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ABSTRACT 

Axially  symmetric problems   (e.g.   Laplace's   equation  in  cylindrical 
co-ordinates)   containing discs  possess  boundary  singularities 
arising  from the  mixed boundary  conditions   that   occur  across  the 
disc  edge.     A modified finite-difference method is  presented which 
effectively eliminates   the  inaccuracies  that   occur  in the  standard 
numerical solution near  such singularities.     Techniques   for 
developing the  analytical forms  of such singularities   are  given 
and modified finite-difference  approximations   are  obtained.     The 
steady-state  diffusion  of oxygen around a circular electrode  is 
taken as  the model problem and a modified quadrature method is 
presented for the  calculation  of the  oxygen  flux through the 
electrode. 
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1.       Introduction 
The  generalised axially  symmetric  problem is  to  solve 
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for  the  unknown  function   φ(x,y).     The   commonest   form  of   (1.1)   is 
Laplace's   equation  in  cylindrical  co-ordinates  which  occurs  when 
k  =  1  and when  the  co-ordinates   (x,y)  are  replaced  by  the  cylindrical 
co-ordinates   (r , z),  where  r  =  0  is  the  axis  of  symmetry  and  lies 
along  the  vertical  axis   of  the   cylinder   (Fig.1),   viz. 
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FIG.1.     Cylindrical  region  containing  a disc  on  z  = 0. 

Of particular interest  are problems  of the  above  type where there 
is   a disc  lying on the top  or bottom surface  of the  cylinder, 
e.g.   a disc   of radius   a,   centre  z  -  axis,   lying on   z  =  0   (Fig.1). 
Such problems   are  characterised by the  singularity  that  occurs   in 
∂ø/∂z on the disc edge. The singularity arises from the mixed 
boundary  conditions  that   occur across  the  disc  edge,  typically 

φ  = 0     ,     0  ≤ r ≤ a     ;   ,0z =∂
φ∂    r >  a    on    z = 0   .            (1.3) 

Physical applications   of  (1.2)   and  (1.3)   are,   in the steady-state, 
the heat  flow around a disc-shaped heat  source,  Grigull  (1961), 
or around a disc-shaped crack,  Parton  (1972);     the  diffusion of 
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oxygen  around  an  electrode,   Saito   (1968),   Evans   and  Gourlay   (1976), 
or  the   diffusion  of  vapours   through  a  membrane     clamped  between  two 
annular  plates,   Barrer  et   al   (1962);     the   electrostatic  potential 
around  an   electrified  disc,   Sneddon   (1966);     the   elastic   stress 
distribution  in  a  cylinder,   Zak   (1972).     Further  applications   occur 
when  k  is   other  than  unity.      For  example,  the   case  k  =   3  represents 
the  problem  of  stream  functions   for  incompressible  three-dimensional 
flow,   Payne   (1952),   and  the   case  k  =   5   describes  the  torsion  of 
shafts,   Weinstein   (1952).     Tricomi's   equation,  with  suitable  change 
of  co-ordinates,   see  Weinstein   (1951),   is  the   case  k  = 3

1    . 

Analytical  solutions  based  on  dual  integral  or  dualseries  techniques 
have  long  been  available   for  such  mixed  boundary  value  problems, 
Sneddon   (1966).     For  more  general   cases  numerical  techniques   are 
needed  to  solve  the  dual  integral  equations.     Also,   dual   series 
solutions  have  been  shown  to  converge  slowly  in  the  neighbourhood 
of  the  singularity,  Whiteman   (1970).     This   paper  presents   a  general 
numerical  method  based  on  finite—difference  approximations  which  is 
capable   of  extension  to  problems   involving  more  than   one  disc   or  to 
time-dependent   situations.      The  method  employs  modified  approximations 
near  the  singularity  which  take   into  account  the  nature   of  the 
singularity.      The   modified  approximations   are   developed  from  a  local 
truncated series form  of  the  solution,   centred  on  the   singularity, 
as   suggested  by  Motz   (1946).     The  development   of  such  a  local   series 

