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ABSTRACT

A novel approach to the solution of transient heat flow
problems in two dimensions is described. The movements of
isotherms along orthogonal flow lines are tracked in
successive small intervals of time by solving a locally
one-dimensional IMM form of radial heat equation. The
determination of the new orientation of the orthogonal
system at the end of each time interval is based on
geometrical considerations.

The method is applied to the moving boundary problem
presented by the solidification of a square prism of fluid
and the results compared with those obtained by the enthalpy
method.
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1. INTRODUCTION

When a temperature gradient exists in an isotropic medium flow of heat
always takes place along the normal to an isotherm. Thus in a
two-dimensional region the flow lines comprise a set of curves orthogonal
to the set of isotherms. Traditionally the partial differential equation

of heat flow and its solutions express the temperature distribution
throughout a given region and the way in which it changes with time.

In analogous fluid flow problems this is what is called the Eulerian
viewpoint. Recently the heat flow equations have been written in a

form which concentrates attention on the movement of the isotherms,

Dix and Cizek [1] ,Crank and Phahle [2]. The Isotherm Migration Method (IMM)
tracks the movements through the medium of individual points on the isotherms.
Thus it is analogous to the Lagrangian formulation of problems in fluid flow.
Several authors have explored the computational advantages of using various
curvilinear coordinate systems mainly in fluid flow problems in arbitrarily
shaped regions.

One group of papers is concerned with the generation of a curvilinear
coordinate system with coordinate lines coincident with all boundaries

in the physical problem. The advantage of the IMM formulation of the type
of problem discussed in this paper is that it yields just such a coordinate
system. A general method of generating an appropriate grid is to let the
curvilinear coordinates be solutions of subsidiary elliptic partial
differential equations in the physical plane with Dirichlet conditions on

all the boundaries. The curvilinear system is not necessarily orthogonal
but its advocates claim that the freedom for arbitrary spacing of the grid
lines around the boundary is more important than orthogonality. Following
a pioneer paper by Winslow [3] a succession of authors have proposed
various ways of using a curvilinear grid. A useful list of references and

an extension to multiconnected regions with any number of arbitrarily shaped
bodies or holes is given by Thompson, Thames and Mastin [4]. Oberkampf [5]

discusses some useful generalised mapping functions.



In the two-dimensional version of the IMM described by Crank and
Gupta [6] the movements of isotherms in the y direction along
equally spaced lines of constant x, are computed.

This method can be regarded as a particular case of the use of
curvilinear coordinates in which one of the new coordinates is
identified with temperature, u, and the other is the x coordinate in
the original physical plane. The original y coordinate becomes the
new dependent variable to be computed on the rectangular u, x grid.
Thus some, but not all of the advantages of a general curvilinear grid
are reaped in this IMM approach without the need to solve subsidiary
elliptic equations. The same idea is used by Boadway [7] in solving
Laplace's equation in irrotational flow.

The present paper is closer in concept to the approach of Potter and
Tuttle [8] who refer to the advantages of maintaining an orthogonal
grid when a two-dimensional problem is formulated in Lagrangian terms.
They describe a method of constructing generalised discrete orthogonal
coordinates, suitable for digital computation and which may be applied

at each timestep to the Lagrangian solution of multidimensional initial
value problems. We describe here a simpler method of solving two-dimensional
heat flow problems using the orthogonal system of isotherms and flow lines.
The motions of points on the isotherms along the orthogonal flow lines

are computed. The solution proceeds in small steps At in time and for

each interval At the partial differential equation to be solved contains
only one independent variable other than time t. The changing shape and
orientation of the orthogonal system are catered for by a geometric
procedure.

As an example the method is used to study the solidification of a

square prism of fluid.

