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Abs t rac t  
 
 
The enthalpy method for two dimensional Stefan problems is outl ined, and 

appl ied  to  the  numer ica l  so lu t ion  of  a  problem involv ing  the  so l id i f ica t ion  

of  a  square  cy l inder  of  f lu id ,  for  which  exper imenta l  da ta  have  been  

publ i shed .  The  same technique  i s  then  appl ied  to  a  s imi la r  p roblem,  and  

the  resu l t s  compared  wi th  those  ob ta ined  by  o ther  au thors .  



 



 

 

 

 

Nomenclature 

 

H non-dimensional  enthalpy;  

k  ra te  of  cool ing at  surface;  

L non-dim sional  la tent  heat ;   en

S (x,  y ,  t )  = 0 freezing front  in  two dimensional  problem; 

s( t )  posi t ion of  f reezing front  in  one dimensional  problem; 

T non-dimensional  temperature;  

t  non-dimensional  t ime 

;)2)length(

ydiffusivit  x thermaltime( =  

x,  y  Cartes ian coordinates;  

 

Subscr ipts  

L l iquid phase;  

s  sol id  phase.  



 



1. 
1 .  Introduct ion 
 

Stefan problems,  that  is  problems of  heat  conduct ion with change of  phase,  
h a v e  a t t r a c t e d  muc h  i n t e r e s t  i n  t h e  l i t e r a t u r e ,  a n d  r e c e n t l y  a t t e n t i o n  h a s  
been centred on the solut ion of  mult i -dimensional  problems.  As no exact  
analyt ical  solut ions of  such problems are  avai lable ,  we must  in  general  
r esor t  to  numer ica l  me thods ,  severa l  o f  which  have  been  p roposed  ( [1 ] ,  
[ 2 ] ,  [ 3 ]  ) .  I n  t h i s  s i t u a t i o n  t h e  e x p e r i m e n t a l  r e s u l t s  o f  S a i t o h  [ 4 ] ,  f o r  
the  two d imens iona l  f reez ing  of  water ,  a re  of  par t icu la r  va lue ,  p r o v i d i n g  a  
s tandard  wi th  which  numer ica l  resu l t s  may be  compared .  
 
In  this  paper  we consider  two problems of  the inward sol idif icat ion of  a  
square  cy l inder  o f  l iqu id ,  in i t i a l ly  a t  i t s  f r eez ing  t empera tu re ,  wi th  
d i f fe ren t  sur face  condi t ions .  The  f i r s t  o f  these ,  in  which  the  sur face  
temperature  is  lowered at  a  constant  ra te ,  corresponds to  the experimental  
configuration employed by Saitoh. The second problem, in which the surface 
temperature  is  lowered discont inuously a t  the  ini t ia l  ins tant ,  i s  one for  
which several  sets  of  numerical  resul ts  have previously been publ ished.  The 
numerical method used here is the straightforward extension to two dimensions 
of the enthalpy method, used in one dimension by Kamenomo stskaja [5] and 
Atthey [6] .  This  method is  f i rs t  appl ied to  the solut ion of  Sai toh 's  problem, 
and good agreement between the numerical results and the experimental data is  
obtained.  The method is  then appl ied to  the second problem, and the resul ts  
compared with those previously publ ished.  
 
The physical  problem and the enthalpy reformulat ion
 
We consider  an inf ini te ly  long cyl inder  of  square  cross-sect ion,  f i l led with 
l iquid at  i ts  f reezing temperature .  The lowering of  the surface temperature  
causes  a  f rozen layer  to  grow inwards f rom the surface.  In  this  model  the 
densi ty ,  specif ic  heat  and thermal  conduct ivi ty  of  the sol id  are  taken as  
constant ,  and i t  i s  assumed that  there  are  no densi ty  changes on freezing.  
Here there  is  no convect ion in  the l iquid region.  
 