form  is   complicated  by  the  presence  of  the  xx
φk
∂
∂   term  in   (1.1)   and 

so,   for   convenience,   a  transformation   of   (1.1)   to  the   self-adjoint 
form  used  by  Fox  and  Sankar   (1969)   is   introduced.     The  method  differs 
from  that   of  Motz   in  that   the  modified  approximations   are   developed 
from  the   derivatives   in  the   governing  equation   rather  than  from  the 
algebraic   equations   for  the   solution  values.      The  method  also  differs 
in  the   set   of  neighbouring  points  used  to  approximate  the  unknown 
coefficients   in  the  truncated series approximations   for  the   derivatives. 
The  model  problem  treated  is  the  steady-state  diffusion   of  oxygen 
around  a  circular  electrode,   Saito   (1968),   and  a  modified  quadrature 
method  is   given   for  the   calculation  of  the   oxygen  flux  diffusing 
through  the   electrode  surface. 
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2.        Numerical Treatment   of Boundary  Singularities

The majority   of numerical  treatments   for boundary  singularities 
of the  infinite  derivative  type have been  for  steady-state,   linear 
problems,   usually Laplace's   equation,   formulated  in terms   of 
rectangular  Cartesian  co-ordinates   (x,y).     For  such problems,   a 
series form of the  solution near the  singularity  can be  found by 
converting the   co-ordinates   (x,y)   to  local polar   co-ordinates    

centred on the  singularity,   followed by  application of the  standard 
separable-variable  techniques,   Fox  and Sankar   (1969),   or  asymptotic 
expansion techniques,  Wigley   (1969).  For  example,   for the  mixed 
boundary condition

0n =∂
φ∂    on   θ  =  0   ;     ø  =  0   on  =   θ  =  ω    ,           (2.1)    

where   θ = 0  represents   one  arm  of  the  boundary  at  the  singularity 
at  0,   and  θ  =    represents  the  other  arm  (Fig.2),  then  the  series ω
form  of  the  solution  of  Laplace's   equation,   valid  near  the  singularity 
at   0,   is 
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        (The   ck    are   constants  to be   found.)      
  

 

 

 

FIG.2.      Typical  singularity.  

            FIG.2.    Typical singularity. 

 
It will be   seen  later that   such orms   are  harder  to  obtain   for Laplace's 
equation  in  cylindrical  co-ordinates. 
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From   (2.2),   it   is   evident  that   ∂ø /∂ρ   becomes  unbounded  as  ρ→0 if 
ω  >  π/2.      It   is  well-known  that   standard  finite—difference  or  finite 
element   approximations   using  a  uniform  mesh  prove  to  be  highly 
inaccurate  near  such  singularities  unless   a  relatively   fine  mesh 
is   used,   and  that   a   'pollution  effect'   occurs   since  the  inaccuracies 
spread  throughout  the  entire  region,   Babuska  and  Aziz   (1972).     Local 
mesh  refinement  has  been  used  successfully  to  neutralise  the 
singularity  errors  by  Webb  and  Whiteman   (1970),  Whiteman   (1974), 
Thatcher   (1975). 

The  main   alternative   is   the  method  of  Motz   (1946)   mentioned  earlier. 
The  method  has  been  extended,   in  the   finite-difference   context, 
by  Whiteman   ( 1967),   Fox  and  Sankar   (1969),   Bell   and  Crank   (1973,1975), 
Crank  and  Furzeland  (1976),   and,   in  the   finite   element   context,  by 
Wait   and  Mitchell   (1971),   Barnhill  and  Whiteman   (1973).      A  slightly 
different   approach  was   given  by  Woods   (1953),   and  extended  by  Emery 
and  Segedin   (1973),   Emery   (1973),  Benzley   (1974) .     The  Motz  and 
Woods  methods   tend  to  be   computationally  more  efficient  than  mesh 
refinement  but   do  require  special  knowledge  about  the   form  of  the 
singularity.      However,   they  have  the  disadvantage  that   any  banding 
or  symmetry  present   in  the   global  matrix  is   destroyed. 