2. IMM FORMULATION OF HEAT FLOW IN CYLINDRICAL COORDINATES

In non-dimensional form the partial differential equation describing

heat flow in cylindrical coordinates (r,0) may be written
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where u denotes temperature and the thermal properties are



assumed constant. The radial coordinate r is measured from

an origin which remains fixed as time t changes. Following
Dix and Cizek [1] the change of dependent variable u(r,0,t) to
r(u,0,t) leads to the equation
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This radial form of the TMM equation allows the movements of
isotherms to be calculated instead of the more conventional
variations of temperature at fixed points.

T

Consider now a general heat flow problem in two space dimensions.
There will be a family of isotherms and an associated family

of flow lines, orthogonal to the isotherms. In an isotropic
medium, any point on an isotherm moves along the flow lines, normal
to the isotherm at that point. Heat flow is everywhere normal

to the isotherms and never across flow lines. Provided we

confine attention to a small segment of an isotherm for a short
interval of time, we can regard the isotherm element as part

of a cylindrical system and identify the coordinate r in (2)

as the local radius of curvature of the isotherm measured from

the local centre of curvature assumed fixed in its position

at time t. Equation (2) yields the velocity dr/dt of the selected
element of the isotherm along the normal to itself.

Because the general system is distorting and rotating, both the
centre of curvature for the element of the isotherm considered
and the curvature itself may change with time as well as from
point to point in the system. The flow lines will not strictly
be radial lines of constant 6 and the local isotherms will not
be exactly concentric circular arcs. But because r in (2) is
chosen to be along the local normal, the term 62u/882 will in
general be small but non-zero. In this paper we approximate

it to zero in order to calculate the movement of a point on

the isotherm in the direction of its normal in the time interval
At, i.e. we solve the equation
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We then carry out a separate calculation of the new direction
of the normal, at the end of the same interval At.

We shall describe a geometrical derivation of the normal direction
before proceeding with a numerical solution of (3).

3. CURVATURE AND NORMAL DIRECTION

Fig.1. shows a section of an isotherm which we approximate by

a circular arc ABC that is concave downwards and to which we assign
a positive curvature. The tangents at the midpoints P,Q of each

of the arcs AB, BC are parallel to the corresponding chords AB, BC.
Thus the change in the direction of the tangent along the arc PBQ

is given by y, — y,1 where the y"s are the angles made by the

perpendicular bisectors of the chords AB and BC respectively with
the x axis as in Fig.1. The arc length PBQ may be approximated by

%(Smﬂ + Sm) where S, denotes the length of the chord AB, labelled

chord m. Then the radius of curvature r, at the point B(X,,,ym)

may be written

+
rm{ﬁJ . (—Sm “m] J (4)
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Regarding BQ as a circular arc of radius |rm| and length sy 1

we approximate the angle marked y,, on Fig.1 as %Sm+1/|rm| and

hence the direction of the radius at B, normal to the isotherm is
specified by the angle 0, where

. S
Om = Wiy + Ymsign(tn) = Wy + -2 (5)
21,

4. NUMERICAL METHOD

Consider three adjacent isotherms as in Fig. 2. on which the
temperatures are (j-1) 6u, Jou and ( j+1 )du as indicated and ABC are

three points whose coordinates are known on isotherm jou.

The points G and F are found by the intersections of the radius
I, at B with the chords approximating the isotherms ( j-1 )du and



(jtl)odu. Let ny = |rm| be the distance of B from the centre of
curvature of the arc ABC and let n;, and n, denote the distances of

F and G from this same centre of curvature respectively. Then
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Thus if we denote by Ang o the movement of the point m on the

isotherm jou along the normal in a small interval At, we may

replace (4) explicitly by
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If the coordinates of the point m on the isotherm jou
at time 1At are denoted by X!,m’YJ!,m= then the new coordinates

at time (i+1) At are

i+1 i i i

Xjm = Xjm + Anj , COS ej, m 9)
i+1 i i - Al

Yim = Yjm + Anj,m sin ej, - (10)

where An}’m is given by (8) and 6},m by (95).

Thus if the initial data in a two-dimensional heat flow

problem are given as the coordinates of a set of points on each of
a number of isotherms we can use the above numerical method to
advance each point in a succession of small time steps At. Points
on and near the boundary will need special treatment depending on

the nature of the boundary conditions.



