uses a long memory multivariate GARCH model, or Opschoor
et al. (2018) within the Generalised Autoregressive Score (GAS) process of Creal et al.
(2013).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Appendix

A.1 S&P 500 Graphs

See Figs. 3, 4 and 5
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Fig. 3 S&P 500 close-to-close returns

Fig. 4 S&P 500 squared returns
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Fig. 5 S&P 500 realized kernel

A.2 Wald tests

See Tables 8, 9.

Table 8 Wald tests for the DAP-HEAVY specification

Restrictions↓ SP NIKKEI TSE FTSE DAX EUSTOXX

Panel A: Stock returns

δrr = 1 16.81[0.00] 9.82[0.00] 1.40[0.24] 13.08[0.00] 2.92[0.09] 26.90[0.00]
δrr = 2 42.43[0.00] 4.83[0.03] 25.03[0.00] 18.54[0.00] 64.77[0.00] 12.55[0.00]
Panel B: Realized measure

δRR = 1 60.16[0.00] 0.91[0.34] 11.03[0.00] 1.79[0.18] 1.19[0.28] 2.34[0.13]
δRR = 2 165.8[0.00] 12.72[0.00] 36.88[0.00] 11.66[0.00] 14.67[0.00] 20.64[0.00]
The Table reports values for ChiSq(1) tests
The numbers in square brackets are p values
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Table 9 Wald tests for the HYDAP-HEAVY specification

Restrictions↓ SP NIKKEI TSE FTSE DAX EUSTOXX

Panel A: Stock returns

δrr = 1 0.33[0.56] 0.95[0.33] 2.70[0.10] 3.65[0.06] 8.63[0.00] 3.18[0.07]
δrr = 2 10.18[0.00] 0.53[0.47] 19.41[0.00] 7.88[0.01] 18.46[0.00] 4.29[0.04]
dr = 0 11.18[0.00] 4.85[0.03] 9.65[0.00] 38.42[0.00] 42.62[0.00] 29.78[0.00]
dr = 1 12.97[0.00] 5.62[0.02] 19.14[0.00] 75.61[0.00] 57.94[0.00] 53.86[0.00]
Panel B: Realized measure

δRR = 1 3.02[0.08] 0.44[0.51] 7.97[0.00] 4.92[0.03] 4.59[0.03] 5.00[0.03]
δRR = 2 179.2[0.00] 15.23[0.00] 21.71[0.00] 4.93[0.03] 6.25[0.01] 6.04[0.01]
dR = 0 422.8[0.00] 292.4[0.00] 306.1[0.00] 89.92[0.00] 202.6[0.00] 140.1[0.00]
dR = 1 262.8[0.00] 183.9[0.00] 143.9[0.00] 40.03[0.00] 126.6[0.00] 80.65[0.00]
ζR = 0 511.9[0.00] 402.2[0.00] 457.9[0.00] 613.7[0.00] 592.7[0.00] 241.1[0.00]
ζR = 1 15.25[0.00] 14.35[0.00] 19.90[0.00] 3.33[0.07] 5.04[0.03] 3.61[0.06]
See notes in Table 8
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