Code Comparison – Single Particles

Henry Nebrensky Brunel University

(Preliminary, v. 0.5)

Motivation

MICE beamline simulations have been done using two codes:

- PSI Graphic **TURTLE** and **TRANSPORT** (1st, 2nd and 3rd order matrix ray tracing and beam propagation)
 - Fast (min/Mpion), well-known
- Tom Roberts' **G4beamline** (Geant4 based)
 - New, has comprehensive scattering and trajectory physics, but slow (hours/Mpion)

For the same lattice, the output beam from Turtle in 3^{rd} order was found to have emittance of 7.1π mm rad, while that from G4beamline (G4BL) was 11.7π mm rad . Also differences in profiles:

Common 30 mrad beam after B2

Common 10 mrad beam after B2

Common 30 mrad beam after B2 (rev. pol.)

Dec. 2007

Turtle only in 2nd order (rev. pol.)

1. http://www.isis.rl.ac.uk/accelerator/MICE/Task%20Notes%20and%20Specifications/beamline%20-%20optics/2007-07-24/TTlvG4BL_1stStage_JustNoDecData_postCM18_2.xls

Single particle tracks - quadrupoles

- Have sent groups of single particles through a single MICE quad (Q4) with correct aperture, field strength, muon momentum etc.
 - But: no fringe fields, and no air.
- Tested a series of input cases starting 2m before the quad, and looked at transverse momentum after the quad.
- For "focussing", the muon trajectories are confined to the focussing (x) plane, and the values of x' after the quad are compared with a reference x'.
- For "defocussing" the inbound muons start from the corresponding locations along the *y* axis, and their eventual *y*' is compared with a reference *y*'.

Code comparison - quadrupoles

- Have compared Turtle¹ running in 1st and in 3rd order mode with Microsoft Excel implementations of the 1st order equations (e.g. Carey or Banford book) and of the 3rd order equations, both Smith's² as printed (incorrect) and the corrected versions³
- 1. Turtle: TurtleNT.exe computational part for Turtle Framework, v. 2.45 compiled by U. Rohrer (PSI), 22-Mar-2005
- 2. D.L. Smith: "Focusing Properties of Electric and Magnetic Quadrupole Lenses" *NIM* **79** pp.144-164 (1970)
- 3. G.E. Lee-Whiting: "Third-order aberrations of a magnetic quadrupole lens" *NIM* 83 pp.232-244 (1970);
 G.E. Lee-Whiting: "Comparison of calculated third-order aberrations of a magnetic quadrupole lens" *NIM* 99 pp.609-610 (1972)

Input Cases

- In the following slides, the geometry for each case is illustrated by the trajectories in just the focussing plane (from 3^{rd} order Turtle), followed by a graph showing the differences in x' (or y' for defocussing) using the Excel 1^{st} order model as the reference (an arbitrary choice).
- It will be seen that cases B and H have been chosen such that the initial values of x or x' (or y or y') are zero, which drastically simplifies the 3rd order calculations, allowing Excel's results to be confirmed by hand.

MICE Beamline Optics group Dec. 2007

Slide 10

Case H - Converging group, x' 0 to 432 mrad

Case H - fan-in 100 80 60 40 20 x [cm] 0 2.00 0.00 0.50 1.00 1.50 2.50 3.00 3.50 4.00 4.50 5.00 -20 -40 -60 Q4 -80 -100 z [m] MICE Beamline Optics group

Dec. 2007

WEST LONDON

Slide 12

MICE Beamline Optics group Dec. 2007

Slide 14

Off axis beam -x'in is 400 mrad

Difference in final x' across beam

Conclusions

- The two 1st order models give near-identical results; confirms 1st order Turtle is arithmetically correct.
- The contributions of the 3^{rd} order terms are on the scale of about ~ 1%.
- The Smith 3rd-order formulae as printed give results that differ both from those from the "corrected" (Lee-Whiting) versions *and* from the 3rd-order Turtle implementation.
- The "corrected" 3rd-order and Turtle 3rd-order results *also* do not agree! Not clear why.