Conformal  transformation  methods  have  been  proposed  by  Papamichael 
and  Whiteman   (1973)   and  have   proved  to  be  highly  accurate   and 
efficient   for  the   solution   of  elliptic  problems   in   simply-connected 
polygonal  regions   with  general  mixed  boundary   conditions.      The 
methods  rely  on  the   fact  that   equations   such  as   Laplace's   equation 
in   Cartesian   co-ordinates   are   invariant   under   conformal  transformations, 
but   this   is   not   true   for  equations   of  the   form   (1.1).   Other  methods 
are  reviewed  in  Crank   (1973). 
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3. Model  Problem 

The  steady-state,   diffusion  problem  of  determining  the  axially 
symmetric   oxygen   concentration   distribution  around  a  circular 
disc—shaped  electrode   surface   (centre   origin,   radius   a,   see   Fig.3) 
in  an  electrolytic   solution   is   taken   as   the  model  problem. 
Saito   (1968),   using  the   dual   integral  equation  method,   developed 
an  exact   analytical   solution   for  the   above  problem  in   a  semi—infinite 
region   and  this  will  be  used  for  purposes   of  comparison.      Saito's 
form  of  the  problem  was   to   solve 
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where   ø (r,z)   denotes   the   oxygen   concentration,   subject   to 
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φ  =   C0   r→∞    ,     z   ≥   0   ,   (3.5) 

φ  =   C0   z→∞    ,     r   ≥   0   .   (3.6) 

C0   is   a  constant   denoting  the   oxygen   concentration   in  the  bulk   of 
the   solution. 

 

FIG.   3.     Semi-infinite  region. 
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Also  of  interest   in  such,  problems   is   the   oxygen   flux,   Q  say,   diffusing 
through  the  electrode  surface.     This  is  determined  from 

,drzrD2Q
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0 =∂
φ∂π= ∫  (3.7) 

 

where D denotes the diffusion coefficient. The flux can he measured 
experimentally as an electrical current. The same problem, but in a 
time-dependent, finite region, has an important medical application, 
viz.   the  diffusion  with  absorption  problem  of  Evans  and  Gourlay   (1976). 

Saito  found  the   following  exact   form  for  the  concentration  distribution 
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Using  standard  integral  results,   Gradshteyn  and  Ryzhik   (1965),   (3.8) 
becomes 
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Differentiating  (3.8)   and  using  standard  integral  results   gives 
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From  (3.11),   it  is   clear  that   ∂ø/∂z  becomes  unbounded  on  z  =  0  as 
r   →   a  .     This  means  that   a  standard  numerical  solution  of   (3.1)   -   (3.6), 
and  a  standard  numerical   quadrature  of   (3.7),   will  produce  highly  inaccurate 
results  near   (a,0).      In  the   following  sections,  modified  methods   are 
developed  which  take  into  account  the  behaviour  of  the  singularity 

at   (a, 0). 

4.        Finite-Difference  Approximations  away  from  (a,0)

Let  N[a]   denote  the  neighbourhood  around  (a,0)   such  that  the  error 
in  the  finite-difference  approximations   at  points   outside  N[a]   is 
less  than  some  specified  precision.     In  this   section,  standard 
finite-difference   approximations   are  used  for  points   outside  N[a] 
and,   in  the   following  sections,  modified  approximations  are  developed 
and  used  for  points  inside  N[a]. 

In  the  model  problem,  the  semi-infinite  region  {0<r<∞, 0≤z<∞ } of 
Fig.3  is  replaced  by  the   finite  region  {0<r<rL   ,0<z<zL   },  where  rL,  >>a, 

and the boundary  conditions   (3.5),   (3.6)   are  replaced by 
 
ø =  g1(z)     on     r =  rL     ,     0  <   z   <  zL     , (4.1) 
 
ø = g2(r)     on     z  =   zL   ,     0   <  r  <  rL      ,  (4.2) 

 where  the   exact   form  (3.8)   of  ø   is  used  to  find  g1   and  g2     . 