In  non-dimensional  var iables ,  the  cyl inder 's  cross-sect ion may be taken as  

)1y1,1x1( ≤≤−≤≤−  a n d  t h e  t i me  s c a l e  c h o s e n  i s  t h a t  o f  c o n d u c t i o n ,  
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w h i l e  t h e  f r e e z i n g  t e m p e r a t u r e  i s  c h o s e n  a s  t h e  o r i g i n  o f  t h e  

non-dimensional  temperature  scale .  Let  D be the domain,  ini t ia l ly  zero, 

occupied by the frozen material, and let the freezing front b e  

S ( x ,  y ,  t )  =  0  ( s e e  f i g .  l ) .  

 

A suitable non-dimensional model is thus 

 

,Din2y

T2

2x

T2

t
T

∂

∂
+

∂

∂=
∂
∂        (2.1) 

with 

 
0T ≡          (2.2) 

 

in  the l iquid region,  where T denotes  the temperature  and t  the  t ime.  At  

the freezing front, S ( x, y, t ) = 0, 

 
,0T =        (2.3) 

 

and by conservation of energy 

  ,s|)S.T(
t
SL ∇∇−=
∂
∂      (2,4) 

where L denotes the non-dimensional latent heat, and (∇T.∇ S)|s is the limit 

of ( T.∇ S) as the freezing front is approached in D. ∇

 

In the first problem the surface temperature is lowered at a constant rate, 

so the boundary condition at the fixed surface is 

0)12y()12x(onktT =−−−=      (2.5) 

where k > 0. In the second problem, the temperature is lowered discontinuously. 

and then maintained constant, so the appropriate condition is 

.0t,0)12y()12x(on1T >=−−−=     (2.6) 
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(2 .1)  -  (2 .5) ,  (2 .1)  -  (2 .4)  and  (2 .6)  cons t i tu te  comple te  descr ip t ions  
of the two problems to be solved. We next outl ine the enthalpy 
re formula t ion  of  these  problems,  and  the  resu l t ing  numer ica l  method  
 
We introduce the enthalpy, H, in order to reformulate the problem on the 
fixed domain (-1 ≤  x ≤  1, -1 ≤  y ≤  1). In non-dimensional variables the 
temperature is defined in terms of the enthalpy by 

⎪
⎩

⎪
⎨

⎧

≥−
<<

≤
=

,LHLH
,LH0

,0HH
T    (2.7) 

where T = 0,  H = L corresponds to  l iquid at  i ts  f reezing temperature .  
(2 .1) ,  (2 .2)  then become 

         2y

T2

2x

T2

t
H

∂

∂
+

∂

∂
=

∂
∂        (2.8) 

where H is continuous. Across the discontinuity in H, which occurs at the 
freezing front due to the l iberation of latent heat,  the conservation form 
of (2.8) yields 

      s)S.T()S.T(
t
SL

t
S)sHH( LL ∇∇−∇∇=

∂
∂

=
∂
∂

−  

which reduces immediately to (2.4) since in this case 0T ≡  in the liquid. 

Thus when the conduction equation is written in the form (2.8),  with 
)H(TT =  defined by (2.7), the conditions (2.2), (2.3) are automatically 

satisfied by any solution of the weak form of (2.8).  
 
Oleinik [7] showed that the problem (2.7), (2.8) with appropriate boundary 
and initial conditions has a unique weak solution, and it may also be shown 
( [5], [6] ) that an explicit finite difference converges to this solution. 
Jerome [8] has shown that an implicit finite difference scheme converges to 
the weak solution. 
 
Thus in order to find a numerical solution, we solve the finite difference 
forms of (2.7),  (2.8) together with the initial condition T = 0, H = L in 
-1 < x < 1, -1 < y <1, and the appropriate boundary condition (2.5) or (2.6).  
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By symmetry i t  is  sufficient to work on the first  quadrant of the square,  

with the boundary conditions .0yon0
y
T,0xon0

x
T

==
∂
∂

==
∂
∂  

3.  Results and discussion 
 

All the numerical results for the first  problem were calculated using an 
explicit  finite difference scheme to solve (2.7),  (2.8) with the appropriate 
boundary conditions. Fig. 2 shows the position of the freezing front on the 
axis, and its x coordinate on the diagonal plotted against time. We see that 
the numerical results agree well with the experimental data, both on the axis 
and along the diagonal.  
 