5. MOVING BOUNDARIES

In many problems of practical importance, one or more conditions are
specified on boundaries which move through the medium. They include
problems of melting and freezing in which a moving interface separates
the liquid from the solid phase. The temperature on the interface

remains constant at the melting temperature Uy. A second boundary

condition expresses the heat balance at the interface and determines

its velocity. If the phase-change surface is S(r,t ) = 0 these conditions

may be expressed as

u=ug, on S, (11)
and
L§ =VuVS|, - VuVSs (12)
ot _

Where L( ‘_ )denotes the limit as S is approached from the

liquid (solid) phase.

Problems of this general kind are described as Stefan problems [9].
Early work was largely confined to problems in one space dimension
but recently more attention has been given to two and three space
dimensions [10] [11] [12] [13]. The IMM method is essentially
concerned with the tracking of isotherms through a medium and if

the phase-change boundary is itself an isothermal surface, as it
commonly is, no special problems arise in calculating its motion
except the necessary conversion of the melting condition to IMM form.
If n is the local radial coordinate, measuring distance from the

centre of curvature of S, (12) becomes just

SR

on the isotherm U = Ug. (13) 1s then used in place of (3) to

(13)

+

calculate the movement of the freezing front U = Ug. One version

of IMM has been described and applied to a two-dimensional Stefan
problem [6]. We now illustrate the use of the present version by
applying it to the solidification of a prism of fluid.



6. EXAMPLE: SOLIDIFICATION OF A SQUARE PRISM OF FLUID

An infinitely long prism is initially filled with a fluid at the
fusion temperature u=1. The temperature on its surface is subsequently
maintained constant at u =0, below the fusion temperature, so that
inwards solidification occurs. The prism extends between —1 < x <1,

-1 <y <1 Assuming thermal properties to be constant, we require a

solution of the equation
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subject to the boundary conditions
u=0on(x—-1)(y—-1)=0, (15)
du/ox=0 on x=0;0u/0y=0 on y=0, (16)
u=1and LoS/0t=-VuVS | on S (x,y,t) = 0. (17)

In order to illustrate the method we shall start to apply it

at a time t, when an outer layer of the prism has already
solidified and there is a temperature distribution in the solid.
The coordinates of selected points on a number of isotherms at
constant intervals of temperature were interpolated from a numerical
solution obtained previously by the enthalpy method [13]. Because
of symmetry about the diagonal y =x it is sufficient to work in the
triangular region 0<x<y,0<y<1.

We may apply the procedure of §4 to calculate new positions for
all interior points at time t; + At.

Successive steps in the calculation are:
i) Evaluate at each point the direction of the normal to the
isotherm and the local curvature using (4) and (5) at time t=tg,.

i1) Evaluate the normal movement of each point and hence its new
coordinates at ty+At using (8), (9), (10).

ii1) Proceed similarly from ty +At to ty +1At in successive time steps At.

The end points on the boundaries x = 0 and y =x need special consideration.
A circle, with its centre on the axis at (0,yy) or on the diagonal

at (a.a) as appropriate, is fitted through the end point and the next



point inside the region on each isotherm to find the curvatures.
The angles ej,o on the y axis and 0;, say, on the diagonal are already

known.
Thus on the y axis
X+ (y-y,) =1 (18)

and we find from (O, Yi, o) » (X 1Y, 1) that

r=0(yj 0=y )" +x50° V20, 0-Yi0) (19)

with 0j,=n/2. On the diagonal the use of
x-af +(y -ay =r? (20)
yields
2 2
r=[(xM =X M-D" + (VM ~YiM-DTV2 XM +YjiM =X jM-1~YjM-1)
(21)
with 05, = n/4.

We use (19) or (21) in step (i) of the calculation instead of
(4) and (5), and as appropriate in (8), (9) and (10).