The   finite  region   is   discretised  so  that   r  =  0  and  r  =   a  do  not   lie 
on  mesh  lines  by  choosing  a  uniform  mesh  size    δ r  in  the  r  direction 
such  that   r  =  a  lies   midway  between  two  mesh  points   and  is   an 
integer  multiple   of    δ r   from  r  =   0.     A  uniform  mesh  size    z   is   chosen 
in  the  z  direction  and  z  =  0  is   a  mesh  line.     For  convenience,  rL     and 
zL   are   chosen   such  that  they  lie  on  mesh  lines   (Fig.4).      i.e.   the  mesh 
lines  are 

         r  =   (i   + 2
1 ) r i  =  0,   1,2,   ...      , (4.3) δ

         r  =  j δ z j  =  0,   1,   2 .................  (4.4) 
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This  discretisation  was  used  by  Evans  and  Gourlay  and  is   chosen  here 
in  order  to  facilitate   comparisons  with  their  results. 

 

Using  central  difference  approximations,  the  standard  finite-difference 
replacement  of  (3.1)   is 
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for  points   (i+ 2
1 ,j)   outside  N[a]   and  not  involving  the  boundary. 

For  points  which  do  involve  the  boundary,  the  following  are  used: 

        (i)     on    z = 0   ,     0  < r < a   ,     ø = 0       (known)     , 

       (ii)   on     z = 0  ,     a <  r < rL   ,     øi+ 2
1 , j-1  =  øi+

2
1 ,j + l      , 

      (iii)   on    r = rL   ,    0  < z < zL   ,    ø = g1(z) (known)     , 

ø  =  g2(r) 

0r =∂
φ∂

ø =  g1(z) 

j=0 
ø = o

i=0 FIG. 4.     Discretisation of finite region.

0r =∂
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(iv)     on     z  -  zL     ,     0   <  r  <  rL     ,     ø  =  g2(r) (known)      ,

(v)    on     r= 2
rδ             (i.e.     i  =  0)   ,     ø-½,j = ø½,j   , 

(vi)     on     r  =  0   ,     (3.1)   becomes 

,0
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2 2

2

2

2
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and  this   is  used  in  conjunction  with ø-½,j    ,  =  ø½,j    . 

5.        Truncated  Series  Form  near   (a,0)

The  presence  of  the  r
1  coefficient   of r∂

φ∂  in   (3.1)   means  that,   after 

shifting  the   origin  to  the   singularity   (a,0)   and  converting  to  polar 
co-ordinates   centred  on   (a,0),  the  resulting  equation  contains 
complicated  non-constant   coefficients  which  need  series  expansions, 
Zak   (1972).     A  more  convenient  way  of  proceeding  is  to  transform  the 
problem  to  the  self-adjoint   form 
 

                          ,0u),(guu
2

2
2

2
=ηξ+

η∂
∂+

ξ∂
∂          (5.1) 

by suitable transformations of the co-ordinates (r,z) to (ξ,η) and, 
if necessary, of the unknown function ø  to u . Once the problem is 
in this form it can be written in terms of local polar co-ordinates 
and readily solved by standard separable-variables or asymptotic 
expansion techniques. The above idea was suggested and used by Fox 
and Sankar   (1969). 

For  the problem  (3.1)   -   (3.6)   the  simple transformation 
 
u(r,z)  =  r½  ø(r,z)     , 

  
leads  to  the   self-adjoint   form.     Using   (5.2)   equation   (3.1)   becomes 

(5.2) 
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(5.3) 
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The  transformation   (5.2)   results  in  the   cancellation  of  first 
derivative  terms   and  the   introduction  of  a   ‘heat  source’   term.     For 
the  general  axisymmetric  problem  (1 .1)   the  corresponding  transformation 
is 

u(x,y)   =  ,)y,x(x 2
k
φ   

 

(5.6) 

which  gives  the   self-adjoint   form 
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No   change  of co-ordinates   is  necessary to  obtain the  self-adjoint 
forms  for problems   of the   form  (1.1). 

