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Abstract

The enthalpy method for two dimensional Stefan problems is outlined, and
applied to the numerical solution of a problem involving the solidification
of a square cylinder of fluid, for which experimental data have been
published. The same technique is then applied to a similar problem, and

the results compared with those obtained by other authors.






Nomenclature

H non-dimensional enthalpy;
k rate of cooling at surface;
L non-dimensional latent heat;

S (x,y,t) =0 freezing front in two dimensional problem;

s(t) position of freezing front in one dimensional problem;

T non-dimensional temperature;
t non-dimensional time
( = time x thermal diffusivity ) -
(length)? ’

x, y Cartesian coordinates;

Subscripts
L liquid phase;

S solid phase.






Introduction

Stefan problems, that is problems of heat conduction with change of phase,
have attracted much interest in the literature, and recently attention has
been centred on the solution of multi-dimensional problems. As no exact
analytical solutions of such problems are available, we must in general
resort to numerical methods, several of which have been proposed ([1],
[2], [3] ). In this situation the experimental results of Saitoh [4], for
the two dimensional freezing of water, are of particular value, providing a

standard with which numerical results may be compared.

In this paper we consider two problems of the inward solidification of a
square cylinder of liquid, initially at its freezing temperature, with
different surface conditions. The first of these, in which the surface
temperature is lowered at a constant rate, corresponds to the experimental
configuration employed by Saitoh. The second problem, in which the surface
temperature is lowered discontinuously at the initial instant, is one for
which several sets of numerical results have previously been published. The
numerical method used here is the straightforward extension to two dimensions
of the enthalpy method, used in one dimension by Kamenomo stskaja [5] and
Atthey [6]. This method is first applied to the solution of Saitoh's problem,
and good agreement between the numerical results and the experimental data is
obtained. The method is then applied to the second problem, and the results

compared with those previously published.

The physical problem and the enthalpy reformulation

We consider an infinitely long cylinder of square cross-section, filled with
liquid at its freezing temperature. The lowering of the surface temperature
causes a frozen layer to grow inwards from the surface. In this model the
density, specific heat and thermal conductivity of the solid are taken as
constant, and it is assumed that there are no density changes on freezing.

Here there is no convection in the liquid region.

In non-dimensional variables, the cylinder's cross-section may be taken as

(-1<£x <1, -1<y<1) and the time scale chosen is that of conduction,



while the freezing temperature is chosen as the origin of the
non-dimensional temperature scale. Let D be the domain, initially zero,
occupied by the frozen material, and let the freezing front be

S(x, y, t) =0 (see fig. 1).
A suitable non-dimensional model is thus

oT _8%T 8T

in D, (2.1)
ot ox2 8y2

with

—
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S

(2.2)

in the liquid region, where T denotes the temperature and t the time. At

the freezing front, S (x,y,t)=0,

T =0, (2.3)

and by conservation of energy

LS - TS 2.4)

where L denotes the non-dimensional latent heat, and (VT.V S)|g is the limit

of (VT.VS) as the freezing front is approached in D.

In the first problem the surface temperature is lowered at a constant rate,
so the boundary condition at the fixed surface is

T =—kt on (x2-1) (y2-1)=0 (2.5)
where k > 0. In the second problem, the temperature is lowered discontinuously.

and then maintained constant, so the appropriate condition is
T=-1 on(x2-1) (y2-1) =0, t > 0. (2.6)



(2.1) - (2.5), (2.1) - (2.4) and (2.6) constitute complete descriptions
of the two problems to be solved. We next outline the enthalpy

reformulation of these problems, and the resulting numerical method

We introduce the enthalpy, H, in order to reformulate the problem on the
fixed domain (-1 <x <1, -1 <y <1). Innon-dimensional variables the

temperature is defined in terms of the enthalpy by

H H<O0,
T=+<0 <H< L, (2.7)
H-L H>L,

where T = 0, H = L corresponds to liquid at its freezing temperature.
(2.1), (2.2) then become
2 2
8_H__6T+_6T (2.8)
ot 8X2 8}12
where H is continuous. Across the discontinuity in H, which occurs at the
freezing front due to the liberation of latent heat, the conservation form

of (2.8) yields
oS

aS
(H|L—H|S) - La = (VI.VS)| L - (VT.VS) |S

which reduces immediately to (2.4) since in this case T = 0 in the liquid.