RESULTS AND DISCUSSION

The computations were carried out as described in the previous
sections. Each calculation was started at t=0.05 with isotherm
positions obtained previously using the enthalpy method [13]. If
the points on any isotherm moved so that they became very close,

the midpoints of the line segments were taken as new points in such

a way as to achieve a more even spacing. This procedure was necessary
near the diagonal on the freezing front. In the calculation of An

at the freezing front from (13) a three-point, one-sided derivative
formula was used for on/du, as this gave increased accuracy near the

diagonal.

The effects of varying the time step At, and the spacing, du,

of the isotherms, were investigated. For a given du, as the time
step was increased, persistent kinks appeared on the isotherms (which
should be smooth curves as shown in Fig.3), indicating the onset of
instability. Table 1 shows the values of the x-coordinates of the
freezing front on the axis and on the diagonal at various times as
calculated with du = 0.2, 11 points on each isotherm, At =0.0001 and
At =0.0002. The values are very close throughout. For At=0.0005



Signs of instability appeared, although the results were similar

except near the centre.

Table 2 compares the values of the x-coordinates of the freezing front
on the axis and the diagonal calculated with At=0.0001, du =0.1 and
du=0.2. These are considerably affected by the value of du, particularly
as the freezing front approaches the centre. Those for du=0.2 are more
accurate, and are in good agreement with those obtained by the enthalpy
method, as shown in Fig .4. This difference may be due to the errors in
the geometrical procedure arising from the use of the intersections of
the perpendiculars with the straight line segment approximations to the
next isotherms rather than with the actual isotherms, in calculating
0%n/0u? . These errors are independent of du, and hence proportionately
less as du, is increased, being perhaps of order of 2 -3% of the distance
between the isotherms when du=0.2. These errors are likely to be greatest
for small values of n, such as occur near the diagonal, particularly as

the freezing front approaches the centre. A typical computation for
ou=0.2, At=0.0002 with 11 points on each isotherm took 72 seconds on CDC
7600.
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Table 1. Comparison of x-coordinate of the freezing front on axis and

diagonal, calculated with du=0.2, At=0.0001 and 0.0002.

On axis On diagonal
t AT=0.0001 AT=0.0002 ATt=0.0001 AT=0.0002
0.05 0.775 0.775 0.732 0.732
0.1 0.675 0.675 0.623 0.623
0.15 0.600 0.600 0.541 0.541
0.2 0.535 0.535 0.471 0.471
0.25 0.477 0.477 0.409 0.409
0.3 0.422 0.422 0.352 0.353
0.35 0.368 0.368 0.300 0.301
0.4 0.314 0.315 0.250 0.252
0.45 0.259 0.261 0.202 0.204
0.5 0.201 0.204 0.153 0.156
0.55 0.138 0.143 0.102 0.108

Table 2. comparison of x-coordinate of the freezing front on axis and

diagonal, calculated with 6t=0.0001, 6u=0.1 and 0.2

On axis On diagonal
t du=0.2 du=0.1 du=0.2 du=0.1
0.05 0.775 0.775 0.732 0.732
0.1 0.675 0.676 0.623 0.619
0.15 0.600 0.601 0.541 0.535
0.2 0.535 0.536 0.471 0.463
0.25 0.477 0.477 0.409 0.399
0.3 0.422 0.420 0.352 0.342
0.35 0.368 0.364 0.300 0.288
0.4 0.314 0.308 0.250 0.237
0.45 0.259 0.249 0.202 0.188
0.5 0.201 0.188 0.153 0.139
0.55 0.138 0.119 0.102 0.087
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Fig.1.

Fig.2.

Fig.3.

Fig.4.

CAPTIONS

Sketch illustrating the geometrical procedure used
to determine the normal to each isotherm.

Sketch showing relative positions of isotherms.

Positions of isotherms having temperatures
u=0.0(0.2)1.0 at t=0.5.

Graph of x coordinates of the freezing front on the
axis and on the diagonal against time, compared
with results obtained by the enthalpy method.
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