Applying the   shift   transformation R  =   r  -  a,   and converting to  polar 
co-ordinates  R = ρ    cos   ,   z  =  ρ   sin   θ ,   (5.3)   -   (5.5)  become θ
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             0u =θ∂
∂       on     θ  = 0  ;     u =  0     on     θ  = π      ,              (5.9) 

where 

(5.10)                     .
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Equation   (5.10)   can be written  as 
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Following Fox  and Sankar  (1969),  the  separable-variable form 
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j
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is   sought   such  that   the  simple homogeneous   conditions   (5.9)   are 
satisfied.     Substitution  of  (5.12)   into   (5.8)   gives  the  following 
set  of differential  equations   for  the  Aα,j (θ). 
 
           A”α,0(θ)  +  α2Aα,0(θ)   =  0                                   (5.13) 
  
            A" α,1 (θ)   +   (α+1)2 Aα,1(θ)   =  0                               (5.14) 
 

                      A'α,m+2(θ)  + (α+m+2)2 Aα,m+2(θ) +  ∑
∞

=0j
 gm-j Aα,j(θ) = 0                 (5.15) 

                                        m=  0,   1,  2,   ... 
 

The  simplest way  for  (5.12)   to  satisfy   (5.9) is for 

A'α,j(0)   = 0 j   = 0, 1, 2,   ...      , 

Aα,j(π)   = 0           j   =  0, 1 ,   2 ................. 

(5.16) 

(5.17) 

Using these   conditions  to  solve   for the Aα,j(θ)   in   (5.13)—(5.15) 
it   is   easily  shown that   non-trivial   solutions   only  exist   if 

            α  = p  +  2
1         ,  P  =  0,   1,   2,   ...      ,                  (5.18) 

 
and that  these   solutions   are:
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Aα,0(θ)  =  a0,p cos (p+ 2

1 ) (θ)      , 

 
 
(5.19) 

 
Aα,1(θ)  =  a1,p cos (p+ 2

3 ) (θ)      ,          (5.20) 
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In  the   above  the  aj,p    , j= 0 , 1 ,2 ,   ...      ,   are   arbitrary  constants. 
The  three terms   (5.19)-(5.21)   are   all that   is  needed to  give  a 

truncated series   expression  for  u(ρ,θ)   up to terms   involving  2
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where  c1 ≡ a0,0 ,  c2 ≡   a0,1  + a1,0  ,c3  ≡  a0,2 +  a1,1 +  a2,0  represent 
the  new unknown  constants.   To  transform back to the  original unknown 
function  , it   is  necessary to  use   (5.2)   in  the  form φ
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2
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θρθρ+=θρφ
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                                          (5.23) 

On  using  the  binomial  expansion  in   (5.23),  then   (5.22)   and  (5.23) 
give  the  truncated  series   form 
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           for ø in the  neighbourhood of the  singularity  at   (a,0) . 

 
 
6.        Modified  Five-point  Approximations  near   (a,0)
 
Modified  five-point   approximations   for  points   in  N[a]   are   formed 
for  each   of  the  terms   in   (5.3)   using  the  truncated  series   form  of 
the  solution   (5.22).     The  constants   ci ,  i  =   1,   2,   3,   are  approximated 
in  terms   of  the  (  values  at  neighbouring  points.  Modified  approximations 
of   (3.1)   for  points   in  N[a]   follow  readily. 

For  the  derivative  terms  in   (5.3)   five-point   approximations   are  formed 
by  taking  the  following  three-term  truncated  form  of  (5.22): 
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where  the  hi( ,θ)  are  obtained  by  comparison  with   (5.22).      Using  the ρ
standard  differential  relations 
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where   approximations   for  the  ρ    and  θ   derivatives  are  obtained  by 
differentiating   (6.1),  the   following  three-term  series   approximations 
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For the   'heat   source' 2r4
uterm u  

used. 

in   (5-3)   the  approximation   (6.1)   is 

Approximations  for  the  constants  ci   ,     i  =  1,  2,   3  are  found  in  terms 
of  neighbouring  ø values  by  using  the  following  three-term  truncated 
form  of   (5.24): 
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where the   fi (p,θ)   are  obtained "by  comparison with   (5.24).     Referring 
to  Fig.   5   and  denoting  φ*

j,  ρ j,   θj   to be  the   corresponding  ,  φ* , ρ  , θ 
values   at  the  points   j   =   1,   2,   3,   4,   5,   then  φ*  values   at  three 
neighbouring  points   in  the  horizontal  direction  are  used  to   find  the 
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       which leads  to  a  five-point   formula,   is  to use  points   j   =   1,   2   and  3 
       to  give  the   following three  equations   for the   ci    , 
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        FIG.5.     Typical   'molecule'   of  neighbouring  points. 