Thus when the conduction equation is written in the form (2.8), with
T = T(H) defined by (2.7), the conditions (2.2), (2.3) are automatically

satisfied by any solution of the weak form of (2.8).

Oleinik [7] showed that the problem (2.7), (2.8) with appropriate boundary
and initial conditions has a unique weak solution, and it may also be shown
( [5], [6] ) that an explicit finite difference converges to this solution.

Jerome [8] has shown that an implicit finite difference scheme converges to

the weak solution.

Thus in order to find a numerical solution, we solve the finite difference
forms of (2.7), (2.8) together with the initial condition T =0, H=L in
-1 <x <1, -1<y<l1, and the appropriate boundary condition (2.5) or (2.6).



By symmetry it is sufficient to work on the first quadrant of the square,
oT

with the boundary conditions Z—T = 0 on x=0, — = 0on y=0.
X

Results and discussion

All the numerical results for the first problem were calculated using an

explicit finite difference scheme to solve (2.7), (2.8) with the appropriate
boundary conditions. Fig. 2 shows the position of the freezing front on the
axis, and its x coordinate on the diagonal plotted against time. We see that
the numerical results agree well with the experimental data, both on the axis

and along the diagonal.

During an initial time interval in which, away from the corners, the freezing
front remains parallel to the fixed surface, heat conduction parallel to the
boundaries is negligible. Thus during this interval the solution of the two
dimensional problem near the axis is well approximated by the solution of the
corresponding one dimensional problem. The exact solution of the one
dimensional analogue of Saitoh's problem is not known, but in this case L is
large (— 160). Thus we may use a pertubation solution in inverse powers of L,

which yields for the position, x = s(t), of the freezing front

2, \30
s=1-t, % 4 t—(kj i (3.1)
L 6 lL

We have therefore plotted this solution for comparison with the solution of
the two dimensional problem near the axis, and the agreement is excellent
until t ~ 6, when the front has moved halfway to the centre. Fig. 3 shows

the freezing front at various times.

Figs. 4 and 5 show the position of the freezing front on the axis and its x
coordinate on the diagonal as functions of time for the second problem, as
calculated by the enthalpy method. Also shown are the results obtained by
Allen & Severn [1], Lazaridis [2], Crank and Gupta [3]. Here the exact one
dimensional solution for the position s(t) of the freezing front on the axis,
s(t) = 1—a Jt , [9], where a satisfies

\/E 4 a

L— ae erf — =1,
2 2



is plotted in Fig. 4 for comparison. The numerical solution for
solidification in an infinite corner obtained by Rathjen and Jiji [10]
is also shown in Fig. 5 since this is a good approximation to the solution
of the present problem while the front remains parallel to the fixed

surface away from the corners.

The results for the first problem were calculated using an explicit finite
difference scheme on a 20 x 20 spatial mesh in 185 seconds of computing time
on a CDC 7600. For the second problem an explicit scheme on a 40 x 40
spatial mesh was used to obtain the results shown, in 210 seconds of computing
time. However, using a 20 x 20 spatial mesh and 18 seconds computing time,
very similar curves were obtained, with a difference of only 3% in the time of
final solidification (t ~ 0.625) estimated from these curves. Implicit schemes
were also used for the second problem, and the results were in excellent agree-

ment with those on the same spatial mesh, but less economical on computing time.

The freezing front as calculated by the enthalpy method is squarer than those
from the other numerical schemes. However, as the numerical results for
Saitoh's problem are a good fit to the experimental data on both the axis and
the diagonal, it would appear that this shape is correct. This squarer shape
of the freezing front is also in excellent agreement with the numerical solution

for the solidification of an infinite corner [10].

Thus we conclude that the enthalpy reformulation provides a simple and accurate

scheme for the numerical solution of multi-dimensional Stefan problems.
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Fig. 1. Sketch of the x,y plane.

Fig. 2. The x coordinate of the freezing front on the axis and on
the diagonal for Saitoh's problem. The dotted line shows
the position of the front in the analogous one dimensional

problem (3.1).
Fig. 3. Position of the freezing front at various times.

Fig. 4. The x coordinate of the freezing front on the axis for the
second problem. The solid line shows the results obtained

from the enthalpy method, the broken line the front,
s(t) =1-1.034 Jt , for the corresponding one dimensional

problem.

Fig. 5. The x coordinate of the freezing front on the diagonal.
Again the solid line shows the results obtained by the enthalpy
method, while the broken line shows the solution for solidification

in an infinite corner [10].
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