During an initial time interval in which, away from the corners, the freezing 
front remains parallel to the fixed surface, heat conduction parallel to the 
boundaries is negligible. Thus during this interval the solution of the two 
dimensional problem near the axis is well approximated by the solution of the 
corresponding one dimensional problem. The exact solution of the one 
dimensional analogue of Saitoh's problem is not known, but in this case L is 
large (~ 160). Thus we may use a pertubation solution in inverse powers of L, 
which yields for the position, x = s(t), of the freezing front 

      ....
2/3

L
k

6

2t
L
kt1s +⎟

⎠
⎞

⎜
⎝
⎛+−=      (3.1) 

We have therefore plotted this solution for comparison with the solution of 
the two dimensional problem near the axis, and the agreement is excellent 
until  t  ~  6,  when the front has moved halfway to the centre. Fig. 3 shows 
the freezing front at various times. 
 
Figs. 4 and 5 show the position of the freezing front on the axis and its x 
coordinate on the diagonal as functions of time for the second problem, as 
calculated by the enthalpy method. Also shown are the results obtained by 
Allen & Severn [1], Lazaridis [2], Crank and Gupta [3]. Here the exact one 
dimensional solution for the position s(t) of the freezing front on the axis, 

,t1)t(s α−= [9], where α  satisfies 

,1
2

erfe
2

L
4

2

=
α

α
π

α
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i s  p lo t t ed  in  F ig .  4  fo r  compar i son .  The  numer ica l  so lu t ion  fo r  

so l id i f ica t ion  in  an  inf in i te  corner  ob ta ined  by  Rath jen  and  J i j i  [10] 
is also shown in Fig. 5 since this is a good approximation to the solution 

of the present problem while the front remains parallel  to the fixed 

surface away from the corners.  

 

The results for the first  problem were calculated using an explicit  finite 

difference scheme on a 20  20 spatial mesh in 185 seconds of computing time ×

on a CDC 7600. For the second problem an explicit scheme on a 40 ×  40 

spatial mesh was used to obtain the results shown, in 210 seconds of computing 

time. However, using a 20 ×  20 spatial mesh and 18 seconds computing t ime, 

very similar curves were obtained, with a difference of only 3% in the t ime of 

final solidification (t ~ 0.625) estimated from these curves. Implicit schemes 

were also used for the second problem, and the results were in excellent agree-

ment with those on the same spatial mesh, but less economical on computing t ime. 

 

The freezing front as calculated by the enthalpy method is squarer than those 

from the other numerical schemes. However, as the numerical results for 

Saitoh's problem are a good fit to the experimental data on both the axis and 

the diagonal, it would appear that this shape is correct. This squarer shape 

of the freezing front is also in excellent agreement with the numerical solution 

for the solidification of an infinite corner [10]. 

 

Thus we conclude that the enthalpy reformulation provides a simple and accurate 

scheme for the numerical solution of multi-dimensional Stefan problems. 
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Fig.  1.  Sketch of the x,y plane.  

 

F i g .  2 .  The x coordinate  of  the freezing front  on the axis  and o n  

the diagonal  for  Sai toh 's  problem. The dot ted l ine s h o w s  

the position of the front in the analogous one d i m e n s i o n a l  

problem (3.1). 

 

Fig.  3.  Posit ion of the freezing front at  various t imes.  

 

Fig.  4.  The x coordinate of the freezing front on the axis for the 

second problem. The solid l ine shows the results obtained 

from the enthalpy method, the broken l ine the front,  

,t034.11)t(s −=  for the corresponding one dimensional 

problem. 

 

Fig.  5.  The x coordinate of the freezing front on the diagonal. 

Again the solid line shows the results obtained by the enthalpy 

method, while the broken line shows the solution for solidification 

in an infinite corner [10]. 



8 

 

 

 

 

 

 
 

 



9 

 

 
 

 

 



10 

 

 

 

 

 
 

 

 

 



11 

 

 



12 

 

 


	 
	 
	 
	 
	 
	 
	 
	TR/69                             DECEMBER 1976 
	NUMERICAL  SOLUTION  OF  STEFAN  PROBLEMS 
	Brunel University 