The  solution  of   (6.9)   is   denoted  by 

ci   =   Bi φ*2   +  Ci φ*
1  + Di φ*

3        , i   =   1,   2,   3     . (6.10) 

Similarly,  to  find the   c.   in   (6.5)    for 
1intpo

2

2

z
*u

∂
∂    ,   points   4,   1 

and  5   are  used  in  the  vertical  direction.     The  solution  is   denoted   by 

ci   =   B'
1   φ*

4  +  C'
1   φ*

1  +  D'
1   φ*

5        , i  =   1,   2,   3        . (6.11) 

Substitution  of   (6.10)   and   (6 .11)    in   (6.4)   and   (6.5)   respectively, 
gives  the   five-point  approximation 
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for  a  typical  point   1   in  N[a],  the  ωi  and   being  evaluated  at  the '

iω
point   ( ρ 1 , θ 1 )  
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The  corresponding  approximations  for  the  original  problem  (3.1) 
are  obtained  by  equivalencing   (5 .3)    to   (3 .1) ,    viz. 
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∂  are  approximated  by   (6.12),   and  the   'heat  source' 

term  by   (6.1)   using  the  ci   given  by   (6.10).     This   gives  the  following 
modified  five-point  approximation  to  (3.1)   for  a  typical  point  1   in 
N[a]: 
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all  functions  being  evaluated  at  the  point   (ρ 1 ,θ1) . 

The  method  used  above  was   first  given  by  Crank  and  Furzeland  (1976) 
and  is  a  generalisation  of  the  ideas  of  Bell  and  Crank  (1975)   in  that 

(i)     both  derivatives  are  treated 

(ii)     the  approximations   (6.4)   and   (6 .5 )    are  written  in  a  general 
way  so  that  the  neighbouring  points   chosen  need  not  lie  on 
the  same  horizontal  or  vertical  line. 

The  generalisation  (ii)   is  useful  in  developing  higher _ order, 
multi _point  modified  approximations  by  varying  the  number  of  terms 
included  in  the  truncated  series  expansion  and  the  set  of  neighbouring 
points  used  for  any  one  point  in  N[a].     The  method  can  be  extended  to 
the  time_ dependent   case  by  following  Bell  and  Crank. 
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The  neighbourhood  N[a]  can  include  points  away  from  the  singularity, 
as  long  as  the  three-term  approximations  (6.1)  and  (6.8)  remain  valid. 
This  may be  checked  as  described  in  Motz  (1946).    The  approximate  size 
of  N[a]  can  be  determined  by  noting  that  the  discretisation  error  in 
the  standard  finite-difference  approximations  (4.5)  is  0(h2)  whereas 
the  modified  approximations  (6.4)  and  (6.5)  contain  a truncation  error 

of  0( 2
3

ρ ).    Thus  application  of the  modified  approximations  is 
advantageous  as  long  as  the  truncation  error  does  not  exceed the 
discretisation  error.    An  approximate  rule  is  then to  choose  N[a] 

such  that  the  maximum ρ   value  m  N[a],  ρmax .  say, is  such  that 2
3

maxρ .

is  of the  same  order  of magnitude  as  h2.    However,  practical  experience 
suggests  that  the  size  of  N[a]  can he  increased  further, and with 

beneficial  effect,  as  long  as  2
3

maxρ     is  of the  same  order  of magnitude 

as  h  (rather  than  h2). 

Five_point  'molecules'  differing  from that  given  in  Fig.5  are  needed 
for  points  in  N[a]  which  involve  the boundary.    Points  to  the  right 
of  (a,0)  on  j  =  0  do  not  have  a point  at  the  j_1  level,  necessitating 
a  different  molecule,  e.g.  Fig.  6.     Points  to  the  left  of  (a,0)  on 
j  =  1   involve  points  on  j  =  0  for which  θ  =  π.     The  fact  that  θ  =  π 
means  that  each  of the  fi(ρ ,θ)  in  (6.8)  are  zero,  and thus  solutions 
to  (6.9)   cannot  be  found.    A  suggested  alternative  is  given  in  Fig.   7. 
The  first  point  on  the  right  of  (a,0)  on  j  =  0  involves  both  the 
above problems  and  a  suggested  molecule  is  given  in  Fig.  8.    The 
general  form  of the  modified  approximations  allows  for  any  combination 
of  five  neighbouring points  provided  θ ≠ π.  

 

4 

4 4 5.

2 1 35. 5 

2 1 3 .2. 1 3r

FIG.  6. FIG.   7. FIG.  8. 

(a,0) (a,0) r(a,0) 
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7.      Calculation of Flux through Disc-Shaped Electrode
 
The flux Q given in  (3.7)  is  calculated, using øi+½,j values from 
(4.5)  and (6.15), by a similar method to that of Evans and Gourlay (1976) 
who used a quadrature process of summing integrals of the form (3.7) 
over boxes in the narrow band {0 <r < a,0 < z < δ z}in Fig.  9. 

 

FIG.  9.    Region used for flux quadrature. 

In  Fig.  9,  ia    denotes  the  value  of  i  at  r  =  a.    A standard quadrature 

process  would  give  inaccurate  results  for boxes   (is+1,   ...,  ia  +  1) 

near  the  singularity  and  so  special treatment  is  used  for  these  boxes. 

Practical  experience  suggests  that  is    should he  chosen  such that  the 

line  i  =  is  + 2
1    coincides  with the  boundary  of  N[a]. 

 

                     For boxes  (1,  ...,  is  )  away  from the  singularity  a  standard  quadrature 
                     process  is  used.    Evans  and  Gourlay  used the  local  interpolant 

φ* =  αz  +  βrz  + γr+ δ     ,     α, ß, γ , δ  constants , 
 

(7.1) 

thus 

,rz
* β+α=

∂
φ∂              (7.2) 

and Qi,  the  flux through box  (i),  is,  from  (3.7)  with  (7.2),                
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The   constants   in   (7.1)   are  evaluated  in  terms   of  the   four  surrounding 
ø values   for  each  box.      This   gives,   remembering   (3.2), 
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The   φ* values   are  obtained  from  the   finite-difference   approximations 
(4.5)   and   (6.1 5) .     For  box   (1 ) ,   the  limits   of  integration  are  r  =  0 
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For  boxes   (is   +1,   ...,   ia+1),   the  local  interpolant  must  take  into 
account  the  behaviour  of  the  singularity.     The  most  convenient 
interpolant  to  use   is   (6.1).      From   (5.2), 
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Approximations   for   θ∂
∂

ρ∂
∂ uandu  are  obtained  from  the  interpolant   (6.1) 

to  give,   from  (3.7)  with   (7.7), 
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Expanding  (7.8),   and  integrating,   gives 
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for  a  typical  box  (i)   for  boxes   (is  +1,   ...,  ia +1)  near  the  singularity. 
Approximations   for  the   ci    ,     i  =   1,   2,   3,   in   (7.9)   are   found  in 
terms  of  neighbouring  ø values  by  using   (6.8)   and  the  ø  values   at  the 

three  points   (i- 2
3

,1),   (i- 2
1

,l),   (i+ 2
1

,l).     For  the  last  box,  the  three 

points   (ia - 2
1

,1 ),   (ia+ 2
1

,l),   (i  + 2
1

,0)   are  used  and  the  limits   of 

integration  in   (1.9)   are   =  0  and ρ .2
rδ=ρ  

It  should be  noted that  Evans   and Gourlay  chose the   form of the 
singular  interpolant  to be 
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without   any  formal  derivation.     Comparison with   (5.24)   shows  that 
this   form is not  strictly correct. 

8.        Numerical  results 

Referring to  Table   1,   the  region ABCD was   chosen for N[a]   since this 

gave   optimal  improvement   (here 1.02
3

.max ≈ρ  and h  = 0.1). 

The   concentration   (ø)   values  were  calculated in the  following three 
ways   and  are   compared in  Table   1: 

      (I)     using  the  standard  finite-difference  scheme   (4.5)   throughout 
               the  region  in  Fig.   4, 
     (II)    using the  standard finite-difference  scheme   (4.5)   outside  N[a] 
               and the modified  scheme   (6.15)   inside  N[a]  based on Figs.   6-8 
               where  appropriate, 
    (III)     using the exact  forms   (3.9)   and  (3.10). 

The  flux   (Q)   values  were  calculated in the  following three ways   and 
are  compared in  Table  2: 
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(IV)     using the  ø  values   from  (I)   and the   standard  quadrature  process 
(7.3)   for  all boxes   in  Fig.   9, 

(V)     using the  ø   values   from   (II) ,  the   standard quadrature process 
(7.3)   for boxes   (1,   ...,  is )   arid the modified quadrature process 
(7.9)   for boxes   (is   +1,    ...,ia+1), 

(VI)     using the  exact   form  (3.12). 

Both tables  show that   a marked improvement   occurs   if modified treatments 

(II)   and   (V)   are  used  rather  than   (I)   and   (IV). 

9.        Time-Dependent  Problems

The  time-dependent   form of   (1.1)   is 
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Modified finite-difference   approximations   for problems   of the   form  (9.1 ) , 
with mixed boundary   conditions   such  as   (2.1),   can be   developed in   a 
similar way to the  steady-state   case.     Using the transformation   (5.6) 
on   (9.1)   gives   the   self-adjoint   form 
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and,   after  converting   (9.2)   to polar  co-ordinates   centred on   (a,0), 
a truncated series   solution  can be   formed by  seeking  a solution  of 
th e   form 

u( ,θ, t) = T(t)R(ρ ρ )Θ(θ) + ω(ρ ,θ)      , 
 

(9.3) 

where  ω(ρ ,θ)   represents  the   solution  of  the   corresponding  steady-state 
problem.     Modified  approximations   can  then  be   developed  as  before  with 
the  unknown  coefficients   in  the  truncated  series   solution  being  found 
in  terms  of  neighbouring  solution  values   at  each  time  step,   see  Bell 
and  Crank  (1973,1975). 
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TABLE   2 

Flux   (Q)   values   for   each-box   in  Fig.    9. 

C0  = 1.0, δ r   =  δ z  =  0-1, rL   =  2.0, zL = 1  .1  ,  D   = 1.0,    a  =  1.0, 

N[a]   =   ABCD   (see   Table   1),   i s    =8. 
 

 
  Box 

Standard   F.D. 
( 4. 5 )    φ values 
and   standard 
quadrature   ( 7 . 3 )  

Modified  F.D. 
( 6 . 1 5 )     φ values 
and  modified 
quadrature   ( 7.9) 

Exact   values 
from   (3.12) 

1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7 
 
8 
 
9 
 
10 
 
11 

0.005 
 
0.040 
 
0.082 
 
0.127 
 
0.176 
 
0. 234 
 
0. 305 
 
0.399 
 
0. 543 
 
0. 798 
 
1 .361 

0.005 
 
0.040 
 
0.082 
 
0 .126  
 
0 .175 
 
0.231 
 
0.301 
 
0. 392 
 
0.541 
 
0 . 8 5 6  
 
1 .243 

0.005 
 
0.040 
 
0.082 
 
0.126 
 
0.175 
 
0.231 
 
0.301 
 
0.394 
 
0.539 
 
0.858 
 
1 .249 

 
Total 

 
4.070 

 
3.992 

 
4.000 

 
% Error 

 
1 -76 

 
 -0.20 
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